
J. Parallel Distrib. Comput. 64 (2004) 1270–1285
www.elsevier.com/locate/jpdc

Static and adaptive distributed data replication using genetic algorithms

Thanasis Loukopoulosa, Ishfaq Ahmadb,∗
aDepartment of Computer Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

bDepartment of Computer Science and Engineering, The University of Texas at Arlintgon, P.O. Box 19015, 248 D/E Nedderman Hall, 416 Yates St.,
Arlington, TX 16019-0015, USA

Received 4 May 2001; received in revised form 12 March 2004

Abstract

Fast dissemination and access of information in large distributed systems, such as the Internet, has become a norm of our daily life.
However, undesired long delays experienced by end-users, especially during the peak hours, continue to be a common problem. Replicating
some of the objects at multiple sites is one possible solution in decreasing network traffic. The decision of what to replicate where,
requires solving a constraint optimization problem which is NP-complete in general. Such problems are known to stretch the capacity
of a Genetic Algorithm (GA) to its limits. Nevertheless, we propose a GA to solve the problem when the read/write demands remain
static and experimentally prove the superior solution quality obtained compared to an intuitive greedy method. Unfortunately, the static
GA approach involves high running time and may not be useful when read/write demands continuously change, as is the case with
breaking news. To tackle such case we propose a hybrid GA that takes as input the current replica distribution and computes a new one
using knowledge about the network attributes and the changes occurred. Keeping in view more pragmatic scenarios in today’s distributed
information environments, we evaluate these algorithms with respect to the storage capacity constraint of each site as well as variations
in the popularity of objects, and also examine the trade-off between running time and solution quality.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Data replication; Genetic algorithms; Static and dynamic allocation; Internet; World wide web; Greedy method

1. Introduction

Data replication across a read intensive network can po-
tentially lead in increased traffic savings which can indi-
rectly reduce the response time experienced by end-users.
On the other hand in the presence of updates, maintaining
large number of copies can be a performance bottleneck.
There are three main issues when talking about replication
in traditional distributed systems namely, allocation [15],
consistency [2] and fault tolerance [3]. Recently, the high
download times experienced during peak hours in the www
[9], spurred interest on replicating data objects over the
web [7,23,30] and providing mechanisms to allow user re-
quests to be redirected towards a geographically close replica

∗ Corresponding author. Fax: +1-817-272-3784.
E-mail address:iahmad@cse.uta.edu (I. Ahmad).

0743-7315/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2004.04.005

[28]. Under the web context, consistency and fault tolerance
are not of primary importance while allocation still remains
a challenge. Surprisingly, the current trend is to perform
coarse grain replication in the form of server mirroring, i.e.,
duplicating all the contents of a web server [27]. As the
web grows larger and larger and caching limitations become
apparent [1,10] it is reasonable to expect that the importance
of fine grain replication, e.g., replicating pages, will increase.

The first standpoint from where we address the problem of
data replication is a “cold” network start where no replicas
exist and the read and update frequencies remain static. The
target is to define an appropriate replica distribution that
minimizes the network traffic. We formulate the problem
as a constraint optimization one and show that the relevant
decision problem is NP-complete. We then propose a greedy
heuristic called simple replication algorithm (SRA) and a
genetic algorithm-based heuristic called genetic replication
algorithm (GRA).



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1271

We evaluate both algorithms extensively and compare
them against random search for the case where each object
has equal probability to be accessed by any of the sites in
the network, as well as when the request/site pattern follows
a normal distribution. Linear Programming (LP) is used to
estimate an upper bound for the optimal solution resulting
by exhaustive search, while the integer parts of the solution
found by LP (Linear Integer Programming LIP) are evalu-
ated in order to define a lower bound for the optimal. Re-
sults show that in most cases both algorithms achieve perfor-
mance in between these two bounds, with GRA constantly
outperforming SRA, especially under the uniform assump-
tion for the requests.

The second data replication aspect we tackle with, is the
case where replica allocation was already performed but due
to changes in the exhibited requests adaptations are needed.
Both SRA and GRA are static algorithms. Once the replica
distribution for the objects is obtained, changes in access pat-
terns would result in the algorithms being run from scratch,
which is potentially time consuming. For this reason we
propose an extension of the GRA algorithm called Adap-
tive GRA (AGRA) that given an already realized replication
scheme and the changes in read and write requests for par-
ticular objects, it quickly adapts the replica distribution to
reflect the new demands. The reduced search space on which
AGRA operates allows it to provide high solution quality
within acceptable for a dynamic environment time limits.

The rest of the paper (a smaller version of which appeared
in [24]) is organized as follows: Section 2 elaborates the
problem and describes a cost model for the total data transfer
cost. The same section includes the NP-completeness of the
problem. Section 3 describes the greedy and evolutionary
static methods, while Section 4 introduces AGRA. Sections
5 and 6, respectively, present the experimental results and
the related work. Section 7 includes the concluding remarks.

2. The data replication problem (DRP)

First, we describe the inputs to (DRP) and introduce a
notation (see Table 1) that will be subsequently used.

Consider a distributed system comprisingM sites, with
each site having its own processing power, memory and
storage media. LetS(i), s(i) be the name and the total storage
capacity (in simple data units e.g. blocks), respectively, of
site i where 1≤ i ≤ M. The M sites of the system are
connected by a communication network. A link between
two sitesS(i) and S(j) (if it exists) has a positive integer
C(i,j) associated with it, giving the communication cost for
transferring a data unit between sitesS(i) andS(j). If the two
sites are not directly connected by a communication link
then the above cost is given by the sum of the costs of all the
links in a chosen path from siteS(i) to siteS(j). We assume
thatC(i, j)=C(j, i) and is known a priori to represent the
cumulative cost of the shortest path betweenS(i) and S(j).
Let there beN objects, named{O1,O2, . . . , ON }. The size

Table 1

Symbol Meaning

Ok kth object
ok Size of objectk
S(i) ith site
s(i) Total storage capacity ofS(i)

b(i) Remaining storage capacity ofS(i)

M Number of sites in the network
N Number of objects in the distributed system

r
(i)
k

Number of reads from sitei for object k

R
(i)
k

Associated cost of ther(i)
k

reads

w
(i)
k

Number of writes from sitei for object k

W
(i)
k

Associated cost of thew(i)
k

writes
C(i,j) Communication cost (per unit) between sitesi and j
SPk Primary site ofkth object

SN
(i)
k

Nearest site of sitei, which holds objectk
Rk Replication scheme of thekth object
D Total data transfer cost function

B
(i)
k

Benefit value, that is, the NTC saves we can achieve by
replicating thejth object at theith site.

of object Ok is denoted byok and is measured in simple
data units. Letr(i)k andw(i)k be the total number of reads
and writes, respectively, initiated fromS(i) for Ok during a
certain time period.

The replication policy assumes the existence of one pri-
mary copy for each object in the network. LetSPk, be the
site which holds the primary copy ofOk, i.e., the only copy
in the network that cannot be deallocated, hence referred
to as primary site of thekth object. Each primary siteSPk,
contains information about the whole replication schemeRk

of Ok. This can be done by maintaining a list of the sites
that thekth object is replicated at, called from now on the
replicatorsof Ok. Moreover, every siteS(i) stores a two-field
record for each object. The first field, is the primary siteSPk

of it and the second the “nearest” siteSN(i)k of site i, which

holds a replica of objectk. In other words,SN(i)k is the site
for which the reads fromS(i) for Ok, if served there, would
incur the minimum possible communication cost. It is pos-
sible thatSN(i)k = S(i), if S(i) is a replicator or the primary

site of Ok. Another possibility is thatSN(i)k = SPk, if the
primary site is the closest one holding a replica ofOk.

When a siteS(i) reads an object, it does so by address-
ing the request to the correspondingSN(i)k . For the updates
we assume that every site can update every object. This as-
sumption, does not affect the ability to use our model in
practical cases, where we have to enforce some privilege
checking. Updates of an objectOk are performed, by send-
ing the updated version to its primary siteSPk, which after-
wards broadcasts it to every site in its replication scheme,
Rk. The simplicity of this policy, allows us to develop a
general cost model in Section 2.2 that can be used with mi-
nor changes to formalize various replication and consistency
strategies.



1272 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285

2.1. The object transfer cost model

We are interested in minimizing the total network trans-
fer cost (NTC), due to object movement, since the commu-
nication cost of control messages has minor impact to the
overall performance of the system. There are two compo-
nents affecting NTC. First is the NTC created from the read
requests.

Let R(i)k denote the total NTC, due toS(i)’s reading re-

quests for objectOk, addressed to the “nearest” siteSN(i)k .
This cost is given by the following equation:

R
(i)
k = r

(i)
k OkC(i, SN

(i)
k ), (1)

whereSN(i)k = {Site j |j ∈ Rk ∧ min C(i, j) }.
The second component of NTC is the cost due to writes.

Let W(i)
k be the total NTC, due toS(i)s writing requests for

objectOk, addressed to the primary siteSPk. W
(i)
k is com-

prised of the cost occurring whenS(i) sends the updated ob-
ject toSPk and the cost due toSPk broadcasting the updates
to the rest of the replicators as shown in the following equa-
tion:

W
(i)
k = w

(i)
k Ok


C(i, SPk)+ ∑

∀(j∈Rk)
j �=1

C(SPk, j)


 . (2)

Here, we made the indirect assumption that in order to per-
form a write we need to ship the whole updated version of
the object. This of course is not always the case, as we can
move only the updated parts of it, in order to augment effi-
ciency. Modelling such policies can also be done using our
framework, e.g., by defining separately the object size, mean
read size and the mean update size.

The cumulative NTC, denoted asD, due to reads and
writes is given by

D =
M∑
i=1

N∑
k=1

(R
(i)
k +W

(i)
k ). (3)

Let Xik = 1 if S(i) holds a replica of objectOk, and 0 oth-
erwise.Xiks define anM ×N replication matrix, namedX,
with boolean elements. The total NTC is now refined as

D=
M∑
i=1

N∑
k=1

{
(1 −Xik)[r(i)k Ok min {C(i, j) ∣∣Xjk = 1}

+w(i)k OkC(i, SPk)+Xik

(
M∑
x=1

w
(x)
k

)
OkC(i, SPk)

}
.

(4)

Sites which are not replicators of objectOk create NTC equal
to the communication cost of their reads from the “nearest”
replicator, plus that of sending their writes to the primary
site of Ok. Sites belonging to the replication scheme ofOk

are only associated with the cost of sending/receiving all

the updated versions of it, since reads are performed locally.
Using the above formulation DRP is defined as

1. Find the assignment of 0, 1 values at theX matrix, that
minimizesD.

2. Subject to the storage capacity constraint:

N∑
k=1

XikOk ≤ s(i) ∀(1 ≤ i ≤ M).

3. Subject to the primary copies policy

XSPkk = 1 ∀(1 ≤ k ≤ N).

2.2. Proof of NP-completeness

The DRP as presented above is a constrained optimization
problem. The equivalent decision problem can be stated as

Given a network instance, with only primary copies ex-
isting (no replicas) and an integerK, is there an assignment
of 0, 1 values toX matrix such asD ≤ K and the storage
capacity constraint is satisfied?

It is easy to see that a non-deterministic algorithm, which
chooses 0,1 assignment values row by row, while checking
the storage constraint after completing each row ofX, can
decide the problem in polynomial timeO(MN). Thus, DRP
belongs to NP.

In order to prove that it is also complete in NP, we will
reduce it to theKnapsack Problem[26] the general state-
ment of which is known to be NP-complete and is presented
below:

Instance: Finite setU, for eachu ∈ U a sizes(u), a value
�(u), B, K′, all positive integers.

Question: Is there a subsetU ′ ∈ U such that
∑
u∈U ′ s(u) ≤

B and
∑
u∈U ′ �(u) ≥ K ′?

For every instance of theKnapsackproblem, we can build
a network so that a solution to theKnapsackwould also
be a solution to a DRP instance. The network is built as
follows. We use a one by one mapping of objects belonging
to U to the objects of the network (to do so we order the
setU), i.e., (N = |U |) ∧ (Ok = s(k)∀1 ≤ k ≤ N). We pick
up a random number of sitesM − 1(M ≥ 2) and allocate
all the network objects to each one of them assigning also∑
u∈U s(u) storage capacity, i.e.,

Xik = 1 ∧ s(i) =
∑
u∈U

s(u) ∀(1 ≤ i ≤ M − 1 ∧ 1 ≤ k ≤ N).

Then, we randomly decide which of theM − 1 copies of
an objectk would be the primary one. Having defined all
the primary copies, we add another “empty” site with stor-
age capacityB, hence referred to asKnapsack site Knsbe-
cause an assignment of objects to it that solvesKnapsack
would also solve DRP. We setC(i, j) = 1 ∀(1 ≤ i, j ≤
M),W

(i)
k = 0 ∀(1 ≤ i ≤ M ∧ 1 ≤ k ≤ N) and set



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1273

r
(Kns)
k = �(k)

∏
u∈U s(u)/s(k) ∀(k ∈ U)1. The NTC oc-

curred due to the requests from all the other sites apart from
Kns is zero, since the read requests are satisfied locally and
no updates exist. Every object allocation scheme forKnsthat
minimizes NTC is a solution to DRP since the NTC of the
rest part of the network remains zero. All link costs are equal
to 1, so each object allocated inKns reduces the total NTC
by r(Kns)k Ok or �(k)

∏
u∈U s(u) regardless of the already al-

located ones. LetU′′ be the set of objects allocated toKns.
Let Dinitial denote the NTC occurred when each ofM − 1
sites contain all the objects andKns is empty andDknsde-
note the NTC occurred after completing object allocation in
Kns. Then, the initial DRP decision problem can be restated
as: Assuming the network instance which yields NTC equal
to Dinitial , is there a subsetU′′ of the set of objects that if
allocated atKns site with respect to its capacity, the total
NTC D will be D ≤ K, whereK can be any integer?

The inequalityD ≤ K can be restated as:Dinitial −∏N
k=1Ok

∑
x∈U ′′ �(x) ≤ K, or C

∑
x∈U ′′ �(x) ≥ E or fi-

nally as:
∑
x∈U ′′ �(x) ≥ K ′′ (whereK, K′′, E are any integers

andC is constant). In order to answer the question whether
a U′′, such as

∑
x∈U ′′ �(x) ≥ K ′′ exists or not, we must an-

swer the relevant Knapsack question(
∑
u∈U ′ �(u) ≥ K ′).

Therefore, for every Knapsack instance we can construct a
network as above, so that a solution to the Knapsack would
also be a solution to the DRP thus, the DRP is reducable
to the Knapsack and since it also belongs to NP it is NP-
complete.

3. Static allocation

In this section we describe the simple replication algo-
rithm based on the greedy method (SRA) and the genetic
replication algorithm GRA. Both algorithms define a

1 By setting the reads as above we ensure they are integers. If non-integer reads were also allowed i.e. we had formalized DRP usingR/W

frequencies and not the actual number of requests, we could have simply usedr
(Kns)
k

= �(k) / s(k).

replication scheme for the objects assuming that no replicas
exist and read/write frequencies are known and remain static
in nature.

3.1. Data replication using a greedy algorithm

For each siteS(i) and objectOk we define thereplication
benefitvalueB(i)k , as follows:

B
(i)
k =

R
(i)
k −

(∑M
x=1w

(x)
k OkC(i, SPk)−W

(i)
k

)
Ok

. (5)

The above value represents the expected benefit in NTC
terms, if we replicatedOk at S(i). This benefit is computed
by using the difference between the NTC occurred from the
current read requests and the NTC arising due to the updates
to that replica amortized to the object size. Negative values
of B(i)k mean that replicatingkth object, is inefficient from
the “local view” of ith site. This does not necessarily mean
that we are not able to reduce the total NTC by creating such
a replica, but that the local NTC observed from theith site
will be increased.

To present our algorithm, we maintain a listL(i) for S(i)

containing all the objects that can be replicated. An object
Ok can be replicated atS(i) only if the remaining storage
capacityb(i) of the site is greater than its size and the benefit
value is positive. We also keep a listLS containing all the
sites that have the “opportunity” to replicate an object. In
other words, a siteS(i) ∈ LS if and only if L(i) �= �. The
SRA Algorithm performs in steps. In each step a siteS(i)

is chosen fromLS in a round-robin fashion and the benefit
values of all objects belonging toL(i) are computed. The
one with the highest benefit is replicated and the listsLS,
L(i) together with the corresponding nearest site valueSN

(i)
k ,

are updated accordingly. The SRA algorithm is outlined as
follows:

The SRA Algorithm:
(1) Initialize LS and all .
(2) WHILE  DO
(3) . /*BMAX holds the current max  value.

OMAX holds the identity of the Object for which */

L
i( )

LS ∅≠
BMAX 0= OMAX NULL=, Bk

i( )

Bk
i( )

BMAX*/=
(4) Pick up a site  in a Round-Robin way.
(5) FOR each  DO
(6) Compute .
(7) IF  THEN 
(8) ELSE IF ( OR  THEN .
(9) Replicate .
(10) . /*Remove OMAX object from the list of potentials to be replicated*/
(11) FOR all sites inLS update the relevant  field. /* Update “nearest sites”*/ 
(12) . /*New remaining capacity*/
(13) IF  THEN .  /*Remove  if there are no other candidates (objects) to be replicated*/
(14) ENDWHILE

S
i( )

LS∈
Ok L

i( )∈
Bk

i( )

BMAX Bk
i( )≤ BMAX Bk

i( )= OMAX k=,
Bk

i( ) 0≤ b
i( )

ok< L
i( )

L
i( )

Ok{ }–=
OOMAX

L
i( )

L
i( )

OOMAX{ }–=
SNOMAX

i( )

b
i( )

b
i( )

ok–=
L

i( ) ∅= LS LS S
i( ){ }–= S

i( )

)



1274 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285

The areMN iterations of the while-loop (2) in the worst
case where each site has sufficient capacity to store all ob-
jects and the update ratios are low enough so as no object
incurs negative benefit value. The time complexity for each
execution of the while-loop is governed by the for-loop in
(5) and the update of neighbors fields in (11) (O(M+N) in
total). Hence, we conclude that the complexity of our algo-
rithm in the worst case isO(M2N +MN2).

We presented SRA as a centralized algorithm. In its dis-
tributed version we assignL(i)’s to their corresponding sites
andLS to the network leader, which can be a monitor site.
All the main calculations (5)–(10) are done locally, while
(11) requires a broadcast ofOOMAX to all sites in order to
update theirSN(i)OMAX field. The selection ofS(i) in (4) is
done by the leader who is responsible for notifying the sites
accordingly.

It should be mentioned that since the algorithm replicates
objects according to their “local” benefit value, it provides
high solution quality, when independent read frequencies
r
(i)
k are significantly larger, compared to the total number

of updates. This is better illustrated in our experiments at
Section 5.

3.2. The evolutionary method

Genetic algorithms (GAs), introduced by Holland in 1975
[22], are search methods based on the evolutionary concept
of natural mutation and the survival of the fittest individuals.
Given a well-defined search space they apply three different
genetic search operations, namely, selection, crossover, and
mutation, to transform an initial population of chromosomes,
with the objective to improve their quality. An outline of a
generic GA is as follows.

Generate initial population.
Perform selection step.
while stopping criterion not metdo

Perform crossover step.
Perform mutation step.
Perform selection step.

end while.
Report the best chromosome as the final solution.

We demonstrate GRA’s design in detail, by presenting our
encoding mechanism and then the selection, crossover and
mutation operators. Some additional notation related to GA
is summarized in Table 2.

A chromosome encoding a replication scheme is a bit-
string consisting ofM genes (one for each site). Every gene
is composed ofN bits (one for each object). A 1 value in the
kth bit of the ith gene, denotes thatith site holds a replica
of kth object, otherwise it is 0. Using this encoding the total
length of a chromosome isMN bits. The following scheme

Table 2

Symbol Meaning

D Total data transfer cost function
Dprime Total data transfer cost function, of the initial alloc. scheme
f Fitness value
ḟ Average fitness value of the population
Np Population size (number of chromosomes)
Ng Total number of generations
�c Crossover rate
�m Mutation rate

explains the above: Example chromosome

Site 1 Site M

| 101...0 | 100...1 |…..|001...1|

1...N Objects

A gene (site) is valid if and only if the total storage cost
of allocating the required objects (1’s in the gene) does not
exceed the site’s capacity; otherwise the gene is invalid. We
also define a chromosome to be valid/invalid according to
the existence of an invalid gene.

Fitness value f:The quality of each chromosome is mea-
sured by computing its fitness value. Our objective function
D, defined in Section 2.2, helps us definef. In order to main-
tain uniformity over various problem domains, we normalize
the fitness value to a convenient range of 0 to 1. The above
need excludes us from picking up directlyf =D, sinceD
can take arbitrary high values. For our algorithm we con-
sider our initial allocation scheme—an object appears in the
network only at its primary site, that isRk = {SPk}∀(1 ≤
k ≤ N)—and the NTC occurred in it, denoted byDprime.
It is reasonable to expect that every replication scheme in-
vokes NTCD such thatD<Dprime, meaning that from our
starting allocation scheme with no replicas, there is still a
lot of NTC to be saved by using replication of data. Con-
sidering the above, the definition of the normalized fitness
value is straightforward:

f = Dprime −D

Dprime
.

In the rare case thatf <0, we reset chromosome’s fitness
value to be 0 by copying the initial allocation scheme in it.

Generation of the initial population:We initialize half of
the population by using the SRA algorithm, randomly pick-
ing up sites at its fourth step. The other half of the popula-
tion is generated in a total random way. Moreover, half of
the chromosomes produced by SRA are subjected to ran-
dom perturbation of 1/4th of their values. The chromosome
validity is checked and maintained throughout all the ran-
dom decisions. The use of SRA together with random gen-
eration, results in the initial chromosomes being adequately
homogeneous in their fitness values, while at the same time
diverse enough in their building blocks (substrings). Fur-
thermore, the average population fitness is high, even when



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1275

due to increased updates SRA fails to produce a good solu-
tion. SRA’s complexity isO(M2N +MN2) for M sites and
N objects. Therefore, the total initialization time required is
O(NpM

2N+NpMN
2), whereNp stands for the population

size,
Crossover/mutation/selection:We selected a two-point

crossover mechanism to include in GRA. After the pairing
of chromosomes, two bits are randomly selected and either
the portion of the bit-string in between them or the two
fractions not included by them, are swapped. The decision
of which parts to juxtapose is random. The whole opera-
tion is performed with probability�c, known as crossover
rate and may result in producing invalid chromosomes.
Clearly, if this is the case, the only possible invalid genes,
are the two (or one) containing the crossover points, since
completely interchanging valid genes, cannot result in an
invalid chromosome. To repair a gene validity violation, we
exchange the parts of it that were not previously swapped.

Mutation is performed by simply flipping every bit with a
certain probability�m, known as the mutation rate. Although
mutation is not the primary search operation and some al-
gorithms omit it, it is very useful in our design. The reason
is that in order for our algorithm to have practical appli-
cations it should achieve good performance when tackling
very large chromosomes (our test case in many experiments
is 80 sites and400 objects). A two point-crossover alone
would not be able to explore the solution space fast while a
multiple point crossover would result in increased constraint
violations. Moreover, multiple point crossover is known to
be highly disruptive [18]. Mutation aids in both the explo-
ration and the exploitation of our solution space. Changing
a bit value can result in violating the storage constraint, as
well as deallocating an object from its primary site. In such
case mutation of the specific bit is not performed.

Selection constitutes of two parts: evaluation of a chro-
mosome and offspring allocation. Evaluation is performed
by measuring its fitness valuef, which depicts the quality
of solution the chromosome represents. Offspring allocation
is done by using the proportionate scheme (simple genetic
algorithm [22]). This scheme allocates to theith chromo-
some,fi/ḟ offspring for the next generation. SGA imple-
ments this scheme by using the roulette wheel selection,
i.e., allocating a sector of the wheel equaling 2�fi/f̄ to the
ith chromosome and then create an offspring if a generated
number in the range of 0 to 2�, falls inside the assigned
sector of the string. The chromosomes under evaluation are
Np exactly, since after applying crossover and mutation the
resulting chromosomes are immediately copied back in the
place of their fathers. Instead of following this approach that
can lead to large sampling errors, we selected the stochas-
tic remainder technique [18] to incorporate in GRA. Fol-
lowing this method, a chromosome is assigned offspring ac-
cording to the integer part of the proportionate fitness value
in a deterministic way and the fractional parts are put in a
roulette wheel, in order for the remaining offspring to be
defined. Moreover, instead of evaluatingNp chromosomes

(Simple Selection), we used the(�+ �) Selection borrowed
from evolutionary strategies [31]. Under this strategy from
the initial population of� = Np size, two more subpopula-
tions are created of total size�, one from crossover and the
other from mutation operator. The chromosomes of all these
three populations(�+�) compete for the� slots of the next
generation. This choice although resulting in higher execu-
tion time (needs up to three times more fitness evaluations),
was necessary because due to the hard constraint nature of
the problem, applying mutation and crossover can result in
worsening a generation. Finally, we implemented theelitis-
tic approach, under which the best chromosome found un-
til one generation before replaces the worst chromosome of
the population. We allow the elite chromosome to be copied
back once every five generations, in order to prevent prema-
ture convergence.

Large values of�c and�m, force a GA to explore the solu-
tion space, while low values favor exploitation. Optimal tun-
ing of these, require extensive experimentations [18]. Typical
values of the above parameters that guarantee good solution
quality for some domains are:Np={30,100}, �c={0.9,0.6},
�m = {0.01,0.001}, respectively [14,19]. Of course, even
with the best decisions on the above parameters, optimal
solutions cannot be guaranteed, due to the algorithm’s prob-
abilistic nature. Unless otherwise stated the GRA’s param-
eters after a series of experiments were fixed to:Np = 50,
Ng = 80, �m = 0.01, �c = 0.9.

As far as the time complexity of GRA is concerned, se-
lection is clearly the hardest operation, because it involves
the evaluation of fitness values, which in terms demands the
computation of the objective functionD(O(M2N)). Thus, the
complexity of GRA in the worst case isO(NgNpM

2N +
initialization).

4. Adaptive replication

Let R be the old replication scheme for the objects andR′
the newly defined one. LetDR andDR′ , represent the total
NTC created byR and R′, respectively, both computable
using Eq. (4). Furthermore, letX′′ be anM×N (0,1) matrix
with its elementX′

ik being 1 ifOk is replicated atS(i) under
the R′ scheme, and 0 otherwise. When realizingR′ some
replicas must be deleted and others must be created. We
assume that replica creation is done by transferring a copy
of the object from the respective primary site2. Assuming
that replica deletion incurs no cost, the total NTC, denoted
by for IRR′ , realizingR′ is given by

IRR′ =
N∑
i=1

M∑
k=1

X′
ik(1 −Xik)OkC(i, SPk), (6)

2 A more sophisticated policy would enable sites to get objects from
any of the replicators. This gives rise to the scheduling problem of selecting
replica deletions and creations so as to minimize the NTC. Tackling the
above is out of the scope of this paper and is part of our future work.



1276 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285



















11011

10100

01011

00000

Initial allocation
matrix for a
network of 4 servers
and 5 objects.

Changes in the
request patterns of
O0and O2occur.

0  0  1  0

0  0  1  0

0  0  1  0

0  0  1  0

AGRA evolves the two
populations together and
the unconstrained
allocation schemes for
O0 and O2 are defined.

AFTER
EVOLUTION

INITIALIZATION

The allocation schemes ofO0 andO2 outputed
by GRA, form part of the initial populations
of two separate miniGA’s. The rest of the
initial population is generated randomly.



















11011

10100

01011

00000



















11011

10100

01011

00000

TRANSCRIPTION PHASE

After copying back the
allocation schemes of the
two objects the capacity
limit of S(3) is violated.



















11011

10100

01011

00000

The object with the lowest
benefit value (O2), according
to Eq.8 is selected for
deallocation, resulting to the
final replication matrix.

Fig. 1. Example of AGRA execution.

whereXik is the allocation variable for the replication scheme
R. The total benefit, denoted byVRR′ , for moving from the
R′ scheme to theR′ is given by

VRR′ =DR − (DR′ + IRR′). (7)

The adaptive data replication problem (ADRP) can be
defined as: Given theX matrix find the values ofX′ that
maximizeVRR′ , subject to the storage capacity constraints.
ADRP’s scope is much different than DRP (Section 2). We
use DRP to represent the allocation decisions made during
nighttime by a monitor site that gathers statistics about object
requests and takes decisions accordingly (we also made the
indirect assumption that the actual cost for realizing a repli-
cation scheme during nighttime is insignificant and thus, can
be omitted). On the other hand, ADRP is used to describe the
situation when the replication scheme realized during night-
time, does not perform well during daytime, presumably be-
cause the exhibited request frequencies differ largely from
the estimations used. For this purpose an algorithm that fine
tunes, within reasonable time limits, the existing scheme in-
stead of defining one from scratch is needed. Following, we
present a genetic algorithm-based approach called AGRA.

4.1. The AGRA

Each chromosome in the population of AGRA is a bit-
string of length M representing the assignments ofOk.
AGRA takes as input the new patterns exhibited forOk

and computes a set of near optimal replication schemes for
the specific object, without taking into account the storage
capacity of the sites. Afterwards, theRks are incorporated
to the initial GRA solutions, repairing any storage con-
straint violations by deallocating least beneficial objects.
The modified population is then inserted to a micro-GRA
and evolved for few generations in order to determine an
even better solution. Fig. 1 illustrates the above.

The initialization of the first generation is performed in
AGRA by randomly creating half of the population while

the rest of it being obtained by solutions previously found
from GRA. We make sure that the current replication scheme
of Ok, always participates in the starting population. The
three operations of GA (selection, crossover, mutation) come
afterwards to define the population of the next generation.
The fitness value of AGRA is given by

fA = VRR′

DR
= DR − (DR′ + IRR′)

DR
.

In casefA <0, the chromosome’s fitness value is set back to
0 by copying the initialRk to the chromosome. Fortunately,
by knowingDR, fA can be computed inO(M2) time through
evaluating only the impactOk has to the total NTC. The sam-
pling space of AGRA is regular (as opposed to GRA where
we used(�+�) selection) containing only the offspring and
some part of the parents (those not subjected to crossover
and mutation). Again, the stochastic remainder technique is
used with the fractional parts being allocated in a roulette
wheel. The rationale behind these choices as with all others
concerning AGRA’s design, is to reduce the running time.
The number of generationsAg is set to 50 and the popu-
lation sizeAp to 10. The elitistic approach was followed
as in GRA. Single point crossover was selected with equal
probabilities of crossing the left and the right part of the
chromosomes. Mutation means again simply flipping a bit.
Constant crossover and mutation rates are used with values
of 80% and 1%, respectively. AfterAg generations, the GA
part of the algorithm terminates having converged largely to
high fitness solutions representingRks that distribute Ok to
a degree that minimizes the NTC effects ofR/W requests.

The bestRk found by AGRA is transcripted to half of
the initial population of GRA, including the correspond-
ing elite chromosome (current network replica distribution),
while the remainingRks are randomly transcripted to the
other half. Such transcription can result in storage capacity
violation which needs to be resolved efficiently. Other than
randomly deallocating objects until the constraint is satis-
fied, we followed a greedy method and calculate the negative
impact each possible one object deallocation has inVRR′ .



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1277

Furthermore, instead of computing the actual performance
difference which would requireO(M2) time, we used the
following estimation, computable inO(M) time:

E
(i)
k = B

(i)
k /


 M∑
j=1

X′
ik


 . (8)

E
(i)
k depicts a site-object affinity measure. The object with

the lowest value is evicted fromS(i) free space.B(i)k is the lo-
cal benefit as defined in Eq. (5). The rationale behind amor-
tizing the local benefit to the number of replicas existing in
the network is to favor deallocations of objects for which
many replicas exist. Having transcripted theRks to the initial
solutions there are two valid options: (a) we stop here and
pick up the chromosome of highest fitness value to realize
the corresponding total replication scheme, (b) use the re-
sulting population, as the initial population of a mini_GRA
intended to run for small number of generations such as
5–10. We use and evaluate both policies.

Before concluding this section we would like to make
some remarks on the usability of AGRA. The powerful tech-
nique of defining an optimal unconstrained replica distri-
bution for a single object and transcript the solution to the
total replication scheme, (repairing any capacity violations)
can be incorporated in GRA’s design as a separate operator,
along with crossover, mutation and selection. Indeed, from
the performance of the AGRA+5/10 GRA (Section 5), we
expect that the performance of GRA would be considerably
improved, since this operator forces GRA to search more
promising regions of the solution space. We chose though
to present this technique as a separate algorithm since it
seemed reasonable to differentiate the static design of GRA
which involved high running time from a method that is fast
and can achieve good solution quality even when running
without the mini-GRA.

5. Experimental results

Here, we present the results of our experiments carried
out on a 200 MHz Ultra Sparc 2 machine. Two major exper-
iments were conducted, one to evaluate the static algorithms
and one the adaptive method. Comparing the performance
of the static algorithms to the optimal solution obtained by
exhaustive search, would have been the best way to illus-
trate the merits of our approaches. Exhaustive search though,
was able to provide the optimum within reasonable running
time, only for very small network instances (typically five
sites six objects). Since such problem sizes have little prac-
tical meaning we followed another approach. We decided to
use the primal dual method for (LP) [36] as implemented
in MATLAB [37], in order to find an upper bound for the
optimal solution. Some object allocations in the LP solution
are fractional. By cutting off these allocations (LIP Linear
Integer Programming) we obtained a lower bound for the

optimal. The experimental results show that our algorithm
performance fall in most cases between these two bounds.
Even as we used the above technique we were able to ob-
tain results for only medium sized networks (typically 15
sites 40–80 objects). For this reason, we also conducted a
separate experiment series with large network instances and
compare the relative performance of the algorithms. The so-
lution quality in all cases, is measured according to the NTC
percentage that is saved under the replication scheme found
by the algorithms, compared to the initial one, i.e., when
only primary copies exist. Finally, in the last experimental
set we evaluated the performance of AGRA both as a stand-
alone algorithm and in combination with the micro-GRA.

5.1. Workload

We generate the network structures in the following man-
ner. The link costs were uniformly distributed between 1 and
10. This effectively represents the number of hops a TCP/IP
packet should make in order to reach its destination, a link
cost measurement that is commonly used, see for example
[20]. Objects were created so as to resemble a generic web
workload [5,39], i.e., object sizes followed a pareto distri-
bution and their popularity the Zipf law [38]. The minimum
object size was 4 K. Primary sites were chosen randomly.
The total number of requests considered for large network
instances were 1 million, while for medium sized networks
100,000. Two distinct cases were considered as to request
generation. In the first one, each site has the same probabil-
ity of requesting an object, while in the second case object
requests are normally distributed to the sites. This is done in
order to test the performance of our algorithms at the pres-
ence of hot spots. In all the experiments, the basic capacity
of sites (C%) is proportional to the total size of objects. In
order to ensure the creation of sites with diverse enough stor-
ing capabilities, the actual capacity of a site was a random
value between (C/2)% and (3C/2)%.

Evaluating AGRA requires altering the originalR/W pat-
terns. Half of the new requests were randomly assigned to
sites, while for the other half the assignment followed a nor-
mal distribution. This is again done to simulate hot spots. For
each network instance, 15 different networks were gener-
ated. In all the experiments we recorded the average quality
of replication schemes obtained (% NTC saving), together
with the average execution time of the algorithms and the
average number of replicas created in those 15 runs.

5.2. Performance of SRA and GRA

First, we assess the performance of SRA and GRA as
compared to LP, LIP and random search, by varying the
number of sites and objects. We fixed the site capacity to
C=30% and the update ratio toU=5%. Figs. 2 and 3 show
the results when requests are normally distributed across the
sites. The first observation is that GRA outperforms SRA in



1278 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285

0

10

20

30

40

50

60

5 10 15 20 25

Servers

N
TC

%
 s

av
in

gs

0

20

40

60

80

100

120

140

160

180

5 10 15 20 25

Servers

R
ep

lic
as

Servers

0

200

400

600

800

1000

1200

1400

5 10 15 20 25

E
xe

cu
ti

on
 t

im
e

SRA GRA LP LIP Rand

(a)

(c)

(b)

Fig. 2. (a) NTC% savings vs. sites (N = 20,C= 30%,U = 5%, normal),
(b) replicas created vs. sites (N = 20, C = 30%, U = 5%, normal) and
(c) execution time vs. sites (N = 20, C = 30%,U = 5%, normal).

terms of solution quality in all cases, while Random Search
produces the lowest quality replication schemes among all
the tested algorithms. The LP/LIP combination to approx-
imate the global optimum is shown to be efficient since in
most cases their performance difference is small (Figs. 4
and 5 further illustrate this). In the majority of problem in-
stances GRA’s performance falls between these two bounds
while SRA does so in less cases. Fig. 2(a) shows an almost
constant performance for the algorithms. The observation

SRA GRA LP LIP Rand

0

10

20

30

40

50

60

70

10 30 50 70 90

Objects

N
T

C
%

 s
av

in
g

s

0

50

100

150

200

250

300

10 30 50 70 90

Objects

R
ep

lic
as

0

20

40

60

80

100

120

140

160

10 30 50 70 90

Objects

E
xe

cu
ti

o
n

 t
im

e

(a)

(b)

(c)

Fig. 3. (a) NTC% savings vs. objects (M=10,C=30%,U=5%, normal),
(b) replicas created vs. objects (M = 10,C= 30%,U = 5%, normal) and
(c) execution time vs. objects (M = 10, C = 30%,U = 5%, normal).

should be attributed to the fact that by adding a site in the
network, we introduce additional traffic due to its local re-
quests, together with more storage capacity to be used for
replication. GRA explores and balances these diverse effects
better than the greedy method. In Fig. 3(a) the performance
of algorithms varies due to the fact that the generated net-
work instances, had significantly different characteristics as



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1279

SRA GRA LP LIP Rand

0

10

20

30

40

50

60

70

80

90

10 30 50 70 90

Capacity %

N
TC

%
 s

av
in

gs

(a)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Update ratio

N
TC

%
 s

av
in

gs

(b)

Fig. 4. (a) NTC% savings vs. capacity (M=15,N=40,U=2%, normal)
and (b) NTC% savings vs. update ratio (M = 15, N = 40, C = 80%,
normal).

to the site capacities and request distributions among sites.
Such diversibility on the generated instances has less impact
as the network size increases (Figs. 6 and 7). Fig. 2(b) and
3(b) show an almost linear increase on the replicas created
by all algorithms. Figs. 2(c) and 3(c) show the execution
times for LP and GRA. LP’s running time increases expo-
nentially while GRA’s running time is shown to be linear
with a low growth rate, especially versus the number of sites
(Fig. 2(c)). SRA (not shown in figure) required three orders
of magnitude less running time compared to GRA, while
LIP’s running time is dominated by LP. Random Search’s
execution time was fixed to five times the one of GRA.

In the second set of experiments we investigated the im-
pact, site capacity and update ratio have on the traffic sav-
ings obtained by the algorithms. We did so for two distinct
cases, one for normal distribution of requests to the sites
(Fig. 4) and one for uniform (Fig. 5). Creating replicas for
an object that is already extensively replicated, is unlikely
to result in significant traffic savings, since only a small
portion of the sites will be affected and perform their reads
with lower cost. It is also apparent that the update ratio
sets an upper limit on the possible traffic reduction through
replication, so that even with unlimited storage capacities at
the sites, the replicate everything everywhere policy can be

SRA GRA LP LIP Rand

0

10

20

30

40

50

60

70

80

10 30 50 70 90

Capacity %

N
TC

%
 s

av
in

gs

(a)

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Update ratio

N
TC

%
 s

av
in

gs

(b)

Fig. 5. (a) NTC% savings vs. capacity (M=15,N=40,U=2%, uniform)
and (b) NTC% savings vs. update ratio (M = 15, N = 40, C = 80%,
uniform).

inadequate. Figs. 4(a) and 5(a) show that the cost savings
tend to increase significantly at the beginning as the capac-
ity increases, while after a certain point where the most read
intensive objects are replicated, adding more storage space
results to only marginal performance improvement. In the
same figures we should note that GRA and SRA achieve
comparable performance, primarily due to the small update
ratio (U = 2%).

Figs. 4(b) and 5(b) depict the algorithms’ performance
as the update ratio increases. It is clear that all algorithms
exhibit an exponential performance degradation, which is
more apparent in the uniform case. Comparison between
Figs. 4(b) and 5(b) shows that the solution quality differ-
ence between SRA and GRA increases to the update ratio,
with the effect being more apparent when no hot spots exist
in the network, Fig. 5(b). In order to understand why this
happens, we should recall that SRA maintains a localized
network perception. Increasing the updates, results in ob-
jects having decreased local benefit and forces SRA to take
them out of the replication candidate list. In contrast, GRA
with its randomized replica creation mechanism is able to
select better replication schemes, especially in the uniform
case where no super beneficial objects exist. The same plots
also show that even when GRA’s performance fails to be



1280 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285

0

5

10

15

20

25

30

35

40

45

50

10 30 50 70 90

Capacity %

NT
C%

 s
av

in
gs

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

Update ratio

NT
C%

 s
av

in
gs

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

Update ratio

N
TC

%
 s

av
in

gs

SRA GRA

(a)

(b)

(c)

Fig. 6. (a): NTC% savings vs. capacity (M = 30, N = 600, U = 5%,
normal), (b) NTC% savings vs. update ratio (M=30,N=600,C=80%,
normal) and (c) NTC% savings vs. update ratio (M = 30, N = 600,
C = 30%, normal).

between LP and LIP3, it is still very close to them, i.e., to
the optimum.

From the first two series of experiments it became clear
that GRA achieves solution quality close to the optimum in
the majority of cases. It also became apparent that Random
Search is unable to explore the problem space efficiently,
while algorithms based on linear/integer programming will

3 For example, in Fig. 5(b) LP and LIP have negligible differences.

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

Capacity %

N
TC

%
 s

av
in

gs

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

Update ratio

N
TC

%
 s

av
in

gs

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Update ratio

N
TC

%
 s

av
in

gs

SRA GRA

(a)

(b)

(c)

Fig. 7. (a) NTC% savings vs. capacity (M = 30, N = 600, U = 5%,
uniform, (b) NTC% savings vs. update ratio (M=30,N=600,C=80%,
uniform) and (c) NTC% savings vs. update ratio (M = 30, N = 600,
C = 30%, uniform).

incur prohibitively high running time. For instance for a
network consisting of 10 sites and 300 objects the result-
ing linear program will have 33,001 variables and 33,401
constraints, stretching the capabilities of any commercially
available optimizer to its limits. Moreover, the running time
explored in the paper referred to the linear programming re-
laxation of the problem (the one where fractional allocations
are allowed), the actual (0,1) integer programming which is
required, will most likely incur higher running time as ad-
ditional constraints are added (variables should be either 0
or 1).

In the third class of experiments we investigated how SRA
and GRA perform when the network size is large (S = 30,
O = 600). Random Search gave inferior results to both



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1281

algorithms and is excluded from the plots. We were not
able to obtain results from LP/LIP for this test case, due
to the high running time of the algorithms. Figs. 6 and 7,
illustrate the results both when one of the parameters deter-
mining the degree of replication (capacity/update ratio) is
predominant in the network Fig. (6(a,b) and 7(a,b)) and
when both constraints play significant role Fig. 6(c) and
7(c). From the figures it is clear that GRA achieves higher
performance compared to SRA and that this performance
difference is greater when the request distribution is uni-
form. The same trends exhibited in Figs. 4 and 5, are
also present here, i.e., exponential decrease to the up-
date ratio and an initial increase followed with an al-
most constant performance afterwards as storage space
is added. We should notice here that Fig. 7(a) shows an
almost constant performance for SRA, while GRA’s per-
formance increases in a rather linear way4. This is due
to the fact that withU = 5% the point where further
adding capacity results in only marginal savings is quickly
reached5.

Summarizing, GRA achieves more traffic savings (in
many cases beyond 70%), than the greedy method and re-
sponds better to changes in the network size, the update
ratios or the sites’ capacities.

Furthermore, the quality of solutions obtained in a
medium size network were close to optional. On the other
hand, the greedy method apart from achieving good quality
of solutions for small update ratios, runs in about orders of
magnitude less time. Both algorithms were found to out-
perform random search. Linear programming was shown to
incur high running time.

5.3. Performance of AGRA

Our test case is a network ofM = 30,N = 600,U = 2%,
C = 20%. To illustrate the main merits of AGRA we have
considered the case where either reads or writes increase.
The dual case of decrease is not included here but the re-
sults are equivalent.Ch denotes the percentage of rising
in either reads or writes for an object that has changed its
R/W pattern.OCh represents the percentage of objects in
the network changing patterns andR, U, represent the per-
centage of changes being performed towards a read or write
increase, respectively. So, for example in the network con-
sidered,Ch= 600%,OCh= 30%,R= 80% andU = 20%,
means that among the 600 total objects 144 have experi-
enced an increase by 600% in their reads, while 36 a same
increase in their write requests.

We consider various scenarios. Given a replication
scheme (supposedly determined by a static algorithm), we

4 The performance fluctuation in Fig. 6(a) and 7(a) and some para-
doxes created due to it, should be attributed to variations between different
network instances.

5 Indeed, in further experiments withU = 1–3% the obtained plots
followed the trends in Fig. 4(a) and 5(a).

evaluate this scheme according to the new read-write pat-
terns and determine the current value (current legend label)
of NTC savings. Then we run the AGRA algorithm (cur-
rent+AGRA legend label) using the current scheme. We also
run AGRA with five generations of mini_GRA (AGRA+5
GRA legend label) and then 10 generations of mini_GRA
(AGRA+10 GRA legend label). Next, we run only GRA
with 80 (current+80 GRA legend label). Finally, we run 80
generations of GRA (80 GRA legend label) but not with
the current scheme, but with a population generated from
scratch.

Fig. 8 show how the different policies perform as to the
increase percentage (Ch). As it rises, the savings that GA
policies achieve rise or drop depending on whether the in-
crease refers to reads Fig. 8(a) or writes Fig. 8(c). The per-
formance difference between AGRA and its combinations
as compared to the static approaches is considerable (almost
15% in Fig. 8(c)). Moreover, if we do not have a dynamic
method to adapt the replication scheme of the network, the
existing scheme can be totally outdated and inefficient when
the percentage of increase is significant, e.g., the 1000% case
in Fig. 8(c). Fig. 9 shows similar trends when the increase
percentage (Ch) is fixed and the percentage of changing ob-
jects (OCh) varies.

In Figs. 8(a) and 9(a), the performance of all policies
when only reads are increased seems to converge to differ-
ent upper bounds. This should be attributed to the fact that
GA policies replicate intensively at the beginning, so as to
exploit the available capacity to the maximum. After a cer-
tain point though, further replication is constrained due to
storage limitations and thus, the savings tend to increase less
rapidly. When only the number of updates increase, AGRA
policies perceive an almost linear behavior Fig. 8(c) and 9(c)
due to the fact that increasing the updates of a certain per-
centage of objects, only means that these objects should not
be distributed widely. There are still though, enough read
intensive objects which should be replicated and the deal-
location criterion together with the unconstrained mini-GA,
shift the replication scheme towards them.

Fig. 10(a) and (b) show the performance of the algo-
rithms as the pattern change shifts from 100% increase in
updates towards 100% increase in reads. An interesting re-
sult is that among all the static methods, running GRA with
a random initial population (80 GRA) is the best choice, for
the cases were reads are increased while the (Current+80
GRA) policies are better when changes are performed in
towards updates, or involve relatively low increase percent-
age (Fig. 8). The results obtained are encouraging towards
the use of AGRA and its transcription/estimation method in
dynamic environments. As we can see from all the above
figures, AGRA’s performance as stand-alone is significantly
better than the current scheme, while its combination with
the mini-GRA constantly outperforms all other static poli-
cies and is only worse by no more than 2% from (80 GRA)
in the case were all changes are towards read increase. The
(80 GRA) policy though, has prohibitively high execution



1282 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285

80

75

70

65

60

55

50

45

40

35

30

70

60

50

40

30

20

10

50

45

40

35

30

25

20

15

10

5

0

0

0 200 400 600 800 1000

Request increase %

0 200 400 600 800 1000

Request increase %

0 200 400 600 800 1000

Request increase %

N
T

C
%

 s
av

in
g

s
N

T
C

%
 s

av
in

g
s

N
T

C
 %

 s
av

in
g

s

Current Current + AGRA

Current + 80 GRA

AGRA + 5 GRA

AGRA + 10 GRA 80 GRA

(a)

(b)

(c)

Fig. 8. (a) NTC% savings vs.Ch% (OCh= 20%,R/W = 100/0%), (b)
NTC% savings vs.Ch% (OCh= 20%,R/W = 50/50%) and (c) NTC%
savings vs.Ch% (OCh= 20%,R/W = 0/100%).

75

70

65

60

55

50

45

5 10 15 20 25 30
40

60

65

40

30

35

45

50

40

30

20

10

5

0

35

25

15

45

50

55

N
T

C
%

 s
av

in
g

s
N

T
C

%
 s

av
in

g
s

N
T

C
 %

 s
av

in
g

s

Current Current + AGRA

Current + 80 GRA

AGRA + 5 GRA

AGRA + 10 GRA 80 GRA

(a) Changing objects%

5 10 15 20 25 30

(b) Changing objects%

5 10 15 20 25 30

(c) Changing objects%

Fig. 9. (a) NTC% savings vs.OCh% (Ch = 600%,R/W = 100/0%),
(b) NTC% savings vs.OCh% (Ch = 600%,R/W = 50/50%) and (c)
NTC% savings vs.OCh% (Ch= 600%,R/W = 0/100%).



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1283

80

80 100

70

60

60

50

40

40

30

20

20

10

0

80

90

70

60

50

40

30

20

10

0

0
Read%

80 1006040200
Read%

N
T

C
%

 s
av

in
g

s
N

T
C

%
 s

av
in

g
s

(a)

(b)

Current Current + AGRA

Current + 80 GRA

AGRA + 5 GRA

AGRA + 10 GRA 80 GRA

Fig. 10. (a) NTC% savings vs.R/W% (Ch= 400%,OCh= 20%), (b)
NTC% savings vs.R/W% (Ch= 1000%,OCh= 20%).

time (around 1000 s for this network size), while AGRA as
stand-alone is two orders of magnitude faster. Moreover, the
number of changing objects have a marginal effect in the
execution time of AGRA.

Summarizing the results of the experimental evaluation
we conclude that when static patterns are considered the
GRA algorithm promises good performance in expense of
high running time. In dynamic environments though AGRA
performs really well especially when combined with the
mini-GRA. This is because the mini-GRA using the adap-
tive part of AGRA enhances the exploration power of our
static design. As a result, the combination of the two algo-
rithms proves to be very efficient in the very first five gener-
ations of mini-GRA, while the quality improvement with 10
generations or more is only marginal. The running time of
AGRA with mini-GRA is acceptable for the requirements of
a dynamic environment, while the quality of solutions ob-

tained is if not higher at least comparable to the more time
consuming static genetic algorithm method.

6. Related work

The data replication problem as presented in Section 2 is
an extension of the classical file allocation problem (FAP).
Chu [13] studied the file allocation problem with respect
to multiple files in a multiprocessor system. Casey [11] ex-
tended this work by distinguishing between updates and read
file requests. Eswaran [16] proved that Casey’s formulation
was NP complete. In [25] Mahmoud et al. provide an it-
erative approach that achieves good solution quality when
solving the FAP for infinite site capacities. A complete al-
though old survey on the FAP can be found in [15]. Apers
[4] considered the data allocation problem (DAP) in dis-
tributed databases where the query execution strategy influ-
ences allocation decisions. Bellatreche et al. [8] proposed
an iterative approach to allocate rules and data in distributed
deductive databases (rule allocation problem RAP), while
Kwok et al. [33] proposed several algorithms to solve the
data allocation problem in distributed multimedia databases
(without replication), also called as video allocation problem
(VAP).

Most of the research papers outlined in [15], aim at for-
malizing the problem as an optimization one, sometimes us-
ing multiple objective functions. Network traffic, through-
put of servers and response time exhibited by users are con-
sidered for optimization. Although a lot of effort was de-
voted in providing comprehensive models, little attention
was paid in proposing good heuristics to solve an often NP-
hard problem. Furthermore access patterns are assumed to
remain static and solutions in the dynamic case are obtained
by reexecuting a perhaps time consuming linear program-
ming technique.

Some on-going work is related to dynamic replication of
objects in distributed systems when the read-write patterns
are not known a priori. Awerbuch’s et al. work in [6] is sig-
nificant from a theoretical point of view, but the adopted
strategy that before commuting an update replicas of the
object must be deleted, can prove difficult to implement in
a real-life environment. In [35] Wolfson et al. proposed an
algorithm which leads to optimal single file replication in
case of a tree network. The performance of the scheme for
general network topologies is not clear though. Dynamic
replication protocols were also considered under the Inter-
net environment. Heddaya et al. [21], proposed a protocol
that load balances the workload among replicas. It burdens,
however, routers with keeping track of the replicas. In [29]
Rabinovich et al. proposed a protocol for dynamically repli-
cating the contents of an internet service provider ISP so as
to improve the client-server proximity without overloading
any of the servers. However, the update cost was not in-
cluded, while the use of threshold values is likely to make
the performance sensitive to their values.



1284 T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285

Taking into account the more pragmatic scenario in to-
day’s distributed information environments, we decided to
tackle the case of allocating replicas so as to minimize the
network traffic under storage constraints with “read from
the nearest” and “update through the primary site” poli-
cies. Recently genetic algorithms have been used for various
optimization problems including multiprocessor scheduling
[32], graph partitioning [12], task mapping [34] and mul-
tiprocessor document allocation [17]. We take advantage
of their capability to explore fast and efficient the solu-
tion space of a problem in order to design static and adap-
tive algorithms for data replication. The main merits of us-
ing a genetic algorithm approach in the dynamic case lies
in the proposed adaptive GA that usesexistingknowledge
about replica distribution in order to quickly define a new
scheme.

7. Conclusions

In this paper, we addressed the data replication prob-
lem and developed a cost model, which is applicable to
large distributed systems. We proposed a greedy algorithm
to solve the problem. Having obtained initial solutions from
our greedy approach, we designed a genetic algorithm. We
evaluated both approaches and assessed the trade-off be-
tween running time/solution quality. Experimental analysis
illustrated that the GA design constantly outperforms the
greedy method in terms of solution quality. On the other
hand SRA is much faster than GRA. Moreover, for small
and medium sized networks SRA’s performance is compa-
rable to that of GRA. However, for an environment where
static algorithms are less than useful, we propose AGRA
which adapts to the changing environment very quickly and
readjusts the replication scheme with solutions that are com-
parable to static algorithms. Therefore, AGRA combined
with the mini_GRA is the ultimate choice in a dynamic
environment.

References

[1] M. Abrams, C. Standridge, G. Abdulla, S. Williams, E. Fox, Caching
Proxies: Limitations and Potentials, Electronics Proceedings of the
Fourth World Wide Web Conf’95: The Web Revolution, Boston MA,
December 11–14, 1995.

[2] T. Anderson, Y. Breitbart, H.F. Korth, A. Wool, Replication,
consistency and practicality: are these mutually exclusive?, ACM
SIGMOD’98, Seattle, June 1998.

[3] D. Agrawal, A.J. Bernstein, A nonblocking quorum consensus
protocol for replicated data, IEEE Trans. Parallel Distributed Systems
2(2), (April 1991), 171–179.

[4] P.M.G. Apers, Data allocation in distributed database systems, ACM
Trans. Database Systems 13(3), (September 1988), 263–304.

[5] M.F. Arlitt, C.L. Williamson, Internet Web Servers: Workload
Characterization and Performance implications, IEEE/ACM Trans.
Networking 5(5), (October 1997), 631–645.

[6] B. Awerbuch, Y. Bartal, A. Fiat, Optimally-competitive distributed
file allocation, 25th Annual ACM STOC, Victoria, BC, Canada, 1993,
pp. 164–173.

[7] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, P. Sturm, Enhancing
the web infrastructure—from caching to replication, IEEE Internet
Comput. (March–April 1997), 18–27.

[8] L. Bellatreche, K. Karlapalem, L. Qing, An Iterative Approach
for Rules and Data Allocation in Distributed Deductive Database
Systems, in Seventh International Conference on Information
and Knowledge Management (ACM CIKM’98), Washington DC,
November 1998, pp. 356–363.

[9] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Nielsen, A. Secret,
The world-wide web, Comm. Assoc. Comput. Mach. 37(8), (August
1993), 76–82.

[10] A. Bestavros, WWW traffic reduction and load balancing
through server-based caching, IEEE Concurrency: Special Issue on
Parallel and Distributed Technology, vol. 5, January–March 1997,
pp. 56–67

[11] R.G. Casey, Allocation of copies of a file in an information network,
Proceedings of the Spring Joint Computer Conference, IFIPS, 1972,
pp. 617–625.

[12] R. Chandrasekharam, S. Subhramanian, S. Chaudhury, Genetic
algorithm for node partitioning problem and applications in VLSI
design, IEE Proc., 140(5), (September 1993), 255–260.

[13] W.W. Chu, Optimal file allocation in a multiple computer system,
IEEE Trans. Comput. C-18 (10) (1969) 885–889.

[14] K.A. DeJong, W.M. Spears, An analysis of the interacting roles of
population size and crossover in genetic algorithms, Proceedings of
the First Workshop Parallel Problem Solving from Nature, Springer,
Berlin 1990, pp. 38–47.

[15] L.W. Dowdy, D.V. Foster, Comparative models of the file assignment
problem, ACM Comput. Surveys 14(2) (June 1982), 287–313.

[16] K.P. Eswaran, Placement of records in a file and file allocation in a
computer network, Inform. Process. (1974) 304–307.

[17] O. Frieder, H.T. Siegelmann, Multiprocessor document allocation: a
genetic algorithm approach, IEEE Trans. Knowledge Data Eng. 9(4),
(July/August 1997), 640–642.

[18] D.E. Goldberg, Genetic algorithms in search, optimization and
machine learning, Addison-Wesley, Reading, MA, 1989.

[19] J.J. Grefenstette, Optimization of control parameters for genetic
algorithms, IEEE Trans. Systems Man and Cybernetics SMC-16(1),
(January/February 1986), 122–128.

[20] J.S. Gwertzman, M. Seltzer, The case for geographical push-caching,
Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), IEEE Computer Society Press, Los Alamitos,
CA., 1995, pp. 51–55.

[21] A. Heddaya and S. Mirdad, WebWave: globally load balanced fully
distributed caching of hot published documents, in Proceedings of the
17th International Conference on Distributed Computing Systems.

[22] J.H. Holland, Adaptation in natural and artificial systems, University
of Michigan Press, Ann Arbor, MI, 1975.

[23] T. Loukopoulos, I. Ahmad, Replicating the contents of a WWW
Multimedia Repository to Minimize Download Time, IPDPS’00,
Cancun, Mexico, May 2000.

[24] T. Loukopoulos, I. Ahmad, Static and adaptive data replication
algorithms for fast information access in large distributed systems,
IEEE International Conference on Distributed Computing Systems,
Taipei, Taiwan, 2000.

[25] S. Mahmoud, J.S. Riordon, Optimal allocation of resources in
distributed information networks, ACM Trans. Database Systems 1(1)
(March 1976), 66–78.

[26] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer
Implementations, Wiley, Interscience Series in Discrete Mathematics
and Optimization, New York, 1990.

[27] J. Mogul, Network behavior of a busy Web server and its clients,
Research Report 95/5, DEC Western Research, Palo Alto CA, 1995.

[28] Network Appliances’ NetCache, White paper at:
http://www.netapp.com/products/level3/netcache/webcache.html.

[29] M. Rabinovich, I. Rabinovich, R. Rajaraman, A. Aggarwal, A
dynamic object replication and migration protocol for an Internet



T. Loukopoulos, I. Ahmad / J. Parallel Distrib. Comput. 64 (2004) 1270–1285 1285

hosting service, IEEE International Conference on Distributed
Computing Systems, May 1999.

[30] M. Rabinovich, O. Spatschek, Web Caching and Replication,
Addison-Wesley, 2002.

[31] H. Scwefel, Evolution and Optimum Seeking, Wiley, New York,
1994.

[32] Yu-Kwong Kwok, I. Ahmad, Efficient scheduling of arbitrary task
graphs to multiprocessors using a parallel genetic algorithm, J.
Parallel Distributed Comput. 47(1), (November 1997), 58–77.

[33] Y.K. Kwok, K. Karlapalem, I. Ahmad, N.M. Pun, Design and
Evaluation of data allocation algorithms for distributed database
systems, IEEE J. Selected Areas Comm. (Special Issue on Distributed
Multimedia Systems), 14(7) (September 1996) 1332–1348.

[34] L. Wang, H. J. Siegel, V.P. Roychowdhury, A genetic-algorithm-
based approach for task matching and scheduling in heterogeneous
computing environments, Proceedings of the Fifth Heterogeneous
Computing Workshop, 1996, pp. 72–85.

[35] O. Wolfson, S. Jajodia, Y. Huang, An adaptive data replication
algorithm, ACM Trans. Database Systems 22(4), 255–314 (June
1997).

[36] S.P. Bradley, A.C. Hox, T.L. Magnanti, Applied Mathematical
Programming, Addison-Wesley, Reading, MA, 1977.

[37] http://www.mathworks.com
[38] G.K. Zipf, Human Behavior and the Principle of Least-Effort,

Addison-Wesley, Cambridge, MA, 1949.
[39] P. Barford, A. Bestavros, A. Bradley, M. Crovella, Changes in

Web client access patterns: Characteristics and caching implications,
WWW J 2 (1) (1999) 15–28.

Thanasis Loukopoulos received his
Diploma in Computer Engineering and
Informatics from theUniversity of Patras,
Greece, in 1997. He was awarded a Ph.D.
degree in Computer Science by the Hong
Kong University of Science and Technology
(HKUST) in 2002.
After receiving his Ph.D. he worked as a
Visiting Scholar in HKUST. Currently, he
is doing his military service. His research
areas of interest include content distribution
networks, P2P systems, and web services.

Ishfaq Ahmad received a Ph.D. degree in
Computer Science from Syracuse Univer-
sity, New York, USA, in 1992. His recent
research focus has been on developing dis-
tributed multimedia systems, video compres-
sion techniques, scheduling and mapping al-
gorithms for scalable architectures, hetero-
geneous computing systems, and web man-
agement. His research work in these areas
is published in over 150 technical papers in
refereed journals and conferences, with best
paper awards at Supercomputing 90 (New
York), Supercomputing ‘91 (Albuquerque),

and 2001 International Conference on Parallel Processing (Spain). He
is currently a full professor of Computer Science and Engineering in
the CSE Department of the University of Texas at Arlington. Prior to
joining UT Arlington, he was an associate professor in the Computer
Science Department at HKUST in Hong Kong. At HKUST, he was also
the director of the Multimedia Technology Research Center, an officially
recognized research center that he conceived and built from scratch. The
center commercialized several of its technologies to its industrial partners
worldwide. He has been on the program committee of more than 50
international conferences and is an Associate Editor of Cluster Computing,
Journal of Parallel and Distributed Computing, IEEE Transactions on
Circuits and Systems for Video Technology, IEEE Concurrency, and IEEE
Distributed Systems Online.


