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Abstract

In this paper, we address the rate control problem for layered multicast sessions, with the objective of solving a generalized
throughput/fairness objective. Our approach is based on a combination of lagrangian relaxation and dynamic programming. Unlike
previously proposed dual-based approaches, the algorithm presented in this paper scales well as the number of multicast groups in
the network increases. Moreover, unlike all existing approaches, our approach takes into account the discreteness of the receiver
rates that is inherent to layered multicasting. We show analytically that our algorithm converges and yields rates that are approx-
imately optimal. Simulations carried out in an asynchronous network environment demonstrate that our algorithm exhibits good
convergence speed and minimal rate fluctuations.
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I. I NTRODUCTION

In layered multicasting, data is transmitted in multiple layers. The source encodes the signal (usually an audio or video
signal) in layers, and a subset of these layers are sent to the receivers, depending on the receiver requirements, and the
congestion of the path from the source to the receiver. Layered multicasting is a form ofmultirate multicasting, since
different receivers in the same multicast group can receive traffic at different rates. Conventional or unirate multicasting
can also be considered as a special case of layered multicasting, in which case the data is transmitted in a single layer.
Typically, this layer bandwidth is inflexible, and therefore the source is constrained to send (and the receivers are
constrained to receive) bandwidth at a certain predetermined rate. Therefore, unirate or unilayer multicasting is not an
appropriate mode of data delivery in the case where the capabilities and/or requirements of the receivers belonging to
the same multicast group are different. In such a scenario, a single rate of transmission is likely to overwhelm slow
receivers and starve fast ones. Moreover, unirate multicasting is not very suitable for network congestion control. In
this case, the only way to alleviate congestion on a link is to drop all the downstream receivers from the multicast group.
The network can also remain very much underutilized when unilayer transmission is used.

Multirate or multilayer transmission is the more preferred form of data delivery when receivers of the same multicast
group have different characteristics. Typically, multilayer transmission is achieved through hierarchical encoding of
real-time signals. In this approach, a signal is encoded into a number of layers that can be incrementally combined to
provide progressive refinement. In layered multicasting, the receivers adapt to congestion by adding or dropping layers.
With multilayer transmission, the network can be utilized more efficiently, and receivers can receive data that is more
commensurate with their capabilities. For discussions on multirate/multilayer transmission, refer to [6], [19], [21], [27].

Note that in layered multicasting, the granularity at which congestion control can be done is determined by the number
of layers. Thus, more fine-grained congestion control is possible with larger number of layers. However, the amount of
state maintained as well as the processing complexity at the routers will also typically increase as the number of layers
increases.

For efficient use of the network, an effective rate control strategy is necessary. The rate control algorithm should
ensure that the traffic offered to a network by different traffic sources remain within the limits that the network can
carry. Moreover, it should also ensure that the network resources are shared by the competing flows in some fair manner,
and that the throughput achieved is high. It may therefore be desirable that the rate control algorithm would steer the
network towards a point where some measure of global fairness is maximized. Throughput and fairness definitions
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are generalized in a nice way by associating utilities with receivers. Utility of a receiver is a function connecting the
bandwidth given to the receiver with the “value” associated with the bandwidth. The utility could be some measure
of, say, the perceived quality of audio/video, the receiver satisfaction, or even the amount paid by the receiver for the
bandwidth allotted to it. In this paper, we design rate control algorithms such that they maximize the sum of the utilities
over all receivers, subject to the link capacity constraints. This objective was proposed recently by Kelly [13]. It is easy
to see that various fairness objectives can be realized within this utility maximization framework for different choices
of the utility functions [20]. Note that in our problem, the utility functions can be different for different receivers. Thus
this framework allows us to differentiate among receivers on the basis of their requirements and/or revenues. This is
important, since receivers could have heterogeneous requirements, and the same amount of bandwidth could be valued
differently by different receivers.

Recently, there has been a considerable interest in the problem of fair allocation of resources for multirate multicast
sessions. Most of the work in this area is concerned only with the notion of max-min fairness (see [22], [23], [24], [25],
[9]). The utility maximization based congestion control problem is addressed in [11], [12], [8]. Whereas [12], [8] take a
primal approach, the algorithms in [11] is based on a dual approach. Like [11], the approach that we adopt in this paper
is based on the lagrangian dual. However, the algorithm proposed in this paper has several very important advantages
compared to the algorithms proposed in [11], as well as the those in [12], [8], as outlined below.

An important aspect in which our approach differs from previously proposed approaches is that it takes into consid-
eration the discreteness of the layer bandwidths. In layered multicast, the receiver rates are constrained to take only a
set of discrete values, which are determined by the layer bandwidths. The approaches in [12], [11], [8] approximate
the discrete set of rates by a continuous set, and then apply convex programming techniques to develop an iterative
rate update procedure. The convergence results obtained in these cases are under the assumption of continuous rates.
However, note that in practice, the rate that is computed by the rate update algorithm at each step must be “rounded”
to a discrete rate value that corresponds to some layer bandwidth. Such rounding introduces errors at every step of the
algorithm, and it is not clear if the rates can be shown to converge to optimality (in an exact or approximate sense)
when rounding at every iteration is taken into account. In fact, it is easy to show that if the step-sizes are small enough,
then the receiver rates achieved by the algorithms in [11], [8] may be way off from the optimal rates. Note that ap-
proximating the discrete rate set by a continuous set of rates may not be a bad approximation if there are many closely
spaced discrete rates. However, as mentioned, typically the number of layers is small, and the discrete rate values are
widely separated. Therefore, the continuous bandwidth approximation may not be a good approximation in the case of
layered multicasting. In our approach, however, the rates are always assumed to be discrete, and so there is no question
of rounding of the rates. The convergence results that we provide, therefore, directly applies to the algorithm that is
implementable in practice.

From a practical perspective too, our algorithm outperforms existing approaches on several aspects. Unlike the algo-
rithms in [11], our algorithm does not require per-group information to be maintained at the network links, and therefore
scales well as the number of multicast groups sharing a link increases. Moreover, our algorithm does not suffer from
some other drawbacks of the algorithms in [11], like rapid rate fluctuations, two-level convergence etc. The algorithms
in [12], [8] can result in constant bandwidth fluctuations, which can lead to rapid adding and dropping of layers. Our
algorithm, on the other hand, achieves much smoother convergence. Lastly, it can be intuitively argued that the rate of
convergence for our algorithm would typically be much faster than those of the previously proposed algorithms [11],
[12], [8], a fact that we have observed in our simulation experiments as well. A more detailed comparison of our
algorithm with the existing algorithms is provided in Section VI.

In this paper, we take into account the fact that the receivers rates are constrained to take discrete values, and pose
the optimal rate control problem as a discrete/integer program. (It is worth noting here that even very simple special
cases of the integer program can be shown to be NP-hard.) Dealing with this integer programming directly, and using
a combination oflagrangian relaxation[28] anddynamic programming[3], [7], we show that it is possible to achieve
rates that are provably very close to the optimal, without making the approximation that receiver rates take a continuous
set of values. Our approach is completely decentralized, and scales well with the size of each multicast group, as well
as the number of multicast groups sharing the network. Note that the lagrangian relaxation technique may not yield
close-to-optimal solutions for general integer programs. However, we exploit certain special properties of our problem
to derive the approximation result in our case. We also identify a nice underlying structure of our problem, which allows
us to solve the problem distributedly, using dynamic programming. As we observe later, the efficient use of dynamic
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programming in this case would not have been possible if the rates were not constrained to take a few discrete values.
Thus, even though dealing with the discrete program directly (as opposed to dealing with the convexified version of the
program) might seem counterintuitive, we actually exploit the discreteness of the problem to our advantage. All these
findings, coupled with the practical considerations mentioned above, make our results significant from both theoretical
as well as practical perspectives. It is worth noting here that for the case of unicast sessions, rate control based on the
lagrangian dual was proposed and thoroughly investigated by Lowet al. [18], [1]. In the unicast case, however, the
rates can assumed to be continuous, and convex programming techniques can be directly applied. Our algorithm nicely
generalizes the dual-based rate control approach proposed in [18] to the case of layered multicasting.

The paper is structured as follows. In Section II, the rate control problem is presented formally as a discrete opti-
mization problem. In Section III, we outline the basic solution approach and state the main convergence result. Section
IV describes how our solution approach yields an algorithm that can be implemented in a scalable and distributed
way. In Section V, we demonstrate the convergence of our algorithm in an asynchronous network environment through
simulations. We compare our approach with the existing approaches in Section VI, and conclude in Section VII.

II. PROBLEM STATEMENT

First we describe the network model, and formulate the rate control problem as an optimization problem with dis-
creteness constraints on the rates. In the subsequent sections, we will show how we can achieve close-to-optimal rates
for this problem.

A. Network Model and Terminology

Consider a network consisting of a setL of unidirectional links, where a linkl ∈ L has capacitycl. The network
is shared by a set ofG multicast groups (sessions). Each multicast group is associated with a unique source, a set of
receivers, and a set of links that the multicast group uses (the set of links forms a tree)1. Thus any multicast group
g ∈ G is specified by{sg, Rg, Lg} wheresg is the source,Lg is the set of links in the multicast tree, andRg is the set
of receivers in groupg.
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Fig. 1. A multirate multicast tree

Next we introduce some additional terminology that will help us in formulating the rate control problem and describ-
ing the algorithms. Consider Figure 1, which shows an example of a multicast tree wheres is thesource nodeand
{i1, i2, i3, i4} is the set ofreceiver nodes. Other than the source and receiver nodes, the nodes that are of particular
interest in our case are the forking nodes of the tree, i.e., nodes where the multicast tree “branches off”. We refer to
these nodes as thejunction nodes. Thus, in Figure 1,{i5, i6, i7} is the set of junction nodes. Source/receiver/junction
nodes of different multicast groups are considered to be logically different, even if they are physically located at the
same node. In the rest of the paper, we assume that the receivers are only at the leaf nodes of the multicast tree. There
is no loss of generality in assuming this, since a receiver at a non-leaf node can be replaced by creating a new leaf node
and placing the receiver in it, and connecting the new leaf node to the non-leaf node (where the receiver is actually
located) by a link with infinite capacity. Moreover, note that any leaf node must be a receiver node. Theparentof a
receiver/junction nodei refers to the closest junction/source node in the upstream path fromi towards the source. The
childrenof a junction/source node are also defined accordingly. Thebranchof a receiver/junction nodei refers to the

1We assume fixed path routing. So the tree associated with each multicast group is fixed.
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set of links in the tree between the parent of nodei and nodei (i.e., the path over which nodei receives data from
its parent). Note that each junction node receives layered data from its parent node, and forwards them to its children
nodes, after possibly dropping some layers. Therefore, the rate at which a junction/receiver node receives data can
be no greater than the rate at which its parent receives data. Note that layers must be sentcumulatively, i.e., no layer
between the base layer and the uppermost transmitted layer can be dropped. Thus if a source/junction node intends to
sendk layers to its child, it must send only the layers1, 2, ..., k. The number of layers sent determines the “level” of
data transmission, and in the case of audio/video, the perceived transmission quality depends on it. Note that if a node
is receiving data at levelk from its parent, then it must be receiving data at a rate equal to the sum of the bandwidths of
layers1, 2, ..., k.

B. Problem Formulation

The utility maximization based rate control problem for multirate multicast traffic can be formulated in two different
ways. In the first approach, we associate a rate variable with each receiver, and formulate the optimization problem in
terms of the these receiver rate variables. The second approach is to associate a rate variable with each receiver as well
as each junction node, and define the problem in terms of all these rate variables. These two formulations are equivalent
in the sense that the optimal objective function values of both are the same. Moreover, the optimal receiver rates are
also the same for both these formulations. The two “equivalent” representations of the problem, and the relationship
between the two representations, are discussed in great detail in [11].

In this paper, we use the second formulation, i.e., the case in which rate variables are associated with both the receiver
and the junction nodes. The approach presented in this paper can also be applied to the first formulation. However, the
analysis in that case is much more complex, and the algorithm derived is very similar to the one derived on the basis of
the second formulation.

Let R = ∪g∈GRg denote the set of all receiver nodes (over all groups). LetJg denote the junction nodes of any
groupg ∈ G, andJ = ∪g∈GJg denote the set of all junction nodes (over all groups). LetIg = Rg ∪ Jg, and let
I = ∪g∈GIg. Therefore,I = R ∪ J , and denotes the set of all receiver and junction nodes (over all groups). Also, let
S = {sg, g ∈ G} denote the set of all source nodes (over all groups).

Let Il ⊆ I be the set of receiver/junction nodes whose branches include linkl ∈ L. Now associate a rate variable
xi with each receiver/junction nodei ∈ I, denoting the rate at which nodei receives data from its parent. For the
sake of simplicity of exposition, we also introduce a rate variable associated with each source node. Letxi be the rate
variable for any nodei ∈ S. Let x = (xi, i ∈ I ∪ S) denote the vector of all rates. Also, for each groupg ∈ G, let
xg = (xi, i ∈ Ig ∪ {sg}) denote the vector of rates associated with groupg. For each nodei ∈ J ∪ S, let Ci denote the
set of children of nodei. For any groupg ∈ G, let Kg be the number of layers, and letbg

1 < bg
2 < ... < bg

Kg represent
the cumulative layer bandwidths (thus the rates of the receivers belonging to groupg are constrained to take only these
discrete values). Note that for anyk ∈ {1, 2, ...,Kg}, bg

k is the sum of the bandwidths of the layers1, 2, ..., k. For each
receiveri ∈ R, let Ui : <+ → < denote the utility function (assumed increasing and concave) associated withi. Then
the utility maximization based rate control problem can be formulated as

P : maximize
∑

i∈R

Ui(xi) (1)

subject to :
∑

i∈Il

xi ≤ cl ∀ l ∈ L (2)

xg ∈ Xg ∀ g ∈ G (3)

whereXg = Y g ∩ Zg, andY g andZg are defined as

Y g = {x : xi ≥ xi′ ∀ i′ ∈ Ci ∀ i ∈ Jg ∪ {sg}} (4)

Zg = {x : xi ∈ {bg
1, b

g
2, ..., b

g
Kg} ∀i ∈ Ig ∪ {sg}} (5)

Relations (2) represent the link capacity constraints. Relations (4) represent the fact that the rate at which a junc-
tion/receiver node receives data can be no greater than the rate at which its parent node receives data. Relations (5)
represent the discreteness constraints on the rates. Note that the constraints involving the source rates are redundant.
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These constraints are introduced here because they yield more concise expressions in the analysis outlined later in this
paper.

Our rate control algorithm should therefore achieve the optimal rates forP. In order to be practically viable, the
rate control algorithm must bedecentralized. Moreover, the algorithm should bescalable, both in terms of the size of
the multicast groups (i.e., number of receivers in a multicast group), and the number of multicast groups sharing the
network. We would also prefer to have a solution which has low computational complexity, and converges fast, even in
an asynchronous network scenario. The rate control algorithm that we propose in this paper satisfies all of the above
criteria.

III. B ASIC SOLUTION APPROACH ANDCONVERGENCERESULTS

In this section, we outline our solution approach. Our approach is based onlagrangian relaxation, which is a well-
known technique for solving integer programs [28]. Our contribution is that we show how in our case, this technique
can help us develop an iterative algorithm that achieves rates that are provably close-to-optimal. Moreover, along with
dynamic programming, it leads to an algorithm that is completely distributed in nature. The fact that we can develop
a distributed solution that achieves approximately optimal rates, relies heavily on some underlying nice properties of
the structure of the problemP. Note that for general integer programs, lagrangian relaxation may not lead to close-
to-optimal solutions, and the algorithm may not be distributed. The approach and results presented in this section
generalizes those proposed in [18] for the unicast version of our problem.

A. Lagrangian Relaxation

Now let us take a look at the lagrangian dual of the problemP. Let λl be the dual variable associated with the link
capacity constraint (2) for linkl ∈ L. Let λ = (λl, l ∈ L) denote the vector of the dual variables. For anyi ∈ I, let
Li ⊆ L denote the set of links in the branch of nodei. Then the lagrangian dualD(λ) can be written as follows [4]:

D(λ) =
∑

g∈G

max
xg∈Xg

{
∑

i∈Rg

Ui(xi)−
∑

i∈Ig

(
∑

l∈Li

λl) xi }+
∑

l∈L

λlcl (6)

The dual minimization problem isminλ≥0 D(λ), whereD(λ) is defined as in (6). Since we are dealing with a discrete
program, a duality gap exists, and dualization implicitly involves relaxation of the problem. Note that the dual is convex
but non-differentiable (the non-differentiability is due to the presence of the discreteness (integrality) constraints on
the rates). We apply a subgradient method [26] (with a constant step-sizeα) to solve this problem. In this case, each
iteration of the subgradient method reduces to two sets of updates: (1) dual variable updates, and (2) rate updates. The
dual variable update procedure for any linkl ∈ L at stepn is

λl(n + 1) = λl(n) + α(
∑

i∈Il

xi(n)− cl) (7)

wherexi(n) is the value ofxi at thenth iterative step. At thenth step, for any groupg ∈ G, the rates of the re-
ceiver/junction nodes are updated as follows:

xg(n + 1) = arg max
xg∈Xg

{
∑

i∈Rg

Ui(xi)−
∑

i∈Ig

(
∑

l∈Li

λl(n)) xi} (8)

The update procedures in (7) and (8) have simple intuitive interpretations. Let us interpret the dual variableλl as the
price per unit bandwidthassociated with linkl. Note that the quantity(

∑
i∈Il

xi(n)− cl) represents the excess load of
the link. Therefore, (7) has a simple economic interpretation: price per unit bandwidth increases if the load (interpreted
as demand) is in excess of the available capacity, and decreases otherwise. Now, let us take a detailed look at the
expression on the right hand side of (8). Note that the term

∑
i∈Rg Ui(xi) represents the overall utility of groupg. Now,

assume that each linkl charges a priceλl per unit bandwidth to every group that uses the link. With our interpretation,
the term(

∑
l∈Li

λl(n)) represents the aggregate price per unit bandwidth charged to groupg for using the links in
the branch of nodei. Therefore, the term

∑
i∈Ig(

∑
l∈Li

λl(n)) xi can be interpreted as the total price charged by the
network (to groupg) for network bandwidth used by the group. Therefore, the right hand side of (8) can be interpreted
as theprofit (i.e., utility - price paid) derived by groupg. Thus, (8) states that given the link prices, each group chooses
the junction/receiver rates so as to maximize its profit function.
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Fig. 2. Relationship betweenUi andŨi

B. Convergence Results

In the convergence analysis, we make the following assumption on the utility functions.
Assumption 1: (Strict Concavity) The utility functionsUi are increasing, twice continuously differentiable and

strictly concave. Thus−U
′′
i (xi) ≥ γi > 0 for all xi ≥ 0, for all i ∈ R.

Now we show that if the rates and the prices are updated iteratively according to (7) and (8), the rate vector “converges”
to values that are close-to-optimal. The optimality in this case is not with respect to the optimal rates of the original
integer programming problemP, but with respect to alinearly relaxedversion of it (denoted bỹP), as we explain
below. The problem̃P is defined from the problemP in the following way. Replace the discreteness constraint
xi ∈ {bg

1, ...b
g
Kg} in (5) by the continuous constraintbg

1 ≤ xi ≤ bg
K . Thus we “relax” the integrality constraints and

assume thatxi can take any value in the continuous set[bg
1, b

g
Kg ].

Also, in P̃, the utility functions are re-defined in the following way. Consider anyxi ∈ [bg
1, b

g
K ]. There are two possible

cases:
Case 1:xi = bg

k for somek ∈ {1, 2, ..., Kg} : In this case, definẽUi(xi) = Ui(b
g
k).

Case 2:bg
k < xi < bg

k+1 for somek ∈ {1, 2, ..., Kg − 1} : In this case, definẽUi(xi) as

Ũi(xi) =
(bg

k+1 − xi)Ui(b
g
k) + (xi − bg

k)Ui(b
g
k+1)

bg
k+1 − bg

k

(9)

Note that the functioñU is formed by linearly interpolating the functionU between the feasible discrete bandwidth
values. The relationship between the functions are shown in Figure 2. The problemP, with these modifications, is a
linearly relaxed version of the original discrete programming problem. This problem is denoted byP̃.

Note thatP̃ is a convex programming problem. Also note that ifU∗ andŨ∗ be the optimal objective function values
of P andP̃ respectively,̃U∗ ≥ U∗. Any solution that is feasible toP and close-to-optimal tõP must also be a close-to-
optimal solution ofP. We use this fact to show that our algorithm solvesP approximately, and derive the approximation
ratio.

Let b̄g = maxk∈{1,...,Kg−1}(b
g
k+1−bg

k). Also Letx∗ beanyoptimal solution of̃P, andx∗i be theith component of the

vectorx∗. Note thatP̃ can have multiple optimal solutions. However, due to the strict concavity of the utility functions
Ui, it can be shown that ifx∗1,i andx∗2,i be theith component (i ∈ Rg) of two optimal solutionsx∗1 andx∗2 of P̃, then
|x∗1,i − x∗2,i| ≤ b̄g.

We obtain the following result on the convergence of the receiver rates:
Theorem 1:Assume that the rate and the prices are updated according to (7) and (8). Then there exists anᾱ > 0 and

an integerN̄ > 0, such that anyα satisfying0 < α < ᾱ, the following result holds for alln > N̄ :

|xi(n)− x∗i | ≤ b̄g ∀i ∈ Rg ∀g ∈ G.

The proof of the above result is provided in the Appendix. To re-emphasize, the above result holds for any optimal
solutionx∗ of P̃. Roughly speaking, the result states that if the step-size is “sufficiently small”, then receiver rates
“converge” to a neighborhood aroundx∗. The notion of “convergence” in this case is approximate: the above result
implies that the receiver rate vector is guaranteed to be in a neighborhood around the optimal solution ofP̃. It does not
ensure, however, that the rate vector will converge tox∗. Note that in the relaxed problem, the rates need not correspond
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to the actual discrete bandwidth values. Thusx∗ can even be an infeasible toP. However, note that the ratesxi(n)
always take values in the discrete bandwidth set (see (8)).

The above result can be strengthened to show that the rate of a receiverr can only achieve values that correspond to
the bandwidth levels immediately below or immediately abovex∗i . Thus the achieved rates can be at most “one-layer
off” from optimality. In general, finding a closed-form expression ofᾱ seems difficult.

Let |Ui(b
g
k+1) − Ui(b

g
k)| ≤ ū ∀k ∈ {1, ...,Kg − 1} ∀i ∈ Rg ∀g ∈ G. Thusū represents the maximum difference

between the receiver utilities at two adjacent discrete bandwidth levels. LetU∗ be the optimal value of the objective
function of the original problemP. Also, letU(x(n)) be the aggregate receiver utility when the rate vector isx(n).
ThusU(x(n)) =

∑
i∈R Ui(xi(n)). Then from Theorem 1, and from the continuity of the functionsUi, we obtain the

following result.
Corollary 1: Assume that the assumptions of Theorem 1 hold. Then for alln > N̄ , the following holds:

U∗ − U(xi(n)) ≤ ū|R|.
The above corollary states that the rates that we achieve are approximately optimal with respect to the original problem
P. Note that the error in the achieved utility (with respect to the optimal utility) calculated on a per-receiver basis
is at mostū. Therefore, the error would be smaller if the discrete bandwidth levels are closely spaced, as we would
intuitively expect.

IV. GROUPPROFIT MAXIMIZATION AND DISTRIBUTED IMPLEMENTATION

Now we show how the group profit maximization problem (as stated in (8)) can be solved in an efficient manner.
Note that the group profit maximization problem needs to be solved for each group in every iteration of the rate control
algorithm. Therefore, to achieve good convergence speed, the group profit maximization problem must be solved
quickly. Moreover, practical considerations dictate that the problem must be solved in a distributed manner. In the
following, we show that the group profit maximization problem can be solved in a decentralized manner within roughly
a single round-trip time.

A. Group Profit Maximization

Consider any particular multicast groupg ∈ G. Now consider any junction/receiver/source nodei ∈ Ig∪{sg}. LetTi

denote the set of source/junction/receiver nodes that fall within the tree rooted ati (includingi). Let xi = (xi′ , i
′ ∈ Ti)

denote the vector of the rate variables associated with the source/junction/receiver nodes inTi. LetPi(xi), the tree profit
function associated with nodei, be defined as follows:

Pi(xi) =
∑

i′∈Ti∩Rg

Ui′(xi′)−
∑

i′∈Ti\{i}
(
∑

l∈Li′

λl)xi′ (10)

Clearly,Pi denotes the aggregate utility of all receivers inTi minus the price charged to groupg for using the links in
treeTi. Note that for any receiveri, Pi(xi) = Ui(xi). Also note that the group profit function that we are stated in (8)
is Psg . Next we show that the problem of maximizing the tree profit function associated with any nodei can be written
in terms of the corresponding problems for its children nodes.

For any nodei ∈ Ig ∪ {sg}, defineXi = Yi ∩ Zi, whereYi andZi are defined as follows:

Yi = {xi : xi′ ≥ xi′′ ∀ i′′ ∈ Ci′ ∀ i′ ∈ Ti ∩ (Jg ∪ {sg})}
Zi = {xi : xi′ ∈ {bg

1, b
g
2, ..., b

g
Kg} ∀i′ ∈ Ti}

Now, for anyi ∈ Ig ∪ {sg} andk ∈ {1, 2, ..., Kg}, defineXi(k) as follows:

Xi(k) = {xi : xi ∈ Xi, xi = bg
k} (11)

ThusXi(k) denotes the set of values in which the rates of source/junction/receiver nodes in treeTi are constrained to
lie if node i receives traffic upto layerk from its parent. Then, for anyi ∈ Ig ∪ {sg} andk ∈ {1, 2, ..., Kg}, define
pi(k), theconditional maximum profit (CMP)of nodei at levelk, as follows:

pi(k) = max
xi∈Xi(k)

Pi(xi) (12)
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Note thatpi(k) denotes the maximum profit derived from the treeTi if the nodei receives traffic upto layerk from its
parent. Note that for any receiver nodei, pi(k) = Ui(b

g
k). Also note that maximum group profit that we are interested

in obtaining (see (8)) is equal topsg(Kg). Next we show how the CMPs of nodei can be derived from the CMPs of
its children nodes. Thus result will help us in computing the maximum group profit recursively by breaking it up into
smaller subproblems.

Consider the constraintxi ∈ Xi(k), for anyi ∈ Jg ∪ {sg} andk ∈ {1, 2, ..., Kg}. We first show that this constraint
is equivalent to a set of similar constraints involving the subtrees ofTi.

{xi : xi ∈ Xi(k)}
= {xi : xi ∈ Xi, xi = bg

k} (13)

= {xi : xi′ ∈ Xi′ , xi′ ≤ bg
k ∀i′ ∈ Ci, xi = bg

k} (14)

= {xi : xi′ ∈ Xi′ , xi′ ∈ {b1, ..., b
g
k} ∀i′ ∈ Ci,

xi = bg
k} (15)

= {xi : xi′ ∈ ∪k
k′=1Xi′(k′) ∀i′ ∈ Ci, xi = bg

k} (16)

Relation (13) follows from the definition ofXi(k) (see (11)), while (14) follows easily by expanding the constraints
in the setxi ∈ Xi(k) and using the factxi = bg

k.
From (10), it is easy to observe that for anyi ∈ Jg ∪ {sg}, the following equality holds

Pi(xi) =
∑

i′∈Ci

{Pi′(xi′)− (
∑

l∈Li′

λl)xi′} (17)

For anyi ∈ Jg ∪ {sg} andk ∈ {1, 2, ..., Kg}, we obtain

pi(k) = max
xi∈Xi(k)

Pi(xi) (18)

= max
xi∈Xi(k)

∑

i′∈Ci

{Pi′(xi′)− (
∑

l∈Li′

λl)xi′} (19)

= max
xi′∈∪k

k′=1
Xi′ (k′) ∀i′∈Ci,

xi=b
g
k

∑

i′∈Ci

{Pi′(xi′)

−(
∑

l∈Li′

λl)xi′} (20)

= max
xi′∈∪k

k′=1
Xi′ (k′) ∀i′∈Ci

∑

i′∈Ci

{Pi′(xi′)

−(
∑

l∈Li′

λl)xi′} (21)

=
∑

i′∈Ci

max
xi′∈∪k

k′=1
Xi′ (k′)

{Pi′(xi′)

−(
∑

l∈Li′

λl)xi′} (22)

=
∑

i′∈Ci

max
k′≤k

max
xi′∈Xi′ (k′)

{Pi′(xi′)

−(
∑

l∈Li′

λl)xi′} (23)
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=
∑

i′∈Ci

max
k′≤k

{ max
xi′∈Xi′ (k′)

Pi′(xi′)

−(
∑

l∈Li′

λl) max
xi′∈Xi′ (k′)

xi′} (24)

=
∑

i′∈Ci

max
k′≤k

{pi′(k′)− (
∑

l∈Li′

λl)b
g
k′} (25)

Relation (18) follows from (12), and (19) follows from (17). Relation (20) follows from (16). Relation (21) follows
from the fact that neither the term

∑
i′∈Ci

{Pi′(xi′)− (
∑

l∈Li′
λl)xi′}, nor the other constraints in (20), depends on the

variablexi. Relation (22) follows from the fact that the constraint set{xi′ ∈ ∪k
k′=1Xi′(k′) ∀i′ ∈ Ci} and the objective

function
∑

i′∈Ci
{Pi′(xi′) − (

∑
l∈Li′

λl)xi′} are both separable with respect to the variable vectorsxi′ , i
′ ∈ Ci. Note

that in (23) (and subsequently), we represent the constraintk′ ∈ {1, ..., k} simply ask ≤ k′, for the sake of conciseness.
Relation (25) follows from the definitions ofpi(k′) andXi(k′) (see (12) and (11)).

Relation (25) shows that the CMPs for a source/junction nodei can be expressed in terms of the CMPs of its children
nodes. This fact allows us to findpsg(Kg) using a dynamic programming approach. Thus, we can calculate the CMPs
with a bottom-up approach: first we compute the CMPs at the receiver nodes, then at junction nodes that are one level
above that, and so on, until we reach the source node. Note that the dynamic programming computations at the nodes in
any particular level of the tree can be executed simultaneously. This parallelism inherent in the structure of the dynamic
program can be utilized to solve the group profit maximization problem in a single round trip time. The practical
implementation of this dynamic program is discussed in more detail in the next subsection.

B. Implementation

Firstly, note that the dual variable (price) update procedure (7) can be implemented in a very simple way. To achieve
this, each linkl can keep track of the priceλl and periodically update it according to (7).

Now we describe how the rates are updated so that they satisfy (8). Assume that each source/junction/receiver node
maintains a CMP table of its own that contains the CMP values for all levelsk for that node. Thus the CMP table of
nodei in groupg containsKg entries, where thekth entry ispk

i . In order to update the CMP table entries according to
(25), a node junction/sourcei needs to know the following: i) the aggregate price of all links in the branch associated
with each child node, and ii) the CMP table of each child node.

Consider a source/junction nodei, and a junction/receiver nodei′ ∈ Ci. Then nodei can find the “branch price”
associated withi′ in the following way. Nodei can send a “price packet” downstream toi′ while setting the value of a
“price field” (included in the price packet) to zero. The subsequent links on the path of the packet add their prices to the
price field of the packet. Therefore, when the price packet reachesi′, the price field contains the aggregate price of all
links on the branch associated withi′. Nodei′ can then just send the price packet upstream to its parenti.

For any receiver nodei, the CMPs are easily calculated aspi(k) = Ui(b
g
k). Once a receiver has computed its CMP

table, it sends the CMP table upstream to its parent. Once a junction node has received the CMP tables from all of
its children nodes, it updates its CMP table entries according to (25), and sends its CMP table upstream to its parent
node. In this manner, the CMP tables are updated an propagated upstream by each receiver/junction node, till the source
node is reached. Once the source nodesg has updated its CMP table, it determines the downstream traffic rates in the
following way. For each nodei′ ∈ Csg , the source node sendski′ layers toi′, whereki′ is obtained as

ki′ = arg max
k′≤Kg

{pi′(k′)− (
∑

l∈Li′

λl)b
g
k′} (26)

A junction nodei determines the downstream rates in a similar manner. Letki be the number of layers that nodei
receives from its parent. Then, each nodei′ ∈ Ci receiveski′ layers fromi, whereki′ is determined as

ki′ = arg max
k′≤ki

{pi′(k′)− (
∑

l∈Li′

λl)b
g
k′} (27)

Thus nodei′ receives data at a ratebg
ki′

from its parenti. From the discussion in Section IV-A, it follows that when the
rates chosen as described above, they satisfy (8), i.e., maximize the group profit.
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The rate update procedure works in a manner opposite to that of the CMP table update procedure. Thus, the source
first determines the rates of its children, and informs each child (by sending a “rate packet” to the child) about the
corresponding rate. Each child node then determines the rates of their children nodes, and and this goes on, until the
rates of the receivers have been determined.

Therefore, the overall process of solving the group profit maximization problem and determining the rates consists
of two phases: i) a bottom-up phase to determine the CMP tables, followed by ii) a top-down phase to determine the
rates. Note that in each of these phases, the computations at the set of nodes at any particular level of the tree (in this
case, a ‘level’ refers to a set of nodes that are at the same hop-distance from the root) can occur in parallel. Thus, if the
processing delays are neglected, the total time required to execute the entire procedure (both phases included) is upper
bounded by the maximum round-trip delay.

C. Complexity Reduction

Consider a junction/source nodei. From (25), we note that the time for computing the CMP for levelk at nodei
is O(C̄K̄), whereC̄ is the maximum number of children of any node, andK̄ is the maximum number of layers in
any multicast group. Therefore, the time for computing the CMPs for all levels at any nodei is O(C̄K̄2). From (26)
and (27), it is easy to observe that the computation time for the rate update procedure at each source/junction node
is O(C̄K̄). Note that since each receiver/junction node needs to send a CMP table to its parent, the communication
complexity isO(K̄).

In the following, we show how the worst-case computational complexity for the CMP table update can be improved
so that it is only a linear function of̄K. Assume that in addition to its CMP table, a source/junction node maintains a
discounted CMP (d-CMP)table for each of its children. Leti′ be a child node of a source/junction nodei. Then the
d-CMP table fori′ maintained ati containsKg entries, and̃pi(k), thekth entry in that table, is defined as

p̃i′(k) = max
k′≤k

{pi′(k′)− (
∑

l∈Li′

λl)b
g
k′} (28)

Let k ≥ 2. Then, from the definition of̃pi′(k), we obtain

p̃i′(k) = max
k′≤k

{pi′(k′)− (
∑

l∈Li′

λl)b
g
k′}

= max {pi′(k)− (
∑

l∈Li′

λl)b
g
k,

max
k′≤k−1

{pi′(k′)− (
∑

l∈Li′

λl)b
g
k′}}

= max {pi′(k)− (
∑

l∈Li′

λl)b
g
k, p̃i′(k − 1)} (29)

Note thatp̃i′(1) = pi′(1)− (
∑

l∈Li′
λl)b

g
1. Using this fact and (29), we see that if we compute the d-CMP table entries

in the orderp̃i′(1), p̃i′(2), ..., p̃i′(Kg), we can compute the entire d-CMP table inO(K̄) time. Therefore, computing
the d-CMP tables for all children of nodei takesO(C̄K̄) time. Once these table have been computed (which is done
once nodei has received the CMP tables of its children), the CMP table for nodei can be computed in additionalO(K̄)
time, according to the following relation (obtained from (25) and (28)) :

pi(k) =
∑

i′∈Ci

p̃i′(k) .

Therefore, the CMP tables at each node can be computed inO(C̄K̄) time.

V. SIMULATION RESULTS

Simulation experiments carried out on various network topologies/scenarios confirm that our algorithm achieves the
optimal rates in an asynchronous slowly time-varying network environment. Next we present a few representative
examples to demonstrate this fact.
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Fig. 3. An example network(The numbers associated with the links are the link capacities (in Mbps). The propagation delay for each link is 1 ms.)

Figure 3 shows the example network that we consider, which consists of two multicast groups sharing a 11-node
10-link network. We have taken the network topology to be the same as that in [11], [12], so that our simulation results
can be easily compared with those of the existing approaches. We assume layered multicasting, and each multicast
group can send traffic in 20 layers, each of the layers having a bandwidth of 0.25 MBps. Therefore, the maximum
allowed bandwidth is 5 MBps, and bandwidth can be allocated in units of 0.25 MBps. Note that layers are always sent
cumulatively. Therefore, to achieve a rate ofk*0.25 MBps, the lowestk layers need to be sent. Note that in layered
multicasting, each data packet belongs to one particular layer. Therefore, a source/junction node can send traffic to its
child at a particular discrete bandwidth level simply by sending/forwarding only those data packets which belong to a
corresponding set of cumulative layers.

In our experiments, the link prices (dual variables) are updated at regular intervals of 20 msec, and the receivers
send their CMP tables upstream at regular intervals of 50 msec. Thus, the rates are updated (i.e., the group profit
maximization problem is solved) once every 50 msec. The step-size of link price updates,α, is kept fixed at 0.005,
and the links update the prices based on the estimated (measured) aggregate traffic rate on the link (the estimation time
window is 20 msec). All data packets (sent downstream) are 400 bytes long. All control packets (the price packets sent
upstream, and the rate packets sent downstream) are 200 bytes long. In all of the simulations described in this paper,
maximum utilization of a link is set to 95%. Therefore, a link increases or decreases its price depending on whether the
overall estimated traffic on the link exceeds 95% of its capacity or not.

In the network in Figure 3, the utility functions of receiversi4 andi6 are0.5 ln(1 + x), while those of the rest are
ln(1 + x) (wherex is expressed in MBps). The minimum rate for each receiver is zero, and the maximum rate is the
capacity of the link leading to the receiver. Note that sincei5 is connected directly to the source, it behaves essentially
like an unicast session. In our simulation scenario, the sequence of arrivals/departures of receivers are as follows. The
receiversi1, i2, i3, i6 andi7 arrive at timet = 0. Receiveri5 joins att = 30 secs, receiveri4 joins att = 60 secs,i2
leaves att = 90 secs, andi6 leaves att = 120 secs. All receivers start with an initial rate of zero.

Figure 4, which shows some rate plots in the time window 0-180 secs, demonstrates the performance of our algorithm
in the particular example considered. Figure 4 shows the rates at which the receiversi2, i4, i5 and i7 receive data
(obtained by measurement at the individual receivers), along with the optimal rates. (These 4 receivers were chosen
arbitrarily, and rate plots of the other receivers also exhibit a similar trend.) The plotted rates are computed by averaging
the measured rates, where the averaging is done every sec. Note that the sudden changes in the optimal rates att =
30, 60, 90, 120 secs are due to the arrival/departure of receivers. The plots demonstrate that the achieved receiver rates
track the optimal rates closely even as the optimal rates change. Note that the optimal rates plotted in the figure are
computed based on the relaxed problemP̃, and not the actual discretized problemP (which can only be computed
by solving a very complex integer program). Therefore, the slight difference between the optimal and the achieved
rates, as seen in the figure, is expected. A comparison of Figure 4 with the simulation results in [11], [12] shows
that the convergence of our algorithm is much faster, and rate fluctuations significantly lower, as compared to existing
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Fig. 4. Convergence of achieved rates.(The straight lines are the optimal (theoretical) rates.)

approaches.

VI. RELATED WORK

The utility maximization framework for rate control was suggested by Kelly [13]. In the context of unicast networks,
this problem has received considerable attention. Several flow control algorithms, both rate-based and window-based,
have been proposed [2], [14], [18], [17], [16], [10]. Each of these algorithms are derived using a different optimiza-
tion/control theoretic approach. The approach presented in this paper is closely related to the approach used by Low and
Lapsley [18] for the unicast case, and can be considered as a generalization of the latter. It is important to note, however,
that the generalization of the algorithm and the analysis in [18] to the multirate multicast case is not straightforward. In
the multicast case, the problem involves some non-differentiability and non-separability issues, which makes it much
more complex than its unicast version. Moreover, the obtained solution must satisfy certain multicast-specific require-
ments (for instance, the solution must scale well with the size of the multicast groups), which makes the problem even
trickier to solve. A detailed discussion of these complicating issues is provided in [11]. Not surprisingly, therefore,
the rate control algorithm that we obtain for the multicast case is much more complex than its unicast version. In our
approach, we have used subgradients [26] to address the issue of dual non-differentiability. We have also exploited the
fact that multicast data is transmitted in a few discrete layers, and used dynamic programming to develop a distributed
and scalable solution. The consideration of discreteness of rates and the use of dynamic programming is unique and
novel feature of our approach.

For the case of multirate multicasting, the optimization based rate control problem has been addressed in [11], [12],
[8]. In [11], the authors also adopt a dual-based approach for solving the multirate multicast utility maximization
problem. However, the algorithms in [11] suffer from certain major drawbacks which limit their practical viability.
The most significant drawback of these algorithms is that the algorithms require each link to keep track of all multicast
groups (sessions) going through it. Therefore, these algorithms do not scale as the number of multicast groups using a
link increases. Moreover, the subgradient based algorithm presented in that paper results in rapidly fluctuating rates, and
could result is rapid adding and dropping of layers. This is clearly undesirable in practice. The proximal approximation
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based algorithm, on the other hand, is a two-level algorithm, which makes it difficult to implement in practice. Also,
the two-level nature of the algorithm slows down the convergence speed significantly, although it results in smooth
convergence. A comparison of the results in Figure 4 with those in [11] reveals all these facts, and shows that the
convergence speed of our algorithm is an order of magnitude better than that of the algorithms in [11]. Lastly, the
algorithm and convergence results in [11] are derived under the assumption of continuous rates, and so it is not clear if
the rates, when rounded up or down to the discrete rate values, would achieve the optimal rates.

The algorithms in [12], [8] are very similar in nature, and can be viewed as a subgradient approach applied to a
penalized primal objective function. Whereas the algorithm in [12] can be seen as a generalization of the unicast
algorithm in [10], the algorithm in [8] generalizes the unicast algorithm proposed in [16]. These algorithms are simple
and elegant, and are scalable with respect to the the multicast group sizes, as well as the number of multicast groups
sharing the network. However, these algorithms also suffer from the drawback that the rates can fluctuate rapidly,
resulting in very frequent adding and dropping of layers. The simulation results presented in [12] clearly demonstrate
this fact. These rate fluctuations are a result of the use of primal subgradients, which is required in this case due to the
non-differentiability of the problem. Also note that the convergence results in [12], [8] assume continuity of rates, and
the discretized rates need not necessarily converge to the optimum (or a small neighborhood of it). Finally, the rate of
convergence of these algorithms seem rather slow.

Dual-based approaches are known to have fast convergence rates in most optimization scenarios. On the other hand,
primal subgradient approaches typically have very poor convergence speeds. A faster convergence speed of our algo-
rithm with respect to the algorithms in [12], [8] can be attributed to this fact. However, note that the convergence speed
of the algorithms in [11] are very slow in spite of these being dual-based algorithms. We believe this is a result of
several factors, including the larger dimensionality of the search space, use of subgradients in one of the algorithms
and the two-level nature of the other algorithm. In the context of our algorithm, we believe that the use of dynamic
programming (and the fact that it can solve the group profit maximization problem in a single round-trip time) is a
crucial factor behind the fast convergence speed of our algorithm.

Unlike existing algorithms, the overhead of computation and communication in our algorithm depends on the number
of transmitted layers. However, as we have argued in previous sections, we do not consider this to be a significant
drawback of our algorithm, since the number of layers used per multicast group is typically small in practice.

VII. C ONCLUDING REMARKS AND FUTURE WORK

On the theoretical side, there are several issues that merit further research. Note that in this paper, the convergence
result was shown to hold under the assumption of synchronous updates. However, in real networks, the rate and price
updates will typically be asynchronous, and delays are variable. An interesting problem for future research would be to
investigate the convergence properties of the algorithm theoretically in such a scenario. Note the simulation results do
demonstrate that the algorithm converges and achieves the optimal rates even under asynchronous updates. Convergence
of gradient algorithms under asynchronous updates has been investigated by Bertsekas and Tsitsiklis [5]. However, note
that our algorithm is based on a subgradient approach and the typical arguments used for the convergence of gradient
algorithms do not hold in this case. However, we still believe that if all delays and updated intervals are bounded, our
algorithm can be shown to converge to approximately optimal rates even in the case of asynchronous updates, provided
the step-sizes are “sufficiently small”. This question is currently under investigation.
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APPENDIX: PROOF OFTHEOREM 1

We first state and prove a few lemmas that will be used in the proof of Theorem 1.
Let λ(n) = (λl(n), l ∈ L) denote the vector of dual variables at thenth iterative step, whereλl(n) is updated

according to (7). LetΛ∗ denote the set of all optimal solutions of the dual problemminλ≥0 D(λ) (note the the dual
optimal solution can be non-unique). It is easy to show thatΛ∗ is compact, i.e., closed and bounded. In the following,
let ρ(λ, Λ∗) = minλ∗∈Λ∗ ||λ − λ∗|| denote the Euclidean distance of a pointλ from the setΛ∗. The following lemma
states that the dual variables “converge” to a neighborhood around the optimum.

Lemma 1:Choose anyε > 0. Then there exists anαε > 0 and an integerNε > 0, such that for allα satisfying
0 < α < αε, the following result holds for alln > Nε:

ρ(λ(n), Λ∗) ≤ ε .

The lemma can be proved by standard techniques in subgradient optimization theory, and is therefore omitted for brevity.
(For instance, the lemma can be proved by proceeding along the same lines as that of Theorem 2.3 of Shor’s classic text
on this subject [26].)

For eachg ∈ G, define the set̃Zg as Z̃g = {x : bg
1 ≤ xi ≤ bg

Kg ∀i ∈ Ig ∪ {sg} ∀g ∈ G}. For eachg ∈ G,
defineX̃g = Y g ∩ Z̃g, whereY g is given by (4). LetX̃ = ∩g∈GX̃g. Also let X = ∩g∈GXg. DefineP̃ (x, λ) =∑

i∈R Ũi(xi)−
∑

i∈I(
∑

l∈Li
λl)xi.

Lemma 2:Let x∗ be any optimal solution of̃P. Then for anyλ∗ ∈ Λ∗, the following holds:

P̃ (x∗, λ∗) = max
x∈X̃

P̃ (x, λ∗) = max
x∈X

P̃ (x, λ∗) = D(λ∗) .
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Proof: We prove the lemma in three steps:

(i) maxx∈X P̃ (x, λ∗) = D(λ∗): This follows straightforwardly from the fact that the functionsUi andŨi are equal at
the discrete bandwidth levels.

(ii) maxx∈X̃ P̃ (x, λ∗) = maxx∈X P̃ (x, λ∗): Consider anyλ ≥ 0. Let x̂ = (x̂i, i ∈ I ∪ S) ∈ X̃ attain the maximum

maxx∈X̃ P̃ (x, λ). For everyi ∈ I ∪ S, let x̂l
i ≤ x̂i represent the largest discrete bandwidth level no larger thanx̃i.

Also, for everyi ∈ I ∪ S, let x̂u
i ≥ x̂i represent the smallest discrete bandwidth level no smaller thanx̂i. Define

Ẑ = {x : x̂l
i ≤ xi ≤ x̂u

i ∀i ∈ I ∪ S}. Let X̂ = ∩g∈GY g ∩ Ẑ. SinceX̂ ⊆ X̃, it follows thatx̂ attains the maximum
maxx∈X̂ P̃ (x, λ). Now note thatX̂ is a polyhedron, and̃P (x, λ) is a linear function ofx in X̂ (this follows from the

fact that the functions̃Ui are linear in between the discrete bandwidth levels). Therefore, one of the “vertices” ofX̂
must attain the maximum of̃P (x, λ) in X̂. It is also easy to see that all the vertices of the polyhedronX̂ are elements
of X. Therefore, there exists āx ∈ X such thatP̃ (x̄, λ) = maxx∈X̂ P̃ (x, λ) = maxx∈X̃ P̃ (x, λ). Therefore, we obtain

max
x∈X̃

P̃ (x, λ) = max
x∈X

P̃ (x, λ) ∀λ ≥ 0 . (30)

Choosingλ = λ∗ in (30), we obtain the desired result.

(iii) P̃ (x∗, λ∗) = maxx∈X̃ P̃ (x, λ∗): Sinceλ∗ minimizesD(λ) = maxx∈X P̃ (x, λ) over λ ≥ 0, it follows from

(30) thatλ∗ must also minimizemaxx∈X̃ P̃ (x, λ) over λ ≥ 0. Therefore,λ∗ must be an optimal solution of the

dual of problemP̃. SinceP̃ is a maximization problem with concave objective function and linear constraints, there
is no duality gap (from Proposition 5.2.1 of [4]). Then from Propositions 5.1.4 and 5.1.1, we obtainP̃ (x∗, λ∗) =
maxx∈X̃ P̃ (x, λ∗).

Combining (i), (ii) and (iii), we obtain the desired result. 2

Lemma 3:There exists a constantC < ∞, such that for everyλ1, λ2 > 0, the following holds:

||D(λ1)−D(λ2)|| ≤ C||λ1 − λ2|| .
Proof: For anyλ ≥ 0, letx(λ) = (xi(λ), i ∈ I∪S) represent the point which achieves the maximum inmaxx∈X{

∑
i∈R Ui(xi)−∑

i∈I(
∑

l∈Li
λl) xi }. Define a|L|-dimensional vectory(λ) as follows: y(λ) = (yl(λ), l ∈ L) whereyl(λ) =

cl −
∑

i∈Il
xi(λ). It can be shown thaty(λ) is a subgradient ofD(λ) at λ (see Section 6.1 of [4]). Note that sinceX

is a bounded set,x(λ) is bounded. Therefore, there exists aC < ∞ such that||y(λ)|| ≤ C for all λ ≥ 0. From these
facts, and the definition of a subgradient (see Section 6.1 of [4]), we obtain the following for anyλ1, λ2 ≥ 0:

D(λ1)−D(λ2) ≤ 〈
λ1 − λ2, y(λ1)

〉

≤ ||λ1 − λ2|| ||y(λ1)||
≤ C||λ1 − λ2|| (31)

where〈·, ·〉 denotes the inner product. Similarly, we also obtain

D(λ1)−D(λ2) ≥ 〈
λ1 − λ2, y(λ2)

〉

≥ −||λ1 − λ2|| ||y(λ2)||
≥ −C||λ1 − λ2|| (32)

Combining (31) & (32), we obtain the desired result. 2

Proof of Theorem 1: Let b̂ = ming∈G mink∈{1,...,Kg−1}(b
g
k+1 − bg

k) > 0. Therefore,̂b is the minimum difference in
bandwidth between two adjacent discrete bandwidth levels, in any multicast group. Also letB = maxg∈G bg

Kg > 0
denote the maximum bandwidth level in any multicast group. Letx(n) = (xi(n), i ∈ I ∪ S) denote the rate vector at
thenth iterative step, as defined by (8). Letγ = mini∈R γi > 0.
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Chooseε = γb̂2

4(|I||L|B+C) in Lemma 1. Assume that the step-sizeα used for updating the link prices (as in (7)) satisfies

0 < α < ᾱ = αε. Then from Lemma 1, there exists aλ∗ ∈ Λ∗, such that for alln > N̄ = Nε,

||λ(n)− λ∗|| ≤ γb̂2

4(|I||L|B + C)
. (33)

Consider anyn > N̄ . Let us assume, for the sake of contradiction, that|x∗i − xi(n)| > b̄g for somei ∈ Rg, g ∈ G.
Since the difference between adjacent discrete bandwidth levels of groupg is at most̄bg, it follows that there exists a
x̂i ∈ {bg

1, ..., b
g
Kg} such that0 < |x∗i − x̂i| < |x∗i −xi(n)|. Thusx̂i represents some discrete bandwidth level in-between

(and excluding)x∗i andxi(n), and must satisfy one of the two following conditions: (i)xi(n) < x̂i < x∗i , or (ii)
x∗i < x̂i < xi(n). Defineθ1 = x̂i − xi(n), andθ2 = x∗i − x̂i. From the above discussion, it follows that|θ1| ≥ b̂,
|θ2| > 0, and |θ1 + θ2| > b̄g ≥ b̂ (by assumption). Definêx = (x̂i′ , i

′ ∈ I ∪ S) as x̂ = θ1
θ1+θ2

x∗ + θ2
θ1+θ2

x(n).
Geometrically,̂x represents the point at which the straight line betweenx∗ andx(n) cuts the planexi = x̂i. Note that
sincex∗, x(n) ∈ X̃, it follows thatx̂ ∈ X̃.

P̃ (x̂, λ∗)− θ1

θ1 + θ2
P̃ (x∗, λ∗)− θ2

θ1 + θ2
P̃ (x(n), λ∗)

=
∑

i′∈R

Ũi′(x̂i′)− θ1

θ1 + θ2

∑

i′∈R

Ũi′(x∗i′)−
θ2

θ1 + θ2

∑

i′∈R

Ũi′(xi′(n)) (34)

≥ Ũi(x̂i)− θ1

θ1 + θ2
Ũi(x∗i )−

θ2

θ1 + θ2
Ũi(xi(n)) (35)

≥ Ui(x̂i)− θ1

θ1 + θ2
Ui(x∗i )−

θ2

θ1 + θ2
Ui(xi(n)) (36)

≥ γθ1θ2

2
. (37)

Relation (34) follows from the fact that the term
∑

i∈I(
∑

l∈Li
λl(n)) xi in P̃ (x, λ) is linear inx. Relation (35) follows

from the fact that the term
∑

i′∈R\{i} Ũi′(x) is a concave function ofx. Relation (36) is obtained using the facts

Ũi(x̂i) = Ui(x̂i), Ũi(x∗i ) ≤ Ui(x∗i ) andŨi(xi(n)) = Ui(xi(n)), which directly follow from (9), the definition of̃Ui.
Relation (37) follows from the strict concavity ofUi (Assumption 1) and the factγi ≥ γ.

P̃ (x(n), λ∗)− P̃ (x(n), λ(n)) =
∑

i′∈I

xi′(n)
∑

l∈Li′

(λ∗l − λl(n))

≤ |I||L|Bγb̂2

4(|I||L|B + C)
(38)

Relation (38) follows from (33), and from the fact that|xi′ | ≤ B ∀i′ ∈ I.

P̃ (x(n), λ(n))− P̃ (x∗, λ∗) = D(λ(n))−D(λ∗) (39)

≤ C||λ(n)− λ∗|| (40)

≤ Cγb̂2

4(|I||L|B + C)
. (41)

Note that (39) is obtained using Lemma 2, the definition ofλ(n) (see (8)), and the fact that the functionsUi andŨi are
equal at the discrete bandwidth levels. Relation (40) follows Lemma 3, and relation (41) follows from (33). From (38)
and (41), we obtain

P̃ (x(n), λ∗)− P̃ (x∗, λ∗) ≤ γb̂2

4
. (42)
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Combining (37) and (42), we obtain

P̃ (x̂, λ∗)− P̃ (x∗, λ∗) ≥ γθ1θ2

2
− γb̂2θ2

4(θ1 + θ2)

≥ γb̂θ2

2
− γb̂2θ2

4b̂
(43)

=
γb̂θ2

4
> 0 . (44)

Relation (43) follows from the fact(θ1 +θ2) ≥ θ1 ≥ b̂, and (44) follows from the factγ, b̂, θ2 > 0. From (44), it follows
thatx∗ cannot attain the maximum of̃P (x, λ∗) over X̃, which contradicts Lemma 2. Therefore, our assumption that
there exists somei ∈ Rg, g ∈ G such that|x∗i − xi(n)| > b̄g, was incorrect, thus proving Theorem 1. 2


