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ABSTRACTCo-lustering, or simultaneous lustering of the rows andolumns of two-dimensional data matries, is a powerfuldata mining tehnique with varied appliations suh as textlustering, miroarray analysis and reommender systems.An information-theoreti approah that is appliable whenthe data matrix an be interpreted as a two-dimensional em-pirial joint probability distribution, was reently proposed.However, in many situations, o-lustering of more generalmatries is desired. In this paper, we present a substan-tially generalized o-lustering framework wherein (i) lossfuntions orresponding to all Bregman divergenes, whihinlude squared Eulidean distane and KL-divergene asspeial ases, an be used, thereby making it appliableto a wide range of data matries, (ii) various onditionalexpetation based onstraints an be onsidered based onthe statistis that need to be preserved, thereby giving riseto di�erent parametri o-lustering models, and (iii) themaximum entropy priniple is generalized to the minimumBregman information priniple to provide a natural modelseletion tehnique. The analysis yields an elegant metaalgorithm that is guaranteed to ahieve loal optimality.Our methodology enompasses a vast majority of previouslyknown lustering and o-lustering algorithms based on al-ternate minimization. We provide examples and empirialevidene to establish the generality and eÆay of the pro-posed o-lustering framework.
1. INTRODUCTIONCo-lustering, or bi-lustering [10, 5℄, is the problem of si-multaneously lustering rows and olumns of a data matrix.The problem of o-lustering arises in diverse data miningappliations, suh as simultaneous lustering of genes andexperimental onditions in bioinformatis [5, 6℄, doumentsand words in text mining [9℄, users and movies in reom-mender systems, et. Often, it forms a key intermediatestep in the data mining proess and is essential to overome
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the noise and sparsity in the input data matrix. Further,o-lustering is apable of providing ompressed representa-tions that are highly interpretable while preserving most ofthe information ontained in the original data, whih makesit valuable to a large lass of statistial data analysis appli-ations.In order to design a o-lustering framework, we need to�rst haraterize the \goodness" of a o-lustering. Existingo-lustering tehniques [6, 5, 9℄ ahieve this by quantifyingthe \goodness" of a o-lustering in terms of the approxi-mation error between the original data matrix and a matrixreonstruted by o-lustering based on the summary statis-tis. Currently, the most eÆient and salable ones are thosebased on alternate minimization shemes [6, 9, 6℄ that allowonly two distortion measures namely, KL-divergene and thesquared Eulidean distane. Further, they also allow only afew matrix reonstrution shemes that involve preservingpartiular summary statistis of the original matrix. Thesetwo limitations restrit the appliability of these tehniquesto a small range of data matries.In this paper, we address the following two questions:(a) what lass of distortion funtions admit eÆient o-lustering algorithms based on alternate minimization?, and(b) what are the di�erent possible matrix reonstrution shemesfor these o-lustering algorithms?. We show that alternateminimization based o-lustering algorithms work for a largelass of distortion measures alled Bregman divergenes [1℄,whih inlude squared Eulidean distane, KL-divergene,Itakura-Saito distane, et., as speial ases. Further, wedemonstrate that for a given o-lustering, a large variety ofapproximation models are possible based on the type of sum-mary statistis that need to be preserved. To ahieve theseresults, we propose and use a new minimum Bregman infor-mation priniple that simultaneously generalizes the maxi-mum entropy and the least squares priniples. Based on theproposed priniple, and other related results, we develop anelegant meta-algorithm for the Bregman o-lustering prob-lem with a number of desirable properties suh as salabil-ity and appliability to a wide range of data matries. Mostpreviously known parametri lustering and o-lustering al-gorithms based on alternative minimization follow as speialases of our methodology.
2. MOTIVATIONWe start by reviewing information-theoreti o-lustering [9℄and onretely motivating the need for a more general o-lustering framework.



Let X and Y be disrete random variables that take val-ues in the sets fxug[u℄m1 where [u℄m1 denotes an index urunning over f1; � � � ;mg and fyvg[v℄n1 respetively. Supposewe are in the idealized situation where the joint probabilitydistribution p(X;Y ) is known. In pratie, p may be es-timated from a ontingeny table or o-ourrene matrix.Suppose we want to o-luster, or, simultaneously luster Xinto k disjoint (row) lusters fx̂gg [g℄k1 and Y into l disjoint(olumn) lusters, fŷhg [h℄l1. Let X̂ and Ŷ denote the orre-sponding lustered random variables that range over thesesets. An information theoreti formulation of �nding theoptimal o-lustering is to solve the problemminX̂;Ŷ I(X;Y )� I(X̂; Ŷ ) ; (2.1)where I(X;Y ) is the mutual information betweenX and Y [7℄.In [9℄, it was shown thatI(X;Y )� I(X̂; Ŷ ) = D(p(X;Y )jjq(X;Y )); (2.2)where q(X;Y ) is a distribution of the formq(X;Y ) = p(X̂; Ŷ )p(XjX̂)p(Y jŶ ); (2.3)and D(�jj�) denotes the Kullbak-Leibler(KL) divergene,also known as relative entropy. Thus, the searh for the op-timal o-lustering may be onduted by searhing for thenearest approximation q(X;Y ) that has the above form. Onloser examination, we note that the distribution q(X;Y )depends only on (kl+m+ n� 3) independent parameters,whih is muh smaller than the (mn � 1) parameters thatdetermine a general joint distribution p. Hene, we allq(X;Y ) a \low omplexity" or low parameter matrix ap-proximation.The above is the viewpoint presented in [9℄. We nowpresent an alternate viewpoint that will enable us to gen-eralize our approah to arbitrary data matries and generaldistortion measures. The following lemma highlights thekey maximum entropy property that makes q(X;Y ) a \lowomplexity" or low parameter approximation.Lemma 1 Given a �xed o-lustering X̂, Ŷ , onsider theset of joint distributions p0 that preserve the following statis-tis of the input distribution p:Xx2x̂Xy2ŷ p0(x; y) = p(x̂; ŷ) =Xx2x̂Xy2ŷ p(x; y); 8x̂; ŷ;p0(x) = p(x); p0(y) = p(y); 8x; y:Among all suh distributions p0, the distribution q in (2.3)has the maximum entropy, i.e.,H(q(X;Y )) � H(p0(X;Y )):Proof. It an be easily heked that q preserves therelevant statistis so that p0(X̂; Ŷ ) = p(X̂; Ŷ ) = q(X̂; Ŷ ),p0(X) = p(X) = q(X) and p0(Y ) = p(Y ) = q(Y ). Usingthis property of q, it is easy to show that H(q) �H(p0) =D(p0jjq) � 0:What is the signi�ane of the above lemma? In the abseneof any onstraints, the uniform distribution, p0(X;Y ) =f 1mng, has the maximum entropy. If only row and olumnmarginals are to be preserved, then the produt distribu-tion p(X)p(Y ) has maximum entropy (see [7, Problem 5,Chap. 11℄). The above lemma states that among all distribu-tions that preserve marginals as well as o-luster statistis,

the maximum entropy distribution has the form in (2.3).It is important to note that this maximum entropy hara-terization is equivalent to saying that q is a low-omplexitymatrix approximation. Thus, by (2.2) and Lemma 1, theo-lustering problem (2.1) is equivalent to the problem of�nding the nearest (in KL-divergene) maximum entropydistribution that preserves the marginals, and the o-lusterstatistis of the original data matrix.The above formulation is appliable when the data ma-trix orresponds to an empirial joint distribution. However,there are important situations when the data matrix is moregeneral, for example, the matrix may ontain negative en-tries and/or a distortion measure other than KL-divergene,suh as the squared Eulidean distane, might be more ap-propriate.This paper addresses the general situation by extendingthe information-theoreti o-lustering along three di�erentdiretions. First, \nearness" an be now measured by anyone of a large lass of distortion measures alled Bregmandivergenes. Seond, we allow spei�ation of a larger vari-ety of onstraints that preserve various statistis of the data.The di�erent onstraints allow a trade-o� between omplex-ity and �delity of the resulting approximation. Lastly, to a-omplish the above, we generalize the maximum entropy ap-proah: we guide our o-lustering generalization by appeal-ing to the minimum Bregman information priniple that weshall introdue shortly. The optimal o-lustering is guidedby the searh for the nearest (in Bregman divergene) ma-trix approximation that has minimum Bregman informationwhile satisfying the onstraints mentioned above.
3. FORMULATION AND ANALYSISIn this setion, we formulate the Bregman o-lusteringproblem in terms of the Bregman divergene between a givenmatrix and an approximation based on the o-lustering.We show that a natural way of speifying the approxima-tion matrix leads to a new minimum Bregman informationpriniple, whih we analyze in detail.
3.1 PreliminariesWe start by de�ning Bregman divergenes [1, 3℄. Let �be a real-valued stritly onvex funtion de�ned on the on-vex set S = dom(�) � R, the domain of �, suh that �is di�erentiable on int(S), the interior of S. The Breg-man divergene d� : S � int(S) 7! [0;1) is de�ned asd�(z1; z2) = �(z1)� �(z2)� hz1 � z2;r�(z2)i, where r� isthe gradient of �.Example 1.A (I-Divergene) Given z 2 R+, let �(z) =z log z. For z1; z2 2 R+ , d�(z1; z2) = z1 log(z1=z2)�(z1�z2).Example 2.A (Squared Eulidean Distane) Given z 2R, let �(z) = z2. For z1; z2 2 R, d�(z1; z2) = (z1 � z2)2.
Data MatrixWe fous on the problem of approximating a given m � ndata matrix Z under various onstraints. Let eah entry ofZ take values in a onvex set S = dom(�). Hene, Z takesvalues in Sm�n. Observe that we are now admitting a muhlarger lasses of matries than that in [9, 6℄.We will think of Z as a random variable that is a knowndeterministi funtion of two underlying random variables



U and V , whih we now introdue. Let U be a randomvariable taking values in f1; � � � ;mg, the set of row indies,and let V be a random variable taking values in f1; � � � ; ng,the set of olumn indies. Hene, the matrix Z = [zuv℄ issuh that zuv is some �xed deterministi funtion of u andv. Let � = f�uv : [u℄m1 ; [v℄n1 g denote the joint probabilitymeasure of the pair (U; V ), whih is either pre-spei�ed orset to be the uniform distribution. Throughout the paper,all expetations are with respet to �.Example 1.B (I-Divergene) Let (X;Y ) � p(X;Y ) bejointly distributed random variables with X;Y taking valuesin fxug; [u℄m1 and fyvg; [v℄n1 respetively. Then, p(X;Y ) anbe written in the form of the matrix Z = [zuv℄, [u℄m1 ; [v℄n1 ,where zuv = p(xu; yv) is a deterministi funtion of u and v.This example with a uniform measure � orresponds to thesetting desribed in setion 2 (originally in [9℄)1.Example 2.B (Squared Eulidean Distane) Let Z 2Rm�n denote a data matrix whose elements may assumepositive, negative, or zero values and let � be a uniformmeasure. This example orresponds to the setting desribedin [6, 5℄.
Bregman Co-clusteringWe de�ne a k � l o-lustering as a pair of maps:� : f1; � � � ;mg 7! f1; � � � ; kg : f1; � � � ; ng 7! f1; � � � ; lg:Let Û and V̂ be random variables taking values in f1; � � � ; kgand f1; � � � ; lg suh that Û = �(U) and V̂ = (V ). LetẐ = [ẑuv℄ 2 Sm�n be an approximation for the data matrixZ suh that it depends upon a given o-lustering (�; ).We shall then measure the goodness of the underlying o-lustering as:E[d�(Z; Ẑ)℄ = mXu=1 nXv=1 �uvd�(zuv; ẑuv): (3.4)To arry out this plan, we need to make preise the onne-tion between (�; ) and Ẑ.Example 1.C (I-Divergene) The Bregman o-lusteringobjetive funtion in this ase is given by E[d�(Z; Ẑ)℄ =E[Z log(Z=Ẑ)� Z + Ẑ℄.Example 2.C (Squared Eulidean Distane) The Breg-man o-lustering objetive funtion in this ase is given byE[d�(Z; Ẑ)℄ = E[(Z � Ẑ)2℄
3.2 Co-Clustering and Matrix ApproximationEvery o-lustering an lead to numerous di�erent matrixapproximations. The ruial point is preisely what infor-mation from Z do we retain.Let us �x a o-lustering (�; ). Given the o-lustering,there are essentially �ve random variables of interest: Z, U ,V , Û , and V̂ . Now, we an speify the statistis of Z thatwe want to preserve using non-trivial ombinations from thisset, given by� = ffU; V̂ g; fÛ ; V g; fÛ ; V̂ g; fUg; fV g; fÛg; fV̂ gg;1Note that in [9℄ KL-divergene was used, whih is a speialase of I-divergene appliable to probability distributions.

where fU; V g is not inluded sine E[ZjU; V ℄ = Z. We willbe interested in random variables that depend on sets ofonditional expetations2 of the form fE[ZjC℄; C 2 �g. If�(�) denotes the power set of �, then every element of �(�)is a set of onstraints, and leads to a (possibly) di�erentmatrix approximation. Intuitively, we think of �(�) as thelass of matrix approximation shemes related to a giveno-lustering (�; ).We now display four onrete examples of interesting el-ements of �(�) that we will use throughout this paper toilluminate disussions:C1 = ffÛg; fV̂ gg; C2 = ffÛ ; V̂ ggC3 = ffÛ ; V̂ g; fUg; fV gg C4 = ffU; V̂ g; fÛ ; V ggThe diligent reader may verify that these are the only non-trivial symmetri onstraint sets in �(�). Also, observe thatif we have aess to fE[ZjC℄ : C 2 Cig, for some 1 � i � 4,then we an ompute fE[ZjC℄ : C 2 Cjg for all 1 � j �i. In this sense, we say that the onstraint set Ci is moreomplex than Cj for all j � i. From a pratial perspetive,a more omplex set of onstraints allows us to retain moreinformation about Z.Our abstration allows us to handle the essene behind theabove onstraint sets and, in fat, all onstraint sets in �(�)at one. Now, onsider an element C in the power set �(�)as the pertinent onstraint set. Given this hoie, we seekto �nd the \best" approximation matrix. Let �A(�; ; C)denote the lass of random variables Z0 2 Sm�n that satisfythe following onditional independene ondition:Condition A. The Markov onditionZ ! fE[ZjC℄ : C 2 Cg ! Z0holds. In other words, Z0 depends upon Z only throughthe set of random variables fE[ZjC℄ : C 2 Cg:We de�ne the \best" matrix approximation ẐA orre-sponding to the o-lustering (�; ) and the onstraint setC as the one in the lass �A(�; ; C) that minimizes the ap-proximation error, i.e.,ẐA � ẐA(�; ; C) = argminZ02�A(�;;C)E[d�(Z;Z0)℄: (3.5)Before we proeed further, we will furnish an alternativeharaterization of (3.5) in terms of an extremely useful on-ept alled Bregman information. This alternative hara-terization will be an important step in our hunt for a gener-alized algorithm.
3.3 Minimum Bregman InformationFor any random variable Z0, its Bregman informationis de�ned as the expeted Bregman divergene to the expe-tation, i.e., I�(Z0) = E[d�(Z0; E[Z0℄)℄: (3.6)Intuitively, this quantity is a measure of the \spread" or the\information" in the random variable.Example 1.D (I-Divergene) Given Z0 2 Rm�n+ , the Breg-man information orresponding to I-divergene is given byI�(Z0) = E[Z0 log �Z0=E[Z0℄�℄:2Given a sub-�-algebra G for Z, the onditional expeta-tion E[ZjG℄ is the optimal Bregman preditor among allG-measurable random variables [2℄.



When Z0 orresponds to a probability distribution, i.e., z0uv =p(xu; yu) and � is a uniform measure, then E[Z0℄ is theuniform distribution p0 and the Bregman information isgiven by D(pjjp0) = �H(p)+ onstant, where D(�jj�) is KL-divergene and H(:) is the Shannon entropy.Example 2.D (Squared Eulidean Distane) Given Z02 Rm�n , the Bregman information orresponding to squaredEulidean distane is given by I�(Z0) = E[(Z0 � E[Z0℄)2℄,whih is just the squared Frobenius norm of the matrix fora uniform measure �.We now onsider a di�erent lass of approximating ran-dom variables based on a spei�ed onstraint set C and aspei�ed o-lustering (�; ). Let �B(�; ; C) denote a lassof random variables suh that every Z0 satis�es the followinglinear onstraints:Condition B. For every C 2 C, E[ZjC℄ = E[Z0jC℄:With respet to the set �B(�; ; C), we ask: What is the\best" random variable to selet from this set? We now pro-pose a new minimum Bregman information priniplethat reommends seleting a random variable that has theminimum Bregman information subjet to the linear on-straints: ẐB � ẐB(�; ; C) = argminZ02�B(�;;C)I�(Z0): (3.7)It is easy to see that the widely used maximum entropypriniple [12, 7℄ is a speial ase of the proposed priniplesine the entropy of a joint distribution is negatively relatedto the Bregman information (Example 1.D). In fat, theminimumBregman information priniple neatly uni�es boththe maximum entropy, and the least squares priniple [8℄.The following theorem haraterizes the solution to theminimum Bregman information problem (3.7).Theorem 1 For a Bregman divergene d�, any random vari-able Z 2 Sm�n, a spei�ed o-lustering (�; ) and a spei-�ed onstraint set C, the solution ẐB to (3.7) is given by3r�(ẐB) = � sXr=1�?r ;where �? � f�?rg are the optimal Lagrange multipliers or-responding to set of the linear onstraints:E[Z0jCr℄ = E[ZjCr℄; [r℄s1:Furthermore, ẐB always exists, is unique, and satis�es Con-dition A.Proof. Consider the Lagrangian J(Z0;�) of the mini-mum Bregman information problem. After some algebraimanipulation, it an be shown thatJ(Z0;�) = I�(Z0) + sXr=1�r(E[Z0jCr℄�E[ZjCr℄)= E[�(Z0)℄� �(E[Z0℄) + sXr=1�r(E[Z0jCr℄�E[ZjCr℄) :3In general, we use f(Z) to denote f(�) applied to Z ele-mentwise for any funtion f .

Table 1: Minimum Bregman information solutionfor I-Divergene.Constraints C Approximation ẐBC1 E[ZjÛ℄�E[ZjV̂ ℄E[Z℄C2 E[ZjÛ; V̂ ℄C3 E[ZjU℄�E[ZjV ℄�E[ZjÛ;V̂ ℄E[ZjÛ℄�E[ZjV̂ ℄C4 E[ZjU;V̂ ℄�E[ZjÛ;V ℄E[ZjÛ;V̂ ℄Table 2: Minimum Bregman information solutionfor squared Eulidean distane.Constraints C Approximation ẐBC1 E[ZjÛ℄ + E[ZjV̂ ℄�E[Z℄C2 E[ZjÛ; V̂ ℄C3 E[ZjU ℄ +E[ZjV ℄ + E[ZjÛ; V̂ ℄�E[ZjÛ℄� E[ZjV̂ ℄C4 E[ZjU; V̂ ℄ +E[ZjÛ; V ℄�E[ZjÛ; V̂ ℄Now, the Lagrange dual, L(�) = infZ0 J(Z0;�), is stritlyonave in �. By maximizing the Lagrange dual we get theoptimal Lagrange multipliers, i.e., �� = f��rg = argmax� L(�).Replaing �� into the �rst order neessary onditions orre-sponding to the minimizer ẐB , we getrJ(ẐB ;��) = 0 , r�(ẐB) + sXr=1��r = 0 :Rearranging terms proves the �rst part of the theorem.The existene and the uniqueness of ẐB follow from thestrit onvexity of �. Also, observe that due to the fatthat the minimization problem takes as input only the setfE[ZjC℄ : C 2 Cg, and, hene, has no other informationabout Z, it follows that ẐB satis�es Condition A.Example 1.E (I-Divergene) When �(z) = z log z; z 2R+ ; r�(z) = log z and the minimum Bregman informa-tion solution is given by log ẐB = �Psr=1 ��r where �? =f�?rg are the optimal Lagrange multipliers of problem (3.7).For onstraint set C2 = ffÛ ; V̂ gg, there is only one on-straint E[ZjÛ ; V̂ ℄ and on applying this, we obtain �(Û;V̂ ) =� log(E[ZjÛ ; V̂ ℄) so that ẐB = E[ZjÛ ; V̂ ℄. The minimumBregman information solutions for all the ases are shownin the table below. Note that ẐB for the onstraint set C3redues to q(X;Y ) = p(X)p(Y )p(X̂;Ŷ )p(X̂)p(Ŷ ) for probability distri-butions, whih is the same as (2.3). Further, the fat thatq is the minimum Bregman information solution for KL-divergene under ertain onstraints is equivalent to Lemma1, whih shows that is the maximum entropy distributionunder those onstraints.Example 2.E (Squared Eulidean Distane) When �(z) =z2; z 2 R; r�(z) = 2z and ẐB = �Psr=1 ��r where �? =f�?rg are the optimal Lagrange multipliers of problem (3.7).Hene, for onstraint set C2 = ffÛ ; V̂ gg, we obtain �(Û;V̂ ) =�2E[ZjÛ ; V̂ ℄ so that ẐB = E[ZjÛ ; V̂ ℄ one again. The min-imum Bregman information solutions for all the ases areshown in the table below.



3.4 A Projection LemmaWe have proposed two alternative ways, namely, (3.5) and(3.7) of quantifying the goodness of a given o-lustering(�; ) with respet to a user spei�ed onstraint set C. Thefollowing pleasantly surprising projetion lemma shows thatthese two formulations lead to the same solution, and, hene-forth, we will simply write Ẑ = ẐA = ẐB. The projetionlemma essentially states that the minimum Bregman infor-mation solution ẐB is the Bregman projetion ( nearest inBregman divergene) of Z onto the set of all approximationsthat satisfy the Markov property in ondition A.Lemma 2 (Projetion Lemma) For a Bregman divergened�, any random variable Z 2 Sm�n, a spei�ed o-lustering(�; ) and a spei�ed onstraint set C,E[d�(Z;Z0)℄ = E[d�(Z; ẐB)℄ +E[d�(ẐB ; Z0)℄where Z0 2 �A(�; ; C) and ẐB = ẐB(�; ; C) as in (3.7).Proof. By de�nition,E[d�(Z;Z0)℄(a)= E[�(Z)℄�E[�(Z0)℄�E[hZ � Z0;r�(Z0)i℄= E[d�(Z; ẐB)℄ +E[d�(ẐB ; Z0)℄+E[hZ � ẐB ;r�(ẐB)�r�(Z0)i℄(b)= E[d�(Z; ẐB)℄ +E[d�(ẐB ; Z0)℄where (a) follows from algebrai manipulation and (b) fol-lows sine Z0; ẐB both satisfy Condition A and ẐB satis�esCondition B, the last term vanishes by taking onditionalexpetations over fE[ZjC℄; C 2 Cg.Theorem 2 For a Bregman divergene d�, any random vari-able Z 2 Sm�n, a spei�ed o-lustering (�; ) and a spei-�ed onstraint set C, ẐA = ẐB :where ẐA and ẐB are given by (3.5) and (3.7) respetively.Proof. By de�nition,ẐA = argminZ02�A(�;;C)E[d�(Z;Z0)℄(a)= argminZ02�A(�;;C)E[d�(ẐB; Z0)℄(b)= ẐBwhere (a) follows from Lemma 2 and (b) follows sine d�(�; �) >0 unless both the arguments are equal due to the strit on-vexity of �, and the fat that ẐB satis�es ondition A.
3.5 Main ProblemThe expeted Bregman divergene between the given ma-trix Z and the minimum Bregman information solution Ẑprovides us with a elegant way to quantify the goodness of ao-lustering. Interestingly, the following lemma shows thatthis expeted Bregman divergene is exatly equal to theloss in Bregman information due to o-lustering, whih ison the same lines as the information-theoreti o-lusteringformulation as in Eqn (2.1) (originally, Lemma 2.1 in [9℄).

Lemma 3 For a Bregman divergene d�, any random vari-able Z 2 Sm�n, a spei�ed o-lustering (�; ) and a spei-�ed onstraint set C,E[d�(Z; Ẑ)℄ = I�(Z)� I�(Ẑ)where Ẑ = ẐA = ẐB de�ned in (3.5) and (3.7).Proof. By de�nition,E[d�(Z; Ẑ)℄= E[�(Z)� �(Ẑ)� hZ � Ẑ;r�(Ẑ)i℄(a)= E[�(Z)℄�E[�(Ẑ)℄(b)= E[�(Z)� �(E[Z℄)℄�E[�(Ẑ)� �(E[Ẑ℄)℄()= I�(Z)� I�(Ẑ)where (a) follows from the fat that Ẑ satis�es onditions Aand B so that taking onditional expetations over fE[ZjC℄; C 2Cg makes the last term vanish, and (b) follows sine E[Z℄ =E[Ẑ℄ and () follows sine E[hZ�E[Z℄;r�(E[Z℄)i℄ = 0.We are now ready to onretely de�ne the generalized o-lustering problem.De�nition 1 Given k, l, a Bregman divergene d�, a datamatrix Z 2 Sm�n, a set of onstraints C 2 �(�), and anunderlying probability measure �, we wish to �nd a o-lustering (�?; ?) that minimizes:(�?; ?) = argmin(�;) E[d�(Z; Ẑ)℄ = argmin(�;) I�(Z)� I�(Ẑ);(3.8)where Ẑ = Ẑ(�; ; C) = argminZ02�B(�;;C)I�(Z0).The problem is NP-omplete by a redution to the kmeansproblem. Hene, it is diÆult to obtain a globally optimalsolution eÆiently. However, in setion 4, we analyze theproblem in detail, and prove that it is always possible toome up with an iterative update sheme that (a) monoton-ially dereases the objetive funtion, and (b) onverges toa loal minimum of the problem.Example 1.F (I-Divergene) Continuing from Example1.C, the Bregman o-lustering objetive funtion is given byE[Z log(Z=Ẑ)�Z + Ẑ℄ = E[Z log(Z=Ẑ)℄ sine E[Z℄ = E[Ẑ℄where Ẑ is the minimumBregman information solution fromTable 1. Note that for the onstraint set C3 and Z based ona joint distribution p(X;Y ), this redues to D(pjjq) whereq is the joint distribution orresponding to the minimumBregman solution indiating that (2.1) follows as a speialase of (3.8).Example 2.F (Squared Eulidean Distane) Continuingfrom Example 2.C, the Bregman o-lustering objetive fun-tion is E[(Z � Ẑ)2℄ where Ẑ is the minimum Bregman in-formation solution from Table 2. Note that for the on-straint set C4, this redues to E[(Z�E[ZjU; V̂ ℄�E[ZjÛ ; V ℄+E[ZjÛ ; V̂ ℄)2℄, whih is same as the objetive funtion pro-posed in [6, 5℄.



4. A META ALGORITHMIn this setion, we shall develop an alternating minimiza-tion sheme for the general Bregman o-lustering problem.Our sheme shall serve as a meta algorithm from whih anumber of speial ases (both previously known and un-known) an be derived.Throughout this setion, let us suppose that the underly-ing measure �, the Bregman divergene d�, the data matrixZ 2 Sm�n, number of row lusters k, number of olumnlusters l, and the onstraint set C are spei�ed and �xed.We shall fous on �nding a good o-lustering for (3.8).
4.1 Intuition and Plan of AttackWe �rst outline the essene of our sheme.Step 1: Start with an arbitrary row and olumn lustering,say, (�0; 0). Set t = 0. With respet to this lustering,ompute the matrix approximation Ẑt by solving theminimum Bregman information problem (3.7).Step 2: Repeat one of the following two steps till onver-gene:Step 2A: Hold the olumn lustering t �xed, and�nd a new row o-lustering, say, �t+1. Set t+1 =t. With respet to o-lustering (�t+1; t+1),ompute the matrix approximation Ẑt+1 by solv-ing the minimum Bregman information problem.Set t = t+ 1.Step 2B: Hold the row lustering �t �xed, and �nd anew olumn o-lustering, say, t+1. Set �t+1 =�t. With respet to o-lustering (�t+1; t+1),ompute the matrix approximation Ẑt+1 by solv-ing the minimum Bregman information problem.Set t = t+ 1.We shall prove that this sheme onverges in a �nite numberof steps to a loal minima. Also, at any time, in Step 2, thealgorithm may hoose to perform either Step 2A or 2B.
4.2 A Decomposition LemmaAs is lear from the outline above, a key step in our algo-rithm will involve �nding a solution of the minimum Breg-man information problem (3.7). Besides this, we will beemploying the funtional form for the minimum Bregmansolution Ẑ given in Theorem 1 to obtain new matrix ap-proximations. To be more preise, for a given (�; ; C), thereexist a unique set of optimal Lagrange multipliers �� so thatTheorem 1 uniquely spei�es the minimum Bregman infor-mation solution Ẑ. In general, the formula in Theorem 1provides a unique approximation, say ~Z, for any set of La-grange multipliers � (not neessarily optimal), and (�; ; C)sine r�(�) is a monotoni funtion [1, 3℄. To undersorethe dependene of ~Z on the Lagrange multipliers, we shalluse the notation ~Z = �(�; ;�) = (r�)�1(�Psr=1 �r). Inpartiular, Ẑ = Ẑ(�; ; C) = �(�; ;��) where C is �xed.The basi idea in onsidering approximations of the form�(�; ;�) is that (i) optimizing the o-lustering keeping theLagrange multipliers �xed, and then (ii) optimizing the La-grange multipliers, provides an eÆient update sheme thatdoes not require solving the minimum Bregman informationproblem anew for eah possible o-lustering.Having equipped ourselves with the above update strat-egy based on approximations of the form �(�; ;�), we now

fous on updating row lustering while keeping the olumnlustering �xed, and vie versa. Before we an outline on-rete updates, we need an analytial tool to deompose thematrix approximation error in terms of either the rows orthe olumns. This separability makes it possible for us toeÆiently obtain the best row lustering by optimizing overthe individual row assignments with a �xed olumn luster-ing, and similarly for olumn lustering.Lemma 4 For a �xed o-lustering (�; ) and a �xed set of(not neessarily optimal) Lagrange multipliers �, and ~Z =�(�; ;�), we an write:E[d�(Z; ~Z)℄ = EU [EV jU [�(U; �(U); V; (V ))℄℄= EV [EUjV [�(U; �(U); V; (V ))℄℄;where �(�) is given by �(U; �(U); V; (V )) = d�(Z; ~Z).Proof. By de�nition, ~Z = (r�)�1(�Psr=1 �r). Hene,E[d�(Z; ~Z)℄ = E(U;V )[d�(Z; (r�)�1(� sXr=1�r))℄(a)= E(U;V )[�(U; �(U); V; (V ))℄℄= EU [EV jU [�(U; �(U); V; (V ))℄℄= EV [EUjV [�(U; �(U); V; (V ))℄℄;where �(�) is a funtion determined by the Lagrange mul-tipliers �, Bregman divergene d� and the original ran-dom variable Z and (a) follows sine the random variablesfCrg; [r℄s1 are subsets of fU; Û ; V; V̂ g.
4.3 Updating Row and Column ClustersWe will now present the details of our plan in Setion 4.1.First, we will demonstrate how to update row lustering (orolumn lustering) with respet to a �xed olumn lustering(or row lustering) and a �xed set of Lagrange multipliers.Then, we will �nd the optimal Lagrange multipliers orre-sponding to the minimum Bregman solution of the updatedo-lustering.Suppose we are in Step 2A outlined in Setion 4.1. Updat-ing the row lustering keeping the olumn lustering and theLagrange multipliers �xed leads to a new value for the Breg-man o-lustering objetive funtion. Now making use of theseparability property in Lemma 4, we an eÆiently opti-mize the ontribution of eah row assignment to the overallobjetive funtion to obtain the following row luster updatestep.Lemma 5 Let �t+1 be de�ned as�t+1(u) = argming:[g℄k1 EV ju[�(u; g; V; t(V ))℄; [u℄m1and let ~Zt = �(�t+1; t;��t). Then,E[d�(Z; ~Zt℄) � E[d�(Z; Ẑt)℄:where Ẑt = �(�t; t;��t).



Table 3: Row and olumn luster updates for I-divergene.C �(u; g; V; (V )) �(U; �(U); v; h)C1 EV ju[Z log � ZE[Zjg℄�℄ EUjv [Z log� ZE[Zjh℄�℄C2 EV ju[Z log � ZE[Zjg;V̂ ℄�℄ EUjv [Z log � ZE[ZjÛ;h℄�℄C3 EV ju[Z log �Z�E[Zjg℄E[Zjg;V̂ ℄ �℄ EUjv [Z log �Z�E[Zjh℄E[ZjÛ;h℄ �℄C4 EV ju[Z log �Z�E[Zjg;V̂ ℄E[Zjg;V ℄ �℄ EUjv [Z log �Z�E[ZjÛ;h℄E[ZjU;h℄ �℄Table 4: Row and olumn luster updates forsquared Eulidean distane.C �(u; g; V; (V )) �(U; �(U); v; h)C1 EV ju[(Z �E[Zjg℄)2℄ EUjv [(Z � E[Zjh℄)2℄C2 EV ju[(Z �E[Zjg; V̂ ℄)2℄ EUjv [(Z � E[ZjÛ; h℄)2℄C3 EV ju[(Z � E[Zjg; V̂ ℄ EUjv [(Z � E[ZjÛ; h℄+E[Zjg℄)2℄ +E[Zjh℄)2℄C4 EV ju[(Z � E[Zjg;V ℄ EUjv [(Z � E[ZjU;h℄+ E[Zjg; V̂ ℄)2℄ + E[ZjÛ; h℄)2℄Proof. From Lemma 4, we haveE[d�(Z; ~Zt)℄ = EU [EV jU [�(U; �t+1(U); V; t(V ))℄℄= EU [ ming:[g℄k1 EV jU [�(U; g; V; t(V ))℄℄� EU [EV jU [�(U; �t(U); V; (V ))℄℄= E[d�(Z; Ẑt)℄A similar argument applies to step 2B where we seek to up-date the olumn lustering keeping the row lustering �xed.Lemma 6 Let t+1 be de�ned ast+1(v) = argminh:[h℄l1 EUjv[�(U; �t(U); v; h)℄ [v℄n1and let ~Zt = �(�t; t+1;��t). Then,E[d�(Z; ~Zt)℄ � E[d�(Z; Ẑt)℄:where Ẑt = �(�t; t;��t).Applying the above Lemmas 5 and 6 for I-divergene andsquared Eulidean distane, we obtain the appropriate rowand olumn luster updates shown in Tables 3 and 4.Let us ome bak to step 2A again. So far we haveonly onsidered updating the row (or olumn lustering instep 2B) keeping the Lagrange multipliers �xed. After up-dation, the approximation ~Zt = �(�t+1; t+1;��t) is loserto the original matrix Z than the earlier minimum Bregmaninformation solution Ẑt, but the Lagrange multipliers ��tare no longer optimal and ~Zt is itself not a minimum Breg-man information solution. Hene, we now optimize over theLagrange multipliers keeping the o-lustering �xed so thatthe funtional form �(:) yields the best approximation toZ. The following lemma shows that the \best" Lagrangemultipliers for ahieving this are the same as the optimalLagrange multipliers of the minimum Bregman informationproblem.Lemma 7 Let Ẑt+1 = �(�t+1; t+1;��t+1) be the minimumBregman information solution orresponding to (�t+1; t+1)

with ��t+1 being the optimal Lagrange multipliers in (3.7).Then, E[d�(Z; Ẑt+1) � E[d�(Z; ~Zt)℄:where ~Zt = �(�t+1; t+1;��t)Proof. By de�nition,E[d�(Z; Ẑt+1)℄= E[�(Z)� �(Ẑt+1)� hZ � Ẑt+1;r�(Ẑt+1)i℄(a)= E[�(Z)� �(Ẑt+1)℄= E[d�(Z; ~Zt)℄�E[d�(Ẑt+1; ~Zt)℄�E[hZ � Ẑt+1;r�( ~Zt)i℄(b)= E[d�(Z; ~Zt)℄�E[d�(Ẑt+1; ~Zt)℄� E[d�(Z; ~Zt)℄where (a) follows sine Ẑt+1 satis�es both onditions A andB so that taking onditional expetations over E[ZjC℄; C 2C makes the last term zero and (b) follows sine by de�nition,r�( ~Zt) is summation of terms �r; [r℄s1 and E[Ẑt+1jCr℄ =E[ZjCr ℄, thus making the last term vanish.
4.4 The AlgorithmFinally, we state the meta algorithm for generalized Breg-man o-lustering (see Algorithm 1), that is a onrete \im-plementation" of our plan in Setion 4.1. We now establishthat our algorithm is guaranteed to ahieve loal optimality.Theorem 3 The general Bregman o-lustering algorithm(Algorithm 1) onverges to a solution that is loally optimalfor the Bregman o-lustering problem (3.8), i.e., the obje-tive funtion annot be improved by hanging either the rowlustering, the olumn lustering.Proof. From lemmas 5, 6, and 7, it follows that up-dating the row lustering �, the olumn lustering  and theLagrange multipliers � one at a time dereases the objetivefuntion of the Bregman o-lustering problem. Hene, theBregman o-lustering algorithm (Algorithm 1) whih pro-eeds by alternately updating � ! � !  ! � monoton-ially dereases the Bregman o-lustering objetive fun-tion. Sine the number of distint o-lusterings is �nite,the algorithm is guaranteed to onverge to a loally optimalsolution. Note that updation over � is the same as obtain-ing the minimum Bregman information solution.When the Bregman divergene is I-divergene or squaredEulidean distane, the minimumBregman information prob-lem has a losed form analyti solution as shown in Tables1 and 2. Hene, it is straightforward to obtain the row andolumn luster update steps (Tables 3 and 4) and implementthe Bregman o-lustering algorithm (Algorithm 1). Theresulting algorithms involve a omputational e�ort that islinear in the size of the data and are hene, very salable. Ingeneral, the minimum Bregman information problem neednot have a losed form solution and the update steps needto be determined using numerial omputation tehniques.However, sine the Lagrange dual L(�) in the minimumBregman information problem (3.7) is onvex in the La-grange multipliers �, it is possible to obtain the optimal La-grange multipliers using onvex optimization tehniques [4℄.The minimum Bregman information solution and the row



Algorithm 1 Bregman Co-lustering AlgorithmInput: Matrix Z � Sm�n, probability measure �, Bregmandivergene d� : R � R 7! R, num. of row lusters l, num. ofolumn lusters k, onstraint set C.Output: Co-lustering (��; �) that (loally) optimize the obje-tive funtion in (3.8).Method:fInitialize �,  gÛ  �(U), V̂  (V )repeatfStep A: Update Row Clusters (�)gfor u = 1 to m do�(u) argming:[g℄k1 EV ju[�(u; g; V; (V ))℄where �(U; �(U); V; (V )) = d�(Z; ~Z); ~Z = �(�; ;�)and � are optimal Lagrange multipliers before updation.end forÛ  �(U)fStep B:Update Column Clusters ()gfor v = 1 to n do(v)  argminh:[h℄l1 EUjv [�(U; �(U); v; h)℄where �(U; �(U); V; (V )) = d�(Z; ~Z); ~Z = �(�; ;�)and � are optimal Lagrange multipliers before updation.end forV̂  (V )until onvergeneand olumn luster update steps an then be obtained fromthe optimal Lagrange multipliers using Theorem 1 and Lem-mas 5-7.
5. EXPERIMENTSThere are a number of experimental results in existingliterature [5, 6, 9, 11℄ that illustrate the usefulness of par-tiular instanes of our Bregman o-lustering framework.In fat, a large lass of parametri partitional lustering al-gorithms [3℄ inluding kmeans an be shown to be speialases of the proposed framework by observing that eitheronly rows or only olumns are being lustered.In reent years, o-lustering has been suessfully appliedto various appliation domains suh as text mining and anal-ysis of miroarray gene-expression data. In text mining,the information-theoreti o-lustering algorithm [9℄, thatuses KL-divergene as the Bregman divergene, has beenshown to provide superior results than \one sided" luster-ing algorithms that do not simultaneously luster doumentsand words. Analysis of miroarray gene-expression data byo-lustering of genes and experimental onditions have re-vealed interesting trends of gene lusters over various subsetsof the experimental onditions. Sine speial ases of Breg-man o-lustering algorithms have already been known toprovide substantial improvements over other existing meth-ods in ertain domains, we do not experimentally re-evaluatethe Bregman o-lustering algorithms against other meth-ods. Instead, we present brief ase studies to demonstratefour salient features of the proposed o-lustering algorithms:(a) information preserving data ompression, (b) dimension-ality redution, () missing value predition, and (d) learn-ing orrelations.
5.1 Information Preserving Data CompressionBregman o-lustering provides an eÆient tehnique toahieve ompression of data matries while preserving the

Table 5: Loss in Bregman Information on matriesof inreasing omplexities.Data Co-lustering Sheme (with number of parameters)Matrix C1 (20) C2 (100) C3 (200) C4 (1000)A 24.49 22.21 20.65 13.34B 52.92 23.65 24.27 16.69C 52.78 42.10 22.90 17.74D 324.34 263.85 240.19 16.11
Matrix D

Scheme 1 Scheme 2

Scheme 3 Scheme 4

Figure 1: Matrix approximation based on variouso-lustering shemes using squared Eulidean dis-tane as the loss funtion.spei�ed ritial statistis. When these spei�ed statistisapture the natural struture of the data, it is possible toobtain a very aurate low parameter representation of theoriginal data. In order to illustrate this idea, we performo-lustering (k = 10; l = 10) on arti�ial 50 � 50 datamatries A, B, C, and D with inreasing levels of omplex-ity (produed using generative models with inreasing num-ber of parameters), with squared Eulidean distane. Wepresent the results in Table 5 omparing o-lustering in-volving di�erent sets of onstraints, and di�erent number ofparameters. Clearly, for relatively simple matries suh asA and B, reasonably low parameter shemes suh as C1 orC2 suÆe, whereas for ompliated matries suh as D, highparameter o-lustering shemes suh as C4 seem neessary.Figure 1 shows the images of the original data matrix D,and the reonstrutions obtained from eah of the shemes.
5.2 Dimensionality ReductionDimensionality redution tehniques are widely used fortext lustering to handle sparsity and high-dimensionalityof text data. Typially, the dimensionality redution stepomes before the lustering step, and the two steps are al-most independent. In pratie, it is not lear whih dimen-sionality redution tehnique to use in order to get a goodlustering. Co-lustering has the interesting apability ofinterleaving dimensionality redution and lustering. Thisimpliit dimensionality redution results in far superior re-sults than regular lustering tehniques [9℄. Due to the in-terleaving, striter dimensionality redution seems to givebetter results for lustering, as we show next.Using the bag-of-words model for text, let eah olumn bea doument, and let eah row be a word. Keeping the num-ber of doument lusters �xed, we present results by varyingthe number of word lusters. We run the experiments on 2datasets: Classi3, a doument olletion from the SMART



Table 6: E�et of Impliit Dimensionality Redutionby Co-lustering on Classi3. Eah subtable is for a�xed number of (doument,word) o-luster.(3,20) (3,500) (3,2500)1389 1 2 1364 3 18 920 49 2929 1455 33 5 1446 21 31 1239 4040 4 998 29 11 994 447 172 337Table 7: E�et of Impliit Dimensionality Redutionby Co-lustering on Di�erent-1000. Eah subtable isfor a �xed number of (doument,word) o-luster.(3,20) (3,500) (3,2500)949 15 32 435 364 146 376 368 28331 925 80 393 454 85 251 367 36320 60 888 172 182 769 373 265 354projet at Cornell University, and Di�erent-1000, a subset ofthe benhmark 20 newsgroups dataset onsisting of 3 news-groups4. There are 3 lasses in eah dataset. Co-lusteringis performed without looking at the lass labels. We presentonfusion matries between the luster labels assigned by o-lustering and the true lass labels, over various numbers ofword lusters. The number of doument lusters were �xedat 3 for all experiments reported. As we an learly seefrom Table 6 (for Classi3) and Table 7 (for Di�erent-1000),impliit dimensionality redution by o-lustering atuallygives better lusters, in the sense that the luster labels agreemore with the true lass labels with fewer word lusters.
5.3 Missing Value PredictionTo illustrate missing value predition, we onsider a ol-laborative �ltering based reommender system. The mainproblem in this setting is to predit the preferene of a givenuser for a given item using the known preferenes of all theusers. A popular approah to handle this is by omput-ing the Pearson orrelation of eah user with all other usersbased on the known preferenes and predit the unknownrating by proportionately ombining all the users' ratings.We adopt a o-lustering approah to address the same prob-lem. The main idea is to simultaneously ompute the userand item o-lusters by assigning zero measure to the miss-ing values. As a result, the o-lustering algorithm tries toreover the original struture of the data while disregard-ing the missing values and the reonstruted approximatematrix an be used for predition.For our experimental results, we use a subset of the Eah-Movie dataset5 onsisting of 500 users, 200 movies and on-taining 25809 ratings, eah rating being an integer between0 (bad) to 5 (exellent). Of these, we use 90% ratings foro-lustering, i.e., as the training data and 10% ratings asthe test data for predition. We applied four di�erent o-lustering algorithms (k = 10; l = 10) orresponding to on-straint sets C2 and C3 with squared Eulidean (SqE) distaneand I-divergene (IDiv) to the training data and used the re-onstruted matrix for prediting the test ratings. We alsoimplemented a simple ollaborative �ltering sheme basedon Pearson's orrelation. Table 8 shows the mean absoluteerror between the predited ratings and the atual ratings4alt.atheism, re.sport.baseball, si.spae5http://www.researh.ompaq.om/sr/eahmovie/
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10Figure 2: User-luster Movie-luster Correlationfor the di�erent methods. From the table, we observe thatthe o-lustering ahieves good results. For onstraint setC3, the individual biases of the users (row average) and themovies (olumn average) are aounted for, hene resultingin a better predition. In terms of omputational e�ort, theo-lustering algorithms are quite eÆient sine the proess-ing time is linear in the number of the known ratings.Table 8: Mean Absolute Error for Movie RatingsAlgo. C2,SqE C3,SqE C2,IDiv C3,IDiv PearsonError 0.8398 0.7639 0.8397 0.7723 1.4211
5.4 Learning CorrelationsThe last ase-study involves disovering orrelations be-tween two sets of related entities suh as genes and exper-imental onditions in miroarray analysis, ustomers andproduts in market analysis, users and items in reommendersystems, et. We illustrate this with some anedotal resultsbased again on the subset of the EahMovie dataset de-sribed earlier. Figure 2 shows the average preferenes of thedi�erent user lusters for the di�erent movie lusters (darkimplies higher orrelation). From the �gure, we observe thatthere are user lusters onsisting of people who like lot ofmovies (user luster 3) and people who like a partiular kindof movies(user luster 7). Also, there seem to be lusters ofmovies preferred by a lot of people (movie lusters 1 and 4)and preferred by a partiular group of people (movie lus-ter 7). Table 9 presents a few representatives from movielusters 1, 4 and 7. Disovering suh orrelations might beuseful for a number of deision-making proesses.Table 9: Movie Cluster RepresentativesCluster 1 It is a Wonderful Life, Casablana,Life is Beautiful, An A�air to RememberCluster 4 Usual Suspets, Manhattan Murder Mystery,Pulp Fition, North by NorthWestCluster 7 Star Trek V, Blade Runner,The Terminator, A Clokwork Orange
6. RELATED WORKOur work is primarily related to three main areas: o-lustering, matrix approximation and learning based on Breg-man divergenes.Co-lustering has been a topi of muh interest in thereent years beause of its appliations to problems suh asmiroarray analysis [5, 6℄ and text mining [9℄. In fat, thereexist many formulations of the o-lustering problem suhas the hierarhial o-lustering model [10℄, the bilustering



model [5℄ that involves �nding the best o-lusters one at atime, et. In this paper, we have foussed on the partitionalo-lustering formulation �rst introdued in [10℄.Classial singular value deomposition (SVD) [14℄ basedapproahes to matrix approximation are quite often inap-propriate for ertain data matries suh as o-ourreneand ontingeny tables. Firstly, singular vetors an havenegative entries. Seondly, the ontributions of the ompo-nent vetors in the approximation matrix are not loalized.Both these issues make SVD-based deomposition diÆultto interpret, whih is neessary for data mining purposes.To address these and related issues, tehniques involvingnon-negativity onstraints [13℄ using KL-divergene as theapproximation loss funtion [11, 13℄ have been proposed.However, these approahes apply to speial types of matri-es. A general formulation that is both interpretable andappliable to various lasses of matries seemed neessary.The proposed Bregman o-lustering formulation attemptsto address this requirement.Co-lustering involving onstraints on the onditional ex-petations give rise to theoretially elegant models with widerange of pratial appliability sine key summary statis-tis an be naturally preserved. Several o-lustering algo-rithms [9, 6℄ that have been proposed in the reent yearsare derived from onditional expetation based onstraints.Conditional expetation onstrained o-lustering, along withits demonstrated onnetion to the widely used maximumentropy priniple [12, 7℄ and onditional independene basedmodels [11℄, provide a strong foundation for an uni�ed anal-ysis and design of unsupervised learning algorithms.Reent researh [1, 3℄ has shown that several results in-volving the KL-divergene and the squared Eulidean dis-tane are in fat based on ertain onvexity properties andhene, generalize to all Bregman divergenes. This intuitionmotivated us to onsider o-lustering based on Bregman di-vergenes. Further, the similarities between the maximumentropy and the least squares priniples [8℄ prompted us toexplore a more general minimumBregman information prin-iple for all Bregman divergenes.It is important to note that most lustering and o-lusteringtehniques based on the alternate minimization sheme anbe obtained as speial ases of the Bregman o-lustering al-gorithm. For example, the information-theoreti o-lustering [9℄orresponds to the ase where the onstraint set is C3 andthe Bregman divergene is KL-divergene. Similarly, theminimum sum-squared residue o-lustering algorithms [6℄orrespond to the ases where the onstraint sets are C1 andC4 respetively and the Bregman divergene is the squaredEulidean distane. The one-sided Bregman lustering al-gorithms [3℄ are also a speial ase with l = n.
7. DISCUSSIONThere are three main ontributions in this paper. First,we generalized parametri o-lustering to loss funtions or-responding to all Bregman divergenes. The generality ofthe formulation makes the tehnique appliable to prati-ally all types of data matries. Seond, we showed thatapproximation models of various omplexities are possibledepending on the statistis that are onstrained to be pre-served. Third, we proposed and extensively used the mini-mum Bregman information priniple as a generalization ofthe maximum entropy priniple.For the two Bregman divergenes that we foussed on, viz

I-divergene and squared Eulidean distane, the proposedalgorithm has linear time omplexity and is hene very sal-able. Salability for other hoies of Bregman divergenesneed to be researhed. Further, like several other lusteringalgorithms, our algorithm only guarantees a loal minima.There are well-studied tehniques in the literature suh asloal searh, deterministi annealing et., that are apableof handling this issue and should be readily appliable toour algorithm.
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