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ABSTRACTSocial annotation has gained increasing popularity in manyWeb-based applications, leading to an emerging researcharea in text analysis and information retrieval. This pa-per is concerned with developing probabilistic models andcomputational algorithms for social annotations. We pro-pose a uni�ed framework to combine the modeling of socialannotations with the language modeling-based methods forinformation retrieval. The proposed approach consists oftwo steps: (1) discovering topics in the contents and annota-tions of documents while categorizing the users by domains;and (2) enhancing document and query language models byincorporating user domain interests as well as topical back-ground models. Di�erences in user domain expertise arealso considered when combining the discovered user domaininterests. In particular, we propose a new general genera-tive model for social annotations, which is then simpli�ed toa computationally tractable hierarchical Bayesian network.Then we apply smoothing techniques in a risk minimizationframework to incorporate the topical information to lan-guage models. Experiments are carried out on a real-worldannotation data set sampled from del.icio.us. Our resultsdemonstrate signi�cant improvements over the alternativeapproaches without consideration of topical information, so-cial annotations, user expertise, or simple incorporation oftopic analysis.
1. INTRODUCTIONThe goal of the semantic Web [1] is to make the Web re-sources understandable to both humans and machines. Thishas motivated a stream of new Web applications includingWeb blogs [10], social annotations (a.k.a social bookmark-ing) [4, 3, 20], and Web social networks [22]. Research inWeb blogs and social networks has been especially focusedon discovering the latent communities [10, 22], detecting
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topics from temporal text streams [14], and the retrieval ofsuch highly dynamic information. In this paper, we focuson the social annotations 1 in large part motivated by theirincreasing availability across many Web-based applications.Social annotation is a form of folksonomy, which refers toInternet-based methods for collaboratively generating open-ended text labels that categorize content such as Web pages,online photographs, and Web links. Many popular Web ser-vices rely on folksonomies including delicious (del.icio.us)and �ickr (�ickr.com). Despite the rising popularity of thoseWeb services, research on in folksonomies is still at an earlystage. Much of the work has been focused on the study ofthe data properties, the analysis of usage patterns of tag-ging systems [4], and the discovery of hidden semantics intags [20]. The objective of this paper, however, is to leveragethe e�orts and expertise of users embodied in social annota-tions for improving user experience in information retrieval(IR). We advance previous work by combining topic analy-sis with language modeling methods used in contemporaryIR [6].Incorporating social annotations with document contentis a natural idea, especially for IR applications. Consider theIR methods based on language modeling, for example [15,12], we may simply treat the terms in annotation tags thesame as those in document content, consider them as addi-tional terms of the documents, and then follow the existingIR approaches. The pitfalls here, however, come in sev-eral forms. First, a tag term is generated di�erently thana document content term. A tag, upon its generation bya user, represents an abstract of the document from singleperspective of a single user. Second, the di�erences in do-main expertise of users should be taken into considerationwhen incorporating user tags. Some users in certain do-mains might be more trustworthy than others. Some usersfor various reasons may give incorrect tags. Although itremains an open problem to discover domain expertise ofusers, such peer di�erences are believed to be important [7]for e�ective societal information retrieval. Finally,the im-1By a social annotation, we mean the annotation tags asso-ciated with the document. Each tag is generated by a user(or shared by several users) that can include several terms.



provement for IR will be limited without considering the se-mantics of the tag terms. Usually the number of tag termsis much smaller than the number of terms in a document be-ing tagged. Therefore using the tag terms in the same wayas the document terms are used will lead to the same prob-lems observed in traditional language modeling-based IR,such as the lack of smoothness of results and the sparsity ofobservations.In this paper, we develop a framework that combines themodeling of social annotations with the expansion of tradi-tional language modeling-based IR using user domain ex-pertise. First, we seek to discover topics in the contentand annotations of documents and categorize the users bydomains. We propose a probabilistic generative model forthe generation of document content as well as the associ-ated tags. Second, we follow an IR framework based onrisk minimization proposed earlier [12]. The framework isbased on Bayesian decision theory focusing on improvinglanguage models for queries and documents. We then studyseveral ways for expanding the language models where theuser domain interests and expertise and the background col-lection language models are incorporated. In particular, weapply linear smoothing between the original term-level lan-guage models and the new topic-level language models. Thenewly proposed framework bene�ts from the considerationof the di�erences between document content terms and tagterms in the modeling process. User domain expertise canbe readily included in the retrieval framework by the pro-posed ways of language model expansion. The smoothing ofthe original term-level language model with the topic-levellanguage models addresses the issues raised by the sparsityof observations.The main contributions of this paper include (1) a gen-eral and a simpli�ed probabilistic generative model for thegeneration of document content as well as the associatedsocial annotations; (2) a new way for categorizing users bydomains based on social annotations. The user domain ex-pertise, evaluated by activity frequency, are used to weighuser interests; (3) the study of several ways for combiningterm-level language models with those topic-level models ob-tained from topics in documents and users.The rest of this paper is organized as follows: Sec. 2 in-troduces the related work on topic analysis and languagemodeling. Sec. 3 proposes the new probabilistic generativemodels for the social annotations, including a brief discus-sion on choosing the correct topic number; In Sec. 5, wereview the risk minimization framework for information re-trieval as a Bayesian decision process. Sec. 6 explores sev-eral methods for incorporating the discovered domain inter-ests to language modeling-based IR. Experimental resultsare presented in two sections, Sec. 4 and Sec. 7, respectivelyfor topic analysis and IR quality. We conclude the paperand discuss future work in Sec. 8.
2. RELATED WORKWe review two lines of work which are closely related tothe approach we will propose; the document content char-acterization, and information retrieval based on languagemodeling.
2.1 Topic Analysis using Generative ModelsRelated work on document content characterization [2, 17,

13, 18, 22] introduce a set of probabilistic models to simulatethe generation of a document. Several factors in producing adocument, either observable (e.g. author [17, 18]) or latent(e.g. topic [2, 13], community [22]), are modeled as variablesin the generative Bayesian network and have been shownto work well for document content characterization. TheLatent Dirichlet Allocation (LDA) model [2] is based uponthe idea that the probability distribution over words in adocument can be expressed as a mixture of topics, whereeach topics is a probability distribution over words. Alongthe line of LDA, the Author-Word model proposed in [13]considers the interests of single authors as the origin of aword. In�uential following work named Author-Topic modelcombines the Topic-Word and Author-Word models, suchthat it regards the generation of a document as a�ected byboth factors in a hierarchical manner [17, 18]. A recent workon social network analysis extends the previous model withan additional layer that captures the community in�uencein the setting of information society. The model proposedin this paper is related but di�erent from the Author-Topicmodel proposed before [17]. Here the users or the sources ofthe tags and documents are observed instead of being latentin the generation process.
2.2 Information Retrieval based on Language

ModelingThis work also overlaps with the research on informationretrieval (IR) using probabilistic language modeling. Lan-guage modeling is a recent approach to IR which is consid-ered as an alternative to traditional vector space models andother probabilistic models. This approach was initially pro-posed by Ponte and Croft [15]. The basic idea is to estimatethe probability of generating the query from the candidatedocuments, each of which is modeled as a language model.The research line in IR using language models is later sup-ported [12] by a framework based on Bayesian decision the-ory, which transforms the focus into improving the languagemodels. A common way for improving language model issmoothing, which seeks to �ght against the challenge of es-timating an accurate language model from the insu�cientdata available. A relative complete study of the smoothingmethods for statistical language modeling is given in [21].Usually the document language model is smoothed with thebackground collection model, a pre-built model believed tobe smoother and contain more words. This paper employsthe linear interpolation [9] of the original language modelwith the reference models discovered before. This way, thesocial expertise of the users are imported to the languagemodeling and will further improve the quality of informa-tion retrieval. In addition to the above traditional work, arecent work [20] presents a preliminary study on clusteringannotations based on EM for semantic Web and search. Theprobability of seeing certain words for a URL is estimated,which is then used for retrieval. However, the URL contentand di�erences in users are not considered in that work.
3. MODELING SOCIAL ANNOTATIONSWe propose a probabilistic generative model for social an-notations. The model speci�es the generation process of theterms in document content as well as the associated usertags. The motivation for modeling the social annotationswith document content is to obtain a simultaneous topical



analysis of the terms, documents, as well as the users. Aswe will discuss later, the topical analysis of terms (or theclustering of them by topics) essentially provides the basisfor expanding query and document language models. In ad-dition, the topical analysis of users, which categorizes theusers by domains, enables the input of domain expertise ofusers in addition to the tags generated by them. This sectionstarts with the introduction to modeling the user tag gen-eration, as e�ected by document content. Then we simplifythe general generative model for tags to a structure whichis tractable and easier to estimate. Finally, we present thetraining method and a discussion on selecting the numberof topics using the perplexity measure.
3.1 Generative Models for AnnotationsWe start by modeling the generation of words in doc-uments and annotations. Intuitively, the content of doc-uments and annotations are generated by two similar butcorrelated approaches. We illustrate our understanding ofthe generation process in plate notation in Fig. 1. On thedocument side (left-hand side), for an arbitrary word ω indocument d, a topic z is �rst drawn, then conditioned onthis topic, ω is drawn; Repeating this process for Nd times,which is the number of words in d, d is generated. Thewhole collection repeats the same process for D times 2; Onthe annotation side (right-hand side), each word in the an-notation is generated similarly. First, an observed user adecides to make annotation on a particular document, thenthe user picks a topic z to describe the d, followed by thegeneration of ω. The generation of z by user, however, de-pends not only on the user but also the topic of d. Note thedependency of user topics on document topics can be seenas a mapping between two conceptions. Generally speaking,there are di�erent number of topics on both sides, Td and
Ta. The two topic sets can be di�erent but are usually verysimilar.Inspired by related work on topic analysis [2, 17, 18], wemake assumptions about the probability structures of thegenerative model in Fig. 1. First, we assume all the condi-tional probabilities follow multinomial distribution. For ex-ample, each topic is a multinomial distribution over wordswhere for the conditional probability of each word is �xed.Second, we assume that the prior distribution for topics andwords follow Dirichlet (θd,φd for documents and θa,φa forannotations), which are conjugate priors for multinomial,respectively parameterized by αd,βd and αa, βa.The generative model, illustrated in Fig. 1, is not quitetractable in practice. The probability distributions we wouldhave to estimate include: (1) D + A multinomial distribu-tions for documents over topics; (2) Td + Ta multinomialdistributions for topics over words; (3) Td × Ta conditionalprobabilities to capture the correlation of the topics in doc-uments and the topics in annotations. In addition, there aremany parameters that adds di�culty in tuning in practice(αd, βd, αa, βa, Td, and Ta). Therefore, in the next section,we will simplify this general annotation model with some re-laxations in assumptions, arriving at a tractable model witheasy training algorithms available.2Note the document side of the general annotation model isessentially the LDA model proposed in [2]. But the rightside takes into consideration the generation of annotationsas dependent on the document content generation.
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3.2 A Simplified Annotation ModelIn this section, we simplify the general annotation modelgiven before. In order to reduce the general model to a onetractable with fewer parameters, we make several compro-mises in assumptions. First, we assume the topics in docu-ments and annotations are the same. This assumes that thetaggers conceptually agree with the original document au-thors without variation of information in their understand-ing. Second, we assume that documents and users have thesame structure of prior distributions which are only param-eterized di�erently. Although arguably the users and docu-ments might have di�erent types of distributions over topics,we make the assumption here for the sake of simplicity.The assumptions before lead to a simpli�ed generativemodel for annotations. As illustrated in Fig. 2, we have asingle topic-word distribution φ with parameter β; a singlesource-topic distribution with extended dimension (here thesource can be a document or a tagger). Now we have muchfewer distributions to estimate, making the modeling moretractable in practice.Let us name the the model in Fig. 2 as the user-content-annotation (UCA) model. The UCA model describes thegeneration of words in document content and in the tagsin similar but di�erent processes. For document content,each observed term ω in document d is generated from thesource x (each document d maps one-to-one to a source x).Then from the conditional probability distribution on x, atopic z is drawn. Given the topic z, ω is �nally generatedfrom the conditional probability distribution on the topic
z. For document tags, similarly, each observed tag word ωfor document d is generated by user x. Speci�c to this user,there is a conditional probability distribution of topics, fromwhich a topic z is then chosen. This hidden variable of topicagain �nally generates ω in the tag.According to the model structure, the conditional jointprobability of θ, φ, x, z, ω given the parameters α, β is:
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P (θ, φ, x, z, w|α, β) = (1)
P (w|z, φ)P (φ|β)P (z|x, θ)P (θ|α)P (x); (2)For inferences of words, we can calculate the conditionalprobability given a word as:

P (θ, φ, x, z, |ω, α, β) =
P (θ, φ, x, z, ω|α, β)∑

x

∑
z P (θ, φ, x, z, ω|α, β)

. (3)Again, similar to related work, we make assumptions re-garding the probability structures. We assume the priordistribution of topics and terms follow Dirichlet distribu-tions parameterized respectively by α and β. Let T be thenumber of topics (input as a parameter); A is the numberof users; D is the number of documents; Nd and Nt respec-tively denote the number of terms in the document and thenumber of terms in the tag. Each topic is a probabilisticmultinomial distribution over terms, denoted by φ; Eachuser (or source) is a probabilistic multinomial distributionover topics, denoted by θ. As illustrated in Fig. 2, thereare A+D distributions of topics, each of which correspondsto an observed user or source. There are T distributions ofwords, each corresponds to an unobserved topic. For eachdocument, the generation process repeats for Nd +Nt timeswhere Nd of the iterations correspond to the terms in thedocument content and Nt corresponds to the terms in thetags. The above again repeats for D times for all documents.
3.3 Model TrainingThe UCA model includes two sets of unknown param-eters, the source-topic distributions θ, and the topic-worddistributions φ, corresponding to the assignments of indi-vidual words to topics z and source x. One can use theExpectation-Maximization (EM) algorithm for estimatingparameters in models with latent variables. However, theapproach is susceptible to local maxima. In addition, ac-cording the posterior probability in Eq. 3, we know the EMwill be very computationally expensive due to the sum inthe denominator. Thus, we pursue an alternative parame-ter estimation method, Gibbs sampling [16], which is gaining

popularity in topic analysis recently [5, 22]. Instead of es-timating the parameters directly, we evaluate the posteriordistributions.While using Gibbs sampling to train generative models,typically, a Markov chain is formed, where the transition be-tween successive states is simulated by repeatedly drawinga topic for each observed term from its conditional proba-bility. The algorithm keeps track of the number of timesthat a term is assigned to a topic CTW
zw and the number oftimes that a topic is assigned to the user or source C

(A+D)T
xz .Here CTW denotes a T ×W matrix and C(A+D)T denotesa (A + D) × T matrix, where x, z, ω are the indices of thesources (document or user), topics, and words. We repeatthe Gibbs sampling until the perplexity score 3 measured ondistributions converges. Algorithm 1 illustrates the Gibbssampling algorithm for model training.Algorithm 1 Training User-Content-Annotation Model1: Given a sequence of triplets 〈x, d, ω〉, where d is the doc-ument id; ω is the word id; x = nil if ω is a content word;

x = user id if ω is a tag word.2: Given ε as the threshold for determining convergence.3: Initialize CTW , C(A+D)T with random positive values.4: repeat5: for all 〈x, d, ω〉 do6: t = z(ω) // get the current topic assignment7: CTW
tw ← CTW

tw − 1 //decrement count8: if x == nil then9: // ω is a document word10: C
(A+D)T
dt ← C

(A+D)T
dt − 1 // decrement count11: // compute P (t) below12: for all z = 1, ..., T do13: P (z)← P (d, z|ω) = P (d|z)P (z|ω)14: end for15: sample to obtain t using P (t)16: C

(A+D)T
dt ← C

(A+D)T
dt + 1 // increment count17: else18: // ω is a tag word19: C

(A+D)T
xt ← C

(A+D)T
xt − 1 // decrement count20: // compute P (t) below21: for all z = 1, ..., T do22: P (z)← P (x, z|ω) = P (x|z)P (z|ω)23: end for24: sample to obtain t using P (t)25: C

(A+D)T
xt ← C

(A+D)T
xt + 1 // increment count26: end if27: CTW

tw ← CTW
tw + 128: end for29: measure the perplexity on a held-out sample;30: measure the perplexity change in δ;31: until δ ≤ εIt can be seen from Algo. 1 that the key issue here isthe evaluation of the posterior conditional probabilities, i.e.

P (z|w), P (d|z), P (x|z), which leads to the evaluation of
P (d|w) or P (x|w). Let us again consider the joint proba-bilities P (x, z|w), P (d, z|w). Similar to earlier work [5, 22],we know the posterior conditional probabilities can be ex-pressed as the product of several conditional probabilities3The measurement of perplexity will be introduced inSec. 3.4.



on the edges of the Bayesian network. In particular, fordocuments, we have:
P (d, z|ω) ∝

CWT
ωz + β∑

k CWT
kz + V β

C
(A+D)T
dt + α

∑
k

C
(A+D)T
dk + Tα

, (4)and for users, we have:
P (x, z|ω) ∝

CWT
ωt + β∑

k
CWT

kz + V β

C
(A+D)T
xt + α

∑
k

C
(A+D)T
xk + Tα

. (5)Here the unit conditional probabilities in fact are Bayesianestimation of the posteriors: P (d|z), P (x|z) and P (z|w):
P (d|z) =

C
(A+D)T
dz + α

∑
k

C
(A+D)T
dk + Tα

, (6)
P (x|z) =

C
(A+D)T
xt + α

∑
k C

(A+D)T
xk + Tα

, (7)
P (z|ω) =

CWT
ωt + β∑

k
CWT

kt + V β
. (8)Accordingly, for implementation, we need to keep track of∑

k
C

(A+D)T
dk , ∑

k
C

(A+D)T
xk and ∑

k
CWT

kt in addition to C
(A+D)T
dt ,

C
(A+D)T
xt and CTW

tw . It is easy to implement these countingusing several hash tables. In practice, we set α and β to be
50/T and 0.05 respectively. These parameters seem to onlya�ect the convergence of Gibbs sampling but not much theoutput results, unless the problem is very ill-conditioned.
3.4 Topic Number SelectionThe remaining question is how to select the number oftopics. We resort to the perplexity measure, which is a stan-dard measure for estimating the performance of a probabilis-tic model. The perplexity of a set of term-source test pairs,
(wd,xd), for all d ∈ Dtest documents, is de�ned as the expo-nential of the negative normalized predictive log-likelihoodusing the trained model:perplexity(Dtest) = exp[−

∑D

d=1 ln P (wd|xd)∑D

d=1 |{wd,xd}|
]. (9)Here the probability of a set of term-source pairs on aparticular document is obtained by a straightforward calcu-lation:

P (wd|xd) =
∏

(wd,xd)∈{wd,xd}

P (wd|xd) (10)where the probability of an individual term-source pair P (wd|xd)is evaluated using the model hierarchy:
P (wd|xd) =

T∑

t=1

P (wd|t)P (t|xd). (11)Note that the better generalization performance of a modelis indicated by a lower perplexity score over a held-out docu-ment set. We run the Gibbs sampling using perplexity scoreas the termination criterion; the topic number is determinedby using the smallest T that leads to the near maximum per-plexity. Similar approach is also used in previous work forchoosing parameters in generative models [2, 17].

4. EXPERIMENTS ON ANNOTATION
MODELING

4.1 Data PreparationA data sample is collected from del.icio.us using the methodsimilar to [20]. We crawled the del.icio.us Web-site startingwith a set of popular URL's in Jan. 2006. Then we fol-lowed the URL collection of users who have tagged theseURL's, arriving at a new set of URL's. By iteratively re-peating the above process, we ended up with a collection of84,961 URL's tagged from May, 1995 to Apr., 2006. Thereare 9070 users along with 62,007 distinct tag words. Thenwe crawled the URL's to collect document content. Thereare 34,530 URL's in the collection which are still valid andhave textual content, including 747,935 content words. Theactivity of users seems to follow a power-law distribution.Since the data we collected is relatively small, many infre-quent users and tags might not be included. How to handleresources distributed on the long tail remains an interestingquestion to explore.
4.2 Topic Number SelectionWe �rst perform the training of the proposed model us-ing the algorithm introduced above. For di�erent settingsof the desired topic number, we test the perplexity of thetrained model on a held-out sample dataset. Over itera-tions, the perplexity scores always decreases dramaticallyafter the �rst several iterations and then soon converges toa stable level. We show a plot of perplexities on �ve di�er-ent settings of T in Fig. 3. Here the training set is a 1%random sample of the data available. We are able to seethat the larger setting of topic number leads to a lower per-plexity score from the start, indicating a better predictionperformance. This is because the increased number of topics(before a certain point) reduces the uncertainty in training.For the same reason, the larger setting of topics also leads toa smaller perplexity value in the �rst several iterations, fol-lowed by a sharper drop in perplexity. From the �gure, wecan see that empirically the algorithm converges within 20iterations for a relative small sample. For the full dataset,we repeat the Gibbs sampling for 100 iterations.The second set of experiments carried out seeks to de-termine the best number of topics in the setting. Using theperplexity measure de�ned in Eq. 9 - Eq. 11. We perform theexperiments by setting di�erent number of topics in trainingon various sizes of samples from the available data. Gener-ally, the perplexity score �rst decreases and then remainsstable after T is at certain size. We prefer the smallest Tthat yields a convergence since the greater T requires largercomputation. In Fig. 4, we show the perplexity scores overdi�erent T for various sample sizes. It is clear that theperplexity decreases much slower from after T = 80. Ac-cordingly, we choose the desired topic number to be 80 inthe following experiments.
4.3 Discovered Topic WordsWe also examine the top words discovered for each top-ics to judge the quality. Usually the determination of topicwords are very subjective and is lack of quantitive measures.Nevertheless, without quantitative assertions, we observegenerally high semantic correlations among the top wordsthat are discovered in the same topic. Typically, most dis-covered topic words are about Web the related applications
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Topic ID Top words0 web site news http information time www pagefree home software search online text links2 data work research services group scienceprogramming library education �le code3 world states usa country west japan europenorth asia australia south russian worldwide9 product process quality cool sale feedback catalogsuggestions patterns pretty rates clothing cds32 cookies tea sugar cafe orange organic milk breadfood egg meat diet fruit kitchen snacksTable 1: Top words for a selected sample of discov-ered topics.applications.
5. INFORMATION RETRIEVAL BASED ON

RISK MINIMIZATIONIn this section, we propose a method to incorporate thetopic discovery results discussed in the previous sectionsinto the language modeling-based information retrieval. We�rst review an information retrieval framework based onBayesian decision theory. Then, in the next section, wepropose a method that naturally combine the topical anal-ysis language models to improve retrieval quality, which isincremental and requires little computational overhead.In the language modeling (LM) approach to informationretrieval (IR), queries and documents are modeled respec-tively by a probabilistic LM. Let θQ denote the parametersof a query model, and let θD denote the parameters of a doc-ument model. The LM-based IR involves two independentphases: In one case, the generation of a query is viewed asa probabilistic process associated with a certain user. Thisuser �rst selects the query model θQ then picks a query qfrom the query model θQ with probability P (q|θQ); In theother case, the document generation has been carried out.First the document language model θD is chosen and thenthe d is generated word by word with probability P (d|θD).The task of an IR system is to determine the probability ofa document being relevant to the query given their LMs arerespectively estimated.Here we work within a risk minimization framework forIR proposed earlier [12]. The framework views the retrievalof relevant documents as those actions to be carried out inBayesian decision theory. The goal of retrieval is equivalentto minimizing the expected loss.Risk Minimization Framework: Suppose the relevanceis a binary random variable R ∈ {0, 1}. Consider the taskof a retrieval system as the problem of returning a list ofdocuments to the issued query q. In the general frameworkof Bayesian decision theory, to each action, there is an as-sociated loss, which, in our case, is the loss for returning aparticular document to the user. Assume that the loss func-tion only depends on θQ, θD, and Ri, the expected risk ofreturning di is:
R(di;q) =

∑

R∈{0,1}

∫

ΘQ

∫

ΘD

L(θQ, θD, R)×

P (θQ|q)P (θD|di)P (R|θQ, θD)dθDdθQ (12)where L(θQ, θD, R) is the loss function, P (θQ|q) is the prob-ability of the query model being parameterized by θQ given



the query q, P (θD|di) is the probability of the documentmodel being parameterized by θD given the document di,and P (R|θQ, θD) is the probability of relevance of R giventhe parameter sets are θQ and θD.Following earlier work [12], we make the assumption thatthe loss function only depends on θQ and θD and is propor-tional to the distance ∆ between θQ and θD, i.e.,
L(θQ, θD, R) ∝ ∆(θQ, θD) (13)The expected risk for returning di to q is thus:

R(di;q) ∝

∫

ΘQ

∫

ΘD

∆(θQ, θD)P (θQ|q)P (θD|di)dθDdθQ. (14)Note here P (θQ|q) depends on the input q only and is thesame for all candidate documents di. Rather than explicitlycomputing the risk in the integral format, we can use thepoint estimate with the posterior θD and θD:
R(di;q) ∝ ∆(θ̂q, θ̂di

)P (θD|di). (15)where θ̂q and θ̂di
can be obtained using maximum likelihoodestimation observing the words in query and documents.Further assuming that P (θD|di) is the same for all di, therisk minimization framework �nally becomes a measurementof the distance between two LMs: θ̂q and θ̂di

. As in otherrelated work, we can employ the Kullback-Leibler divergenceto measure ∆, yielding
R(di;q) ∝ ∆(θ̂q, θ̂di

) =
∑

w

P (w|θ̂q) log
P (w|θ̂q)

P (w|θ̂di
)
. (16)Comments: According to Eq. 16, the setup of the riskminimization framework has made the measurement of rel-evance depend only on the LMs of the query and the docu-ment, i.e. the posterior parameters θ̂q and θ̂di

. This paperproposes a re�nement of the query and document LMs usingthe LMs obtained from social annotations.
6. LANGUAGE MODEL EXPANSION USING

SOCIAL ANNOTATIONSDe�ne our goal now to be improving the LMs of query anddocuments, say θ̂q → θ′
q and θ̂di

→ θ′
di
. Here the θ̂q → θ′

qis also known as query expansion [11] and the θ̂di
→ θ′

di
isalso known as document expansion [19].There are several ways for LM expansion. In this paperwe focus on the linear interpolation [9] (a.k.a linear smooth-ing) for combining two LMs. De�ne an operator ⊕λ forlinear smoothing where a ⊕λ b ≡ λa + (1 − λ)b, assuming

a, b are both normalized to the same scale. When applied tocombining two LMs, θ1 and θ2, we de�ne that θ1 ⊕λ θ2 ≡:
∀v ∈ θ1 ∪ θ2, P (v|θ1 ⊕λ θ2) =

λP (v|θ1) + (1− λ)P (v|θ2) (17)where the v here can be a word, a phrase, or simply a tokenthat denotes special meaning (e.g. a topic). In the casewhen v /∈ θ1, P (v|θ1 ⊕λ θ2) = (1 − λ)P (v|θ2). Similarly,
P (v|θ1 ⊕λ θ2) = λP (v|θ1) when v /∈ θ2. That is, one LMcan be easily improved by smoothing with another �better�

LM as long as they can be combined using the above linearoperator.Now let us suppose the LMs we want to improve are al-ready estimated. In the following, we give three types of ad-ditional LMs we can estimate based on the previous topicalanalysis of annotations and content. The �rst model simplytreats the annotations as additional terms of the documents;The second model expands the query with the topics; Thethird model proposes several expansion methods on the doc-ument LM.
6.1 Word-Level Annotation Language ModelThe annotation LM we give is an ad-hoc improvement.For each document d, let τ (d) be the set of words in itstags, each having the frequency of being used for d. We areable to estimate a LM, say Ld

w
4, from the observations of

τ (d) for all d's. It easily follows that Ld
w can be combinedwith θ̂di

using Eq. 17. For Word-level annotation languagemodel, we focus on the simple case of unigram LM, in whicheach word is assumed to occur depending on the latent prob-ability distribution regardless of the surrounding words.
6.2 Topic-Level Query Language ModelsIn this and the following section, we seek to make use ofthe topical analysis on documents previously made in Sec. 3.Recall in the standard framework, θ̂q is just the empiricaldistribution of the query q = 〈w1, ...wk〉. This original word-level query model has been shown to underperform [12, 11].In our approach, we seek to estimate the LMs at higher level.In particular, we consider each topic discovered as a token inthe LM. These tokens will later match the topics discoveredfor the documents to determine their relevance.First, we estimate the conditional probability that a queryword ω belongs to the topic t, say P (t|w). Over all topics,we have a vector vt|w = 〈P (t1|w), ..., P (tT |w)〉. After nor-malization, vt|w becomes the probability distribution overtopics, or rather, a topic-level LM.Second, we merge the multiple topic distributions for eachquery word into a single topic distribution. Let the desiredtopic-level query LM be Lq

t . In the unigram case. Lq
t isalso a vector of T dimension where each element denotesthe probability of a particular topic. Formally, we have:

Lq
t =

∑

w∈q

δwvt|w. (18)where δw is the normalized weight for the word ω, and Lq
t (i)denotes the probability of topic i under this model. Notethe setting of δw allows us to have ∑

i∈L
q
t

Lq
t (i) = 1. Again,using ⊕λ, we combine the models at di�erent levels.

6.3 Topic-Level Document Language ModelsNow let us focus on the document LMs. It is easy to seethat each document already has a probability distributionover topics discovered from the proposed modeling, denotedby a vector vt|d = 〈P (t1|d), ..., P (tT |d)〉. Consider this vec-tor as a LM where each topic is a unit. We use ⊕λ to combinethis topic-level LM with the original document LM.4Note we use L instead of θ to denote the additional LMs inexpansion for clarity. The Ld
w means LM trained at word-level for document expansion. Similarly, the Lq

t indicatesthe LM at topic level for query expansion.



Then how to leverage the user information in annota-tions?. Again, recall that the probabilistic model in Sec. 3also outputs the topic distribution for users. Denote the dis-tribution by a T dimensional vector ut|x = 〈P (t1|x), ..., P (tT |x)〉.Here each element P (ti|x) denotes the probability of a user
x belonging to the topic ti. Let the document d be taggedby a set of users, say U(d). We combine the multiple LMsof users in U(d). In particular, the desired model Ld

t is gen-erated in addition to and will be combined with the originaltopic-level LM of document: vt|d.Let the trust or importance of user x be δx. The Ld
t isobtained as:

Ld
t = δdvt|d +

∑

x∈U(d)

δxut|x, (19)where δd +
∑

x∈U(d) δx = 1. The δd accounts for the em-phasis we place on the original discovery of topics for d, and
∀x ∈ U(d), δx determines the trust we place on each user x.Now we have successfully incorporated the topical analysisof documents and users into the original LM-based IR. Userdomain di�erences are also considered. How to evaluate userimportance is out of the scope of this paper.
7. EXPERIMENTS ON IR QUALITY

7.1 User Domains & Expertise EvaluationNext we show the probability distribution over topics forseveral active users. We consider the topics as domainswhere the users belong to. A higher probability in certaintopics indicates stronger interests of this user. For the userswith insu�cient observations, the domain discovery tendsbe to less reliable.Figure 5 illustrates the distributions over 80 topics forthree random active users. Users are seperated by theirdistributions. In general, the overall interest of each user isa mixture of interests in several topics. Some topics for auser is more interesting than others. And for the interestedtopics, some are more preferred than others.
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Figure 5: The probability distributions over topicsfor three active users.In the following, we discuss the evaluation of user-speci�ctrusts. We start with showing the properties of user activ-ities. Fig. 6 presents the number of authors w.r.t. to thenumber of tags she has made in the data. It is clear thatover 60% of the users contribute less than 50 tags to the dataand very few of them make more than 300 words. From the
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Figure 6: The number of users v.s. number of tagsgenerated, in the normal scale and log-log scale.log-scale and log-log scale plots, we can see the intensitiesof user activities follow a power-law distribution.The power-law property of user activities is in fact helpfulfor determining the trust we should put on each authors. Formost of the cases, users are more or less equivalent in theiractivity intensity, whom we should not di�erentiate in thetrust scores; For some very active users, we might want togive higher priorities. For simplicity, this paper uses thenumber of annotations a user has made for the user-speci�ctrust scores. One might consider combine other metrics suchas the time duration from last visits or the visit frequencies.Note the framework we propose allows �exible de�nition oftrust scores for users.
7.2 IR QualityNow let us evaluate the IR quality of various languagemodeling (LM) approaches. The methods we compare are:
• Word-level LM on content (W-QD): Query LMis trained on the original query and the document LMis trained on the original document content.
• Word-level LM on content and annotations (W-QDA): The query LM is trained on the original queryand the document LM is trained on both documentcontent and annotations.
• Word-level LM + LDA on content and anno-tations (WT-LDA): We run LDA on document plusannotations by treating annotations as additional words,without consideration of user di�erences. The topic-level LM is combined with W-QDA using the param-eter λ1.
• Word-level LM + Topic-level LM (WT-QDA):We run the proposed topic analysis model on the doc-uments and annotations, obtaining topic informationof documents and users. Then, the topic-level LM iscombined with the word-level LM W-QDA, using theparameter λ1.
• Word-level LM + Topic-level LM on documentand users (WT-QDAU): User domain interests areconsidered here. First, the word-level LM and topic-level LM and their combination are trained using WT-QDA. Second, the document LM is combined with themixture of topics on users who tag the document, using



the parameter λ2. Note here the users are treated thesame in the �rst step.
• Word-level LM + Topic-level LM on document,and users with di�erentiation (WT-QDAU+):During the training of the WT-QDAU is obtained us-ing the parameter λ2, the weights on users are set dif-ferent.In addition, we implement the EM-based retrieval methodproposed in a related work [20], which is de�ned as:
• EM-based information retrieval (EM-IR): As pro-posed in [20], the URL's and users are �rst clusteredusing the EM algorithm. Then the probability of see-ing certain words for a URL is estimated. Those prob-abilities are used for retrieval.For evaluation, we generate 40 queries with lengths vary-ing from one to �ve words. The words are chosen from tagand document content. Then for each query, we use theabove six approaches for document retrieval. The qualityof retrieval is evaluated on the top 10 documents using theDiscounted Cumulated Gain (DCG) metric [8]. In partic-ular, two human judges are invited to provide feedback onthe composite set of URL's which occur in any of the top

10 retrieval results, yielding the DCG10 scores. Judgmentsare carried out independently based on their experience ofthe relevance quality. Numerical judgment scores of 0, 1, 2,and 3 are collected to re�ect the judges' opinion on the rele-vance of documents, which respectively imply the sentimentof poor, fair, good, and perfect. In general, the judges rep-resent high agreement on the ranking quality. The averagejudge scores are used for computing the DCG.In Table 2, we illustrate the DCG10 scores for the six ap-proaches: W-QD, EM, W-QDA, WT-LDA, WT-QDA, WT-QDAU, and WT-QDAU+. We can see that both the EM-based IR and the newly proposed approaches outperformthe traditional LM-based IR. We read Table 2 from severalaspects:First, we take a look at the improvement according to theuse of tags. The EM-based IR proposed in related work [20]increased the DCG scores by 11.5% over traditional LM-based IR (W-QD); The method that uses annotations asadditional words improved the DCG by 18.3% (W-QDA overW-QD), which demonstrates that the use of annotation candramatically improve IR quality.Second, we examine the improvement based on topicalanalysis on both document content and annotations. Thebasic use of the topic information (WT-LDA) further im-proves the use of annotations (W-QDA) by 2.7%. The topicanalysis based on the new generative model, compared withWT-LDA, achieves a gain of 1.3%. It is worthwhile to men-tion that the LDA-based topic analysis improves a very re-cent related work [20] (EM-IR) by 9.1%.Third, we test the improvement by incorporating taggerinterests. As illustrated in Table 2, WT-QDAU outperformspure topic-based IR by 1.1%, showing the importance of userinterests.Fourth, we show the improvement by considering the dif-ferences of users while incorporating user interests. TheWT-QDAU+ adds another 1.3% in DCG over WT-QDAU.This shows that due to the di�erent user expertise, the qual-ity of tags can be di�erent and thus should be taken intoconsideration.

W-QD EM-IR W-QDA WT-LDA7.6192 8.4945 9.0167 9.2602WT-QDA WT-QDAU WT-QDAU+9.3820 9.4938 9.6167Table 2: The DCG10 scores of six compared ap-proaches: W-QD, EM-IR, W-QDA, WT-LDA, WT-QDA, WT-QDAU, WT-QDAU+.Overall, the top performance of our proposed model (WT-QDAU+) improved the traditional LM-based IR model by
26%, compared with the the 11.5% improvements by theEM-based approach in [20].
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Figure 7: The change of DCG10 scores for di�erentsettings of λ1 and λ2, where λ1 is the parameter forcombining topics with the original LM and λ2 is theparameter for combining user topic models.
7.3 Sensitivity to Parameter SelectionFinally, we study the e�ects of parameters in the proposedapproach. Two parameters are examined, one being for theWT-QDA (λ1) and the other for the WT-QDAU (λ2). Note
λ1 is the weight on the topic-level LM on query and docu-ments and λ2 is the weight on the LM generated on users.To determine the optimal λ1 and λ2, we perform cross-validation against user judgement. Figure 7 demonstratesthe change of DCG scores for di�erent settings of λ1 and
λ2. From the �gure, we can see the proposed approach isvery sensitive to λ1 but less sensitive to λ2. The λ1 reachesbest performance at around λ1 = 0.2. The λ2 reaches bestperformances at about λ2 = 0.3. This indicates a limitedinput of topic information will improve LM-based IR butrelying on topic information too much fails to di�erentiatethe information to be retrieved.
8. CONCLUSIONS & FUTURE WORKThis paper presents a framework that combines the mod-eling of information retrieval on the documents associatedwith social annotations. A new probabilistic generative modelis proposed for the generation of document content as wellas the associated social annotations. A new way for dis-covering user domains is presented based on social annota-tions. Several methods are proposed for combining languagemodels from tags with those from the documents. We thenevaluate user expertise based on activity intensities. Ex-perimental evaluation on real-world datasets demonstrates



e�ectiveness of the proposed model and the improvementsover traditional IR approach based on language modeling.For future work, one could take a closer look at the ef-fects of the parameter sets. It would be useful to reduce thenumber of parameters for easier tuning for practical use, andfocus on exploring more indicators regarding the domain ex-pertise of users and their use in improving user experiences.The inter-personal social networks and communities of userscan be more thoroughly studied. How the user social net-work correlates with social annotations is not clear and re-mains an interesting question. The temporal dimension ofuser activities could also be considered on speci�c queries.In addition, It would be interesting to model the changes inuser annotation behaviors. Patterns of the development ofuser annotations might further advance the use of annota-tions for more e�ective information retrieval.
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