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Brain connectivity can be modeled and quantified with a large number of techniques. The main objective of

this paper is to present the most modern and widely established mathematical methods for calculating

connectivity that is commonly applied to functional high resolution multichannel neurophysiological signals,

including electroencephalographic (EEG) and magnetoencephalographic (MEG) signals. A historical timeline

of each technique is outlined along with some illustrative applications. The most crucial underlying

assumptions of the presented methodologies are discussed in order to help the reader understand where

each technique fits into the bigger picture of measuring brain connectivity. In this endeavor, linear, nonlinear,

causality-assessing and information-based techniques are summarized in the framework of measuring

functional and effective connectivity. Model based vs. data-driven techniques and bivariate vs. multivariate

methods are also discussed. Finally, certain important caveats (i.e. stationarity assumption) pertaining to the

applicability of the methods are also illustrated along with some examples of clinical applications.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

There has been a growing interest in studying both normal and
pathological brain function with respect to identifying variations in
activation within and interactions between brain areas. Under-
standing and modeling brain function is based not only on the
correct identification of the active brain regions, but also on the
functional interactions among the neural assemblies distributed
across different brain regions. The aforementioned concepts are
addressed in theoretical neuroscience, as the functional segregation

(activation of specialized brain regions/neural assemblies) and
integration (coordinated activation of very large numbers of neural
assemblies distributed across different cortical areas that constitute
large-scale distributed systems of the cerebral cortex) principles [1].

Integration of cerebral areas can be measured by assessing
brain connectivity. Brain connectivity can be subdivided into
neuroanatomical (or structural), functional and effective connectivity.

Neuroanatomical connectivity is inherently difficult to define given
the fact that at the microscopic scale of neurons, new synaptic
connections or elimination of existing ones are formed dynamically
and are largely dependent on the function executed [2]. But for the
sake of simplicity structural connectivity may be considered as fiber
ll rights reserved.
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pathways tracking over extended regions of the brain, which are in
accordance with general anatomical knowledge [3]. Magnetic
Resonance Imaging (MRI) and especially Diffusion Tensor Imaging
(DTI) can be used to examine structural connectivity and convey
information concerning the white matter fiber tracts. Techniques
for measuring neuroanatomical connectivity are discussed in other
articles within this special issue.

Functional connectivity is defined as the temporal correlation (in
terms of statistically significant dependence between distant brain
regions) among the activity of different neural assemblies [4]. Many
neurophysiologic signals can be assessed with functional connectivity
techniques, including signals derived from single unit and local field
potential (LFP) recordings, Electroenchaphalography (EEG), Magne-
toencephalography (MEG), Positron Emission Tomography (PET) and
Functional Magnetic Resonance Imaging (fMRI).

Effective connectivity is a relatively new concept defined as the
direct or indirect influence that one neural system exerts over
another [5]. It describes the dynamic directional interactions among
brain regions. Effective connectivity can be estimated from the signals
directly (i.e. data-driven) or can be based on a model specifying the
causal links (i.e. model-based combination of both structural and
functional connectivity).

Several different modalities can be used to assess brain
connectivity. fMRI is widely used mostly due to the large avail-
ability of MRI scanners. fMRI provides a high spatial resolution
(1–10 mm), while EEG/MEG has more limited spatial resolution
es for the estimation of brain connectivity measured with EEG/
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(1–10 cm). On the other hand, fMRI has a limited temporal
precision (�1 s), primarily due to the limitations of the hemody-
namic response, while EEG/MEG has high temporal precision of
the EEG and MEG techniques (o1 ms). Because functional and
effective connectivity techniques are largely dependent on calcu-
lating the correspondence of neural signals over time, techniques
such as EEG and MEG, which have excellent temporal resolution,
are optimal for calculating such connectivity.

This review focuses on the most promising methodologies for
assessing functional and effective connectivity from EEG or MEG
signals. The introductory section provides an overview of brain
connectivity, whereas Section 2 provides a historical and meth-
odological perspective of different families of functional and
effective connectivity techniques. Section 3 discusses the merits
and the limitations of these techniques. The underlying assump-
tions of each technique are also discussed along with some
illustrative clinical paradigms. Finally, the fourth section con-
cludes this review and points out future research directions.
2. Methods

From the early 1960s [6], scientific research focusing on brain
connectivity has been increasing. Throughout this time, develop-
ing methods to efficiently and accurately quantify brain connec-
tivity has been, and still remains, a challenging problem. In this
section we provide an overview of the most widely used techni-
ques and portray some of the most representative measures in
each of the following categories:
�

P
M

Effective connectivity (Section 2.1)
o Model-based (Section 2.1.1) & data-driven (Section 2.1.2)

techniques
lea
EG
�
 Functional connectivity (Section 2.2)
o Linear (Section 2.1.1), nonlinear methods (Section 2.2.2)

and information-based techniques (Section 2.2.3)
In-depth technical details of each method are provided in
relevant references.

2.1. Effective connectivity

Neural assemblies synchronize and interact dynamically in local
or distant regions in order to accomplish perceptual, motor or
cognitive functions [17]. Such functions reflect complex interactions
that include anticipation of the stimulus, attention to the stimulus
and preparation for its associated actions [18]. Such an interaction
process can be realized through bidirectional or unidirectional
coupling. The former case resembles mutual synchronization, where
both systems adjust their rhythms to each other, whereas the latter
case reflects causal interaction between the driver (initiating external
force) and the response (the driven system). Dynamic Causal
Modeling (DCM) [10] and Granger-causality [19] belong to this family
of techniques. These techniques will be discussed within this section.

2.1.1. Model-based effective connectivity techniques

Neurobiologically evidence and plausible theories generated from
this evidence can form theoretical models that describe how brain
areas interact and influence each other. This idea is the basis for
model-based effective connectivity. Using this technique competing
neurobiological models and hypotheses can be evaluated. This
technique allows proposed causal interactions to be assessed.

Neurobiological data are considered mixtures of independent
brain sources that are spatially and temporally correlated within
the context of the specific brain state being investigated. Although,
this idea dates back to the mid-1980s [7], during the past decade,
se cite this article as: V. Sakkalis, Review of advanced techniqu
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studies have developed novel approaches for determining the brain
sources that underlie the spatial and temporal patterns of EEG and
MEG signals [8,9]. In 2003, dynamic causal models were introduced
for fMRI [10]. Later, this basic idea was extended to EEG and MEG
[11,12]. The key to Dynamic Causal Modeling (DCM) technique is
that the response of a dynamic system can be modeled by a
network of discrete but interacting neuronal sources described in
terms of neural-mass [13–15] or conductance-based models [16].

2.1.2. Data-driven effective connectivity techniques

In contrast to model-based technique, data-driven techniques do
not assume any specific underlying model or prior knowledge
concerning spatial or temporal relationships. Granger-casuality (GC)
is one of the prototypical data-driven effective connectivity techni-
ques. GC is based on the assumption that causes precede their effects
in time. If a signal can be predicted by the past information from a
second signal better than the past information from its own signal
then the second signal can be considered causal to the first signal. GC
is a time-domain approach, but in 1982 Geweke [20] applied this
concept in the frequency domain. Geweke’s work enabled the
analysis of coupling between EEG frequency bands that have a
well-known biomedical significance. As GC developed, the concept
was generalized from bivariate to multivariate signals [21,22].
Recently the Directed Transfer Function (DTF) [23] and Partial Directed

Coherence (PDC) [24] techniques were developed out the GC method.
DTF and PDC are equivalent when applied in bivariate cases, but in
the multivariate case PDC is able to detect not only direct but also
indirect pathways linking interacting brain regions. PDC is briefly
described below.

2.1.2.1. Partial directed coherence (PDC). PDC is based on the
concept of partial coherence [25], a technique that quantifies the
relationship between 2 out of n signals while avoiding volume
conduction (the most critical issue of traditional coherence) by
accounting for the influence of interactions from all other n�2
signals. PDC extends the concept for partial coherence by
measuring directional (i.e. causal) influences. PDC is formulated
using MVAR models. Suppose that a set of n simultaneously
observed time series xðtÞ ¼ ½x1ðtÞ,. . .,xnðtÞ�

T is adequately
represented by an autoregressive model of order p:

xðtÞ ¼
Xp

r ¼ 1

Arxðt�rÞþeðtÞ ð1Þ

where Ar ¼

a11ðrÞ � � � a1nðrÞ

^ & ^

an1ðrÞ � � � annðrÞ

2
64

3
75 is the coefficient matrix at time

lag r, and eðtÞ ¼ ½e1ðtÞ,. . .,enðtÞ�
T is a multivariate Gaussian white

process having zero mean and covariance matrix R. The
autoregressive coefficients aij(r), i,j¼1,y,n represent the
influence of xj(t–r) on xi(t). Non-zero coefficient values can be
considered as information flow from signal j to signal i. GC is a
time-domain approach. PDC provides a frequency-domain
description of GC [25–27].

Let the matrix Aðf Þ ¼ I�Aðf Þ ¼ ½a1ðf Þa2ðf Þ � � � aLðf Þ� with ele-
ments aijðf Þ representing the difference between the n-dimen-
sional identity matrix I and the matrix Aðf Þ . The elements aijðf Þ of
Aðf Þ form the Fourier transform of the elements aijðrÞ of the
coefficient matrix Ar, i.e. aijðf Þ ¼

Pp
r ¼ 1 aijðrÞe

�ıð2p=pÞrf Furthermore,
aiðf Þ, i¼1,2,y,n denote the columns of Aðf Þ. Then the PDC from
channel j to channel i is given by

pijðf Þ ¼
aijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aH
ðf Þajðf Þ

q ð2Þ

where H denotes the transpose and complex conjugate operation.
Thus, PDC ranks the relative strength of causal interaction with
es for the estimation of brain connectivity measured with EEG/
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1 Time-frequency resolution is constrained by the uncertainty principle: the

wider the windows, the better the frequency resolution, at the expense of timing

information, and vice versa.
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respect to a given channel while fulfilling the following normal-
ization properties: 0r9pijðf Þ9

2r1 and
PL

i ¼ 1 9pijðf Þ9
2
¼ 1, for all

1r jrn.

2.2. Functional connectivity

2.2.1. Linear connectivity

In the 1960s, linear brain connectivity began to be measured
using cross-correlation of pairs of EEG signals [6, 28]. Higher correla-
tions indicate stronger functional relationships between the related
brain regions. In order to measure linear connectivity in the
frequency domain, the use of Magnitude Squared Coherence (MSC)
or coherence was introduced. Coherence allows the spatial correla-
tions between signals to be measured in different bands [29].
Coherence is sensitive to both change in power and change in phase
relationships. In other words, if either power or phase changes in one
of the signals, the coherence value is affected. If there is no variation
over time in the original relationship between the two signals, the
coherence value remains unity [30]. This means that coherence does
not give direct information on the true relationship between the two
signals, but only on the stability of this relationship with respect to
power asymmetry and phase relationship. Correlation, on the other
hand, may be calculated over a single epoch or over several epochs
and it is sensitive to both phase and polarity, independent of
amplitude. However, under normal physiological conditions, no
strong and abrupt power asymmetries would be expected to occur.
Thus, the influence of power on coherence should be negligible and
results similar to those produced by correlation would be expected
for the coherence measures.

2.2.1.1. Magnitude squared coherence (MSC). Cross-correlation and
MSC are the most commonly used linear synchronization
methods and are defined as follows:

Consider two simultaneously measured discrete time series xn

and yn, n¼1,y,N. Then the cross-correlation function (Cxy) is
defined as

CxyðtÞ ¼
1

N�t
XN�t
n ¼ 1

ððxn�xÞ=sxÞððynþt�yÞ=syÞ ð3Þ

where x and sx denote mean and variance, respectively, while t is
the time lag. MSC or simply coherence is the cross spectral
density function Sxy, which is simply derived via the FFT of
Eq. (3), normalized by their individual autospectral density
functions. However, due to finite size of neural data one is forced
to estimate the true spectrum, known as periodogram, using
smoothing techniques (e.g. Welch’s method [31]). Thus, MSC is
calculated as

gxyðf Þ ¼
9/Sxyðf ÞS92

9/Sxxðf ÞS9/Syyðf ÞS9
ð4Þ

where /US indicates window averaging. The estimated MSC for a
given frequency f ranges between 0 (no coupling) and 1 (max-
imum linear interdependence).

One of the major assumptions when using coherence is
stationarity of signal. But, if the Short Time Fourier Transform

(STFT) is used instead of the classical Fast Fourier Transform
approach to calculate coherence, then the stationarity assumption
can be relaxed and coherence may be calculated around a
number of time instants. This technique produces the so-called
‘‘coherogram’’, which forms a three dimensional matrix of
time and frequency vs. coherence. However, stationarity is
still required within each time interval for which coherence
is calculated, meaning that in practice one should carefully decide
on the optimal section length (window) over which each coher-
ence estimate is measured. Window length and overlapping
Please cite this article as: V. Sakkalis, Review of advanced techniqu
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within each coherence estimate affect the resolution of the
measure.

An alternative method for calculating coherence is the Wavelet

Coherence (WC) [32]. This approach requires a-priori information
about the coupling range in time and frequency, in order to
allocate the optimal time–frequency resolution.1 WC is a function
of both time and scale that can be mapped to specific frequency
bins, broadly referred as pseudo-frequencies. The mapping pro-
cedure requires the calculation of the leading dominant frequency
of the scaled wavelet basis function. WC is particularly suited to
quantifying time varying coherence, since it uses a shorter
window for higher frequencies and a longer one for lower
frequencies, thus avoiding the constant size windows as in the
STFT coherence case. Similarly to the coherogram, WC produces
the so-called ‘‘scalogram’’, as depicted in Fig. 1.

An interesting enhancement to the calculation of WC is the
definition of a probability distribution of the calculated coherence
values that can be used to define the 95% confidence level. In
order to apply these ideas on real EEG signals one may set a
population specific background spectra (or control-task spectra)
defined as the mean time-averaged wavelet power spectrum for
each EEG channel and scale averaged over all subjects performing
a control task [33]. Having derived this threshold, it is possible to
indicate significant regions of increased or decreased coherence
over the scalogram and form a single measure per scale that
reflects the Significant Wavelet Coherence (SWC). Basically, we are
able to obtain the coherence values over those time- and
frequency band-localized regions where significant coherence is
indicated by taking the coherence averages over certain bands
and significant time intervals (contours depicted as dashed lines
in Fig. 1). An interesting study that successfully utilizes this
approach in extracting the variability of neural interconnections
in schizophrenia patients, as compared to healthy controls [34], is
discussed later in the clinical application section.

2.2.2. Nonlinear coupling techniques

Nonlinear methods are not designed to outperform linear
methods but rather provide complementary information under
certain and rather strict assumptions. Nonlinear measures for
measuring the dynamics of an EEG signal were developed based
on deterministic chaos [35]. Nonlinear neural time series analysis
was motivated by the fact that many crucial neural processes have
nonlinear characteristics (e.g. the regulation of voltage-gated ion
channels corresponds to a steep nonlinear step-function relating
membrane potential to current flow). In the early 1980s, the
concept of synchronization was introduced to measure neural
connectivity. Synchronization is based on interacting chaotic
oscillators [36,37]. Synchronization may be understood as an
adjustment of rhythms of oscillating objects due to their weak
interaction [38]. In neuroscience studies, synchronization is mainly
represented by the concepts of the phase- and generalized-synchro-

nization [39]. Phase-synchronization (PS) [40] is most commonly
seen in gamma frequency large-scale oscillations that enter into
precise phase-locking over a limited period of time when the
subject is engaged in cognitive tasks. PS is also considered an
important mechanism in certain diseases, such as the genesis of
epileptic phenomena [41]. One representative method capable to
obtain a statistical measure of the strength of PS in different areas
of the brain is the Phase Locking Value (PLV) [39, 42].

2.2.2.1. Phase synchronization—PLV. The PLV approach assumes
that two dynamic systems may have their phases synchronized
es for the estimation of brain connectivity measured with EEG/
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Fig. 1. The squared WC time–frequency transformed scalogram. The 5% significant regions over the time-scale transform are indicated by the contours (green dashed

outline). The outer elliptical region at the edges of the second graph indicates the cone of influence in which errors (edge effects) may be apparent due to the

transformation of a finite-length series EEG signal [48]. The relative phase relationship is also shown as arrows (with in-phase pointing right, and anti-phase pointing left).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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even if their amplitudes are zero correlated [43]. PS is defined as
the locking of the phases associated to each signal, such as

9fxðtÞ�fyðtÞ9¼ const ð5Þ

In order to estimate the instantaneous phase of a signal,
Hilbert transform (HT) may be used to form the analytical signal
H(t) as

HðtÞ ¼ xðtÞþ i ~xðtÞ ð6Þ

where ~xðtÞ is the HT of x(t), defined as

~xðtÞ ¼
1

p
PV

Z 1
�1

xðt0Þ

t�t0
dt0 ð7Þ

where PV denotes the Cauchy principal value. The analytical
signal phase is defined as

fðtÞ ¼ arctan
~xðtÞ

xðtÞ
ð8Þ

Therefore for two signals x(t), y(t) of equal time length with
instantaneous phases fxðtÞ,fyðtÞ the PLV bivariate metric is
defined as

PLV ¼
1

N

XN�1

j ¼ 0

eiðfX ðjDtÞ�fY ðjDtÞÞ

������

������ ð9Þ

where Dt is the sampling period and N is the sample number of
each signal. PLV takes values within [0,1], where 1 indicates
perfect phase synchronization and 0 indicates lack of
synchronization.

2.2.2.2. Generalized synchronization. After the successful
application of PS in EEG analysis, another type of
synchronization, namely the Generalized Synchronization (GS),
was developed. GS represents how well neighborhoods (i.e.
recurrences) of one chaotic attractor maps onto the other.
Attractor mapping is considered to be a robust way of assessing
the extent of GS [39, 44–46], even if it is prone to stationarity
shortcomings. To form such attractors from the raw EEG data,
Please cite this article as: V. Sakkalis, Review of advanced techniqu
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delay vectors need to be constructed out of the time series using
the following procedure known as time-delay embedding [47]:

xn ¼ ðxn,. . .,xn�ðm�1ÞtÞ and yn ¼ ðyn,. . .,yn�ðm�1ÞtÞ ð10Þ

where n¼1,y,N, and m and t are the embedding dimension and
time lag, respectively. Let rn,j and sn,j, j¼1,y,k, denote the time
indices of the k nearest neighbors of xn and yn, respectively.
For each xn the mean squared Euclidean distance to its k

neighbors is defined as

RðkÞn ðXÞ ¼
1

k

Xk

j ¼ 1

ðxn�xrn,j
Þ
2

ð11Þ

and the Y-conditioned squared mean Euclidean distance RðkÞn ðX9YÞ
is defined by replacing the nearest neighbors by the equal time
partners of the closest neighbors of yn. If the set of reconstructed
vectors (point cloud xn) has an average squared radiusRðXÞ ¼

ð1=NÞ
PN

n ¼ 1 RðN�1Þ
n ðXÞ, then RðkÞn ðX9YÞ � RðkÞn ðXÞ5RðXÞ when the

systems are strongly correlated, while RðkÞn ðX9YÞ � RðXÞbRðkÞn ðXÞ if

they are independent. Hence, an interdependence measure is
defined as [46]:

SðkÞðX9YÞ ¼
1

N

XN

n ¼ 1

RðkÞn ðXÞ

RðkÞn ðX9YÞ
ð12Þ

Since RðkÞn ðX9YÞbRðkÞn ðXÞ by construction, S ranges between 0
(indicating independence) and 1 (indicating maximum synchro-
nization). Another normalized and more robust version of S is
defined as [45]:

NðkÞðX9YÞ ¼
1

N

XN

n ¼ 1

RnðXÞ�RðkÞn ðX9YÞ
RnðXÞ

ð13Þ

For an in-depth mathematical reasoning and historical over-
view of the aforementioned techniques the interested reader is
referred to [48], while a detailed comparison of the aforemen-
tioned synchronization methods applied in epileptic data analysis
is presented in [39].
es for the estimation of brain connectivity measured with EEG/
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2.2.3. Information-based techniques

Information-based techniques are sensitive to both linear and
nonlinear statistical dependencies between two time series.
The most representative method is the Cross Mutual Information

(CMI) that measures the mutual dependence between two signals
by quantifying the amount of information gained about one signal
from measuring the other, as a function of delay between these two
signals. CMI has been used in method for diagnosing Alzheimer’s
disease and Schizophrenia [49,50], as discussed in Section 4.

Another information-based method for assessing the depen-
dence between time series is based on the degree of predictability
of each of the two time series as a function of the other [39]. More
specifically, the Minimum Description Length (MDL) principle is
based on the idea that the best model for representing a signal is
the one with the shortest possible code length. According to the
MDL principle, the savings in code length of one signal due to the
knowledge on the other is a measure of dependence between
the two processes [51].

Information-based measures may also assess causality as
already discussed in Section 2.1.2.
2 ICA can be also used in neuroimaging to study connectivity directly.
3. Discussion

This section illustrates the different underlying assumptions
and limitations of each family of methods, in order to help the
reader decide upon the best candidate method for a particular
research study.

3.1. Model-based vs. data-driven techniques

The different underlying assumptions of both model-based
and data-driven techniques need to be considered when selecting
one of these methods for a specific problem. Model-based
approaches (e.g. DCM) are based on well-defined biophysical
models of neuronal dynamics. In this case one should choose
the best model (or set of interacting models) and predefine or
experiment with a large number of different parameters in order
to test a preset hypothesis. The uncertainty in predefining these
parameters and the large number of possible combinations of
parameters is the main drawback of model-based techniques.
Established methodologies may assist in determining the best
possible model [52]. However, it is very possible that no single
model exists but rather multiple models may be equally appro-
priate for a given data set.

Data-driven methods do not assume any specific underlying
spatial or temporal relationship. Such methods can be used in
assessing connectivity when no a-priori structural knowledge is
available.

3.2. Stationarity considerations

Most of the methods presented assume stationarity. For a process
to be stationary, the mean, variance and autocorrelation structure
cannot change over time. Generally, an EEG distribution is consid-
ered as a multivariate Gaussian process even if the mean and
covariance properties change from segment to segment. Therefore,
strictly speaking, an EEG signal is quasi-stationary since it is
stationary only within short intervals. During mental and physical
activities this assumption can easily be violated since the state of the
brain can change in alertness and wakefulness. In addition, care must
be taken when examining EEG signals from epilepsy patients as
transitions between pre-ictal and ictal states often occur in such
cases. WC provides a balance between a data segment long enough
to provide good frequency resolution and short enough to satisfy the
condition of stationarity. In conditions in which the stationarity
Please cite this article as: V. Sakkalis, Review of advanced techniqu
MEG, Comput. Biol. Med. (2011), doi:10.1016/j.compbiomed.2011.0
assumption is violated, a stationarity independent measure such as
PLV can be used. In addition, a novel and promising technique
capable of decomposing a multivariate time series into its stationary
and nonstationary part known as stationary subspace analysis can be
utilized to overcome these implicit stationarity constraints [53].

3.3. Multivariate modeling considerations

There is a growing interest in extending interdependence
analysis from bivariate to multivariate signals. This is important
since pairwise analysis is likely to find spurious correlations in cases
where one driver drives two responses. In this case both responses
may have a common driver, even if the responses appear to be fully
independent. Several of the techniques are multivariate, such as the
GC, DTF, PDC and the GS measures. However, all these methods
depend on the reliability of the fitted MVAR model and especially
the model order and epoch length. If the order is too low, the model
misses the dynamic nature of the signal, whereas if it is too high
overfitting mainly emphasizes noise. A number of methods such as
the Akaike Information Criterion (AIC) [54] can be used to deter-
mine the optimal model order.

3.4. Linearity/nonlinearity assumptions

Chaotic systems appear to have noisy behavior, which is actually
ruled by deterministic laws. Although the nonlinear measures
presented are capable of identifying nonlinear interdependences,
they are highly susceptible to noise and, in the case of GS, the
embedding parameters. Another crucial issue is the requirement of
rather long stationary epochs. However, even though neurons are
theoretically highly nonlinear devices, strong evidence of chaos has
not been found in EEG data [55]. Hence, at the present time, there is
a wide consensus that the EEG signal is not chaotic, at least in low-
dimensions. Another classical misconception is that nonlinear tools
may replace linear ones. The opposite seems to be more valid;
linear measures are more robust and perform well even in non-
linear cases [39]. Nevertheless, nonlinear analysis should be used to
complement linear ones in order to capture and provide additional
information hidden in linear approaches [39].

3.5. Source estimation imaging vs. surface electrode connectivity

Another great concern lies in the problem of acquiring mixed
activity captured from more than one brain region, when using
surface sensors (electrodes) to capture the signals. This can cause
spurious connectivity patterns. There are a number of recently
proposed source imaging techniques that can account for volume
conduction effects and can be applied in some of the techniques
reviewed in this paper. Most prominently, linear decomposition
techniques such as Principal Component Analysis (PCA) [56] and
Independent Component Analysis (ICA) [18,57] [58], which
attempt to invert the mixing process, can be utilized prior to
further connectivity analysis.2 On the other hand, there is also the
possibility to examine only the imaginary part of the cross-
spectrum since only the real part is affected by instantaneous
effects when using spectrum-based techniques [59]. In that way
there is no need for signal decomposition.

Finally, it should be noted that graph-theoretic concepts can
also be used to visualize and quantify brain network topologies
using the presented connectivity measures [60,61].

Table 1 summarizes the characteristics of the most widely
accepted methods discussed in this review.
es for the estimation of brain connectivity measured with EEG/
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Table 1
Comparison of representative methods for estimating brain connectivity.

DCM MSC STFT
COH

WC PLV GS GC
Geweke

PDC

Linear X X X X

Nonlinear X X

Info-based X X

Model-based X

Data-driven X X X X X X X

Causality assessing X X X

Multivariate X X X

Stationarity

independent

X X

Functional

connectivity

X X X X X X X

Effective connectivity X X X

DCM: Dynamic Causal Modeling;

MSC: Magnitude Squared Coherence;

STFT COH: Short Time Fourier Coherence;

WC: Wavelet Coherence;

PLV: Phase Locking Value;

GS: Generalized Synchronization;

GC: Granger Causality;

PDC: Partial Directed Coherence.
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3.6. Clinical applications

The continuous advancement of neuroscience methods
applied in EEG/MEG has been successful in capturing the under-
lying processes of several neurological disorders and neurode-
generative diseases [62]. Studies incorporating the various
connectivity methods discussed in this paper are presented in
this section. As will become evident below, there is no single
optimum method for assessing brain connectivity. Efficiency
greatly depends on the application and the underlying assump-
tions of each connectivity method.

Epilepsy is a common neurological disorder that has been
extensively studied using both EEG and MEG. One clinically useful
application is localization of the epileptogenic brain activity to
better define a surgically lesion [63]. In childhood epilepsy, visual
inspection of EEG tracings or traditional spectral analysis may not
show differences between children with a history of seizures and
normal controls. Yet, more sensitive connectivity methods, which
are able to identify subtle abnormalities, may be useful in the
evaluation of neurophysiological activity and guiding clinical man-
agement [39]. Different measures of quantifying synchronous
oscillatory activity (MSC, MDL, PLV and GS) were evaluated in
[39] using a three-stage assessment framework. Initially, the non-
linear methods were validated on coupled nonlinear oscillators
(artificial signals) under increasing noise interference; second,
surrogate data testing was performed to assess the possibility of
nonlinear channel interdependencies in the acquired EEG data; and
finally, synchronization on the actual data was measured. This
approach concluded that in a real case scenario, one should use
both a PS measure (e.g. PLV) and a GS measure, as well as linear
connectivity methods since their underlying assumptions are
different. For example, the PLV method performed better when
applied to phase-synchronized oscillators but underperformed
when examining general synchronized oscillators.

In Alzheimer’s disease (AD) many studies find that reduced
brain signal synchrony can facilitate early diagnosis. CMI was
studied in [49] in order to quantify information transmission
between different cortical areas in 15 AD patients. Information
transmission was found to be lower between distant electrodes in
the right hemisphere and between interhemispheric electrodes.
This suggests a functional impairment of information transmis-
sion in long cortico–cortical connections in AD patients, consis-
tent with previous research. MEG coherence can also be used to
Please cite this article as: V. Sakkalis, Review of advanced techniqu
MEG, Comput. Biol. Med. (2011), doi:10.1016/j.compbiomed.2011.0
monitor the effects of intravenous scopolamine injection [64] in
AD. In this latter study, interhemispheric and left intrahemi-
spheric coherences were found to significantly decrease in the
theta band frequency band. This suggests that MEG and func-
tional connectivity measures may provide a tool for monitoring
neurological disorder progression associated with cholinergic
abnormalities. More recently GC, phase synchrony and nonlinear
generalized synchronization based measures have also been
tested in AD [65]. GC was able to discriminate patients from
age-matched control patients achieving 82.9% classification rate
(in a leave-one-out classification scheme). In addition, CMI when
applied in 15 AD patients and age-matched normal controls was
successful in identifying EEG abnormalities in AD patients with
functional impairment of information transmission in long
cortico–cortical connections [49].

Schizophrenia has been another very promising application
domain because connectivity analysis is able to test the discon-
nection hypothesis of schizophrenia [66]. CMI was used to
evaluate the information transmission of different cortical areas
in 10 schizophrenic patients and age-matched controls [50].
Interhemispheric and intrahemispheric CMI values in schizophre-
nics were significantly higher than normal controls suggesting left
temporal lobe deficit and inter- and/ or intrahemispheric over-
connectivity in schizophrenics. PLV was also able to reflect
perceptual binding deficits especially in the 40 Hz frequency
range [67,68]. More recently, working memory experiments (from
20 stable patients with schizophrenia and controls) based on WC
assessment were able to successfully study and support the
‘‘disconnection syndrome’’ hypothesis when examining the
gamma frequency band [34]. In a similar working memory
framework, using mutual information applied in MEGs from 28
people with schizophrenia, the importance of beta-band oscilla-
tions for long-distance functional connections in brain networks
was highlighted [69].

Similarly to schizophrenia, an underconnectivity hypothesis also
applies in autism [70]. A very recent study [71] achieved an overall
performance of 87.5% accuracy of discriminating a group of 8 autis-
tic individuals vs. healthy controls, based on GC connectivity
measures. Another work suggests that the usage of nonlinear
methods and specifically the coarse-grained entropy synchroniza-
tion applied in sleep EEG may enable differences in children and
infant brain connectivity to be detected. More specifically it was
found that synchronization was significantly lower in children with
autism than in a group of typically developing children [72],
supporting the theory that the autistic brain exhibits low functional
connectivity. More recently, the nonlinear complexity of resting
EEG computed with modified multiscale entropy was able to
distinguish typically developing children from a group of infants
at high risk for autism spectrum disorder [73]. The study involved
79 different infants (46 at a risk for ASD and 33 controls) and
reached almost 100% classification accuracy for boys at age
9 months and 70–90% at ages 12 and 18 months.

As a final example of an application, alcoholism is presented.
Impaired cognitive functioning and specifically intrahemispheric,
posterior coherences are found to be significantly increased in the
alpha and beta frequency bands both in long-term abstinent and
non-abstinent alcohol-dependent subjects [74]. Alcoholics experi-
ence cognitive deficits while performing complex cognitive tasks as
expressed also in generalized synchronization studies [75]. Lastly,
both linear and nonlinear interdependence measures (MSC, PLV and
the GS presented method) were also investigated in alcoholics
during mental rehearsal of pictures [76]. The results were in
accordance with previous psychophysiology studies suggesting that
an alcoholic has impaired synchronization of brain activity and loss
of lateralization during the rehearsal process, most prominently in
alpha and lower beta frequency bands.
es for the estimation of brain connectivity measured with EEG/
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4. Conclusion

A variety of advanced brain connectivity methodologies are
reviewed in this manuscript. Although the majority of these
techniques are currently research-based many may be clinically
useful in the near future for evaluating cortical dysfunctions in
cases where classical EEG evaluation is inadequate. The use of
model-based/data-driven, bivariate/multivariate, causality-asses-
sing, linear/ nonlinear and information-based techniques allows
the analysis of complex cortical interactions from different, novel
perspectives. However, the accuracy of the results highly depends
on the underlying assumptions of each approach, as well as the
application under consideration. Although analysis of brain func-
tional has evolved significantly during the last decades and a
variety of methods addressing both functional and effective
connectivity are currently available, there is no single optimum
technique to universally assess brain connectivity.

In the years to come, more sophisticated and powerful meth-
ods will be developed which empower our current understanding
of functional brain connectivity. Future methods for assessing
cortical connectivity patterns with greater spatiotemporal accu-
racy include multimodal fusion approaches integrating modalities
that provide excellent temporal resolution (e.g. EEG and MEG)
with modalities that offer better spatial resolution (e.g. PET and
fMRI). Further development of neuroconnectivity methodologies
would include combining both neuroanatomical information
derived from diffusion tensor imaging and high temporal resolu-
tion functional connectivity approaches. Such methodologies will
be suitable for capturing the dynamic evolution of the time-
varying connectivity patterns that reflect certain cognitive tasks
or brain pathologies.
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