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Systems theory and complexity: Part 1
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The motivation for this multi-part series is solely 
my observation that much of the writing on 
complexity theory seems to have arbitrarily ig-

nored the vast systems theory literature.  I don’t know 
whether this omission is deliberate (i.e., motivated by 
the political need to differentiate and promote one set 
of topical boundaries from another; a situation unfor-
tunately driven by a reductionist funding process) or 
simply the result of ignorance.  Indeed, Phelan (1999) 
readily admits that he was “both surprised and embar-
rassed to find such an extensive body of literature [re-
ferring to systems theory] virtually unacknowledged 
in the complexity literature.”  I am going to assume 
the best of the complexity community and suggest 
that the reason systems theory seems to have been 
forgotten is ignorance, and I hope this, and subsequent, 
articles will familiarize complexity thinkers with some 
aspects of systems theory; enough to demonstrate a 
legitimate need to pay more attention to this particular 
community and its associated body of literature.  The 
upcoming 11th Annual ANZSYS Conference/Manag-
ing the Complex V Systems Thinking and Complex-
ity Science: Insights for Action (a calling notice for 
which can be found in the “Event Notices” section of 
this issue) is a deliberate attempt to forge a more open 
and collaborative relationship between systems and 
complexity theorists.

 There are undoubtedly differences between 
the two communities, some of which are analyzed by 
Phelan (1999).  Six years on from Phelan’s article, I find 
that some of the differences he discusses have dissolved 
somewhat, if not entirely.  For example, he proposes 
that systems theory is preoccupied with “problem 
solving” or confirmatory analysis and has a critical 
interpretivist bent to it, whereas complexity theory is 
exploratory and positivist.  Given the explosion in the 
management science literature concerning the appli-
cation of complexity to organizational management I 
would argue that the complexity community as a whole 
is rather more inclined to confirmatory analysis than it 
might have been in 1999.  I think that part of Phelan’s 
assessment that complexity theory is positivist comes 
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from his characterization of complexity as a preoccupa-
tion with agent-based modelling.  Again, this may well 
have been an accurate assessment in 1999, but I find the 
assessment a little too forced for 2005.  See for example 
Cilliers (1998) and Richardson (2004a) for views of 
complexity that explore the limitations of a positiv-
ist-only view of complexity.  Also, refer to Goldstein’s 
introduction “Why complexity and epistemology?” 
in this issue for reasons as to why a purely positivistic 
characterization of complexity theory is no longer ap-
propriate.  I think it is still valid to suggest that there are 
philosophical and methodological differences between 
the systems and complexity communities, although, 
if one looks hard enough there is sufficient diversity 
within the communities themselves to undermine 
such simplistic characterizations in the first place.

 Of course there are differences between sys-
tems theory and complexity theory, but there are also 
many similarities.  For example, most, if not all, the 
principles/laws of systems theory are valid for complex 
systems.  Given the seeming lack of communication 
between complexity and systems theorists this series of 
articles will focus on the overlaps.  The first few articles 
will review some general systems laws and principles 
in terms of complexity. The source of the laws and 
principles of general systems theory are taken solely 
from Skyttner’s General Systems Theory: Ideas and Ap-
plications, which was recently republished (Skyttner, 
2001). 

The second law of thermodynamics

The second law of thermodynamics is probably 
one of the most important scientific laws of 
modern times. The ‘2nd Law’ was formulated 

after nineteenth century engineers noticed that heat 
cannot pass from a colder body to a warmer body by 
itself.  According to philosopher of science Thomas 
Kuhn (1978: 13), the 2nd Law was first put into words 
by two scientists, Rudolph Clausius and William 
Thomson (Lord Kelvin), using different examples, in 
1850-51. Physicist Richard P. Feynman (Feynman, et al., 
1963: section 44-3), however, argued that the French 
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physicist Sadi Carnot discovered the 2nd Law 25 years 
earlier - which would have been before the 1st Law 
(conservation of energy) was discovered!

 Simply stated the 2nd Law says that in any 
closed system the amount of order can never increase, 
only decrease over time.  Another way of saying this is 
that entropy always increases. The reason this law is an 
important one to discuss in terms of complexity theory 
is that it is often suggested that life itself contradicts 
this law.  In more familiar terms - to complexologists 
at least - the phenomena of self-organization, in which 
order supposedly emerges from disorder, completely 
goes against the 2nd Law.

 There are several reasons why this assertion 
is incorrect.  Firstly, the 2nd Law is concerned with 
closed systems and nearly all the systems of interest 
to complexity thinkers are open; so why would we 
expect the 2nd Law to apply?  What if we consider the 
only completely closed system that we know of: the 
Universe?  Even if it is True that the entropy of the 
Universe always increases this still does not deny the 
possibility of local entropy decrease.  To understand 
why this is the case we need to understand the nature of 
the 2nd Law itself (and all scientific laws for that matter).  
The 2nd Law is a statistical law.  This means it should re-
ally be read as on average, or on the whole, the entropy 
of closed systems will always increase. The measure of 
disorder, or entropy, is a macroscopic measure and so is 
the average over the whole system.  As such there can 
be localized regions within the system itself in which 
order is created, or entropy decreases, even while the 
overall average is increasing.  Another way to say this 
is that microlevel contradictions to macrolevel laws do 
not necessarily invalidate macrolevel laws.  The 2nd Law 
and the self-organizing systems principle (which will 
be covered in a later installment) operate in different 
contexts and have different jurisdictions.

 Despite the shortcomings of applying the 2nd 
Law to complex systems, there are situations in which 
it is still perfectly valid.  Sub-domains, or subsystems, 
can emerge locally within a complex system that are 
so stable that, for a period, they behave as if they were 
closed.  Such domains are critically organized, and as 
such that they could qualitatively evolve rather rapidly.  
However, during their stable periods it is quite possible 
that the 2nd Law is valid, even if only temporarily and 
locally.

The complementary law

The complementary law (Weinberg, 1975) sug-
gests that any two different perspectives (or 
models) about a system will reveal truths re-

garding that system that are neither entirely indepen-
dent nor entirely compatible.  More recently, this has 

been stated as: a complex system is a system that has 
two or more non-overlapping descriptions (Cohen, 
2002).  I would go as far as to include “potentially con-
tradictory” suggesting that for complex systems (by 
which I really mean any part of reality I care to examine) 
there exists an infinitude of equally valid, non-overlap-
ping, potentially contradictory descriptions.  Maxwell 
(2000) in his analysis of a new conception of science 
asserts that:

“Any scientific theory, however well it has been verified 
empirically, will always have infinitely many rival 
theories that fit the available evidence just as well but 
that make different predictions, in an arbitrary way, for 
yet unobserved phenomena.” (Maxwell, 2000).

 In Richardson (2003) I explore exactly this 
line of thinking in my critique of bottom-up computer 
simulations.

 The complementary law also underpins calls 
in some complexity literature for philosophical/epis-
temological/methodological/theoretical pluralism in 
complexity thinking.  What is interesting here is how 
the same (or at least very similar) laws/principles have 
been found despite the quite different routes that have 
been taken - a process systems theorists call equifi-
nality.  This is true for many of the systems laws I will 
discuss here and in future installments.

System holism principle

The system holism principle is probably the 
most well known principle in both systems and 
complexity communities, and is likely the only 

one widely known by ‘outsiders’.  It has it roots in the 
time of Aristotle and simply stated it says “the whole 
is greater than the sum of its parts”.  More formally: 
“a system has holistic properties not manifested by 
any of its parts and their interactions. The parts have 
properties not manifested by the system as a whole” 
(Skyttner, 2001: 92).  This is one of most interesting 
aspects of complex systems: that microlevel behavior 
can lead to macrolevel behavior that cannot be easily 
(if at all) derived from the microlevel from which it 
emerged.  In terms of complexity language we might 
re-label the system holism principle as the principle of 
vertical emergence. (N.B. Sulis, in this issue, differenti-
ates between vertical and horizontal emergence).

 The wording: “the whole is greater than the 
sum of its parts” is problematic to say the least.  To 
begin with the use of the term “greater than” would 
suggest that there is some common measure to com-
pare the whole and its parts and that by this measure 
the whole is greater than the sum of those parts.  I 
think this wrong.  An important property of emergent 
wholes is that they cannot be reduced to their parts (a 
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reversal of the system holism principle), i.e., wholes are 
qualitatively different from their parts (other than they 
can be recognized as coherent objects) - they require a 
different language to discuss them. So, in this sense, 
wholes and their component parts are incommensu-
rable - they cannot be meaningfully compared - they 
are different!  Of course, if mathematicians do find a 
way to bootstrap (without approximation) from micro 
to macro - a step that is currently regarded by many as 
intractable - then maybe a common (commensurable) 
measure can be applied.  What we really should say is 
“the whole is different from the sum of its parts and 
their interactions”.

 The issue of commensurability is an interest-
ing one and crops up time and time again in complex-
ity thinking.  Indeed, it was the focus of a recent ISCE 
conference held in Washington (September 18-19, 
2004).  One way to make the incommensurable com-
mensurable is to abstract/transform the incommensu-
rable entities in a way that allow comparison.  As long 
as we remember that it is the transformed entities that 
are being compared and not the entities themselves 
(as abstraction/transformation is rarely a conserva-
tive process) then useful comparisons can indeed be 
made.

 One last issue with the system holism prin-
ciple: the expression “the whole is greater than the 
sum of its parts” implies that, although the problem of 
intractability prevents us from deriving wholes from 
parts, in principle the whole does emerge from those 
parts (and their interactions) only, i.e., the parts are 
enough to account for the whole even if we aren’t able 
to do the bootstrapping itself.  In Richardson (2004b) 
the problematic nature of recognizing emergent prod-
ucts is given as a reason to undermine this possibility.  
In that paper, it is argued that the recognition of wholes 
as wholes is the result of applying a particular filter. 
Filters remove information and so the resulting wholes 
are what is left after much of reality has been filtered 
out - oddly enough, what remains after the filtering 
process is what is often referred to as ‘reality’.  So, mol-
ecules do not emerge from atoms, as atoms are only an 
idealized representation of that level of reality (a level 
which is determined by the filter applied) and as ideal-
izations are not sufficient in themselves to account for 
the properties of molecules (which represent another 
idealization).  An implication of this is that there exists 
chemistry that cannot be explained in terms of physics 
- this upsets of whole unification-of-the-sciences pro-
gramme.  Only in idealized abstractions can we assume 
that the parts sufficiently account for the whole.

Darkness principle

In complexity thinking the darkness principle is 
covered by the concept of incompressibility.  The 
darkness principle says that “no system can be 

known completely” (Skyttner, 2001: 93). The concept 
of incompressibility suggests that the best representa-
tion of a complex system is the system itself and that 
any representation other than the system itself will 
necessarily misrepresent certain aspects of the original 
system. This is a direct consequence of the nonlinear-
ity inherent in complex systems.  Except in very rare 
circumstances nonlinearity is irreducible (although 
localized linearization techniques, i.e., assuming lin-
earity locally, do prove useful).

 There is another source of ‘darkness’ in com-
plexity theory as reported by Cilliers (1998: 4-5):

“Each element in the system is ignorant of the behavior 
of the system as a whole, it responds only to information 
that is available to it locally. This point is vitally 
important.  If each element ‘knew’ what was happening 
to the system as a whole, all of the complexity would have 
to be present in that element.” (original emphasis).

 So, there is no way a member of a complex 
system can ever know it completely - we will always 
be in the shadow of the whole.

 Lastly there is the obvious point that all com-
plex systems are by definition open and so it is nigh on 
impossible to know how the system’s environment 
will affect the system itself - we simply cannot model 
the world, the Universe and everything.

Eighty-twenty principle

The eighty-twenty principle has been used in 
the past to justify the removal of a large chunk 
of an organization’s resources, principally its 

workforce.  According to this principle, in any large, 
complex system, eighty per cent of the output will 
be produced by only twenty per cent of the system.  
Recent studies in Boolean networks, a particularly 
simple form of complex system, have shown that not 
all members of the network contribute to the function 
of the network as a whole. The function of a particular 
Boolean network is related to the structure of its phase 
space, particularly the number of attractors in phase 
space. For example, if a Boolean network is used to 
represent a particular genetic regulatory network (as 
in the work of Kauffman, 1993) then each attractor in 
phase space supposedly represents a particular cell type 
that is coded into that particular genetic network.  It 
has been noticed that the key to the stability of these 
networks is the emergence of stable nodes, i.e., nodes 
whose state quickly freezes.  These nodes, as well as 
others called leaf nodes (nodes that do not input into 
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any other nodes), contribute nothing to the asymp-
totic (long-term) behavior of these networks.  What 
this means is that only a proportion of a dynamical 
network’s nodes contribute to the long-term behavior 
of the network.  We can actually remove these stable/
frozen nodes (and leaf nodes) from the description of 
the network without changing the number and period 
of attractors in phase space, i.e., the network’s function.  
Figure 1 illustrates this.  The network in Figure 1b is the 
reduced version of the network depicted in Figure 1a.  I 
won’t go into technical detail here about the construc-
tion of Boolean networks, please feel free to contact me 
directly for further details.  Suffice to say, by the way I 
have defined functionality, the two networks shown 
in Figure 1 are functionally equivalent.  It seems that 
not all nodes are relevant.  But how many nodes are 
irrelevant?

 Figure 2 shows the frequency of different sizes 
of reduced network.  The experiment performed was to 
construct a large number (100,000) of random Boolean 
networks containing only ten nodes, each having a 
random rule (or transition function) associated with 
it, and two randomly selected inputs.  Each network 
is then reduced so that the resulting network only 
contains relevant nodes.  Networks of different sizes 
resulted and their proportion to the total number of 

networks tested was plotted.  If we take an average of 
all the networks we find that typically only 60% of all 
nodes are relevant.  This would suggest a one hundred 
- sixty principle (as 100% of functionality is provided 
by 60% of the network’s nodes), but it should be noted 
that this ratio is not fixed for networks of all types - it 
is not universal.  This is clearly quantitatively differ-
ent from the eighty-twenty ratio but still implies that 
a good proportion of nodes are irrelevant on average.  
What do these so-called irrelevant nodes contribute?  
Can we really just remove them with no detrimental 
consequences?  A recent study by Bilke and Sjunnesson 
(2001) showed that these supposedly irrelevant nodes 
do indeed play an important role.

 One of the important features of Boolean 
networks is their intrinsic stability, i.e., if the state 
of one node is changed/perturbed it is unlikely that 
the network trajectory will be pushed into a different 
attractor basin.  Bilke and Sjunnesson (2001) showed 
that the reason for this is the existence of the, what we 
have called thus far, irrelevant nodes.  These ‘frozen’ 
nodes form a stable core through which the perturbed 
signal is dissipated, and therefore has no long term im-
pact on the network’s dynamical behavior.  In networks 
for which all the frozen nodes have been removed, and 
only relevant nodes remain, it was found that they 
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Figure 1 An example of (a) a Boolean network, and (b) its reduced form.  The nodes which are made up of 
two discs feedback onto themselves.  The connectivity and transition function lists at the side of each network 
representation are included for those readers familiar with Boolean networks.  The graphics below each network 
representation show the attractor basins for each network.  The phase space of both networks contain two period-4 
attractors, although it is clear that the basin sizes (i.e., the number of states they each contain) are quite different.
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were very unstable indeed - the slightest perturbation 
would nudge them into a different basin of attraction, 
i.e., a small nudge was sufficient to qualitatively change 
the network’s behavior.  As an example, the stability 
(or robustness) of the network in Figure 1a is 0.689 
whereas the stability of its reduced, although function-
ally equivalent network, is 0.619 (N.B. The robustness 
measure is an average probability measure indicating 
the chances that the system will move into a different 
attractor basin if a single bit of one node, selected at 
random, is perturbed.  The measure ranges from 0 to 
1 where 1 represents the most stable.  The difference in 
robustness for the example given is not that great, but 
the difference does tend to grow with network size - we 
have considered networks containing only ten nodes 
here).

 Prigogine said that self-organization requires 
a container (self-contained-organization). The stable 
nodes function as the environmental equivalent of 
a container, and indeed one of the complex systems 
notions not found in systems theory is that environ-
mental embodiments of weak signals might matter.

Figure 2 The relative frequency distribution of 
reduced network sizes

 So it seems that, although many nodes do not 
contribute to the long term behavior of a particular 
network, these same nodes play a central role as far 
as network stability is concerned.  Any management 
team tempted to remove 80% of their organization in 
the hope of still achieving 80% of their yearly profits, 
would find that they had created an organization that 
had no protection whatsoever to even the smallest 
perturbation from its environment - it would literally 
be impossible to have a stable business.

Summing up

As mentioned in the opening paragraphs of 
this article, my aim in writing this series is to 
encourage a degree of awareness with general 

systems ideas that is currently not exhibited in the 
‘official’ complexity literature.  In each installment I 
will explore a selection of general systems laws and 

principles in terms of complexity science.  When this 
task has been completed we might begin to develop a 
clearer understanding of the deep connections between 
systems theory and complexity theory and then make 
a concerted effort to build more bridges between the 
two supporting communities - there are differences 
but not as many as we might think.
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The website for the recent ISCE Event Inquiries, In-
dices and Incommensurabilities, held in Washington 
DC last September (2004) is: http://isce.edu/ISCE_
Group_Site/web-content/ISCE%20Events/Washing-
ton_2004.html. Selected papers from this event will 
soon appear in a future issue of E:CO.


