
CONTEXT-AWARE COHERENCE PROTOCOLS

FOR FUTURE PROCESSORS

by

Liqun Cheng

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2007

Copyright c© Liqun Cheng 2007

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Liqun Cheng

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: John B. Carter

Rajeev Balasubramonian

Faye A. Briggs

Al Davis

Ganesh Gopalakrishnan

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Liqun Cheng in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date John B. Carter
Chair: Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

The semiconductor industry is experiencing a shift from “computation-bound

design” to “communication-bound design.” Many future systems will use one or

many chip multiprocessors (CMPs) and support shared memory, as CMP-based

systems can provide high-performance, cost-effective computing for workloads with

abundant thread-level parallelism. One of the biggest challenges in CMP designs

is to employ efficient cache coherence protocols to maintain coherence.

Most commercial products implement directory-based protocols to maintain

coherence. Directory-based protocols avoid the bandwidth and electrical limits of a

centralized interconnect by tracking the global coherence state of cache lines via a

directory structure. Directory-based protocols are preferred in future systems due

to their ability to exploit arbitrary point-to-point interconnects. However, existing

directory-based protocols are not optimum in specific contexts. For example,

existing protocols cannot optimize the coherence traffic according to the sharing

patterns shown in the applications or the varying latency, bandwidth needs of

different coherence messages, which leads to suboptimal performance and extra

power consumption.

To overcome these limitations of conventional directory-based protocols, we

propose two cache coherence protocols that optimize the coherence traffic based

on context knowledge. After automatically detecting a stable producer-consumer

pattern in an application, our sharing pattern-aware coherence protocol uses direc-

tory delegation to delegate the “home directory” of a cache line to the producer

node, thereby converting 3-hop coherence operations into 2-hop operations. Then,

the producer employs speculative updates to push the data to where it might

soon be consumed. When the producer correctly predicts when and where to

send updates, these 3-hop misses become local misses, effectively eliminating the

impact of remote memory latency. Our interconnect-aware protocol can exploit

a heterogenous interconnect comprised of wires with varying latency, bandwidth,

and energy characteristics. By intelligently mapping critical messages to wires

optimized for delay and noncritical messages to wires optimized for low power,

our interconnect-aware protocol can achieve performance improvement and power

reduction at the same time.

We demonstrate the performance advantage of the proposed mechanisms through

architecture-level simulation. The producer-consumer sharing-aware protocol re-

duces the average remote miss rate by 40%, reduces network traffic by 15%, and

improves performance by 21% on seven benchmark programs that exhibit producer-

consumer sharing using a cycle-accurate simulator of a future 16-node SGI multi-

processor. The interconnect-aware protocol yields a performance improvement of

11% and energy reduction of 22% on a set of scientific and commercial benchmarks

for a future 16-core CMP system.

v

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Cache Coherence Protocol Design Space . 2
1.1.1 Low-latency Coherence Misses . 3
1.1.2 No Reliance on Bus Interconnects . 4
1.1.3 Low Power Consumption . 5
1.1.4 Simple Programming Model . 5
1.1.5 Low Bandwidth Usage . 6

1.2 Context of Cache Coherence Protocols . 7
1.3 Thesis Statement . 10
1.4 Contributions . 11
1.5 Outline . 12

2. BACKGROUND AND RELATED WORK 13

2.1 Caching in Multiprocessor Systems . 13
2.2 Common Coherence States . 17

2.2.1 MESI Protocol . 17
2.2.2 MOESI Protocols . 18

2.3 Common Coherence Protocols . 20
2.3.1 Bus-based Protocols . 20
2.3.2 Ring-based Protocols . 21
2.3.3 Token-based Protocols . 22
2.3.4 Directory-based Protocols . 23

2.4 Related Work . 25
2.4.1 Sharing Pattern-aware Protocols Related 25
2.4.2 Interconnect-aware Protocols Related . 27

3. SHARING PATTERN-AWARE COHERENCE PROTOCOLS 30

3.1 Producer-consumer Sharing . 31
3.2 Protocol Implementation . 35

3.2.1 Remote Access Cache . 36
3.2.2 Sharing Pattern Detection . 36

3.2.3 Directory delegation . 38
3.2.3.1 Delegation . 39
3.2.3.2 Request forwarding . 40
3.2.3.3 Undelegation . 41
3.2.3.4 Discussion . 42

3.2.4 Speculative updates . 42
3.2.4.1 Delayed Intervention . 43
3.2.4.2 Selective Updates . 44
3.2.4.3 Summary of Control Flow . 45

3.2.5 Verification . 46
3.3 Evaluation . 47

3.3.1 Simulator Environment . 47
3.3.2 Results . 48
3.3.3 Sensitivity Analysis . 54

3.3.3.1 Equal Storage Area Comparison . 54
3.3.3.2 Sensitivity to Intervention Delay Interval 56
3.3.3.3 Sensitivity to Network Latency . 58
3.3.3.4 RAC and Delegate Cache . 59

3.4 Summary . 60

4. INTERCONNECT-AWARE COHERENCE PROTOCOLS . . . 62

4.1 Background . 63
4.2 Wire Implementations . 64
4.3 Optimizing Coherence Traffic . 66

4.3.1 Protocol-dependent Techniques . 67
4.3.1.1 Proposal I: Write for Shared Data 68
4.3.1.2 Proposal II: Read for Exclusive Data 69
4.3.1.3 Proposal III: NACK Messages . 70
4.3.1.4 Proposal IV: Unblock and Write Control 70
4.3.1.5 Proposal V: Signal Wires . 71
4.3.1.6 Proposal VI: Voting Wires . 71

4.3.2 Protocol-independent Techniques . 72
4.3.2.1 Proposal VII: Synchronization Variables 72
4.3.2.2 Proposal VIII: Writeback Data . 72
4.3.2.3 Proposal IX: Narrow Messagess . 72

4.3.3 Implementation Complexity . 73
4.3.3.1 Implementation Overhead . 73
4.3.3.2 Overhead in Decision Process . 74
4.3.3.3 Overhead in Cache Coherence Protocols 75

4.4 Results . 75
4.4.1 Methodology . 75

4.4.1.1 Simulator . 75
4.4.1.2 Interconnect Power/Delay/Area Models 77

4.4.2 Results for Scientific Benchmarks . 80
4.4.3 Results for Commercial Benchmarks . 84
4.4.4 Sensitivity Analysis . 87

vii

4.4.4.1 Out-of-order/In-order Processors . 87
4.4.4.2 Link Bandwidth . 88
4.4.4.3 Routing Algorithm . 89
4.4.4.4 Network Topology . 89

4.5 Summary . 91

5. CONCLUSIONS . 92

REFERENCES . 94

viii

LIST OF FIGURES

1.1 Context knowledge for cache coherence protocols. 8

1.2 An example of 3-hop miss . 9

2.1 Write invalidate and write update . 16

2.2 Three characteristics of cached data. 19

3.1 Coherence operations at the producer . 32

3.2 Coherence operations at the consumer . 33

3.3 Modeled node architecture (new components are highlighted) 35

3.4 Format of delegate cache table entries . 39

3.5 Directory delegation . 39

3.6 Request forwarding . 40

3.7 Directory undelegation . 41

3.8 Flow of speculative updates . 45

3.9 Application speedup . 49

3.10 Application network messages . 49

3.11 Application remote misses . 50

3.12 Equal storage area comparison (larger L2 caches) 54

3.13 Equal storage area comparison (larger directory caches) 55

3.14 Sensitivity to intervention delay . 56

3.15 Delayed intervention VS. updates issued by processor 57

3.16 Sensitivity to hop latency (Appbt) . 58

3.17 Sensitivity to delegate cache sz (MG) . 59

3.18 Sensitivity to RAC size (Appbt) . 60

4.1 Examples of different wire implementations . 66

4.2 Read exclusive request for a shared block in MESI protocol 68

4.3 Interconnect model for a 16-core CMP . 77

4.4 Speedup of heterogeneous interconnect . 80

4.5 Distribution of messages on the heterogeneous network 81

4.6 Distribution of L-message transfers across different proposals. 82

4.7 Improvement in link energy and ED2. 84

4.8 Speedup in commercial applications. 86

4.9 Power reduction in commercial applications. 87

4.10 Speedup of heterogeneous interconnect when driven by OoO cores . . . 88

4.11 2D torus topology. 89

4.12 Heterogeneous interconnect speedup in 2D torus. 90

x

LIST OF TABLES

2.1 MESI state transitions . 18

2.2 MOESI state transitions . 26

3.1 System configuration. 47

3.2 Applications and data sets . 48

3.3 Number of consumers in the producer-consumer sharing patterns 51

4.1 Power characteristics of different wire implementations) is assumed to
be 0.15. The above latch spacing values are for a 5GHz network. 73

4.2 System configuration. 76

4.3 Area, delay, and power characteristics of wires 78

4.4 Energy consumed by arbiters, buffers, and crossbars 79

CHAPTER 1

INTRODUCTION

Improvements in semiconductor technology have led to a tremendous increase

in the clock speed and transistor counts of single-chip devices. Higher clock speeds

along with novel architecture techniques have improved microprocessor performance

by orders of magnitude in the last decade [29]. An emerging trend in processor

microarchitecture design, driven by both technology and marketing initiatives, is a

move towards chip multiprocessors (CMPs). CMPs employ multiple independent

processing cores on a single processing chip. The individual cores in a CMP are

slower than the processors found in typical uniprocessor chips. However, they con-

sume less power, generate less heat, and in aggregate have more potential compute

power. In spite of dramatic improvements in a single chip’s performance, higher

performance is demanded to solve large-scale scientific and commercial problems.

To surpass the computational power offered by a single chip, computer designers

have studied techniques to connect two or more microprocessors and make them

cooperate on common computational tasks. These multiprocessors are designed

with two major approaches: bus-based multiprocessors and distributed shared

memory (DSM) multiprocessors. For small numbers of processors, the dominant

architecture employs a shared bus that joins the processors and one or more main

memory modules. Such systems are called symmetric multiprocessors (SMPs), as

all processors have equal access to the centralized main memory.

DSM systems are designed to scale to larger numbers of processors. These sys-

tems provide the abstraction of one global memory, which is physically distributed

among nodes. Programs access data by referencing an address in the global memory

space. DSM architectures transparently fetch the data, regardless of its physical

2

location, to satisfy the request. This abstraction matches a programmer’s intuition

developed on SMPs. Programmers can develop working programs without worrying

about data distribution and communication. However, DSM machines hide the

underlying distributed memory organization too well at times. Programs which

are naive about data distribution and communication are unlikely to perform well.

In a DSM system, the access latency to data depends on the memory module in

which the data resides. Remote memory access latency can be orders of magnitude

higher than local memory access latency. Because of the resulting variability in

memory access time, DSM machines are also referred as Non-Uniform Memory

Access (NUMA) machines.

Caches are used in the multiprocessors to hide memory latencies. Multiprocessor

caches are more complicated than uniprocessor caches because they introduce a new

problem, cache coherence that arises when multiple processors cache and update

the same memory location. Solving this problem in hardware requires a cache

coherence protocol that enforces the desired memory model and guarantees a load

of any memory location still returns the latest value written in that location. There

are two major types of cache coherence protocols: bus-based protocols [33] for small

systems, and directory-based protocols [83] for large-scale shared memory systems.

Chapter 2 details bus-based and directory-based protocols, along with other re-

cently proposed protocols like ring-based [112] and token-based protocols [95].

1.1 Cache Coherence Protocol Design Space

Commercial multiprocessors use a variety of bus-based protocols [33, 35, 36, 37]

or directory-based protocols [62, 70, 79, 83, 85]. A number of other protocols

have also been proposed in academia [40, 55, 79, 107]. We will explore the de-

sign space by identifying five desirable attributes of cache coherence protocols:

low-latency coherence misses (Section 1.1.1), no reliance on bus interconnects (Sec-

tion 1.1.2), low power consumption (Section 1.1.3), simple programming model

(Section 1.1.4) and low bandwidth usage (Section 1.1.5). Unfortunately, no existing

cache coherence protocol exhibits all five of these attributes. This limitation of

3

the current approaches motivates our proposal to employ context-aware cache

coherence protocols that can improve these attributes within a given context. Our

sharing-pattern aware protocol can improve performance and bandwidth efficiency

(Chapter 3). Our interconnect-aware protocol can improve performance and reduce

power consumption (Chapter 4).

1.1.1 Low-latency Coherence Misses

Cache misses in uniprocessors are typically categorized into three categories:

compulsory, capacity and conflict misses [63]. Compulsory misses, also known as

cold misses, refer to those cache misses caused by the first access to a particular

memory line by a processor. Capacity misses occur when all lines that are referenced

by a processor during the execution of a program do not fit in the cache, so some

lines are replaced and later accessed again. Conflict misses occur in caches with

less than full associativity when the collection of lines referenced by a program that

maps to the same cache set does not fit in the set. Multiprocessors introduce a new

category of cache misses: coherence misses. Coherence misses occur when different

processors read and write to the same block.

Modern processors have large caches with high set associativity, which reduces

the number of capacity and conflict misses. Therefore, coherence misses are often

the performance limiters in shared memory multiprocessors. Barroso et al. [21] and

Martin et al. [96] report that about one-half of all off-chip memory references are

coherence misses for commercial workloads. To reduce the latency of coherence

misses, a coherence protocol should ideally support direct cache-to-cache transfer.

For example, bus-based protocols support fast cache-to-cache transfer by broad-

casting all requests to locate the owner directly. In contrast, directory protocols

indirectly find remote data by placing a directory lookup first, which incurs a 3 hop

traversal for cache-to-cache misses.

Meanwhile, memory and interconnect latencies are not keeping up with the

dramatic increases in processor performance. The coherence miss latency measured

in processor cycles is increasing. On a machine that is several meters across, such

4

as the 10,000 processor SGI Altix “Columbia” system that SGI recently sold to

NASA [1], even if the request and response move at the speed of light, with no

processing delays, the latency of accessing remote data on a modern 4GHz processor

is hundreds of processor cycles. Therefore, reducing the impact of remote coherence

misses becomes more and more important.

1.1.2 No Reliance on Bus Interconnects

The interconnection network is a key component of a multiprocessor system.

Early bus-based protocols rely on a bus or bus-like interconnect, which provides

a total order of requests. An interconnect provides a total order if all messages

are delivered to all destinations in the same order. For example, if message A

is sent before message B, then all processors should receive message A before B.

However, as the bus frequency continuously increases, the bandwidth and electrical

limits of centralized bus designs make them inappropriate for current generation

systems [14].

To overcome this limitation, some recent bus-based protocols use virtual bus

switched interconnects that exploit high-speed point-to-point links [14]. These

interconnects provide a total order by ordering all requests at the root switch. For

example, the Sun UE10000 [35], which can accommodate up to 64 processors, uses

four interleaved address buses to broadcast coherence transactions. This complex

address network, designed to perform ordered broadcasts, significantly increases

the final cost of the system. Moreover, the energy consumed by snoop requests and

snoop bandwidth limitations make snoopy-based designs extremely challenging.

In contrast, directory-based protocols can take advantage of scalable point-to-

point interconnection networks, such as a mesh or a torus [49]. These systems

maintain a directory at the home node that resolves possibly conflicting requests by

ordering requests on a per-cache-block basis. Unfortunately, traditional directory

protocols must first send all requests to the home node, adding latency to the

critical path of cache-to-cache misses.

5

1.1.3 Low Power Consumption

Power has always been the dominant design issue in the world of handheld

and portable devices. Battery life and system cost constraints drive designers to

consider power over performance in such systems. Power consumption has recently

emerged as the major constraint in the design of microprocessors [57, 115, 27].

Chip designers now consider power consumption and dissipation limits early in the

design cycle and evaluate the tradeoff between power and performance.

Although one obvious metric to characterize the power-performance efficiency

of a microprocessor is MIPS (million instructions per second)/watts (W), there are

strong arguments against it. Performance has typically been the primary driver

of high end processors, so a design team may well choose a design point that has

high performance level but low MIPS/W efficiency (within power budget). To solve

this problem, a fused metric energy-delay product is often used. The extra delay

factor ensures a greater emphasis on performance. For the highest performance

server-class machines, it may be appropriate to weight the delay part even more,

which would point to the use of energy-delay.2

Since multiprocessors are at the high end of the performance spectrum, we

use energy-delay2 metric to evaluate the power-performance efficiency of the cache

coherence protocols. This metric limits the effectiveness of some common cache

coherence protocol optimizations. For example, prefetching is one technique used

to reduce the number of coherence misses. Some researchers propose a two-level

predictor to predict the coherence messages and prefetch the data, thus poten-

tially eliminating all coherence overhead [80]. However, aggressive prefetching

often generates excessive coherence traffic and incurs extra power consumption.

Therefore, aggressive prefetching might reduce the power-performance efficiency of

the protocol.

1.1.4 Simple Programming Model

The memory consistency model assumed throughout this dissertation is sequen-

tial consistency [82]. Sequential consistency is the simplest programming interface

6

for shared memory systems that impose program order among all memory opera-

tions. Informally, sequential consistency requires that when processes run concur-

rently on different machines, any valid interleaving of read and write operations is

acceptable, as long as all processes see the same interleaving of operations. In this

model, multiple processes appear to share a single logical memory, even though

it may be physically distributed. Every process appears to issue and complete

memory operations one at a time and atomically in program order. One advantage

of sequential consistency is its portability. Any parallel program developed on a

uniprocessor is guaranteed to generate the same result when run on a DSM system

conforming to sequential consistency.

However, not all parallel programs are written assuming such a strict memory

model. Many programs use synchronization primitives to guarantee that different

threads cannot perform conflicting accesses to shared variables. For these programs,

it is sufficient to enforce data consistency only at the synchronization points. Several

weaker memory models [7, 53, 50] have been developed to provide an efficient

DSM implementation to run these programs. For example, release consistency

requires the programmer to label the program with release and acquire points,

where the writes done by a thread must be visible to other threads. Since release

consistency requires only some memory operations to be performed in program

order, it often improves performance over sequentially consistent implementations.

However, Gniady and Falsafi argue that sequential consistency implementations can

perform as well as release consistency implementations if the hardware provides

enough support for speculations [55]. We assume sequential consistency in our

study, but the mechanisms proposed can be easily applied to other consistency

models.

1.1.5 Low Bandwidth Usage

Bandwidth efficiency, also known as message efficiency, measures cache coher-

ence protocols by the global traffic that they generate. Excessive messages can cause

interconnect contention which reduces system performance. Existing protocols vary

7

widely in how they use bandwidth. SCI cache coherence protocols [69] have explicit

features to reduce contention and hot-spotting in the memory system. Remote

access cache [85] and S-COMA [107] cache remote data to reduce global traffic. In

contrast, some protocols sacrifice bandwidth efficiency (e.g., using coarse sharing

vectors) to reduce the overhead of memory directory [88].

Bandwidth efficiency is perhaps currently a less important attribute. Most

systems shipped recently have a small to moderate number of processors, where

bandwidth is not the system bottleneck. For example, of the 30,000 SGI Origin

200/2000 [83] systems shipped, less than 10 systems contained 256 or more pro-

cessors (0.03%), and less than 250 systems had 128 or more processors (1%) [98].

Therefore, a cache coherence protocol should conserve bandwidth as much as pos-

sible, while not sacrificing other attributes to achieve this.

1.2 Context of Cache Coherence Protocols

As discussed in the previous section, the tradeoffs in coherence protocol design

are only partially understood and change as technology advances. In this section,

we start discussing the contexts in which the cache coherence protocols operate and

demonstrate how to exhibit the desirable attributes of coherence protocols within

a given context.

Computer systems are organized as a set of layers, as indicated in Figure 1.1.

The concept of layers is important as it relieves users of the need to worry about

technical details. After some constraints are enforced across these layers, devel-

opment teams can work on different layers of a system independently. However,

this transparency also brings inefficiency in the implementation, as designers are

required to make assumptions based on worst-case scenarios. A major contribution

of this dissertation is the observation that context knowledge can be used to

optimize the cache coherence protocols. Context means situational information. Or

as Abowd et al. state: “Context is any information that can be used to characterize

the situation of an entity.” [5] We perform two case studies that demonstrate

8

� � � � � � � � � 	
 � � � �	
 � � � � � � � � � � � � �� � � � �� � � �� � �

� � � � � �� �� � � � � � � � � � � � �� � � � � � �

� � � � � � �

 ! " # � � # � � � $ " �% � � & � " � '(
% � � " (

 ! " # � (! " # � � # � � � $ " �% � � & � " � '(
% � � " (

 ! " # � (! " # � � # � � � $ " �% � � & � " � '(
% � � " (

 ! " # � (

Figure 1.1. Context knowledge for cache coherence protocols.

context knowledge exposed to the cache coherence protocols can lead to protocol

optimizations.

The first context we studied is the sharing patterns that can be observed

and detected in the memory reference streams. Memory reference streams are

generated by a mixture of application and operating system code. Many scientific

applications show stable sharing patterns, which can be used to optimize cache

coherence protocols. Producer-consumer sharing is one of most popular sharing

patterns. In a conventional directory-based write-invalidate protocol, unless the

producer is located on the home node, the producer requires at least three network

latencies whenever it wishes to modify data: (1) a message from the producer to

9

the home node requesting exclusive access, (2) a message from the home node to

the consumer(s) requesting that they invalidate their copy of the data, and (3)

acknowledgments from the home node and consumers to the producer. Figure 1.2

illustrates this scenario. To address the indirection in 3-hop misses, we propose a

novel directory delegation mechanism whereby the “home directory” of a particular

cache line can be delegated to another node. During the period in which the

directory ownership is delegated, the home directory forwards all requests for the

cache line to the delegated home node. Other nodes that learn of the delegation

can send requests directly to the delegated node, bypassing the home directory as

long as the delegation persists. As the home directory accesses are removed from

the critical path, 3-hop misses are converted to 2-hop misses. To further improve

performance, we extend the delegation mechanism to enable a node (delegated home

node) to speculatively forward newly written data to the nodes that it believes are

likely to consume it in the near future. We employ remote access caches (RACs)

to provide a destination for these speculative pushes. This mechanism is somewhat

analogous to last write prediction [81] or could also be thought of as producer-driven

pre-pushing, in contrast to the common idea of consumer-driven pre-fetching. When

L2 cache and directory

1 2 3

4

acknowledgement back to

2

3

4

Processor 2Processor 1

Cache 1 Cache 2 Shared state in Cache 2.

Processor 1 attempts write. 1

message to Cache 2.

Sends Rd−Exc to directory.

Directory sends invalidate

Directory finds block in

Sends clean copy of cache
block to Cache 1.

Cache 2 sends invalidate

Cache 1.

Figure 1.2. An example of 3-hop miss

10

the producer correctly predicts when and where to send updates, 2-hop misses

become local misses, effectively eliminating the impact of remote memory latency.

Although scientific benchmarks show regular sharing patterns that can benefit

from the use of adaptive coherence protocols, commercial benchmarks display less

temporal and spatial locality, which require extensive storage [80, 92, 110] to

track memory access histories. We study the varying latency, bandwidth needs

of different coherence messages, and propose a heterogeneous interconnect to opti-

mize the protocols. In the past, all protocol messages are indiscriminately sent

on a homogeneous interconnect. As VLSI techniques enable a variety of wire

implementations, architects might employ heterogeneous interconnects to reduce

the performance and power overhead of directory-based protocols [39]. We propose

a heterogeneous interconnect comprised of wires with varying latency, bandwidth,

and energy characteristics, and advocate intelligently mapping coherence operations

to the appropriate wires. For example, wires with varying latency and bandwidth

properties can be designed by tuning wire width and spacing. Similarly, wires

with varying latency and energy properties can be designed by tuning repeater size

and spacing. In the same 3-hop misses transaction in Figure 1.2, the requesting

processor may have to wait for data from the home directory (a 2-hop transaction)

and acknowledgements from other sharers of the block (a 3-hop transaction). As the

acknowledgements are on the critical path and have low bandwidth requirement,

they can be mapped on wires optimized for delay, while the data transfer is not on

the critical path and can be mapped on wires optimized for low power.

1.3 Thesis Statement

Cache coherence protocols that are tuned for the contexts in which

they are operating can significantly increase performance and reduce

power consumption. In order to prove this thesis statement, we perform two

case studies that demonstrate context knowledge exposed to the cache coherence

protocols can lead to protocol optimizations.

11

Being aware of the directory access patterns in the applications, our protocols

can dynamically delegate the “home directory” to the appropriate node to remove

directory access from the critical path. Being aware of the data access patterns in

the applications, our protocols can enable the delegated home node to speculatively

forward newly written data to the nodes that are likely to consume it in the near

future, thus eliminating remote misses. In this context, our sharing pattern-aware

protocols can improve performance (by reducing the number of remote coherence

misses) and improve bandwidth efficiency, while maintaining the simple program-

ming model.

The protocols we propose can also exploit a heterogeneous interconnect, which

is composed of wires with varying latency, bandwidth, and energy characteristics.

Being aware of such a heterogeneous interconnect, our proposed protocols can send

critical messages on fast wires and noncritical messages on power efficient wires. In

this context, our interconnect-aware protocols can improve performance and reduce

power consumption, while retaining other desirable attributes.

1.4 Contributions

In this dissertation, we motivate, present, and evaluate the idea of context-aware

coherence protocols. The primary contributions of this dissertation are:

• Identify and quantify the performance inefficiency of producer-consumer shar-

ing patterns on a conventional directory-based write-invalidate protocol. And

design a simple hardware mechanism to detect producer-consumer sharing by

using only information available to the directory controller.

• Propose a directory delegation mechanism whereby the home node of a cache

line can be delegated to a producer node, thereby converting 3-hop coherence

operations into 2-hop operations. Then extend the delegation mechanism to

support speculative updates for data accessed in a producer-consumer pat-

tern, which can convert 2-hop misses into local misses, thereby eliminating the

remote memory latency. An important feature of the mechanisms proposed

12

is that they require no changes to the processor core or system bus interface

and can be implemented entirely within an external directory controller. In

addition, our optimizations are sequentially consistent.

• Identify the hop imbalance in coherence transactions. For example, when a

processor wants to write in a directory-based protocol, it may have to wait for

data from the home node (a 2-hop transaction) and for acknowledgments from

other sharers of the block (a 3-hop transaction). Since the acknowledgments

are on the critical path and have low bandwidth needs, they can be mapped

on latency-optimized wires to improve performance. Similarly, the data block

transfer is not on the critical path and can be mapped on power-optimized

wires to reduce power consumption.

• Present a comprehensive list of techniques that allow coherence protocols to

exploit a heterogeneous interconnect and evaluate the techniques to show

their performance and power-efficiency potential.

1.5 Outline

This dissertation is organized into five chapters. The next chapter discusses the

fundamentals of cache coherence protocols, and how these relate to context-aware

protocols. Chapter 3 presents an adaptive cache coherence protocol that identifies

and exploits producer-consumer sharing patterns in many applications by using

directory delegation and speculative updates. Chapter 4 presents interconnect-aware

protocols that significantly improve performance and reduce power consumption by

intelligently mapping coherence traffic to the appropriate types of wires. Finally,

Chapter 5 summarizes this dissertation and points out a few possible directions for

future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides the background and terminology for understanding the

cache coherence protocols described throughout this dissertation. The focus of this

chapter is on recent researches, though it also covers some basics of cache coherence.

We refer readers to Chapter 6 of Hennessy and Patterson [63] and Chapters 5-8

of Culler and Singh [46] on this topic for further background and introductory

material.

We first discuss the problem of keeping the contents of caches coherent in

shared memory multiprocessors. In Section 2.2, we describe the basic strategy and

coherence states used in invalidation based cache coherence protocols. Section 2.3

describes four major types of cache coherence protocols: bus-based protocols, ring-

based protocols, token-based protocols and directory-based protocols. Finally,

in Section 2.4, we demonstrate the advantages of context-aware cache coherence

protocols and present prior work on context-aware coherence protocols.

2.1 Caching in Multiprocessor Systems

Advances in semiconductor technology have led to a tremendous increase in

clock speeds and transistor counts in single-chip devices. Higher clock speeds along

with novel architectural techniques have improved microprocessor performance by

orders of magnitude in the last decade [28]. Despite the dramatic improvements in

a single processor’s performance, supercomputers and enterprise servers continue to

demand higher performance to solve large scientific and commercial problems [58].

To go beyond the performance offered by a single microprocessor, computer

designers have studied techniques that connect multiple processors in some way so

that they can cooperate on common computational tasks. As defined by Almansi

14

and Gottlieb [12], a multiprocessor is a computing system composed of multiple

processors and memory modules connected together through an interconnection

network.

A variety of programming abstractions and languages have been developed

to program multiprocessors. Message passing and shared memory are the two

predominant communication models for parallel multiprocessor architectures [116].

In the traditional message passing model, processors communicate by directly

sending and receiving messages to one another. This paradigm allows programmers

to optimize data movement among different nodes based on the characteristics of

applications. However, the message passing model places all of the burden of data

decomposition, synchronization, data motion on the programmers and compilers.

Despite substantial effort, current compiler technology has not yet been able to

automatically extract and exploit parallelism via the insertion of message passing

calls on a wide range of programs [42]. This forces programmers to explicitly specify

all communication required among the nodes in the system. Such specification

is hard, if not impossible, for applications that exhibit dynamic communication

behavior or fine grain sharing.

In contrast, many programmers find the shared memory model attractive. This

model provides programmers with a simple abstraction. A programmer’s intuition

developed on single-processor systems still holds on shared memory multiprocessors,

as a load of any memory location still returns the latest value written in that

location. The underlying memory system will satisfy a processor’s request to read

or write a memory location by sending and receiving messages to the appropriate

memory module on the processor’s behalf. This abstraction makes it possible to

run sequential programs directly on shared memory systems.

Like in uniprocessor systems, effective caching of memory is the key to reducing

memory latency in shared memory multiprocessor systems. In fact, caching offers

even more benefits in multiprocessors than in uniprocessors due to the higher

memory latencies [106]. However, multiprocessor caches are more complicated

than uniprocessor caching because they introduce coherence problems between the

15

different processor caches. When multiple copies of the same data are present in

different caches at the same time, a processor wishing to modify the data needs

to take some actions to notify other processors about the changes and prevent

them from reading a stale copy of the data. Some shared memory multiprocessors

avoid this cache coherence problem by restricting the kind of the addresses can be

cached. For example, the Cray T3E multiprocessor [13] simplifies the coherence

problem by only allowing local memory to be cached. Similarly, the IBM Cell

processor [65] avoids coherence issues between the Synergistic Processor Elements

(SPEs) by treating each SPEs’ local memories as register files. These restrictions

usually result in lower processor utilization and/or force programmers to be much

more aware of locality and interprocessor communication.

Two properties are required to maintain coherence. First, changes to a data

location must be made visible globally, which is called write propagation. Second,

the changes to a location must be made visible in the same order to all processors,

which is called write serialization. Depending on how other processor caches are

notified of the changes, protocols can be classified as invalidation-based and update-

based as shown in Figure 2.1. In Figure 2.1(a), only the memory has a valid copy

of data block A. In Figure 2.1(b), both processors read A and store it in their

private caches. The difference between the invalidation-based and update-based

protocols becomes apparent when processor P1 issues a write. In an invalidation-

based protocol, processor P1 must first obtain exclusive ownership of the cache

line containing A by invalidating all remote copies before modifying its local copy

of the data, as shown in Figure 2.1(c). The advantage of this is that only the

first write, in a sequence of writes to the same cache line with no intervening read

operations from other nodes, causes global actions. Figure 2.1(d) demonstrates the

same scenario when a update-based protocol is employed. The processor writes

to its copy of the cache block and propagates the change to remote replicas at

the same time. Upon receiving an update massage, the remote caches update

their contents accordingly. Although update-based protocols reduce the number of

coherence misses by eliminating both true and false sharing misses, these protocols

16

d. P1 updates copies of A

P1 P2

M

P1 P2

M

P1 P2

M

P1 P2

M

a. Only memory has a copy of A

A

A A

A

b. Processors and memory share A

A

AA’ A’ A’

A’

c. P1 invalidates copies of A

Figure 2.1. Write invalidate and write update

tend to generate an excessive number of update messages, which leads to serious

performance problems by consuming precious interconnect bandwidth.

The comparison between update-based protocols and invalidation-based pro-

tocols was a subject of considerable debate in the past [59]. The trend towards

larger cache line sizes, the increased bandwidth requirement of updated-based

protocols, and the complexity of maintaining sequentially consistent updates, tilted

17

the balance in favor of invalidation-based protocols. Since all recent commercial

shared memory multiprocessors [14, 35, 37, 76, 83, 102, 114] employ invalidation-

based protocols, we consider invalidation-based protocols as the baseline in this

dissertation. However, in Section 3.2.4, we describe how selectively sending update

messages can improve the performance of invalidation-based protocols.

2.2 Common Coherence States

Coherence protocols use protocol states to track read and write permissions of

blocks present in processor caches. We first describe the well-established MESI [14,

114, 83, 102] and MOESI states [37, 113]. Next, we discuss various mechanisms

used for optimizing particular sharing patterns.

2.2.1 MESI Protocol

We first consider the MESI protocol. In the MESI protocol, a cache line is in

one of four states: M(modified), E(exclusive), S(shared), or I(invalidate). A block

in the INVALID or I state is not valid, and data must be fetched to satisfy any

attempted access. When a block is not found in a cache, it is implicitly in the

INVALID state with respect to that cache. The SHARED or S state signifies that

this line is one of several copies in the system. It also implies no other replicas is

in E or M states. A processor may read the block, but cannot write it. A block in

the EXCLUSIVE or E state indicates this cache has the only copy of the line, but

the line is clean. A processor may read, write and silently drop this line. A block

in the MODIFIED or M state indicates this cache has the only valid copy of the

cache line, and has made changes to that copy. A processor can read and write this

line, but must write back the dirty data to main memory when replacing this line

from the cache. Table 2.1 shows the basic operations of a processor in an abstract

MESI coherence protocol. In this table, we refer to writeback operations due to

cache line eviction as explicit writebacks (EWB), and writeback operations due to

remote snoops as implicit writebacks (IWB).

18

Table 2.1. MESI state transitions

PROCESSOR ACTIONS REMOTE SNOOPS
STATE READ WRITE EVICTION READ WRITE
MODI HIT HIT EWB SEND DATA SEND DATA

→ INV IWB IWB
→ SHRD → INV

EXCL HIT HIT SILENT DROP ACK ACK
→ INV → SHRD → INV

SHRD HIT WRITE REQ SILENT DROP ACK ACK
→ INV → INV

INV READ REQ WRITE REQ NONE NONE NONE
→ SHRD → EXCL

2.2.2 MOESI Protocols

Sweazey and Smith [113] introduce another state OWNED or O to the tradi-

tional MESI protocols. Adding an O state allows read-only access to a block whose

value is dirty. The block in the OWNER state is responsible for updating main

memory before evicting a block. It is similar to MODIFIED state in that only a

single block is allowed to be in the OWNED state at one time. However, blocks in

other processors are allowed to be in the SHARED state at the same time when

one block is in the OWNED state.

The addition of the OWNED state has two primary advantages. First, the

OWNED state can reduce system traffic by not requiring a processor to update

memory when it transitions from MODIFIED to SHARED during a remote snoop

request. In the traditional MESI protocol, the responder needs to send a response

message to the requester and an implicit writeback message to update the mem-

ory. With the addition of the OWNED state, the processor can transition from

MODIFIED to OWNED without writing back the changes to the main memory

immediately. If another processor issues a write request for the block before it is

evicted from the OWNED processor’s cache, memory traffic is reduced. Second,

in systems where a cache-to-cache transfer is faster than the memory access, the

processor with the block in the OWNED state can be given the responsibility of

providing data.

19

Figure 2.2 discusses the relationship between the five states, as described by

Sweazey [113]. Each cache line can be in one of the five states and specified

with three characteristics: ownership, validity, and exclusiveness. All lines in the

MODIFIED, EXCLUSIVE, SHARED, and OWNED states are considered “valid.”

Lines in the MODIFIED and EXCLUSIVE states are considered “exclusive.” Lines

in the EXCLUSIVE and OWNED state are regarded as having “ownership.” Main

memory holds the ownership for all cache lines that are not owned by any cache.

The exclusive owner of the cache line is responsible for keeping the data coherent, as

well as serving future requests. For example, when a line in the EXCLUSIVE state

transitions to the MODIFIED state, the ownership of the line is transferred from the

main memory to this cache. Later, when this line downgrades from MODIFIED to

OWNED, the cache no longer exclusively owns this cache line. Hence, other caches

can have this line in the SHARED state.

 S M

 O

 E

I

EXCLUSIVENESS

VALIDITY

OWNERSHIP

Figure 2.2. Three characteristics of cached data.

20

2.3 Common Coherence Protocols

Coherence protocols encode some permissions and other attributes of blocks in

caches using a subset of the MODIFIED, OWNED, EXCLUSIVE, SHARED, and

INVALID coherence states. A designer needs to choose one of several approaches

for manipulating and controlling these states. Modern shared memory systems

employ bus-based protocols [33, 35, 37], ring-based protocols [22, 114], token-based

protocols [95, 97] or directory-based protocols [26, 54, 72, 83] based on the types of

interconnection networks.

2.3.1 Bus-based Protocols

Many small-scale shared memory multiprocessors use bus-based protocols. In

these systems, a shared bus is employed to interconnect all processors and memory

modules [33]. Each processor also maintains a duplicate set of snoop tags, which

are dedicated to monitoring snoop requests from the bus. These snoop tags filter

memory traffic that does not affect the local caches, thus reducing contention for

cache tags.

To increase effective system bandwidth, many evolutionary enhancements have

been proposed to snoop protocol designs. Split transaction protocols [35, 37] allow

the requesting processor to release the bus while waiting for its response. This

mechanism significantly increases bus efficiency by pipelining multiple requests.

Other systems implement virtual buses [36, 109] using distributed arbitration,

point-to-point links, and dedicated switch chips. However, virtual-bus systems still

rely on totally-ordered broadcasts for issuing requests. As bus frequency increases,

the bandwidth and electrical limits of the centralized bus make it inappropriate for

current generation systems [14].

The primary advantage of snoop-based multiprocessors is the low cache-to-cache

miss latency. Since a request is sent directly to all other processors and memory

modules in the system, the current owner quickly knows that it should send a

response. If cache-to-cache misses have lower latency than memory access, replying

with data from the owning processor cache whenever possible can reduce the average

21

miss latency. Bus-based protocols are relatively simple, although this advantage is

much less pronounced as the advent of split transactions and virtual buses. As we

have mentioned before, the major disadvantage of bus-based protocols is scalability.

First, the bus is a mutually exclusive resource and only one processor can transmit

at any given time. Second, all processors must participate in an arbitration phase

before accessing the bus. Third, the bus clock cycle must be long enough so that

signals can propagate throughout the entire bus. Moreover, in broadcast-based

protocols, the bandwidth requirement increases with the number of processors,

which becomes prohibitive in the large systems.

2.3.2 Ring-based Protocols

Point-to-point unidirectional connections have emerged as a very promising

interconnection technology. Point-to-point connections have only one transmitter

and one receiver and their transmission speed is much higher than buses [14].

Additionally, signals on point to point links can be pipelined: a new transmission

can be started before the previous one has reached the receiver. Therefore, point-to-

point connections are much more technologically scalable than bus connections, and

their delivered bandwidth is expected to benefit continuously from improvements

in circuit technology.

An unidirectional ring is one of the simplest forms of point-to-point intercon-

nection. In this design, coherence transactions are serialized by sending snoop

messages along the ring. Barroso and Dubois [22] evaluate the performance of a

logically-embedded slotted ring. The Hector multiprocessor [117], developed at the

University of Toronto, uses a hierarchy of unidirectional slotted rings. Alternatively,

IBM’s Power4 [114] can embed a logical ring in whatever network topology is

available. In this design, snoop messages are ordered on the logical ring, while

other messages can use any link in the network. Ring-based interconnect is simple

and low cost. Moreover, it places no constraints on the network topology or timing.

One main drawback of this approach is that snoop requests may suffer long

latencies or entail many snoop messages and operations. For example, a scheme

22

where each node snoops the request before forwarding it to the next node in the ring

induces long request latencies. Likewise, a scheme where each node immediately

forwards the request and then performs the snoop is likely to induce many snoop

messages and snoop operations. To solve this problem, Strauss et al. [112] propose

flexible snooping algorithms, a family of adaptive forwarding and filtering snooping

algorithms. In these algorithms, depending on certain conditions, a node receiving

a snoop request may either forward it to another node and then perform the snoop,

or snoop and then forward it, or simply forward it without snooping. However,

despite of all these optimizations, ring-based protocols are not highly scalable, so

they are most likely to be employed in small systems with less than eight nodes.

2.3.3 Token-based Protocols

Martin et al. [94, 95] observe that simple token counting rules can ensure that a

memory system behaves in a coherent manner. Token counting specifies that each

block of the shared memory has a fixed number of tokens and that the system is

not allowed to create or destroy tokens. A processor is allowed to read a block

only when it holds at least one of the block’s tokens, and a processor is allowed

to write a block only when it holds all of its tokens. These simple rules prevent

a processor from reading the block while another processor is writing the block,

ensuring coherent behavior at all times.

Token coherence can simultaneously capture the best aspects of bus-based pro-

tocols and directory-based protocols. These two dominant approaches to coherence

have a different set of attractive attributes. Bus-based protocols have low-latency

and direct processor-to-processor communication, whereas directory protocols are

bandwidth efficient and do not require a bus or other totally-ordered interconnect.

The correctness substrate of token coherence provides a foundation for implement-

ing many performance policies. These performance policies focus on making the

system fast and bandwidth-efficient without any correctness responsibilities.

Token coherence prevents starvation using persistent requests. A processor

invokes a persistent request when it detects possible starvation. Persistent requests

23

always succeed in obtaining data and tokens even when conflicting requests occur

because once activated they persist in forwarding data and tokens until the request

is satisfied. Once the request is satisfied, the requester explicitly deactivates the

request by sending another round of messages. While conceptually appealing, this

scheme has some potentially difficult implementation issues. One of them is that

persistent requests need an arbiter to avoid live-lock. A simplified implementation

uses a single centralized arbiter. The substrate directs persistent requests to the

arbiter, queuing multiple requests in a dedicated virtual network or at the arbiter

itself. However, a single centralized arbiter is likely to be the bottleneck in the large

systems. Martin presents a distributed-arbitration technique that reduces the la-

tency of persistent requests by allowing direct communication of persistent requests

between processors [94], though this technique still relies on point-to-point ordering

in the interconnect to avoid reordering activation and deactivation messages.

Another drawback of token-based protocols is that every line needs token storage

in main memory. Finally, in multiprocessors with multiple CMPs, the protocol must

be extended with additional storage and states to allow a local cache in the CMP

to supply data to another local cache. Some of these issues are addressed in [97].

2.3.4 Directory-based Protocols

Directory-based protocols target the systems where scalability is a first-order

design constraint. Examples of systems that use directory-based protocols include

Stanford’s DASH [85] and FLASH [62], MIT’s Alewife [77], SGI’s Origin [83], HP’s

AlphaServer GS320 [54], Sequent’s NUMA-Q [89], and Cray’s X1 [45]. An emerging

trend in processor microarchitecture design is a move towards chip multiprocessors

(CMPs). Almost all new CMP systems also employ directory-based protocols, such

as IBM’s Power4 [114], Sun’s Niagara [74], HP’s Superdome [56], Intel’s E8870 [26]

and AMD’s Opteron [72]. Since directory-based protocols are employed in most

modern systems, the focus of this dissertation is on improving directory-based

protocols.

24

Scalable shared memory multiprocessors are constructed based on scalable point-

to-point interconnection networks, such as fat trees or meshes [49]. Main memory

is physically distributed in order to ensure that memory bandwidth scales with the

number of processors. In these designs, totally ordered message delivery becomes

unfeasible. Since the state of a block in the caches can no longer be determined

implicitly by placing a request on a shared bus, a directory-based protocol associates

each cache line of data with an entry in a directory that tracks the global coherence

state of the cache line. Upon receiving a request, the home directory uses the

directory information to respond directly with the data and/or forward the request

to other processors. In typical protocols, the directory uses DirN, also known as

Full-Map, to exactly identify the sharers. This amount of information is propor-

tional to the product of the number of memory blocks and the number of processors.

For larger multiprocessors, more efficient methods are used to scale the directory

structure. Researchers have proposed to encode a superset of sharers [8, 61, 88] or

to form a linked list of sharers [69].

The directory also provides a sequential point for each block which handles

conflicting requests and eliminates various protocol races. Since directory-based

protocols avoid the use of centralized buses, multiple messages for the same block

can be active in the system at the same time. The order between these messages

is determined by the order in which the requests are processed by the directory.

Many directory-based protocols use transient or pending states to delay subsequent

requests to the same block by queuing or negatively acknowledging requests at the

directory controller while a previous request for the same block is still active in

the system. A simple directory protocol might employ only one busy state and

enter the busy state anytime a request reaches the directory. A more optimized

protocol often employs many busy states and allows transitions between different

busy states, although it also brings tremendous challenge in proving the correctness

properties of the protocol.

Directory-based protocols can exploit arbitrary point-to-point interconnects and

dramatically improve scalability. Since snoop messages are only sent to processors

25

that might have copies of a cache block, the traffic in the system grows linearly

with the number of processors instead of quadratically as in bus-based protocols.

However, directory-based protocols entail directory access, which is on the critical

path of cache-to-cache misses. With the dominance of cache-to-cache misses in

many important commercial workloads, these high-latency cache-to-cache misses

can significantly impact system performance.

2.4 Related Work

We argue that future cache coherence protocols need to be aware of the context

in which they are operating. Hence, all coherence traffic can be tuned based on

the hints given by the context. Compared with traditional protocols, context-

aware coherence protocols can significantly improve performance and reduce power

consumption through specific optimizations.

As defined in Section 1.2, context means situational information. We focus

on two kinds of context in this dissertation. The first one is the sharing pat-

terns displayed in the memory reference streams. We describe the protocol which

can automatically detect and optimize the producer-consumer sharing patterns in

Chapter 3. The second context is the varying latency, bandwidth needs of different

coherence messages. We propose a heterogeneous interconnect consisting of wires

with different characteristics, and describe our interconnect-aware cache coherence

protocols in Chapter 4. In this section, we provide a survey of the ideas that are

most closely related to our context-aware protocols, and discuss how other proposals

can benefit from being aware of their operating context.

2.4.1 Sharing Pattern-aware Protocols Related

Our sharing pattern-aware cache coherence protocols are similar in nature to

those adaptive cache coherence protocols. Adaptive cache coherence protocols that

optimize various sharing patterns at runtime have been proposed for migratory

data [44, 111], pairwise sharing [68], and wide sharing [71].

26

Migratory sharing patterns are common in many multiprocessor workloads.

They result from data blocks that are read and written by many processors in

turn [60]. Shared data guarded by lock-based synchronization tend to exhibit

migratory sharing patterns. In traditional MOESI coherence protocols, these read-

then-write sequences generate a read miss followed by an upgrade miss. An opti-

mization for the migratory sharing allows a processor to respond an external read

request with a read-exclusive response and transitioning to INVALID. When the

requesting processor receives the read-exclusive response, it transitions immediately

to the EXCLUSIVE state to avoid a potential upgrade miss. This policy performs

well in workloads dominated by read-then-write patterns. However, it substantially

penalizes other sharing patterns, like widely shared data [71]. To find a balance,

most cache coherence protocols in commercial systems [26, 1] employ a less ag-

gressive optimization for the migratory sharing, as illustrated in Table 2.2. Upon

receiving a READ request, the home directory performs the optimization only when

the requested line is in the INVALID state. In this case, the home directory will

grant the requesting processor the exclusive ownership.

Table 2.2. MOESI state transitions

PROCESSOR ACTIONS REMOTE SNOOPS
STATE READ WRITE EVICTION READ WRITE
MODI HIT HIT EWB SEND DATA SEND DATA

→ INV → OWNED IWB
→ INV

OWN HIT HIT EWB SEND DATA SEND DATA
→ INV IWB

→ INV
EXCL HIT HIT SILENT DROP ACK ACK

→ INV → SHRD → INV
SHRD HIT WRITE REQ SILENT DROP ACK ACK

→ INV → INV
INV READ REQ WRITE REQ NONE NONE NONE

(SHRD RPLY) → EXCL
→ SHRD
-OR-
READ REQ
(EXCL RPLY)
→ EXCL

27

Prefetching is often used in adaptive cache coherence protocols to hide long

miss latencies [30, 105], though aggressive use of prefetch tends to increase network

traffic and pollute the local cache. Recent research has focused on developing

producer-initiated communication mechanisms in which data are sent directly to

the consumer’s cache [4, 75, 119] under weak/released consistency modes.

A different approach is to use speculative coherence operations. Prediction

in the context of shared memory was first proposed by Mukherjee and Hill, who

show that it is possible to use address-based two-level predictors at the caches and

directories to trace and predict coherence messages [103]. Subsequently, Lai and

Falsafi improve upon these predictors by using smaller history tables and show how

coalescing messages from different nodes can accelerate reads [80]. Alternatively,

Kaxiras and Goodman propose instruction-based prediction for migratory sharing,

wide sharing, and producer-consumer sharing [71].

Many research have proposed exploiting coherence prediction to convert 3-hop

misses into 2-hop misses. Acacio et al. [6] and Martin et al. [92] propose mechanisms

for predicting sharers. Lebeck and Wood propose dynamic self-invalidation [84],

whereby processors speculatively flush blocks based on access history to reducing

the latency of invalidations by subsequent writers. Lai and Falsafi propose a two-

level adaptive predictor to more accurately predict when a cache line should be self-

invalidated [81]. All of these techniques do a good job of predicting when a processor

is done with a particular cache line, but they are all integrated on the processor

die. The predictor used in our sharing pattern-aware protocols is simpler, and likely

less accurate. It can, however, be used in conjunction with unmodified commercial

processors, since all changes are made at the external directory controller. As a

result, our design can be adopted in near-term system designs such as the SGI

Altix.

2.4.2 Interconnect-aware Protocols Related

Most scientific benchmarks show regular sharing patterns that can benefit from

the use of adaptive coherence protocols. However, commercial benchmarks display

28

less temporal and spatial locality, which require extensive storage [80, 92] to track

memory access histories. We propose a heterogeneous interconnect comprised of

wires with varying latency, bandwidth, and energy characteristics, and design

interconnect-aware coherence protocols which intelligently map coherence opera-

tions to the appropriate wires.

To the best of our knowledge, only three other bodies of work have attempted

to exploit different types of interconnects at the microarchitecture level. Beckmann

and Wood [23, 24] propose speeding up access to large L2 caches by introducing

transmission lines between the cache controller and individual banks. Nelson et

al. [104] propose using optical interconnects to reduce intercluster latencies in a

clustered architecture where clusters are widely-spaced in an effort to alleviate

power density. Citron et al. [43] examine entropy within data being transmitted on

wires and identify opportunities for compression. Unlike our proposed technique,

they employ a single interconnect to transfer all data.

A recent paper by Balasubramonian et al. [17] introduces the concept of a

heterogeneous interconnect and applies it for register communication within a

clustered architecture. A subset of load/store addresses are sent on low-latency

wires to prefetch data out of the L1D cache, while noncritical register values are

transmitted on low-power wires. A heterogeneous interconnect similar to the one

proposed by Balasubramonian et al. [17] has been applied to a different problem

domain. The nature of cache coherence traffic and the optimizations they enable

are very different from that of register traffic within a clustered microarchitecture.

We have also improved upon the wire modeling methodology in [17] by modeling

the latency and power for all the network components including routers and latches.

Our power modeling also takes into account the additional overhead incurred due

to the heterogeneous network, such as additional buffers within routers.

Recent studies [66, 81, 84, 95] have proposed several protocol optimizations

that can also benefit from being aware of the context in which they are operating.

For example, given a heterogeneous interconnect, dynamic self-invalidation scheme

proposed by Lebeck et al. [84] can transfer the self-invalidate [81, 84] messages

29

through power-efficient wires, as these messages are unlikely on the critical path.

Similarly, in a system based on token coherence protocols, the low-bandwidth token

messages [95] are often on the critical path, and thus can be transferred on latency

optimized L-Wires. A recent study by Huh et al. [66] reduces the amount of false

sharing by exploiting incoherent data. For cache lines suffering from false sharing,

only the sharing states need to be propagated and such messages are a good match

for low-bandwidth wires.

CHAPTER 3

SHARING PATTERN-AWARE

COHERENCE PROTOCOLS

Producer-consumer sharing is common in scientific applications. For example,

The work in successive over relaxation (SOR) is divided across processors who need

to communicate with their neighbors between program phases. Consequently, data

along the boundary between two processors exhibit stable producer-consume shar-

ing pattern. However, applications with producer-consumer sharing don’t perform

well on modern shared memory systems due to an excessive number of coherence

message exchanges. In this chapter, we demonstrate how a sharing pattern-aware

coherence protocol can optimize the producer-consumer sharing. We start with

identifying and quantifying the performance inefficiency of producer-consumer shar-

ing on real cc-NUMA systems. In Section 3.2, we propose two mechanisms that

improve the performance of the producer-consumer sharing by eliminating remote

misses and reducing the amount of communication required to maintain coherence.

We first present a simple hardware mechanism for detecting producer-consumer

sharing. We then describe a directory delegation mechanism whereby the “home

node” of a cache line can be delegated to a producer node, thus converting 3-hop

coherence operations into 2-hop operations. We then extend the delegation mech-

anism to support speculative updates for data accessed in a producer-consumer

pattern, which can convert 2-hop misses into local misses, thereby eliminating the

remote memory latency. Both mechanisms can be implemented without changes to

the processor. In Section 3.3, we evaluate our directory delegation and speculative

update mechanisms on seven benchmark programs that exhibit producer-consumer

sharing patterns using a cycle-accurate execution-driven simulator of a future 16-

31

node SGI multiprocessor. We find that the mechanisms proposed in this paper

reduce the average remote miss rate by 40%, reduce network traffic by 15%, and

improve performance by 21%. Finally, we summarize this chapter in Section 3.4.

3.1 Producer-consumer Sharing

Most enterprise servers and many of the Top500 supercomputers are shared

memory multiprocessors [2]. Remote misses have a significant impact on shared

memory performance, and their significance is growing as network hop latency

increases as measured in processor cycles [58]. The performance impact of remote

memory accesses can be mitigated in a number of ways, including higher perfor-

mance interconnects, sophisticated processor-level latency hiding techniques, and

more effective caching and coherence mechanisms. This chapter focuses on the

latter.

Previous research has demonstrated the value of adaptive protocols that identify

and optimize for migratory sharing [44, 111]. In this chapter, we present a novel

adaptive mechanism that identifies and optimizes for producer-consumer sharing.

An important feature of the mechanisms described herein is that they require no

changes to the processor core or system bus interface and can be implemented

entirely within an external directory controller. In addition, our optimizations are

sequentially consistent. Further, we identify producer-consumer sharing with a very

simple mechanism that does not require large history tables or similar expensive

structures.

Typical cc-NUMA systems maintain coherence using directory-based distributed

write-invalidate protocols. Each cache line of data has a “home node” that tracks

the global coherence state of the cache line, e.g., which nodes have a cached copy of

the data, via a directory structure [85]. Before a processor can modify a cache line

of data, it must invalidate all remote copies and be designated as its owner . Thus,

only the first write in a sequence of writes to a cache line with no intervening read

operations from other nodes causes global actions. This behavior leads to good

32

performance for situations where data is used exclusively by a single processor or

mostly read-shared.

However, write invalidate protocols are inefficient for some sharing patterns.

For example, consider producer-consumer sharing, where a subset of threads access

a shared data item, one of which modifies the data while the others read each mod-

ification. Figure 3.1 illustrates the communication induced by producer-consumer

sharing involving one producer node and one consumer node, where data is initially

cached in read-only mode on each node.

Unless the producer is located on the home node, a conventional directory-

based write-invalidate protocol requires at least three network latencies whenever a

producer wishes to modify data: (1) a message from the producer to the home node

requesting exclusive access, (2) a message from the home node to the consumer(s)

requesting that they invalidate their copy of the data, and (3) acknowledgments

from the home node and consumers to the producer. Figure 3.1 illustrates this

scenario. Similarly, when the first consumer accesses the data after its copy has

been invalidated, it incurs a 3-hop miss unless it or the producer is located on

the home node: (1) a message from the consumer to the home node requesting

a read-only copy of the data, (2) a message from the home node to the producer

requesting that the producer downgrade its copy to SHARED mode and write back

Home directory

1 2 2

3

acknowledgement back to

2

3

ConsumerProducer

Cache Cache
shared state in Consumer.

Producer attempts write. 1

message to Consumer.

Sends Rd−Exc to directory.

Also sends invalidate

Directory finds block in

Sends clean copy of cache
block to Producer.

Consumer sends invalidate

Producer.

Figure 3.1. Coherence operations at the producer

33

the new contents of the cache line, and (3) a message from the producer to the

consumer providing the new contents of the data and the right to read. Figure 3.2

illustrates this scenario.

One performance problem illustrated here is the third network hop required

when the producer does not reside on the home node. To address this problem,

we propose a novel directory delegation mechanism whereby the “home node” of a

particular cache line of data can be delegated to another node. During the period in

which the directory ownership is delegated, the home node forwards requests for the

cache line to the delegated home node. Other nodes that learn of the delegation can

send requests directly to the delegated node, bypassing the home node as long as

the delegation persists. When used appropriately, directory delegation can convert

a number of 3-hop coherence operations into 2-hop operations.

To improve producer-consumer sharing performance, we extend the delegation

mechanism to enable the producer (delegated home node) to speculatively forward

newly written data to the nodes that it believes are likely to consume it in the

near future. Our update mechanism is a performance optimization on top of

a conventional write invalidate protocol, analogous to prefetching or last write

prediction [81], and thus does not affect the (sequential) consistency semantics of

the underlying coherence protocol. When the producer correctly predicts when and

Home directory

3 2 2 1

3

message to Consumer.

2

3

ConsumerProducer

Cache Cache
exclusive state in Producer.

Consumer attempts write. 1 Sends Read to directory.

Directory finds block in

Sends current copy of cache

Also sends intervention
message to Producer.

block to Consumer.

Producer sends response

Write back the dirty data
to home directory.

Figure 3.2. Coherence operations at the consumer

34

where to send updates, 2-hop misses become local misses, effectively eliminating

the impact of remote memory latency.

Although update protocols have the potential to eliminate remote misses by pre-

pushing data to where it will soon be consumed, they have a tendency to generate

excessive amounts of coherence traffic [32, 59]. These extra coherence messages are

typically due to sending updates to nodes that no longer are consuming the data.

This extra coherence traffic can lead to serious performance problems by consuming

precious interconnect bandwidth and memory controller occupancy. To mitigate

this problem, we only perform speculative updates when the producer has been

delegated control of a cache line and a stable producer-consumer sharing pattern has

been observed. For the benchmarks we examine, the speculative push mechanism

generates less network traffic than even a tuned write invalidate protocol.

A goal of our work is to design mechanisms that can be implemented in near

future systems. We concentrate on mechanisms that require only modest hardware

overhead, require no changes to the processor, do not add significant pressure to

the interconnect, and do not significantly increase directory controller occupancy.

We do not consider designs that require large history tables, assume the ability to

“push” data into processor caches, perform updates that are not highly likely to be

consumed, or make other assumptions that make it difficult to apply our ideas to

commercial systems. In Section 3.4 we discuss ways that our work can be extended

by relaxing some of these restrictions.

Using a cycle-accurate execution-driven simulator of a future-generation 16-

node SGI multiprocessor, we examine the performance of seven benchmarks that

exhibit varying degrees of producer-consumer sharing. We find that our proposed

mechanisms eliminate a significant fraction of remote misses (40%) and interconnect

traffic (15%), leading to a mean performance improvement of 21%. The reduction

in both coherence traffic and remote misses plays a significant role in the observed

performance improvements. The hardware overhead required for the optimizations

described above is less than the equivalent of 40KB of SRAM per node, including

35

the area required for the delegate cache, remote access cache, and directory cache

extensions used to detect producer-consumer sharing.

3.2 Protocol Implementation

In this section we describe the design of our various novel coherence mecha-

nisms (producer-consumer sharing predictor, directory delegation mechanism, and

speculative update mechanism). Figure 3.3 shows our modeled node architecture

with new components highlighted. We begin with a brief discussion of remote

access caches and their value in our work (Section 3.2.1). We then describe the

simple hardware mechanism that we employ to identify producer-consumer sharing

patterns. Then, in Section 3.2.3 we describe the protocol extensions and hardware

needed to support directory delegation. In Section 3.2.4 we describe the protocol

RAC

Directory

Controller

Processor

caches

Processor

caches

DRAM Controller(s)

DRAM

Interconnect

I/O

Ctlr

XBAR
 NI

P

r
o

d

C

o
n

s

DRAM

Interconnect

I/O

Figure 3.3. Modeled node architecture (new components are highlighted)

36

extensions and hardware required to implement our speculative update mechanism.

Finally, in Section 3.2.5, we describe how we verified the correctness of our protocol

extensions using the Murphi model checker.

3.2.1 Remote Access Cache

Traditional CC-NUMA machines can only store remote data in their proces-

sor caches. Remote access caches (RACs) eliminate unnecessary remote misses

induced by the small size and associativity of processor caches by acting as victim

caches for remote data [85]. However, the large caches in modern processors have

largely eliminated remote conflict and capacity misses, so modern shared memory

multiprocessors do not include RACs.

We propose to augment each node’s “hub” with a RAC for three reasons. First,

the RAC can be used as a traditional victim cache for remote data. Second, the

RAC gives us a location into which we can push data at a remote node; researchers

often assume the ability to push data into processor caches, but this capability is

not supported by modern processors. Third, we employ a portion of the RAC as

a surrogate “main memory” for cache lines that have been delegated to the local

node. In particular, for each cache line delegated to the local node, we pin the

corresponding cache line in the local RAC.

3.2.2 Sharing Pattern Detection

To exploit delegation and speculative updates, we first must identify cache lines

that exhibit a stable producer-consumer sharing pattern. In this section we describe

the producer-consumer pattern detector that we employ.

We define producer-consumer sharing as a repetitive pattern wherein one pro-

cessor updates a block (producer) and then an arbitrary number of processors read

the block (consumer(s)), which corresponds to the following regular expression:

...(Wi)(R∀j:j 6=i)
+(Wi)(R∀k:k 6=i)

+... (3.1)

In the expression above, Ri and Wi represent read and write operations by processor

i, respectively.

37

Coherence predictors can be classified into two categories: instruction-based [71]

and address-based [103]. Instruction-based mechanisms require less hardware over-

head, but require tight integration into the processor core. Since one of our goals is

to require no changes to the processor core, we focus on address-based predictors.

A problem with address-based predictors implemented outside of the core is they

can only observe addresses of accesses that miss in the processor caches. Also, they

typically require extensive storage to track access histories, e.g., Lai et al. [80] add

one history entry per memory block to trace sharing patterns, which is roughly a

10% storage overhead.

To address these problems, we extend each node’s directory controller to track

block access histories. Since the directory controller coordinates all accesses to

memory blocks homed by that node, it has access to the global access history of

each block that it manages. To minimize space overhead, we only track the access

histories of blocks whose directory entries reside in the directory cache, not all

blocks homed by a node. Typically, a directory cache only contains a small number

of entries, e.g., 8k entries on SGI Altix systems, which corresponds to only a fraction

of the total memory homed on a particular node. However, the blocks with entries

in the directory cache are the most recently shared blocks homed on that node. We

found that tracking only their access histories detects the majority of the available

producer-consumer sharing patterns, which corroborates results reported by Martin

et al. [92].

To detect producer-consumer sharing, we augment each directory cache entry

with three fields: last writer, reader count, and a write-repeat counter . The last

writer field (four bits) tracks the last node to perform a write operation. The reader

count (two bits, saturating) remembers the number of read requests from unique

nodes since the last write operation. The write-repeat counter (two bits, saturating)

is incremented each time two consecutive write operations are performed by the

same node with at least one intervening read. Our detector marks a memory block

as being producer-consumer whenever the write-repeat counter saturates. These

38

extra eight bits, which increase the size of each directory cache entry by 25%, are

not saved if the directory entry is flushed from the directory cache.

The detector logic we employ is very simple, which limits its space overhead but

results in a conservative predictor that misses some opportunities for optimization,

e.g., when more than one node writes to a cache line. An important area of

future work is to experiment with more sophisticated producer-consumer sharing

detectors. However, as discussed in Section 3.3, even this simple detector identifies

ample opportunities for optimization.

3.2.3 Directory delegation

Once the predictor identifies a stable producer-consumer sharing pattern, we

delegate directory management to the producer node, thereby converting 3-hop

misses into 2-hop misses. To support delegation, we augment the directory con-

troller on each node with a delegate cache. The delegate cache consists of two tables:

a producer table that tracks the directory state of cache lines delegated to the local

node and a consumer table that tracks the delegated home node of cache lines being

accessed by the local node. The producer table is used to implement delegated

directory operations. Its entries include the directory information normally tracked

by the home node (DirEntry), a valid bit, a tag, and an age field. The number of

cache lines that can be delegated to a particular node at a time is limited by the

size of the producer table. The consumer table allows consumers to send requests

directly to the delegated (producer) node, bypassing the default home node. Its

entries consist of a valid bit, a tag, and the identity of the new delegated home

node for the corresponding cache line. The number of cache lines that a node will

recognize as having a new (remote) home node is limited by the size of the consumer

table. The format of delegate cache entries are shown in Figure 3.4.

When a node needs to send a message to a cache line’s home, e.g., to acquire

a copy or request ownership, it first checks the local delegate cache. If it finds a

corresponding entry in the producer table, it handles the request locally. If it finds

39

Valid
 Tag
 Owner

1b
 37b
 4-8b

Consumer delegate cache entry (6 bytes)

Valid
 Tag
 Age
 Directory Entry

1b
 37b
 2b
 32b

Producer delegate cache entry (10 bytes)

Figure 3.4. Format of delegate cache table entries

an entry in the consumer table, it forwards the request to the delegated home node

recorded in the entry. Otherwise, it sends the request to the default home node.

The following subsections describe how we initiate directory delegation (Sec-

tion 3.2.3.1), how coherence requests are forwarded during delegation (Section 3.2.3.2),

and how we undelegate nodes (Section 3.2.3.3).

3.2.3.1 Delegation

Figure 3.5 illustrates the transition diagram for directory delegation. After the

home detects a stable producer-consumer sharing pattern, it marks the producer as

P H 3 Set "DELE" state

4 Send data

 7 Add prod−entry

6 Recv dele msg
2 Detect PC pattern

5 Send delegate message

1 Send read exclusive request

8 Excl reply

Figure 3.5. Directory delegation

40

the new owner of the cache line, changes the directory state to DELE, and sends the

producer a DELEGATE message that includes the current directory information.

Upon receiving this message, the producer adds an entry to its producer delegate

table, treats the message as an exclusive reply message, and pins the corresponding

RAC entry so that there is a place to put the data should it be flushed from the

processor caches.

3.2.3.2 Request forwarding

Figure 3.6 shows the transition diagram for request forwarding. While the cache

line is in the DELE state on the original home node, coherence messages sent to

the original home node are forwarded to the delegated home node. The original

home node also replies to the requester to notify it that the producer is acting

as the home node until further notice, in response to which the requesting node

adds an entry in its consumer table in the delegate cache. Subsequent coherence

H

P

C

3a Forward request
 to new home

4 Add a 2 Addr A in the

3b Inform C the new home

1 Send read request for addr A

 "DELE" state cons−entry

Figure 3.6. Request forwarding

41

requests from this node are sent directly to the delegated home node until the line

is undelegated.

Entries in the consumer table are hints as to which node is acting as the home

node for a particular cache line, so it can be managed with any replacement policy.

If a consumer table entry becomes stale or is evicted, the consumer can still locate

the acting home node, but will require extra messages to do so. In our design, the

consumer table is four-way set associative and uses random replacement.

3.2.3.3 Undelegation

Figure 3.7 shows the transition diagram for directory undelegation. In our

current design, a node undelegates control over a cache line for three reasons:

1. the delegated home node runs out of space in its producer table and needs to

replace an entry,

2. the delegated home node flushes the corresponding cache line from its local

caches, or

3. another node requests an exclusive copy.

To undelegate a cache line, the producer node invalidates the corresponding entry

in its producer table and sends an UNDELE message to the original home node,

including the current directory state (DirEntry) and cache block contents (if dirty).

When the original home node receives the UNDELE message, it changes the local

state of the cache line from DELE to UNOWNED or SHARED, depending on

P

2 Send undelegate message

H
3 Change "DELE"

state back
1 Invalidate
 prod−entry

Figure 3.7. Directory undelegation

42

the contents of DirEntry. If the reason for undelegation is a request for exclusive

ownership by another node, the UNDELE message includes the identity of this

node and the original home node can handle the request.

3.2.3.4 Discussion

There are a number of race conditions and corner cases that need to be handled

carefully to make delegation, forwarding, and undelegation work correctly. For

example, it is possible for a request by the producer to arrive at the original home

node while it is in the process of delegating responsibility to the producer. Or, the

producer may receive a coherence request for a line for which it has undelegated

responsibility and for which it no longer has any information in its producer table.

To handle these kinds of races, we employ the mechanism used by SGI to simplify its

coherence protocol implementations: NACK and retry. In the first case the original

home node NACKs the request from the producer, causing it to retry the operation.

When the producer retries the operation it will most likely find that it has become

the acting home node, otherwise its requests will be NACKed until the delegation

operation succeeds. Similarly, if the producer receives a coherence operation for a

line that it undelegated, it NACKs and indicates that it is no longer the acting home

node, which causes the requesting node to remove the corresponding entry from its

consumer table and re-send the request to the default home node. In Section 3.2.5,

we describe how we formally verify the correctness of our delegation, forwarding,

and undelegation protocols.

3.2.4 Speculative updates

On cc-NUMA systems, applications with significant producer-consumer sharing

suffer from frequent remote read misses induced by the invalidations used to ensure

consistency. To reduce or eliminate these remote read misses, we extend our

directory delegation mechanism to support selective updates. To ensure sequential

consistency and simplify verification, we implement our update mechanism as an op-

timization applied to a conventional write invalidate protocol, rather than replacing

43

the base coherence protocol with an update protocol. Reads and writes continue to

be handled via a conventional directory-based write invalidate protocol. However,

after a cache line has been identified as exhibiting producer-consumer sharing

and been delegated, producers send speculative update messages to the identified

consumers shortly after each invalidation. In essence, we support a producer-driven

“speculative push”, analogous to a consumer-driven prefetch mechanism. These

pushes are a performance optimization and do not impact correctness or violate

sequential consistency.

To support speculative updates, we must overcome two challenges. The first is

determining when to send updates and what data to send without modifying the

processor. The second is limiting the use of updates to situations where we have

high confidence that the updates will be consumed. We address these challenges in

the following subsections.

3.2.4.1 Delayed Intervention

Modern processors directly support only invalidate protocols. Before performing

a write, processor requests exclusive access to a cache line. After becoming the

exclusive owner, a processor is free to modify it as many times as it likes and can

refrain from flushing those changes until another processor attempts to access the

cache line.

To generate updates without modifying the processor, we employ a delayed

intervention mechanism. When the producer wishes to modify a cache line, it

requests exclusive access to the line. As in a normal write invalidate protocol, we

invalidate all other nodes that have a shared copy. After the producer’s hub grants

the producer exclusive access to the data, it delays for a short period and then sends

an intervention request to the processor, requesting that it downgrade the cache

line to SHARED mode. In response to this intervention, the processor flushes the

dirty contents of the cache line. The producer’s hub writes the flushed data into

the local RAC and then sends update messages to the predicted consumers. The

mechanism via which we predict the consumer set is described below.

44

Our delayed intervention mechanism could be thought of as an extremely simple

last write predictor, analogous to last touch predictor [81]. To avoid modifying the

processor, we simply wait a short time and then predict that the current write burst

has completed, rather than employing large tables to track past access histories. Lai

et al. used last touch prediction to dynamically self-invalidate cache lines, whereas

we employ last write prediction to dynamically downgrade from EXCL to SHARED

mode and generate speculative updates. By self-invalidating, Lai et al. convert read

misses from 3-hop misses to 2-hop misses, whereas we use updates to convert 3-hop

misses into 0-hop (local) misses. The downside of an overly aggressive downgrade

decision has less impact in our design, since the producer retains a SHARED copy

of the block. For these reasons, a less accurate predictor suffices to achieve good

performance improvements.

It is important that delayed intervention not occur too soon or too long after

data is supplied to the processor. If too short of an interval is used, the processor

may not have completed the current write burst and will suffer another write miss.

Overly long intervals result in the data not arriving at consumers in time for them to

avoid suffering read misses. For simplicity, we use a fixed (configurable) intervention

delay of 50 processor cycles. In Section 3.3.3 we show that performance is largely

insensitive to delay intervals between 5 and 5000 cycles. Developing a more adaptive

intervention mechanism is part of our future plans.

3.2.4.2 Selective Updates

To achieve good performance, we must accurately predict which nodes will read

an update before the cache line is modified again. An overly aggressive mechanism

will generate many useless updates, while an overly conservative mechanism will

not eliminate avoidable remote read misses. To limit the number of unnecessary

updates, we only send updates for cache lines that exhibit producer-consumer

behavior and only send updates to nodes that were part of the sharing vector,

i.e., the nodes that consumed the last update. Due to the way producer-consumer

45

sharing works, these are the nodes most likely to consume the newly written data.

We track these nodes as follows.

In a traditional invalidated-based protocol, when the state changes from SHARED

to EXCL, the sharing vector in the corresponding directory is replaced by the

NodeID of the exclusive owner. To track the most recent consumer set, we add

an ownerID field to the directory entry and use the old sharing vector to track the

nodes to send updates, only overwriting it when a new read request is received.

3.2.4.3 Summary of Control Flow

Figure 3.8 shows the control flow of our speculative update operation. The

producer node starts with a shared copy of the cache line that has already been

Read exclusive request
hits in a producer entry

Get directory info and send
invalidations to all consumers

Receive all inval ack,
change state to EXCL,
and keep sharing vector

Send delayed intervention
(to local processor)

Receive
downgrade

reply?

Hits a valid
producer

entry?

Push (downgraded) data
to consumers’RACs

End

Yes

Yes

No

No

Figure 3.8. Flow of speculative updates

46

delegated. When the producer writes the data, the local coherence engine loads

the directory information from the producer entry in to the local delegate cache.

After invalidating all shared copies, the producer’s hub changes the state to EXCL,

without overwriting the sharing vector, and gives the requesting processor exclusive

access. Several cycles later, the hub issues a delayed intervention on the local system

bus, which causes the producer processor to downgrade the cache line and write

back its new contents. After receiving the new data, the hub sends an update to

each node listed in the sharing vector. Upon receipt of an update, a consumer

places the incoming data in the local RAC. If the consumer processor has already

requested the data, the update message is treated as the response.

3.2.5 Verification

We formally verified that the mechanisms described above do not violate se-

quential consistency, introduce deadlocks or livelocks, or have other race conditions

or corner cases that violate correctness. We applied the standard method for

debugging cache coherence protocols: we built a formal model of our protocols and

performed an exhaustive reachability analysis of the model for a small configuration

size [99, 41, 38] using explicit-state model checking with the Murphi [47] model

checker.

We extended the DASH protocol model provided as part of the Murphi release,

ran the resulting model through Murphi, and found that none of the invariants pro-

vided in the DASH model were violated by our changes. We modeled the delegate

cache as described in Section 3.2.3, and also the additional request message types

and reply message types required for various transitions described in Section 3.2.3.1,

Section 3.2.3.2, and Section 3.2.3.3.

In out implementation, the home directory can be delegated to any node which

currently holds an exclusive copy of the data. Note that the precondition of this

rule “any node holds an exclusive copy” is weaker than the original precondition

described in Section 3.2.3: “the node holds an exclusive copy and repeatedly

produces the data.” However, this weakening makes the rule more permissive. In

47

other words, all invariants that are true in this abstract model must be true in the

original model. Our abstract model was verified using the default configuration,

which consists of one home cluster and three remote clusters.

Moreover, we applied invariant checking to our simulator to bridge the gap

between the abstract model and the simulated implementation and again found

that no invariants are violated. More specifically, we tested both Murphi’s “single

writer exists” and “consistency within the directory” invariants at the completion

of each transaction that incurs a L2 miss.

3.3 Evaluation

3.3.1 Simulator Environment

We use a cycle-accurate execution-driven simulator, UVSIM, in our performance

study. UVSIM models a hypothetical future-generation SGI Altix architecture that

we are investigating along with researchers from SGI. Table 3.1 summarizes the

major parameters of our simulated system. The simulated interconnect is based

on SGI’s NUMALink-4, which uses a fat-tree structure with eight children on each

nonleaf router. The minimum-sized network packet is 32 bytes and we model a

network hop latency of 50nsecs (100 CPU cycles). We do not model contention

within the routers, but do model hub port contention.

Table 3.1. System configuration.

Parameter Value

Processor 4-issue, 48-entry active list, 2GHz
L1 I-cache 2-way, 32KB, 64B lines, 1-cycle lat.
L1 D-cache 2-way, 32KB, 32B lines, 2-cycle lat.
L2 cache 4-way, 2MB, 128B lines, 10-cycle lat.
System bus 16B CPU to system, 8B system to CPU

max 16 outstanding L2C misses, 1GHZ
DRAM 4 16-byte-data DDR channels
Hub clock 500 MHz
DRAM 200 processor cycles latency
Network 100 processor cycles latency per hop

48

3.3.2 Results

We model a 16-processor system. Table 3.2 presents the input data sets of

the applications we use in this study. We consider a mix of scientific applications

that exhibit varying degrees of producer-consumer sharing. Barnes and Ocean

(contig) are from the SPLASH-2 benchmark suite [120]; EM3D is a shared memory

implementation of the Split-C benchmark; LU, CG, MG and Appbt are NAS

Parallel Benchmarks (NPB) [15]. We use Omni’s OpenMP versions of the NPBs [3].

All results reported in this chapter are for the parallel phases of these applica-

tions. Data placement is done by SGI’s first-touch policy, which tends to be very

effective in allocating data to processors that use them.

Figure 3.9 - 3.11 present the execution time speedup, network message re-

duction and remote miss reduction for each application for a range of machine

configurations. All results are scaled relative to the baseline system runs. For

each application, we also show the results for a system with a 32K RAC and no

delegation or update mechanisms, a system with 32-entry delegate tables and a

32K RAC, and a system with 1K-entry delegate tables and a 1M RAC. Other than

the baseline and RAC-only systems, the results include both directory delegation

and selective updates. We omit results for delegation-only, as we found that the

benefit of turning 3-hop misses into 2-hop misses roughly balanced out the overhead

of delegation, which resulted in performance within 1% of the baseline system for

most applications.

Table 3.2. Applications and data sets

Application Problem size

Barnes 16384 nodes, 123 seed
Ocean 258*258 array, 1e-7 error tolerance
Em3D 38400 nodes, degree 5, 15% remote
LU 16*16*16 nodes, 50 testes
CG 1400 nodes, 15 iteration
MG 32*32*32 nodes, 4 steps
Appbt 16*16*16 nodes, 60 timesteps

49

Parallel Time Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes Ocean Em3D LU CG MG Appbt

Base 32KB RAC
32-entry deledc & 32K RAC 1k-entry deledc & 1M RAC

Figure 3.9. Application speedup

Network Messages

0

0.2

0.4

0.6

0.8

1

1.2

Barnes Ocean Em3D LU CG MG Appbt

Base 32KB RAC
32-entry deledc & 32K RAC 1k-entry deledc & 1M RAC

Figure 3.10. Application network messages

50

Number of Remote Misses

0

0.2

0.4

0.6

0.8

1

Barnes Ocean Em3D LU CG MG Appbt

Base 32KB RAC
32-entry deledc & 32K RAC 1k-entry deledc & 1M RAC

Figure 3.11. Application remote misses

Barnes simulates the interaction of a system of bodies in three dimensions

using the Barnes-Hut hierarchical N-body method. The main data structure is

an octree with leaves containing information on each body, and internal nodes

representing space cells. During each iteration, processors traverse the octree to

calculate forces between the bodies and rebuild the octree to reflect the movement

of bodies. Although the communication patterns are dependent on the particle

distribution, which changes with time, barnes exhibits stable producer-consumer

sharing patterns during each phase. The octree data structure inherently results in

there being a significant number of consumers per producer, as shown in Table 3.3.

Therefore, the benefits of selective updates within each phase are substantial.

Even a small delegate cache and RAC (32-entries and 32K respectively) elimi-

nates roughly 20% of the baseline version’s remote misses, which leads to a 17%

performance improvement. This performance improvement grows to 23% for the

larger delegate cache/RAC configuration.

51

Table 3.3. Number of consumers in the producer-consumer sharing patterns

Application Number of Consumers (%)
1 2 3 4 4+

Barnes 13.9 6.8 9.4 8.1 61.7
Ocean 97.7 1.8 0.5 0 0
Em3D 67.8 32.2 0 0 0
LU 99.4 0 0 0.4 0.1
CG 0.1 0.2 0 0 99.7
MG 78.3 11.4 3.7 2.6 3.9
Appbt 0 0.3 6.7 1.4 91.6
Average 51.0 7.5 2.9 1.8 36.7

Ocean models large-scale ocean movements based on eddy and boundary cur-

rents. Processors communicate with their immediate neighbors, so nodes along

processor allocation boundaries exhibit single producer single consumer sharing.

The small number of consumers per producer limits the potential benefits of our

speculative update mechanism, as illustrated by the modest remote miss reduction

and performance benefits (8% for the small RAC/delegate cache configuration and

11% for the larger one).

Em3d models the propagation of electromagnetic waves through objects in

three dimensions. It includes two configuration parameters that govern the extent of

producer-consumer sharing: distribution span indicates how many consumers each

producer will have while remote links controls the probability that the producer and

consumer are on the different nodes. We use a distribution span of 5 and remote

links probability of 15%.

Selective updates improve performance by 33-40% due largely to a dramatic

reduction in coherence message traffic (60%) and an even larger reduction in remote

misses (80-90%). The benefits of eliminating remote misses are obvious, but there

are several other phenomenon at work that help eliminate network traffic. First,

delegating the home directory to the producer node converts 3-hop misses in to

2-hop misses. A less obvious source of traffic reduction comes from eliminating

NACKs induced when barrier synchronization is implemented on top of a write

52

invalidate protocol. After a barrier is crossed, a large number of nodes often attempt

to read the same invalidated cache line simultaneously, which causes congestion

at the data’s home directory. To avoid queueing and potential deadlocks, the

directory NACKs requests for a particular cache line if it is BUSY performing

another operation on that line. In em3d, NACK messages caused by this “reload

flurry” phenomenon represent a nontrivial percentage of network traffic and are

largely removed by speculative updates.

LU solves a finite difference discretization of the 3D compressible Navier-Stokes

equations through a block-lower block-upper approximate factorization of the orig-

inal difference scheme. The LU factored form is solved using successive over-

relaxation (SOR). A 2D partitioning of the grid onto processors divides the grid

repeatedly along the first two dimensions, alternately x and then y, which results

in vertical columns of data being assigned to individual processors. Boundary data

exhibit stable producer-consumer sharing. Again, even a small delegate cache and

RAC are able to achieve good performance improvements (31% speedup, 26% traffic

reduction, and 30% remote miss reduction), while a larger configuration achieves a

40% speedup, 30% traffic reduction, and 35% remote miss reduction.

CG uses the conjugate gradient method to compute an approximation of the

smallest eigenvalue of a large sparse symmetric positive definite matrix. Multiple

issues limit the speedup of CG to 6%. First, CG exhibits producer-consumer sharing

only during some phases. Second, the sparse matrix representation used in CG

exhibits a high degree of false sharing. Our simple cache line-grained producer-

consumer pattern detector avoids designating such cache lines as good candidates

for selective updates, which limits the potential performance benefits. Third, and

most important, remote misses are not a major performance bottleneck, so even

removing roughly 60% of them does not improve performance dramatically.

MG is a simplified multigrid kernel that solves four iterations of a V-cycle multi-

grid algorithm to obtain an approximate solution to a discrete Poisson equation.

The V-cycle starts with the finest grid, proceeds through successive levels to the

coarsest grid, and then walks back up to the finest grid. At the finest grid size,

53

boundary data exhibits producer-consumer sharing. At coarse grid sizes, two pieces

of dependent data are most likely on different processors, so more data exhibits

producer consumer sharing. In fact, a 32-entry delegate cache is too small to hold

all cache blocks identified as exhibiting producer-consumer sharing, which limits

the number of remote misses that can be removed to 20% and the performance

improvement to 9%. Increasing the delegate cache size to include 1K-entry tables

increases the performance benefit to 22%. Note that the larger configuration results

in almost the same network traffic as the baseline system, largely to due being

overly aggressive in sending out updates. As expected, eliminating remote misses

has a larger impact on performance than eliminating network traffic, so the larger

configuration achieves better performance despite being less effective at eliminating

network traffic.

Appbt is a three-dimensional stencil code in which a cube is divided into

subcubes that are assigned to separate processors. Gaussian elimination is then per-

formed along all three dimensions. Like MG, Appbt exhibits significant producer-

consumer sharing along subcube boundaries. Like MG, the small RAC/delegate

cache is able to capture only a fraction of the performance benefit of the large con-

figuration, 8% compared to the 24% speedup achieved by the large configuration.

Overall, the geometric mean speedup of our speculative update mechanism

across the seven benchmark programs using the small RAC/delegate cache is 13%,

while network traffic is reduced by an arithmetic mean of 17% and 29% of remote

misses are eliminated. If we increase the size of the delegate cache tables to 1K

entries and the RAC size to 1MB, mean speedup increases to 21%, with a 15%

reduction in message traffic and 40% reduction in remote misses.

In general, the primary benefit of speculative updates comes from removing

remote misses, especially for em3d and MG. However, in some cases eliminating a

significant number of remote misses does not translate directly into large runtime

improvements.

54

3.3.3 Sensitivity Analysis

3.3.3.1 Equal Storage Area Comparison

We first compare our proposed system to systems with equal silicon area. To

support 32-entry delegate tables and a 32KB RAC requires roughly 40KB of extra

SRAM per node, plus a small amount of control logic and wire area. This estimate

is derived as follows. A 32-entry delegate table requires 320 bytes. Extending

the directory cache to support the sharing pattern predictor adds 8 bits to each

directory entry (a 4-bit last writer field, a 2-bit reader counter, and a 2-bit write-

repeat counter), which for a 8192-entry (32KB) directory cache represents an extra

8KB of storage. We do not save these extra bits when a directory entry is flushed,

so there is no extra main memory overhead.

In Figure 3.12 we present the performance of a system with 1MB of L2 cache and

no extensions, a system with 1MB of L2 cache extended with a 32-entry delegate

cache and a 32KB RAC, and an equal silicon area system with 1.04MB of L2

cache and no extensions. Note that a 1.04MB cache involves adding silicon to the

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Barnes Ocean Em3D LU CG MG Appbt

S
p

ee
d

u
p

Base (1M L2)

Equal cache size (1.04M L2)

Inter(1M L2, 32RAC,32Entry)

Figure 3.12. Equal storage area comparison (larger L2 caches)

55

processor die, but we include it to compare the value of building “smarter” versus

“larger” caches.

For most benchmarks adding a 32-entry delegate cache and a 32KB RAC yields

significantly better performance than simply building a larger L2 cache. The

exception is Appbt. Recall that Appbt requires a large RAC to hold all producer-

consumer data; a small RAC such as the one modeled here suffers excessive RAC

misses, which limits the performance improvement of delegation and updates.

Similarly, additional silicon area can also be used to increase the size of the

directory cache as illustrated in Figure 3.13. To handle a coherent data access,

the home node must consult the corresponding directory entry to determine the

data’s sharing state. If the directory entry is not present in the directory cache, the

home node need to load the directory entry from the local memory. Altix machines

have a 32KB directory cache by default, which can cover 8192 directory entries.

To perform an equal silicon area comparison, we model a system with a 1MB L2

cache and a 64KB directory cache versus a system with a 1MB L2 cache, a 32KB

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Barnes Ocean Em3D LU CG MG Appbt

S
p

ee
d

u
p

Base (1M L2, 32KB DC)

Equal sz (1M L2, 64KB DC)

Inter(1M L2, 32RAC,32Entry)

Figure 3.13. Equal storage area comparison (larger directory caches)

56

RAC, and support for delegation/updates. Both designs involve adding SRAM only

outside the processor core. Figure 3.13 shows that doubling the size of directory

cache improves the performance by less than 1%, and our proposed design yields

significantly better performance for all benchmarks.

3.3.3.2 Sensitivity to Intervention Delay Interval

Figure 3.14 presents the execution time of each application as we vary the delay

interval from 5 to 500M cycles normalized to the performance with a 5-cycle delay.

A delay interval of 5 cycles results in 1%-5% worse performance than a 50-cycle

delay interval, because some write bursts last longer than 5 cycles, which causes

extra write misses and updates. As we increase the delay interval beyond 50 cycles,

performance degrades at different rates for different applications. Some applications

can tolerate a higher delay interval, e.g., MG performance does not deteriorate until

the delay interval exceeds 50K cycles, because the average latency between producer

writes and consumer reads is large. A delay interval of 50 cycles works well for all

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5 50 500 5K 50K 500K 5M 50M 500M Infinite
Delayed Cycles for Intervention

N
o

rm
o

liz
ed

 E
xe

cu
ti

o
n

 T
im

e

Barnes

Ocean

Em3D

LU

CG

MG

Appbt

Figure 3.14. Sensitivity to intervention delay

57

of the benchmarks because it is long enough to capture most write bursts, but

short enough to ensure that updates arrive early enough to eliminate consumer

read misses.

The performance of Ocean and Barnes varies inconsistently as we vary the delay

interval. This phenomenon is caused by a nonobvious interaction between the choice

of delay interval and the timing of synchronization in these applications. When the

choice of delay interval happens to cause updates to occur at the same time that

the application is synchronizing between threads, e.g., as occurs for both Ocean

and Barnes with a delay interval of 5M cycles, performance suffers.

As described in Section 3.2.4, the delayed intervention mechanism is employed to

generate updates without modifying the processor core. In the following study, we

remove this constraint by assuming processors have the ability to push the data di-

rectly to remote caches. When a producer writes to a cache line which shows stable

producer consumer sharing, it sends update messages to consumers’ caches immedi-

ately after the write instruction graduates from the pipeline. Figure 3.15 shows the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes Ocean Em3D LU CG MG Appbt

S
p

ee
d

u
p

Delayed Intervertion (50 cycles)

Puts issued by processor

Figure 3.15. Delayed intervention VS. updates issued by processor

58

performance benefits of processor-issued updates compared with updates generated

by the delayed intervention mechanism. The average performance speedup of

processor-issued updates over baseline is less than 2%, with most applications

within 0.5%. Two exceptions are Ocean and LU. Processor-issued updates improve

the performance of Ocean by 12%. This is because updates issued by processors are

sent earlier, thus reducing the chance of conflicting with following synchronization

messages. In contrast, processor-issued updates reduce the performance of LU by

4% due to excessive long write bursts in LU. Processor-issued updates aggressively

downgrade cache lines from exclusive state to shared state, which incurs extra

update misses in the long write bursts.

3.3.3.3 Sensitivity to Network Latency

To investigate the extent to which remote miss latency impacts performance, we

vary the network hop latencies from 25nsecs to 200nsecs. Figure 3.16 plots the ex-

ecution time (left y-axis) and speedup (right y-axis) for Appbt, whose performance

is representative. We consider only the baseline CC-NUMA system and a system

enhanced with a 32K RAC and 32-entry delegate cache tables. Every time network

25 50 100 200

Network hop latency (nsecs)

0

2

4

6

E
xe

cu
ti

on
 t

im
e

(B
cy

cl
es

)

 32K RAC
 32-entry deledc with 32K RAC

1.20

1.22

1.24

1.26

1.28

1.30

Speedup

speedup

Figure 3.16. Sensitivity to hop latency (Appbt)

59

hop latency doubles, execution time nearly doubles. Therefore, the value of the

mechanisms proposed herein increases as average remote miss latencies increase,

albeit only gradually (increasing from a 24% speedup to 28% as we increase hop

latency from 25nsecs to 200nsecs).

3.3.3.4 RAC and Delegate Cache

For most benchmarks, a small delegate cache and RAC (32-entry and 32KB)

result in significant performance benefits. Two exceptions are MG and Appbt,

which are limited by the size of the delegate cache and RAC, respectively. Fig-

ure 3.17 shows MG’s sensitivity to the delegate cache size. MG has a substantial

amount of producer-consumer data, so increasing the delegate cache size improves

performance. For Appbt, the performance benefit of delegation/updates is limited

by the size of the RAC; increasing the RAC size eliminates this bottleneck and

improves performance, as shown in Figure 3.18.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Base

32-entry
64-entry

128-entry

256-entry

512-entry
1K-entry

Speedup Network Messages

Figure 3.17. Sensitivity to delegate cache sz (MG)

60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Base

32KB RAC

64KB RAC

128KB RAC

256KB RAC

512KB RAC

1MB RAC

Speedup Network Messages

Figure 3.18. Sensitivity to RAC size (Appbt)

3.4 Summary

Our work focuses on the design and analysis of mechanisms that improve shared

memory performance by eliminating remote misses and coherence traffic. In this

chapter we propose two novel mechanisms, directory delegation and speculative

updates, that can be used to improve the performance of applications that ex-

hibit producer-consumer sharing. After detecting instances of producer-consumer

sharing using a simple directory-based predictor, we delegate responsibility for the

data’s directory information from its home node to the current producer of the

data, which can convert 3-hop coherence operations into 2-hop operations. We

also present a speculative update mechanism wherein shortly after modifying a

particular piece of data, producers speculatively forward updates to the nodes that

most recently accessed it.

On a collection of seven benchmark programs, we demonstrate that speculative

updates can significantly reduce the number of remote misses suffered and amount

of network traffic generated. We consider two hardware implementations, one that

61

requires very little hardware overhead (a 32-entry delegate cache and a 32KB RAC

per node) and one that requires modest overhead (a 1K-entry delegate cache and

a 1MB RAC per node). On the small configuration, delegation/updates reduce

execution time by 13% by reducing the number of remote misses by 29% and

network traffic by 17%. On the larger configuration, delegation/updates reduce

program execution time by 21% by reducing the number of remote misses by

40% and network traffic by 15%. Finally, we show that the performance benefits

derive primarily from eliminating remote misses, and only secondarily from reducing

network traffic.

There are many ways to extend and improve the work reported herein. To

minimize the amount of hardware needed, thereby making it easier to adopt our

ideas in near future products, we employ a very simplistic producer-consumer

sharing pattern and “last write” predictor. Using a simple analytical model, not

presented here for space reasons, we found that as network latency grows, the

achievable speedup is limited to 1/(1-accuracy). Thus, we plan to investigate the

value of more sophisticated predictors, e.g., one that can detect producer-consumer

behavior in the face of false sharing and multiple writers. In addition, we plan

to investigate the potential performance benefits of non-sequentially consistent

versions of our mechanisms, e.g., ones that issued updates in place of invalidates

rather than after invalidates, or that support multiple writers [32].

CHAPTER 4

INTERCONNECT-AWARE COHERENCE

PROTOCOLS

In this chapter, we demonstrate how our interconnect-aware coherence protocols

optimize the coherence traffic in a Chip Multi-Processors (CMP). Improvements

in semiconductor technology have made it possible to include multiple processor

cores on a single die. CMPs are an attractive choice for future billion transistor

architectures due to their low design complexity, high clock frequency, and high

throughput. In a typical CMP architecture, the L2 cache is shared by multiple

cores and data coherence is maintained among private L1s. Coherence operations

entail frequent communication over global on-chip wires. In future technologies,

communication between different L1s will have a significant impact on overall pro-

cessor performance and power consumption. On-chip wires can be designed to have

different latency, bandwidth, and energy properties. Likewise, coherence protocol

messages have different latency and bandwidth needs. We propose an interconnect

composed of wires with varying latency, bandwidth, and energy characteristics, and

advocate intelligently mapping coherence operations to the appropriate wires. In

this section, we present a comprehensive list of techniques that allow coherence

protocols to exploit a heterogeneous interconnect and evaluate a subset of these

techniques to show their performance and power-efficiency potential. Most of the

proposed techniques can be implemented with a minimum complexity overhead.

The chapter is organized as follows. We describe the background in Section 4.1.

Section 4.2 reviews techniques that enable different wire implementations and the

design of a heterogeneous interconnect. Section 4.3 describes the proposed in-

63

novations that map coherence messages to different on-chip wires. Section 4.4

quantitatively evaluates these ideas and we conclude in Section 4.5.

4.1 Background

One of the greatest bottlenecks to performance in future microprocessors is the

high cost of on-chip communication through global wires [64]. Power consump-

tion has also emerged as a first order design metric and wires contribute up to

50% of total chip power in some processors [90]. Most major chip manufacturers

have already announced plans [65, 73] for large-scale chip multiprocessors (CMPs).

Multithreaded workloads that execute on such processors will experience high on-

chip communication latencies and will dissipate significant power in interconnects.

In the past, only VLSI and circuit designers were concerned with the layout of

interconnects for a given architecture. However, with communication emerging

as a larger power and performance constraint than computation, it may become

necessary to understand and leverage the properties of the interconnect at a higher

level. Exposing wire properties to architects enables them to find creative ways

to exploit these properties. This chapter presents a number of techniques by

which coherence traffic within a CMP can be mapped intelligently to different

wire implementations with minor increases in complexity. Such an approach can

not only improve performance, but also reduce power dissipation.

In a typical CMP, the L2 cache and lower levels of the memory hierarchy are

shared by multiple cores [76, 114]. Sharing the L2 cache allows high cache utilization

and avoids duplicating cache hardware resources. L1 caches are typically not shared

as such an organization entails high communication latencies for every load and

store. There are two major mechanisms used to ensure coherence among L1s in

a chip multiprocessor. The first option employs a bus connecting all of the L1s

and a snoopy bus-based coherence protocol. In this design, every L1 cache miss

results in a coherence message being broadcast on the global coherence bus and

other L1 caches are responsible for maintaining valid state for their blocks and

responding to misses when necessary. The second approach employs a centralized

64

directory in the L2 cache that tracks sharing information for all cache lines in the

L2. In such a directory-based protocol, every L1 cache miss is sent to the L2

cache, where further actions are taken based on that block’s directory state. Many

studies [6, 25, 66, 80, 86] have characterized the high frequency of cache misses

in parallel workloads and the high impact these misses have on total execution

time. On a cache miss, a variety of protocol actions are initiated, such as request

messages, invalidation messages, intervention messages, data block writebacks, data

block transfers, etc. Each of these messages involves on-chip communication with

latencies that are projected to grow to tens of cycles in future billion transistor

architectures [9].

Simple wire design strategies can greatly influence a wire’s properties. For

example, by tuning wire width and spacing, we can design wires with varying

latency and bandwidth properties. Similarly, by tuning repeater size and spacing,

we can design wires with varying latency and energy properties. To take advantage

of VLSI techniques and better match the interconnect design to communication

requirements, a heterogeneous interconnect can be employed, where every link

consists of wires that are optimized for either latency, energy, or bandwidth. In

this study, we explore optimizations that are enabled when such a heterogeneous

interconnect is employed for coherence traffic. For example, when employing a

directory-based protocol, on a cache write miss, the requesting processor may have

to wait for data from the home node (a 2-hop transaction) and for acknowledgments

from other sharers of the block (a 3-hop transaction). Since the acknowledgments

are on the critical path and have low bandwidth needs, they can be mapped to

wires optimized for delay, while the data block transfer is not on the critical path

and can be mapped to wires that are optimized for low power.

4.2 Wire Implementations

We begin with a quick review of factors that influence wire properties. It is well-

known that the delay of a wire is a function of its RC time constant (R is resistance

and C is capacitance). Resistance per unit length is (approximately) inversely

65

proportional to the width of the wire [64]. Likewise, a fraction of the capacitance

per unit length is inversely proportional to the spacing between wires, and a fraction

is directly proportional to wire width. These wire properties provide an opportunity

to design wires that trade off bandwidth and latency. By allocating more metal

area per wire and increasing wire width and spacing, the net effect is a reduction

in the RC time constant. This leads to a wire design that has favorable latency

properties, but poor bandwidth properties (as fewer wires can be accommodated in

a fixed metal area). In certain cases, nearly a three-fold reduction in wire latency

can be achieved, at the expense of a four-fold reduction in bandwidth. Further,

researchers are actively pursuing transmission line implementations that enable

extremely low communication latencies [34, 48]. However, transmission lines also

entail significant metal area overheads in addition to logic overheads for sending

and receiving [23, 34]. If transmission line implementations become cost-effective

at future technologies, they represent another attractive wire design point that can

trade off bandwidth for low latency.

Similar trade-offs can be made between latency and power consumed by wires.

Global wires are usually composed of multiple smaller segments that are connected

with repeaters [16]. The size and spacing of repeaters influences wire delay and

power consumed by the wire. When smaller and fewer repeaters are employed,

wire delay increases, but power consumption is reduced. The repeater configuration

that minimizes delay is typically very different from the repeater configuration that

minimizes power consumption. Banerjee et al. [18] show that at 50nm technology,

a five-fold reduction in power can be achieved at the expense of a two-fold increase

in latency.

Thus, by varying properties such as wire width/spacing and repeater size/spacing,

we can implement wires with different latency, bandwidth, and power properties.

Consider a CMOS process where global intercore wires are routed on the 8X and

4X metal planes. Note that the primary differences between minimum-width wires

in the 8X and 4X planes are their width, height, and spacing. We will refer to these

mimimum-width wires as baseline B-Wires (either 8X-B-Wires or 4X-B-Wires). In

66

addition to these wires, we will design two more wire types that may be potentially

beneficial (summarized in Figure 4.1). A low-latency L-Wire can be designed by

increasing the width and spacing of the wire on the 8X plane (by a factor of four). A

power-efficient PW-Wire is designed by decreasing the number and size of repeaters

within minimum-width wires on the 4X plane. While a traditional architecture

would employ the entire available metal area for B-Wires (either 4X or 8X), we

propose the design of a heterogeneous interconnect, where part of the available

metal area is employed for B-Wires, part for L-Wires, and part for PW-Wires.

Thus, any data transfer has the option of using one of three sets of wires to effect

the communication. A typical composition of a heterogeneous interconnect may

be as follows: 256 B-Wires, 512 PW-Wires, 24 L-Wires. In the next section, we

will demonstrate how these options can be exploited to improve performance and

reduce power consumption. We will also examine the complexity introduced by a

heterogeneous interconnect.

4.3 Optimizing Coherence Traffic

For each cache coherence protocol, there exist a variety of coherence operations

with different bandwidth and latency needs. Because of this diversity, there are

many opportunities to improve performance and power characteristics by employing

a heterogeneous interconnect. The goal of this section is to present a comprehen-

sive listing of such opportunities. We focus on protocol-specific optimizations in

B−4X wiresL wires B−8X wires PW wires

Figure 4.1. Examples of different wire implementations

67

Section 4.3.1 and on protocol-independent techniques in Section 4.3.2. We discuss

the implementation complexity of these techniques in Section 4.3.3.

4.3.1 Protocol-dependent Techniques

We first examine the characteristics of operations in both directory-based and

snooping bus-based coherence protocols and how they can map to different sets of

wires. In a bus-based protocol, the ability of a cache to directly respond to another

cache’s request leads to low L1 cache-to-cache miss latencies. L2 cache latencies

are relatively high as a processor core has to acquire the bus before sending a

request to L2. It is difficult to support a large number of processor cores with

a single bus due to the bandwidth and electrical limits of a centralized bus [26].

In a directory-based design [68, 83], each L1 connects to the L2 cache through a

point-to-point link. This design has low L2 hit latency and scales better. However,

each L1 cache-to-cache miss must be forwarded by the L2 cache, which implies high

L1 cache-to-cache latencies. The performance comparison between these two design

choices depends on the cache sizes, miss rates, number of outstanding memory

requests, working-set sizes, sharing behavior of targeted benchmarks, etc. Since

either option may be attractive to chip manufacturers, we will consider both forms

of coherence protocols in our study.

Write-invalidate directory-based protocols have been implemented in existing

dual-core CMPs [114] and will likely be used in larger scale CMPs as well. In a

directory-based protocol, every cache line has a directory where the states of the

block in all L1s are stored. Whenever a request misses in an L1 cache, a coherence

message is sent to the directory at the L2 to check the cache line’s global state. If

there is a clean copy in the L2 and the request is a READ, it is served by the L2

cache. Otherwise, another L1 must hold an exclusive copy and the READ request is

forwarded to the exclusive owner, which supplies the data. For a WRITE request,

if any other L1 caches hold a copy of the cache line, coherence messages are sent to

each of them requesting that they invalidate their copies. The requesting L1 cache

68

acquires the block in exclusive state only after all invalidation messages have been

acknowledged.

Hop imbalance is quite common in a directory-based protocol. To exploit this

imbalance, we can send critical messages on fast wires to increase performance

and send noncritical messages on slow wires to save power. For the sake of this

discussion, we assume that the hop latencies of different wires are in the following

ratio: L-wire : B-wire : PW-wire :: 1 : 2 : 3

4.3.1.1 Proposal I: Write for Shared Data

In this case, the L2 cache’s copy is clean, so it provides the data to the requesting

L1 and invalidates all shared copies. When the requesting L1 receives the reply

message from the L2, it collects invalidation acknowledgment messages from the

other L1s before returning the data to the processor core.1 Figure 4.2 depicts all

generated messages.

The reply message from the L2 requires only one hop, while the invalidation

process requires two hops – an example of hop imbalance. Since there is no

1Some coherence protocols may not impose all of these constraints, thereby deviating from a
sequentially consistent memory model.

L2 cache and directory

1 2 3

4

acknowledgement back to

2

3

4

Processor 2Processor 1

Cache 1 Cache 2 Shared state in Cache 2.

Processor 1 attempts write. 1

message to Cache 2.

Sends Rd−Exc to directory.

Directory sends invalidate

Directory finds block in

Sends clean copy of cache
block to Cache 1.

Cache 2 sends invalidate

Cache 1.

Figure 4.2. Read exclusive request for a shared block in MESI protocol

69

benefit to receiving the cache line early, latencies for each hop can be chosen so

as to equalize communication latency for the cache line and the acknowledgment

messages. Acknowledgment messages include identifiers so they can be matched

against the outstanding request in the L1’s MSHR. Since there are only a few

outstanding requests in the system, the identifier requires few bits, allowing the

acknowledgment to be transferred on a few low-latency L-Wires. Simultaneously,

the data block transmission from the L2 can happen on low-power PW-Wires

and still finish before the arrival of the acknowledgments. This strategy improves

performance (because acknowledgments are often on the critical path) and reduces

power consumption (because the data block is now transferred on power-efficient

wires). While circuit designers have frequently employed different types of wires

within a circuit to reduce power dissipation without extending the critical path,

the proposals in this chapter represent some of the first attempts to exploit wire

properties at the architectural level.

4.3.1.2 Proposal II: Read for Exclusive Data

In this case, the value in the L2 is likely to be stale and the following protocol

actions are taken. The L2 cache sends a speculative data reply to the requesting L1

and forwards the read request as an intervention message to the exclusive owner. If

the cache copy in the exclusive owner is clean, an acknowledgment message is sent

to the requesting L1, indicating that the speculative data reply from the L2 is valid.

If the cache copy is dirty, a response message with the latest data is sent to the

requesting L1 and a write-back message is sent to the L2. Since the requesting L1

cannot proceed until it receives a message from the exclusive owner, the speculative

data reply from the L2 (a single hop transfer) can be sent on slower PW-Wires. The

forwarded request to the exclusive owner is on the critical path, but includes the

block address. It is therefore not eligible for transfer on low-bandwidth L-Wires. If

the owner’s copy is in the exclusive clean state, a short acknowledgment message

to the requestor can be sent on L-Wires. If the owner’s copy is dirty, the cache

block can be sent over B-Wires, while the low priority writeback to the L2 can

70

happen on PW-Wires. With the above mapping, we accelerate the critical path by

using faster L-Wires, while also lowering power consumption by sending noncritical

data on PW-Wires. The above protocol actions apply even in the case when a

read-exclusive request is made for a block in the exclusive state.

4.3.1.3 Proposal III: NACK Messages

When the directory state is busy, incoming requests are often NACKed by the

home directory, i.e., a negative acknowledgment is sent to the requester rather

than buffering the request. Typically the requesting cache controller re-issues the

request and the request is serialized in the order in which it is actually accepted

by the directory. A NACK message can be matched by comparing the request id

(MSHR index) rather than the full address, so a NACK is eligible for transfer on

low-bandwidth L-Wires. If load at the home directory is low, it will likely be able

to serve the request when it arrives again, in which case sending the NACK on

fast L-Wires can improve performance. In contrast, when load is high, frequent

backoff-and-retry cycles are experienced. In this case, fast NACKs only increase

traffic levels without providing any performance benefit. In this case, in order to

save power, NACKs can be sent on PW-Wires.

4.3.1.4 Proposal IV: Unblock and Write Control

Some protocols [97] employ unblock and write control messages to reduce imple-

mentation complexity. For every read transaction, a processor first sends a request

message that changes the L2 cache state into a transient state. After receiving the

data reply, it sends an unblock message to change the L2 cache state back to a

stable state. Similarly, write control messages are used to implement a three-phase

writeback transaction. A processor first sends a control message to the directory

to order the writeback message with other request messages. After receiving the

writeback response from the directory, the processor sends the data. This avoids a

race condition in which the processor sends the writeback data while a request is

being forwarded to it. Sending unblock messages on L-Wires can improve perfor-

71

mance by reducing the time cache lines are in busy states. Write control messages

(writeback request and writeback grant) are not on the critical path, although they

are also eligible for transfer on L-Wires. The choice of sending writeback control

messages on L-Wires or PW-Wires represents a power-performance trade-off.

4.3.1.5 Proposal V: Signal Wires

We next examine techniques that apply to bus-based protocols. In a bus-

based system, three wired-OR signals are typically employed to avoid involving

the lower/slower memory hierarchy [46]. Two of these signals are responsible for

reporting the state of snoop results and the third indicates that the snoop result

is valid. The first signal is asserted when any L1 cache, besides the requester, has

a copy of the block. The second signal is asserted if any cache has the block in

exclusive state. The third signal is an inhibit signal, asserted until all caches have

completed their snoop operations. When the third signal is asserted, the requesting

L1 and the L2 can safely examine the other two signals. Since all of these signals

are on the critical path, implementing them using low-latency L-Wires can improve

performance.

4.3.1.6 Proposal VI: Voting Wires

Another design choice is whether to use cache-to-cache transfers if the data is

in the shared state in a cache. The Silicon Graphics Challenge [51] and the Sun

Enterprise use cache-to-cache transfers only for data in the modified state, in which

case there is a single supplier. On the other hand, in the full Illinois MESI protocol,

a block can be preferentially retrieved from another cache rather than from memory.

However, when multiple caches share a copy, a “voting” mechanism is required to

decide which cache will supply the data, and this voting mechanism can benefit

from the use of low latency wires.

72

4.3.2 Protocol-independent Techniques

4.3.2.1 Proposal VII: Synchronization Variables

Synchronization is one of the most important factors in the performance of a

parallel application. Synchronization is not only often on the critical path, but it

also contributes a large percentage (up to 40%) of coherence misses [86]. Locks

and barriers are the two most widely used synchronization constructs. Both of

them use small integers to implement mutual exclusion. Locks often toggle the

synchronization variable between zero and one, while barriers often linearly increase

a barrier variable from zero to the number of processors taking part in the barrier

operation. Such data transfers have limited bandwidth needs and can benefit from

using L-Wires.

This optimization can be further extended by examining the general problem of

cache line compaction. For example, if a cache line is comprised mostly of 0 bits,

trivial data compaction algorithms may reduce the bandwidth needs of the cache

line, allowing it to be transferred on L-Wires instead of B-Wires. If the wire latency

difference between the two wire implementations is greater than the delay of the

compaction/de-compaction algorithm, performance improvements are possible.

4.3.2.2 Proposal VIII: Writeback Data

Writeback data transfers result from cache replacements or external intervention

messages. Since writeback messages are rarely on the critical path, assigning them

to PW-Wires can save power without incurring significant performance penalties.

4.3.2.3 Proposal IX: Narrow Messagess

Coherence messages that include the data block address or the data block itself

are many bytes wide. However, many other messages, such as acknowledgments and

NACKs, do not include the address or data block and only contain control infor-

mation (source/destination, message type, MSHR id, etc.). Such narrow messages

can be always assigned to low latency L-Wires to accelerate the critical path.

73

4.3.3 Implementation Complexity

4.3.3.1 Implementation Overhead

In a conventional multiprocessor interconnect, a subset of wires are employed

for addresses, a subset for data, and a subset for control signals. Every bit of

communication is mapped to a unique wire. When employing a heterogeneous

interconnect, a communication bit can map to multiple wires. For example, data

returned by the L2 in response to a read-exclusive request may map to B-Wires or

PW-Wires depending on whether there are other sharers for that block (Proposal

I). Thus, every wire must be associated with a multiplexor and de-multiplexor.

The entire network operates at the same fixed clock frequency, which means that

the number of latches within every link is a function of the link latency. Therefore,

PW-Wires have to employ additional latches, relative to the baseline B-Wires.

Dynamic power per latch at 5GHz and 65nm technology is calculated to be 0.1mW,

while leakage power per latch equals 19.8µW [78]. The power per unit length for

each wire is computed in the next section. Power overheads due to these latches

for different wires are tabulated in Table 4.1. Latches impose a 2% overhead within

B-Wires, but a 13% overhead within PW-Wires.

The proposed model also introduces additional complexity in the routing logic.

The base case router employs a cross-bar switch and 8-entry message buffers at

each input port. Whenever a message arrives, it is stored in the input buffer and

routed to an allocator that locates the output port and transfers the message. In

case of a heterogeneous model, three different buffers are required at each port

Table 4.1. Power characteristics of different wire implementations) is assumed to
be 0.15. The above latch spacing values are for a 5GHz network.

Wire Type Power/Length Latch Power Latch Spacing Total Power
mW/mm mW/latch mm mW/10mm

B-Wire 1.4221 0.119 5.15 14.46
B-Wire 1.5928 0.119 3.4 16.29
L-Wire 0.7860 0.119 9.8 7.80

PW-wire 0.4778 0.119 1.7 5.48

74

to store L, B, and PW messages separately. In our simulations we employ three

4-entry message buffers for each port. The size of each buffer is proportional to

the flit size of the corresponding set of wires. For example, a set of 24 L-Wires

employs a 4-entry message buffer with a word size of 24 bits. For power calculations

we have also included the fixed additional overhead associated with these small

buffers as opposed to a single larger buffer employed in the base case. In our

proposed processor model, the dynamic characterization of messages happens only

in the processors and intermediate network routers cannot re-assign a message to

a different set of wires. While this may have a negative effect on performance in a

highly utilized network, we chose to keep the routers simple and not implement such

a feature. For a network employing virtual channel flow control, each set of wires

in the heterogeneous network link is treated as a separate physical channel and the

same number of virtual channels are maintained per physical channel. Therefore,

the heterogeneous network has a larger total number of virtual channels and the

routers require more state fields to keep track of these additional virtual channels.

To summarize, the additional overhead introduced by the heterogeneous model

comes in the form of potentially more latches and greater routing complexity.

4.3.3.2 Overhead in Decision Process

The decision process in selecting the right set of wires is minimal. For example,

in Proposal I, an OR function on the directory state for that block is enough to

select either B- or PW-Wires. In Proposal II, the decision process involves a check

to determine if the block is in the exclusive state. To support Proposal III, we need

a mechanism that tracks the level of congestion in the network (for example, the

number of buffered outstanding messages). There is no decision process involved for

Proposals IV, V, VI and VIII. Proposals VII and IX require logic to compute

the width of an operand, similar to logic used in the PowerPC 603 [52] to determine

the latency for integer multiply.

75

4.3.3.3 Overhead in Cache Coherence Protocols

Most coherence protocols are already designed to be robust in the face of variable

delays for different messages. For protocols relying on message order within a

virtual channel, each virtual channel can be made to consist of a set of L-, B-,

and PW-message buffers. A multiplexor can be used to activate only one type

of message buffer at a time to ensure correctness. For other protocols that are

designed to handle message re-ordering within a virtual channel, we propose to

employ one dedicated virtual channel for each set of wires to fully exploit the

benefits of a heterogeneous interconnect. In all proposed innovations, a data packet

is not distributed across different sets of wires. Therefore, different components of

an entity do not arrive at different periods of time, thereby eliminating any timing

problems. It may be worth considering sending the critical word of a cache line on

L-Wires and the rest of the cache line on PW-Wires. Such a proposal may entail

nontrivial complexity to handle corner cases and is not discussed further in this

chapter.

In a snooping bus-based coherence protocol, transactions are serialized by the

order in which addresses appear on the bus. None of our proposed innovations for

bus-based protocols affect the transmission of address bits (address bits are always

transmitted on B-Wires), so the transaction serialization model is preserved.

4.4 Results

In this section we present details of our experimental methodology and results.

We describe the methodology in Section 4.4.1. In Section 4.4.2 and Section 4.4.3,

we report the results for scientific applications and commercial applications respec-

tively. Finally, we present the sensitivity analysis in Section 4.4.4.

4.4.1 Methodology

4.4.1.1 Simulator

We simulate a 16-core CMP with the Virtutech Simics full-system functional

execution-driven simulator [91] and a timing infrastructure GEMS [93]. GEMS

76

can simulate both in-order and out-of-order processors. In most studies, we use

the in-order blocking processor model provided by Simics to drive the detailed

memory model (Ruby) for fast simulation. Ruby implements a one-level MOESI

directory cache coherence protocol with migratory sharing optimization [44, 111].

All processor cores share a noninclusive L2 cache, which is organized as a non-

uniform cache architecture (NUCA) [67]. Ruby can also be driven by an out-of-order

processor module called Opal, and we report the impact of the processor cores on

the heterogeneous interconnect in Section 4.4.4.1. Opal is a timing-first simulator

that implements the performance sensitive aspects of an out of order processor but

ultimately relies on Simics to provide functional correctness. We configure Opal to

model the processor described in Table 4.2 and use an aggressive implementation

of sequential consistency.

To test our ideas, we employ a workload consisting of all programs from the

SPLASH-2 [120] benchmark suite. The programs were run to completion, but all

experimental results reported in this chapter are for the parallel phases of these

applications. We use default input sets for most programs except fft and radix.

Table 4.2. System configuration.

Parameter Value

number of cores 16
clock frequency 5GHz
pipeline width 4-wide fetch and issue
pipeline stages 11
cache block size 64 Bytes
split L1 I & D cache 128KB, 4-way
shared L2 cache 8MBytes
4-way, 16-banks noninclusive NUCA 30 cycles
interconnect link latency 4 cycles for 8X-B-Wires
DRAM latency 400 cycles
memory bank capacity 1 GByte per bank
latency to mem controller 100 cycles

77

Since the default working sets of these two programs are too small, we increase the

working set of fft to 1M data points and that of radix to 4M keys.

4.4.1.2 Interconnect Power/Delay/Area Models

This section describes details of the interconnect architecture and the methodol-

ogy we employ for calculating the area, delay, and power values of the interconnect.

We consider 65nm process technology and assume 10 metal layers, 4 layers in 1X

plane and 2 layers, in each 2X, 4X, and 8X plane [78]. For most of our study we

employ a crossbar based hierarchical interconnect structure to connect the cores

and L2 cache (Figure 4.3), similar to that in SGI’s NUMALink-4 [1]. The effect of

other interconnect topologies is discussed in our sensitivity analysis. In the base

case, each link in Figure 4.3 consists of (in each direction) 64-bit address wires,

64-byte data wires, and 24-bit control wires. The control signals carry source,

destination, signal type, and Miss Status Holding Register (MSHR) id. All wires

are fully pipelined. Thus, each link in the interconnect is capable of transferring 75

bytes in each direction. Error Correction Codes (ECC) account for another 13%

overhead in addition to the above mentioned wires [101]. All the wires of the base

case are routed as B-Wires in the 8X plane.

75−bytesProcessor

L2 Cache

Figure 4.3. Interconnect model for a 16-core CMP

78

The proposed heterogeneous model employs additional wire types within each

link. In addition to B-Wires, each link includes low-latency, low-bandwidth L-Wires

and high-bandwidth, high-latency, power-efficient, PW-Wires. The number of L-

and PW-Wires that can be employed is a function of the available metal area and

the needs of the coherence protocol. In order to match the metal area with the

baseline, each uni-directional link within the heterogeneous model is designed to be

made up of 24 L-Wires, 512 PW-Wires, and 256 B-Wires (the base case has 600

B-Wires, not counting ECC). In a cycle, three messages may be sent, one on each

of the three sets of wires. The bandwidth, delay, and power calculations for these

wires are discussed subsequently.

Table 4.3 summarizes the different types of wires and their area, delay, and

power characteristics. The area overhead of the interconnect can be mainly at-

tributed to repeaters and wires. We use wire width and spacing (based on ITRS

projections) to calculate the effective area for minimum-width wires in the 4X and

8X plane. L-Wires are designed to occupy four times the area of minimum-width

8X-B-Wires.

Our wire model is based on the RC models proposed in [18, 64, 100]. The delay

per unit length of a wire with optimally placed repeaters is given by equation (4.1),

where Rwire is resistance per unit length of the wire, Cwire is capacitance per unit

length of the wire, and FO1 is the fan-out of one delay:

Latencywire = 2.13
√

RwireCwireFO1 (4.1)

Table 4.3. Area, delay, and power characteristics of wires

Wire Type Relative Latency Relative Area Dynamic Power (W/m) Static Power
α = Switching Factor W/m

B-Wire 1x 1x 2.65α 1.0246
B-Wire 1.6x 0.5x 2.9α 1.1578
L-Wire 0.5x 4x 1.46α 0.5670

PW-Wire 3.2x 0.5x 0.87α 0.3074

79

Rwire is inversely proportional to wire width, while Cwire depends on the follow-

ing three components: (i) fringing capacitance that accounts for the capacitance

between the side wall of the wire and substrate, (ii) parallel plate capacitance

between the top and bottom layers of the metal that is directly proportional to the

width of the metal, (iii) parallel plate capacitance between the adjacent metal wires

that is inversely proportional to the spacing between the wires. The Cwire value for

the top most metal layer at 65nm technology is given by equation (4.2) [100].

Cwire = 0.065 + 0.057W + 0.015/S(fF/µ) (4.2)

We derive relative delays for different types of wires by tuning width and spacing

in the above equations. A variety of width and spacing values can allow L-Wires

to yield a two-fold latency improvement at a four-fold area cost, relative to 8X-B-

Wires. In order to reduce power consumption, we selected a wire implementation

where the L-Wire’s width was twice that of the minimum width and the spacing

was six times as much as the minimum spacing for the 8X metal plane.

The total power consumed by a wire is the sum of three components (dynamic,

leakage, and short-circuit power). Equations derived by Banerjee [18] are used to

derive the power consumed by L- and B-Wires. These equations take into account

optimal repeater size/spacing and wire width/spacing. PW-Wires are designed to

have twice the delay of 4X-B-Wires. At 65nm technology, for a delay penalty of

100%, smaller and widely-spaced repeaters enable power reduction by 70% [18].

Crossbars, buffers, and arbiters are the major contributors for router power

[118]. Table 4.4 shows the peak energy consumed by each component of the router

for a single 32-byte transaction. The capacitance and energy for each of these

Table 4.4. Energy consumed by arbiters, buffers, and crossbars

Component Energy/transaction (J)
Arbiter 6.43079e-14
Crossbar 5.32285e-12

Buffer read operation 1.23757e-12
Buffer write operation 1.73723e-12

80

components is based on analytical models proposed by Wang et al. [118]. We model

a 5x5 matrix crossbar that employs a tristate buffer connector. As described in

Section 4.3.3, buffers are modeled for each set of wires with word size corresponding

to flit size.

4.4.2 Results for Scientific Benchmarks

For our simulations, we restrict ourselves to directory-based protocols. We

model the effect of proposals pertaining to such a protocol: I, III, IV, VIII, IX.

Proposal-II optimizes speculative reply messages in MESI protocols, which are not

implemented within GEMS’ MOESI protocol. Evaluations involving compaction of

cache blocks (Proposal VII) is left as future work.

Figure 4.4 shows the execution time in cycles for SPLASH2 programs. The

first bar shows the performance of the baseline organization that has one intercon-

nect layer of 75 bytes, composed entirely of 8X-B-Wires. The second shows the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

LU
-N

on
c

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

S
p

ee
d

u
p

Base Model
Heterogeneous Model

Figure 4.4. Speedup of heterogeneous interconnect

81

performance of the heterogeneous interconnect model in which each link consists

of 24-bit L-wires, 32-byte B-wires, and 64-byte PW-wires. Programs such as

LU-Noncontinuous, Ocean-Noncontinuous, and Raytracing yield significant im-

provements in performance. These performance numbers can be analyzed with

the help of Figure 4.5 that shows the distribution of different transfers that happen

on the interconnect. Transfers on L-Wires can have a huge impact on performance,

provided they are on the program critical path. continuous, Ocean-Noncontinuous,

Ocean-Continuous, and Raytracing experience the most transfers on L-Wires. But

the performance improvement of Ocean-Continuous is very low compared to other

benchmarks. This can be attributed to the fact that Ocean-Continuous incurs the

most L2 cache misses and is mostly memory bound. The transfers on PW-Wires

have a negligible effect on performance for all benchmarks. This is because PW-

Wires are employed only for writeback transfers that are always off the critical

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

LU
-N

on
c

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

L Messages B Messages (Req) B Messages (Data) PW Messages

Figure 4.5. Distribution of messages on the heterogeneous network

82

path. On average, we observe a 11.2% improvement in performance, compared to

the baseline, by employing heterogeneity within the network.

Proposals I, III, IV, and IX exploit L-Wires to send small messages within the

protocol, and contribute 2.3, 0, 60.3, and 37.4 percent, respectively, to total L-Wire

traffic. A per-benchmark breakdown is shown in Figure 4.6. Proposal-I optimizes

the case of a read exclusive request for a block in shared state, which is not very

common in the SPLASH2 benchmarks. We expect the impact of Proposal-I to

be much higher in commercial workloads where cache-to-cache misses dominate.

Proposal-III and Proposal-IV impact NACK, unblocking, and writecontrol mes-

sages. These messages are widely used to reduce the implementation complexity of

coherence protocols. In GEMS’ MOESI protocol, NACK messages are used only

to handle the race condition between two write-back messages, which are negligible

in our study (causing the zero contribution of Proposal-III). Instead, the protocol

implementation heavily relies on unblocking and writecontrol messages to maintain

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

LU
-N

on
c

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

Proposal I Proposal III Proposal IV Proposal IX

Figure 4.6. Distribution of L-message transfers across different proposals.

83

the order between read and write transactions, as discussed in Section 4.3.1. The

frequency of occurrence of NACK, unblocking, and writecontrol messages depends

on the protocol implementation, but we expect the sum of these messages to be

relatively constant in different protocols and play an important role in L-wire

optimizations. Proposal-IX includes all other acknowledgment messages eligible

for transfer on L-Wires.

We observed that the combination of proposals I, III, IV, and IX caused a

performance improvement more than the sum of improvements from each individual

proposal. A parallel benchmark can be divided into a number of phases by synchro-

nization variables (barriers), and the execution time of each phase can be defined

as the longest time any thread spends from one barrier to the next. Optimizations

applied to a single thread may have no effect if there are other threads on the critical

path. However, a different optimization may apply to the threads on the critical

path, reduce their execution time, and expose the performance of other threads

and the optimizations that apply to them. Since different threads take different

data paths, most parallel applications show nontrivial workload imbalance [87].

Therefore, employing one proposal might not speedup all threads on the critical

path, but employing all applicable proposals can probably optimize threads on

every path, thereby reducing the total barrier to barrier time.

Figure 4.7 shows the improvement in network energy due to the heterogeneous

interconnect model. The first bar shows the reduction in network energy and the

second bar shows the improvement in the overall processor Energy×Delay2 (ED2)

metric. Other metrics in the E − D space can also be computed with data in

Figure 4.4 and Figure 4.7. To calculate ED2, we assume that the total power

consumption of the chip is 200W, of which the network power accounts for 60W.

The energy improvement in the heterogeneous case comes from both L and PW

transfers. Many control messages that are sent on B-Wires in the base case are sent

on L-Wires in the heterogeneous case. As shown in Table 4.3, the energy consumed

by an L-Wire is less than the energy consumed by a B-Wire. But due to the small

sizes of these messages, the contribution of L-messages to the total energy savings

84

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

LU
-N

on
c

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

Im
p

ro
ve

m
en

t

Power reduction in wires
ED2 Reduction

Figure 4.7. Improvement in link energy and ED2.

is negligible. Overall, the heterogeneous network results in a 22% saving in network

energy and a 30% improvement in ED2.

4.4.3 Results for Commercial Benchmarks

Our commercial benchmarks consist of three workloads: a decision support

benchmark (TPC-H), a static web serving workload (Apache), and a dynamic web

serving workload (SPECweb). These workloads execute on a simulated 16-processor

SPARC multiprocessor running Suse Linux 7.3. The simulated system has 4GBs

of main memory.

• Decision support: TPC-H is a decision support benchmark released by the

Transaction Processing Council. TPC-H consists of 8 tables, 22 read-only

queries and 2 batch update statements, which simulate the activities of a

wholesale supplier. We use MYSQL 3.23 as the database management systems

with the total table size around 500 MB. We select nine queries from the TPC-

85

H DSS workload based on the categorization in [108]: seven scan-dominated

queries (Q1, Q3, Q5, Q6, Q12, Q14, Q19), one join-dominated query (Q16),

and one query exhibiting mixed behavior (Q10).

• Static Web Content Serving: Web servers such as Apache are an im-

portant enterprise server application. We use Apache 1.3.20-77 configured to

use pthread locks and minimal logging as the web server. The web requests

are generated by using SURGE [20, 10]. We use a repository of 10,000 files

(totalling 300 MB), and disable Apache logging for high performance. We

simulate 160 clients each with zero thinking time between requests. The

system is warmed by half million requests.

• Dynamic Web Content Serving: SPECweb99 is a SPEC benchmark for

evaluating a system’s ability to act as a web server for static and dynamic

pages. The benchmark runs a multithreaded HTTP load generator on a

number of driving client systems that perform static, dynamic GETs and

POSTs on a variety of pages. The default transaction mix consists of 70%

static GETs, 12.45% standard dynamic GETs, 12.6% dynamic GETs with

custom ad-rotation, 4.8% dynamic POSTs and 0.15% dynamic GETs calling

CGI code. We simulate 50 simultaneous connections with a repository of 300

MB and warmup the system for 1200 seconds.

In this study, we employ the same methodology described in Section 4.4.1. We

model the effect of proposals pertaining to the MOESI directory-based protocol: I,

III, IV, VIII, IX.

Figure 4.8 shows the normalized execution time for commercial programs. The

first bar shows the performance of the baseline organization that has one intercon-

nect layer of 75 bytes, composed entirely of 8X-B-Wires. The second shows the

performance of the heterogeneous interconnect model in which each link consists

of 24-bit L-wires, 32-byte B-wires, and 64-byte PW-wires. The performance im-

provement of heterogeneous interconnect on scan-dominated TPC-H queries varies

from 15% (Q3) to 26% (Q1, Q12, Q14). The join-bound query (Q10) and the

86

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

TPC-H
 Q

1

TPC-H
 Q

3

TPC-H
 Q

5

TPC-H
 Q

6

TPC-H
 Q

12

TPC-H
 Q

14

 T
PC-H

 Q
19

 T
PC-H

 Q
10

TPC-H
 Q

16

Apa
ch

e

Spe
cw

eb

Base

Heterogeneous

Figure 4.8. Speedup in commercial applications.

mixed behavior query (Q19) both yield 16% improvements in performance. Cain

et al. report that TPC-H has a significant number of coherence misses due to false

sharings [31]. These coherence misses can benefit from proposal I and proposal

IV. SPECweb99 also shows significant number of false sharings [66], which leads

to good performance improvement (17%). But the performance improvement of

Apache is very low (2%) compared with other applications. This can be attributed

to the fact that Apache incurs lots of L2 cache misses and is mostly memory bound.

Figure 4.9 shows the reduction in network energy due to the heterogeneous

interconnect model. The energy improvement in the heterogeneous case comes

form both L and PW transfers, though the contribution from L wires is negligible.

Unlike the variations in the performance improvement plot, the power reduction in

all applications are very predictable. Overall, the heterogeneous network results in

a average 25% saving in network energy.

87

0

0.2

0.4

0.6

0.8

1

1.2

TPC-H
 Q

1

TPC-H
 Q

3

TPC-H
 Q

5

TPC-H
 Q

6

TPC-H
 Q

12

TPC-H
 Q

14

 T
PC-H

 Q
19

 T
PC-H

 Q
10

TPC-H
 Q

16

Apa
ch

e

Spe
cw

eb

Base
Heterogeneous

Figure 4.9. Power reduction in commercial applications.

4.4.4 Sensitivity Analysis

In this subsection, we discuss the impact of processor cores, link bandwidth,

routing algorithm, and network topology on the heterogeneous interconnect. Due

to the negative impact of workload variability in commercial workloads [11], we

confine our sensitivity analysis to SPLASH2 applications.

4.4.4.1 Out-of-order/In-order Processors

To test our ideas with an out-of-order processor, we configure Opal to model

the processor described in Table 4.2 and only report the results of the first 100M

instructions in the parallel sections.2

Figure 4.10 shows the performance speedup of the heterogeneous interconnect

over the baseline. All benchmarks except Ocean-Noncontinuous demonstrate dif-

2Simulating the entire program takes nearly a week and there exist no effective toolkits to
find the representative phases for parallel benchmarks. LU-Noncontinuous and Radix were not
compatible with the Opal timing module.

88

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

S
p

ee
d

u
p

Base Model
Heterogeneous Model

Figure 4.10. Speedup of heterogeneous interconnect when driven by OoO cores

ferent degrees of performance improvement, which leads to an average speedup of

9.3%. The average performance improvement is less than what we observe in a

system employing in-order cores (11.2%). This can be attributed to the greater

tolerance that an out-of-order processor has to long instruction latencies.

4.4.4.2 Link Bandwidth

The heterogeneous network poses more constraints on the type of messages

that can be issued by a processor in a cycle. It is therefore likely to not perform

very well in a bandwidth-constrained system. To verify this, we modeled a base

case where every link has only 80 8X-B-Wires and a heterogeneous case where

every link is composed of 24 L-Wires, 24 8X-B-Wires, and 48 PW-Wires (almost

twice the metal area of the new base case). Benchmarks with higher network

utilizations suffered significant performance losses. In our experiments raytracing

has the maximum messages/cycle ratio and the heterogeneous case suffered a 27%

performance loss, compared to the base case (in spite of having twice the metal

89

area). The heterogeneous interconnect performance improvement for Ocean Non-

continuous and LU Noncontinuous is 12% and 11%, as against 39% and 20% in the

high-bandwidth simulations. Overall, the heterogeneous model performed 1.5%

worse than the base case.

4.4.4.3 Routing Algorithm

Our simulations thus far have employed adaptive routing within the network.

Adaptive routing alleviates the contention problem by dynamically routing mes-

sages based on the network traffic. We found that deterministic routing degraded

performance by about 3% for most programs for systems with the baseline and

with the heterogeneous network. Raytracing is the only benchmark that incurs a

significant performance penalty of 27% for both networks.

4.4.4.4 Network Topology

Our default interconnect thus far was a two-level tree based on SGI’s NUMALink-

4 [1]. To test the sensitivity of our results to the network topology, we also examine

a 2D-torus interconnect resembling that in the Alpha 21364 [19]. As shown in

Figure 4.11, each router connects to four links that connect to 4 neighbors in the

torus, and wraparound links are employed to connect routers on the boundary.

Figure 4.11. 2D torus topology.

90

Our proposed mechanisms show much less performance benefit (1.3% on av-

erage) in the 2D torus interconnect than in the two-level tree interconnect (Fig-

ure 4.12). The main reason is that our decision process in selecting the right set of

wires calculates hop imbalance at the coherence protocol level without considering

the physical hops a message takes on the mapped topology. For example, in a 3-hop

transaction as shown in Figure 4.2, the 1-hop message may take four physical hops

while the 2-hop message may also take four physical hops. In this case, sending

the 2-hop message on the L-Wires and the 1-hop message on the PW-Wires will

actually lower performance.

This is not a first-order effect in the two-level tree interconnect, where most hops

take four physical hops. However, the average distance between two processors

in the 2D torus interconnect is 2.13 physical hops with a standard deviation of

0.92 hops. In an interconnect with such high standard deviation, calculating hop

imbalance based on protocol hops is inaccurate. For future work, we plan to

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

LU
-N

on
c

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

S
p

ee
d

u
p

Base Model
Heterogeneous Model

Figure 4.12. Heterogeneous interconnect speedup in 2D torus.

91

develop a more accurate decision process that considers source id, destination id,

and interconnect topology to dynamically compute an optimal mapping to wires.

4.5 Summary

Coherence traffic in a chip multiprocessor has diverse needs. Some messages

can tolerate long latencies, while others are on the program critical path. Further,

messages have varied bandwidth demands. On-chip global wires can be designed to

optimize latency, bandwidth, or power. We advocate partitioning available metal

area across different wire implementations and intelligently mapping data to the

set of wires best suited for its communication. This chapter presents numerous

novel techniques that can exploit a heterogeneous interconnect to simultaneously

improve performance and reduce power consumption.

Our evaluation of a subset of the proposed techniques shows that a large fraction

of messages have low bandwidth needs and can be transmitted on low latency wires,

thereby yielding a performance improvement of 11.2%. At the same time, a 22.5%

reduction in interconnect energy is observed by transmitting noncritical data on

power-efficient wires. The complexity cost is marginal as the mapping of messages

to wires entails simple logic.

For future work, we plan to strengthen our decision process in calculating the

hop imbalance based on the topology of the interconnect. We will also evaluate

the potential of other techniques listed in this chapter. There may be several

other applications of heterogeneous interconnects within a CMP. For example,

in the Dynamic Self Invalidation scheme proposed by Lebeck et al. [84], the

self-invalidate [81, 84] messages can be effected through power-efficient PW-Wires.

In a processor model implementing token coherence, the low-bandwidth token

messages [95] are often on the critical path and thus, can be effected on L-Wires. A

recent study by Huh et al. [66] reduces the frequency of false sharing by employing

incoherent data. For cache lines suffering from false sharing, only the sharing states

need to be propagated and such messages are a good match for low-bandwidth

L-Wires.

CHAPTER 5

CONCLUSIONS

In this dissertation, we propose context-aware coherence protocols that allow

the coherence protocols to tune coherence traffic based on the hints given by the

contexts. Compared with traditional protocols, context-aware coherence protocols

can improve performance and reduce power consumption.

We first propose a cache coherence protocol which is aware of the producer-

consumer sharing and propose two novel mechanisms, directory delegation and spec-

ulative updates, that can be used to improve the performance of applications that

exhibit producer-consumer sharing. After detecting instances of producer-consumer

sharing using a simple directory-based predictor, we delegate responsibility for the

data’s directory information from its home node to the current producer of the

data, which can convert 3-hop coherence operations into 2-hop operations. We

also present a speculative update mechanism wherein shortly after modifying a

particular piece of data, producers speculatively forward updates to the nodes that

most recently accessed it.

On a collection of seven benchmark programs, we demonstrate that speculative

updates can significantly reduce the number of remote misses suffered and amount

of network traffic generated. We consider two hardware implementations, one that

requires very little hardware overhead (a 32-entry delegate cache and a 32KB RAC

per node) and one that requires modest overhead (a 1K-entry delegate cache and

a 1MB RAC per node). On the small configuration, delegation/updates reduce

execution time by 13% by reducing the number of remote misses by 29% and

network traffic by 17%. On the larger configuration, delegation/updates reduce

program execution time by 21% by reducing the number of remote misses by

93

40% and network traffic by 15%. Finally, we show that the performance benefits

derive primarily from eliminating remote misses, and only secondarily from reducing

network traffic.

Furthermore, we propose coherence protocols that are aware of the availability

of heterogeneous interconnects. Coherence traffic in a chip multiprocessor has

diverse needs. Some messages can tolerate long latencies, while others are on

the program critical path. Similarly, messages have varied bandwidth demands.

On-chip global wires can be designed to optimize latency, bandwidth, or power. We

advocate partitioning available metal area across different wire implementations and

intelligently mapping data to the set of wires best suited for its communication. We

present numerous novel techniques that can exploit a heterogeneous interconnect

to simultaneously improve performance and reduce power consumption.

Our evaluation of a subset of the proposed techniques shows that a large fraction

of messages have low bandwidth needs and can be transmitted on low latency wires,

thereby yielding a performance improvement of 11.2%. At the same time, a 22.5%

reduction in interconnect energy is observed by transmitting noncritical data on

power-efficient wires. The complexity cost is marginal as the mapping of messages

to wires entails simple logic.

Overall, we have conducted some of the first research on the context-aware

cache coherence protocols. We have demonstrated the benefits of context-aware

cache protocols in the context of “producer-consumer sharing” and “heterogeneous

interconnect.”

REFERENCES

[1] “http://www.sgi.com/products/servers/altix/configs.html”.

[2] “http://www.top500.org/”.

[3] “http://phase.hpcc.jp/Omni/benchmarks/NPB/”.

[4] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An Evaluation
of Fine-Grain Producer-Initiated Communication in Cache-Coherent Mul-
tiprocessors. In Proceedings of the 3rd International Symposium on High
Performance Computer Architecture, 1997.

[5] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles.
Towards a Better Understanding of Context and Context-Awareness. In
Proceedings of the 1st International Symposium on Handheld and Ubiquitous
Computing, pages 304–307, 1999.

[6] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. The Use of Prediction
for Accelerating Upgrade Misses in CC-NUMA Multiprocessors. In Inter-
national Conference on Parallel Architectures and Compilation Techniques,
2002.

[7] S. Adve and M. Hill. Weak Ordering: A New Definition. In Proceedings of
the 17th Annual International Symposium on Computer Architecture, pages
2–14, 1990.

[8] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An Evaluation of
Directory Schemes for Cache Coherence. In Proceedings of the 15th Annual
International Symposium on Computer Architecture, pages 280–289, 1988.

[9] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock Rate Versus
IPC: The End of the Road for Conventional Microarchitectures. In Proceed-
ings of the 27th Annual International Symposium on Computer Architecture,
pages 248–259, 2000.

[10] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, M. D.
Hill, D. A. Wood, and D. J. Sorin. Simulating a $2M Commercial Server on
a $2K PC. Computer, 36(2):50–57, 2003.

[11] A. R. Alameldeen and D. A. Wood. Variability in Architectural Simulations
of Multi-Threaded Workloads. In Proceedings of the 9th International Sym-
posium on High Performance Computer Architecture, page 7, 2003.

95

[12] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Addison-Wesley,
1988. ISBN 0-8053-0177-1.

[13] E. Anderson, J. Brooks, C. Grassl, and S. Scott. Performance of the
CRAY T3E Multiprocessor. In Proceedings of the 11th Annual International
Conference on Supercomputing, pages 1–17, 1997.

[14] M. Azimi, F. Briggs, M. Cekleov, M. Khare, A. Kumar, and L. P. Looi.
Scalability Port: A Coherent Interface for Shared Memory Multiprocessors.
In Proceedings of the 10th Symposium on High Performance Interconnects
HOT Interconnects, page 65, 2002.

[15] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS Paral-
lel Benchmarks. The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1994.

[16] H. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-
Wesley, 1990.

[17] R. Balasubramonian, N. Muralimanohar, K. Ramani, and V. Venkatachala-
pathy. Microarchitectural Wire Management for Performance and Power in
Partitioned Architectures. In Proceedings of the 11th International Sympo-
sium of High Performance Computer Architecture, 2005.

[18] K. Banerjee and A. Mehrotra. A Power-optimal Repeater Insertion Method-
ology for Global Interconnects in Nanometer Designs. IEEE Transactions on
Electron Devices, 49(11):2001–2007, 2002.

[19] P. Bannon. Alpha 21364: A Scalable Single-Chip SMP. Microprocessor
Forum, October 1998.

[20] P. Barford and M. Crovella. Generating Representative Web Workloads for
Network and Server Performance Evaluation. In Proceedings of the 1998 ACM
SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems, pages 151–160, 1998.

[21] L. Barroso, K. Gharachorloo, and E. Bugnion. Memory System Character-
ization of Commercial Workloads. In Proceedings of the 25th International
Symposium on Computer Architecture, pages 3–14, 1998.

[22] L. A. Barroso and M. Dubois. The Performance of Cache-Coherent Ring-
based Multiprocessors. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 268–277, 1993.

[23] B. Beckmann and D. Wood. TLC: Transmission Line Caches. In Proceedings
of MICRO-36, December 2003.

96

[24] B. Beckmann and D. Wood. Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proceedings of MICRO-37, 2004.

[25] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill, and D. A.
Wood. Multicast Snooping: A New Coherence Method Using a Multicast
Address Network. SIGARCH Compututer Architecture News, pages 294–304,
1999.

[26] F. Briggs, M. Cekleov, K. Creta, M. Khare, S. Kulick, A. Kumar, L. P. Looi,
C. Natarajan, S. Radhakrishnan, and L. Rankin. Intel 870: A Building Block
for Cost-Effective, Scalable Servers. IEEE Micro, 22(2):36–47, 2002.

[27] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W.
Cook. Power-Aware Microarchitecture: Design and Modeling Challenges for
Next-Generation Microprocessors. IEEE Micro, 20(6):26–44, 2000.

[28] D. Burger and J. R. Goodman. Billion Transistor Architectures. IEEE
Computer, (9):46–50, 1997.

[29] D. Burger and J. R. Goodman. Billion-Transistor Architectures: There and
Back Again. IEEE Computer, 37(3):22–28, 2004.

[30] G. Byrd and M. Flynn. Producer-consumer Communication in Distributed
Shared Memory Multiprocessors. In Proceedings of the IEEE, Vol.87, Iss.3,
1999.

[31] H. W. Cain and M. H. Lipasti. Memory Ordering: A Value-Based Approach.
IEEE Micro, 24(6):110–117, 2004.

[32] J. Carter, J. Bennett, and W. Zwaenepoel. Techniques for Reducing
Consistency-Related Communication in Distributed Shared Memory Systems.
ACM Transactions on Computer Systems, 13(3):205–243, 1995.

[33] M. Cekleov, D. Yen, P. Sindhu, and J.-M. Frailong. SPARCcenter 2000:
Multiprocessing for the 90’s, Digest of Papers. In IEEE Computer Society
Press, pages 345–53, 1993.

[34] R. Chang, N. Talwalkar, C. Yue, and S. Wong. Near Speed-of-Light Signaling
Over On-Chip Electrical Interconnects. IEEE Journal of Solid-State Circuits,
38(5):834–838, 2003.

[35] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE Micro,
18(1):39–49, 1998.

[36] A. Charlesworth. The Sun Fireplane SMP Interconnect in the Sun Fire
3800-6800. In Proceedings of the 9th Symposium on High Performance
Interconnects, page 37, 2001.

[37] A. Charlesworth. The Sun Fireplane Interconnect. IEEE Micro, 22(1):36–45,
2002.

97

[38] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou. Reducing Verification
Complexity of a Multicore Coherence Protocol Using Assume/Guarantee. In
Proceedings of FMCAD, pages 81–88, 2006.

[39] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. B.
Carter. Interconnect-Aware Coherence Protocols for Chip Multiprocessors.
In Proceedings of the 33rd Annual International Symposium on Computer
Architecture, pages 339–351, 2006.

[40] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing Replication,
Communication, and Capacity Allocation in CMPs. In Proceedings of the
32nd Annual International Symposium on Computer Architecture, pages 357–
368, 2005.

[41] C.-T. Chou, P. K. Mannava, and S. Park. A Simple Method for Parameterized
Verification of Cache Coherence Protocols. In Proceedings of FMCAD, pages
382–398, 2004.

[42] N. Chrisochoides, I. Kodukula, and K. Pingali. Compiler and Run-Time
Support for Semi-structured Applications. In Proceedings of the 11th Annual
International Conference on Supercomputing, pages 229–236, 1997.

[43] D. Citron. Exploiting Low Entropy to Reduce Wire Delay. IEEE Computer
Architecture Letters, vol.2, 2004.

[44] A. Cox and R. Fowler. Adaptive Cache Coherency for Detecting Migratory
Shared Data. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 98–108, 1993.

[45] Cray Research, Inc. CRAY T3D System Architecture Overview, Cray Re-
search HR-04033 edition, 1993.

[46] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, 1999.

[47] D. L. Dill. The Murphi Verification System. In Proceedings of the 8th In-
ternational Conference on Computer Aided Verification, volume 1102, pages
390–393, 1996.

[48] W. Dally and J. Poulton. Digital System Engineering. Cambridge University
Press, Cambridge, UK, 1998.

[49] J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers Inc., 2002.

[50] B. Falsafi, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill, J. Larus, A. Rogers,
and D. Wood. Application-Specific Protocols for User-Level Shared Memory.
In Proceedings of the 8th Annual International Conference on Supercomput-
ing, pages 380–389, 1994.

98

[51] M. Galles and E. Williams. Performance Optimizations, Implementation,
and Verification of the SGI Challenge Multiprocessor. In Proceeding of the
1st International Conference on System Science, pages 134–143, 1994.

[52] G. Gerosa and et al. A 2.2 W, 80 MHz Superscalar RISC Microprocessor.
IEEE Journal of Solid-State Circuits, 29(12):1440–1454, 1994.

[53] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15–26, 1990.

[54] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Architecture and
design of AlphaServer GS320. In Proceedings of the 9th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 13–24, 2000.

[55] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In Proceed-
ings of the 26th Annual International Symposium on Computer Architecture,
pages 162–171, 1999.

[56] G. Gostin, J.-F. Collard, and K. Collins. The Architecture of the HP Su-
perdome Shared-memory Multiprocessor. In Proceedings of the 19th Annual
International Conference on Supercomputing, pages 239–245, 2005.

[57] M. Gowan, L. Biro, and D. Jackson. Power Considerations in the Design
of the Alpha 21264 Microprocessor. In Proceedings of the 35th Design
Automation Conference, 1998.

[58] S. L. Graham, M. Snir, and C. A. Patterson. Getting Up to Speed: The
Future of Supercomputing. In Committee on the Future of Supercomputing,
National Research Council, 2004.

[59] H. Grahn, P. Stenström, and M. Dubois. Implementation and Evaluation of
Update-based Cache Protocols under Relaxed Memory Consistency Models.
Future Generation Computer Systems, 11(3):247–271, 1995.

[60] A. Gupta and W. Weber. Cache Invalidation Patterns in Shared-Memory
Multiprocessors. IEEE Transactions on Computers, 41(7):794–810, 1992.

[61] A. Gupta, W. Weber, and T. Mowry. Reducing Memory and Traffic Require-
ments for Scalable Directory-Based Cache Coherence Schemes. In Proceedings
of the 19th International Conference on Parallel Processing, volume I, pages
312–321, 1990.

[62] M. Heinrich and J. K. et al. The Performance Impact of Flexibility in the
Stanford FLASH Multiprocessor. In Proceedings of the 6th Symposium on
Architectural Support for Programming Languages and Operating Systems,
pages 274–285, 1994.

99

[63] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2002.

[64] R. Ho, K. Mai, and M. Horowitz. The Future of Wires. Proceedings of the
IEEE, Vol.89, No.4, 2001.

[65] H. P. Hofstee. Power Efficient Processor Architecture and The Cell Processor.
In Proceedings of the 11th International Symposium on High Performance
Computer Architecture, pages 258–262, 2005.

[66] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence Decoupling: Making
Use of Incoherence. In Proceedings of the 11th Symposium on Architecture
Support for Programming Languages and Operating Systems, pages 97–106,
2004.

[67] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A NUCA
Substrate for Flexible CMP Cache Sharing. In Proceedings of the 19th Annual
International Conference on Supercomputing, pages 31–40, 2005.

[68] Institute of Electrical and Electronics Engineers. IEEE Standard for Scalable
Coherent Interface: IEEE Std. 1596-1992. 1993.

[69] D. James. Distributed Directory Scheme: Scalable Coherent Interface. IEEE
Computer, 23(6):74–77, 1990.

[70] T. Joe and J. Hennessy. Evaluating the Memory Overhead Required for
COMA Architectures. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 82–93, 1994.

[71] S. Kaxiras and J. R. Goodman. Improving CC-NUMA Performance Using
Instruction-Based Prediction. In Proceedings of the 5th International Sympo-
sium on High Performance Computer Architecture, 1999.

[72] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD
Opteron Processor for Multiprocessor Servers. IEEE Micro, 23(2):66–76,
2003.

[73] P. Kongetira. A 32-Way Multithreaded SPARC Processor. In Proceedings of
Hot Chips 16, 2004.

[74] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Multi-
threaded Sparc Processor. IEEE Micro, 25(2):21–29, 2005.

[75] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas. Data Forwarding in
Scalable Shared-memory Multiprocessors. In Proceedings of the 9th Annual
International Conference on Supercomputing, 1995.

[76] K. Krewell. UltraSPARC IV Mirrors Predecessor: Sun Builds Dualcore Chip
in 130nm. Microprocessor Report, pages 1,5–6, 2003.

100

[77] J. Kubiatowicz and A. Agarwal. Anatomy of a Message in the Alewife
Multiprocessor. In Proceedings of the 7th Annual International Conference
on Supercomputing, 1993.

[78] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in Multi-Core Archi-
tectures: Understanding Mechanisms, Overheads, and Scaling. In Proceedings
of the 32nd Annual International Symposium on Computer Architecture,
2005.

[79] C.-C. Kuo, J. Carter, R. Kuramkote, and M. Swanson. AS-COMA: An
Adaptive Hybrid Shared Memory Architecture. In Proceedings of the 27th
International Conference on Parallel Processing, 1998.

[80] A.-C. Lai and B. Falsafi. Memory Sharing Predictor: The Key to a Spec-
ulative Coherent DSM. In Proceedings of the 26th Annual International
Symposium on Computer Architecture, 1999.

[81] A.-C. Lai and B. Falsafi. Selective, Accurate, and Timely Self-Invalidation
Using Last-Touch Prediction. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 139–148, 2000.

[82] L. Lamport. How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, C-
28(9):690–691, 1979.

[83] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable
Server. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 241–251, 1997.

[84] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing Coher-
ence Overhead in Shared-Memory Multiprocessors. In Proceedings of the 22th
Annual International Symposium on Computer Architecture, pages 48–59,
1995.

[85] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-based Cache Coherence Protocol for the DASH Multiprocessor.
In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 148–159, 1990.

[86] K. M. Lepak and M. H. Lipasti. Temporally Silent Stores. In Proceedings
of the 10th Symposium on Architecture Support for Programming Languages
and Operating Systems, pages 30–41, 2002.

[87] J. Li, J. F. Martinez, and M. C. Huang. The Thrifty Barrier: Energy-Aware
Synchronization in Shared-Memory Multiprocessors. In Proceedings of the
10th International Symposium on High Performance Computer Architecture,
page 14, 2004.

101

[88] T. Li and L. K. John. ADirpNB: A Cost-Effective Way to Implement Full
Map Directory-Based Cache Coherence Protocols. IEEE Transactions on
Computers, 50(9):921–934, 2001.

[89] T. Lovett and R. Clapp. STiNG: A CC-NUMA Compute System for the
Commercial Marketplace. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 308–317, 1996.

[90] N. Magen, A. Kolodny, U. Weiser, and N. Shamir. Interconnect Power
Dissipation in a Microprocessor. In Proceedings of System Level Interconnect
Prediction, 2004.

[91] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50–58, 2002.

[92] M. Martin, P. Harper, D. Sorin, M. Hill, and D. Wood. Using Destination-Set
Prediction to Improve the Latency/Bandwidth Tradeoff in Shared Memory
Multiprocessors. In Proceedings of the 30th Annual International Symposium
on Computer Architecture, 2003.

[93] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood. Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset. Computer Architecture News,
2005.

[94] M. M. Martin, M. D. Hill, and D. A. Wood. Token Coherence: A New
Framework for Shared-Memory Multiprocessors. IEEE Micro, 23(6):108–116,
2003.

[95] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: De-
coupling Performance and Correctness. In Proceedings of the 30th Annual
International Symposium on Computer Architecture, 2003.

[96] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A. Wood.
Timestamp Snooping: an Approach for Extending SMPs. In Proceedings of
the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 25–36, 2000.

[97] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin, and
D. A. Wood. Improving Multiple-CMP Systems Using Token Coherence.
In Proceedings of the 11th International Symposium on High Performance
Computer Architecture, pages 328–339, 2005.

[98] J. R. Mashey. NUMAflex Modular Design Approach: A Revolution in
Evolution. In Computer Architecture News Group, 2000.

102

[99] K. L. McMillan. Parameterized Verification of the FLASH Cache Coherence
Protocol by Compositional Model Checking. In Proceedings of the 11th
Conference on Correct Hardware Design and Verification Methods, pages
179–195, 2001.

[100] M. L. Mui, K. Banerjee, and A. Mehrotra. A Global Interconnect Opti-
mization Scheme for Nanometer Scale VLSI With Implications for Latency,
Bandwidth, and Power Dissipation. IEEE Transactions on Electronic De-
vices, Vol.51, No.2, 2004.

[101] S. Mukherjee, J. Emer, and S. Reinhardt. The Soft Error Problem: An Ar-
chitectural Perspective. In Proceedings of the 11th International Symposium
on High Performance Computer Architecture, 2005.

[102] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The Alpha
21364 Network Architecture. IEEE Micro, 22(1):26–35.

[103] S. S. Mukherjee and M. D. Hill. Using Prediction to Accelerate Coherence
Protocols. In Proceedings of the 25th Annual International Symposium on
Computer Architecture, 1998.

[104] N. Nelson, G. Briggs, M. Haurylau, G. Chen, H. Chen, D. Albonesi, E. Fried-
man, and P. Fauchet. Alleviating Thermal Constraints while Maintaining
Performance Via Silicon-Based On-Chip Optical Interconnects. In Proceed-
ings of Workshop on Unique Chips and Systems, 2005.

[105] K. J. Nesbit and J. E. Smith. Data Cache Prefetching Using a Global
History Buffer. In Proceedings of the 10th International Symposium on High
Performance Computer Architecture, pages 96–105, 2004.

[106] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B. Radke, and
S. Vishin. The S3.mp Scalable Shared Memory Multiprocessor. In Proceed-
ings of the 24th International Conference on Parallel Processing, 1995.

[107] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An Argument
for Simple COMA. In Proceedings of the 1st Annual Symposium on High
Performance Computer Architecture, pages 276–285, 1995.

[108] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and Accurate
Database Workload Representation on Modern Microarchitecture. In Pro-
ceedings of the 2005 Conference of the Centre for Advanced Studies on
Collaborative Research, pages 254–267, 2005.

[109] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yuan, C. Cheng,
D. Doblar, S. Fosth, N. Agarwal, K. Harvey, E. Hagersten, and B. Liencres.
Gigaplane: A High Performance Bus for Large SMPs. In Proceedings of Hot
Interconnects IV, pages 41–52, 1996.

103

[110] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial Memory Streaming. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, pages 252–263, 2006.

[111] P. Stenström, M. Brorsson, and L. Sandberg. An Adaptive Cache Coherence
Protocol Optimized for Migratory Sharing. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 109–118, 1993.

[112] K. Strauss, X. Shen, and J. Torrellas. Flexible Snooping: Adaptive Forward-
ing and Filtering of Snoops in Embedded-Ring Multiprocessors. In Proceed-
ings of the 33rd Annual International Symposium on Computer Architecture,
pages 327–338, 2006.

[113] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency
Protocols and Their Support by the IEEE Futurebus. In Proceedings of the
13th Annual International Symposium on Computer Architecture, pages 414–
423, 1986.

[114] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 System
Microarchitecture. IBM Server Group Whitepaper, 2001.

[115] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing
Power in High-Performance Microprocessors. In Proceedings of the 35th
Design Automation Conference, 1998.

[116] S.-Y. Tzou and D. Anderson. The Performance of Message Passing using
Restricted Virtual Memory Mapping. Software, Practice & Experience,
21(3):251–267, 1991.

[117] Z. Vranesic, M. Stumm, D. Lewis, and R. White. Hector: A Hierarchically
Structured Shared Memory Multiprocessor. IEEE Computer, 24(1):72–79,
1991.

[118] H. S. Wang, L. S. Peh, and S. Malik. A Power Model for Routers: Modeling
Alpha 21364 and InfiniBand Routers. In IEEE Micro, Vol 24, No 1, 2003.

[119] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and
B. Falsafi. Temporal Streaming of Shared Memory. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture, pages 222–233,
2005.

[120] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In Proceedings
of the 22th Annual International Symposium on Computer Architecture, pages
24–36, 1995.

