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Abstract— By spreading the workload across a sensor network,
load balancing reduces hot spots in the sensor network and
increases the energy lifetime of the sensor network. In this
paper, we design a node-centric algorithm that constructs a load-
balanced tree in sensor networks of asymmetric architecture. We
utilize a Chebyshev Sum metric to evaluate via simulation the
balance of the routing trees produced by our algorithm. We find
that our algorithm achieves routing trees that are more effectively
balanced than the routing based on breadth-first search(BFS) and
shortest-path obtained by Dijkstra’s algorithm.

I. I NTRODUCTION

Wireless sensor networks(WSNs) have recently emerged as
an active research area. Typically, a WSN consists of a large
number of nodes that sense the environment and collabora-
tively work to process and route the sensor data. [4] [6] A large
number of application scenarios for such WSNs have emerged,
including battlefield monitoring, habitat monitoring, tracking
of office equipment, and medical/health deployments in the
home [1] [3]. As sensor networks scale up in size, effectively
managing the distribution of the networking load will be of
great concern. By spreading the workload across the sensor
network, load balancing averages the energy consumption.
This extends the expected lifespan of the whole sensor network
by extending the time until the first node is out of energy. Load
balancing is also useful for reducing congestion hot spots,
thereby reducing wireless collisions.

We focus on WSNs with an asymmetric architecture, i.e.
a powerful base station collects data through a multi-hop
routing framework of distributed wireless sensor nodes. This
centralized architecture rooted in the base station is common
to sensor networks [7] [5] [12] [13]. A base station serves
as the data aggregation point or the sink of the data in the
network. Typically, the base station has more resources in
terms of power, computation, memory, and bandwidth than
the individual sensor nodes. The base station has thus been
proposed as the resource-rich focal point for tracking failed
nodes [7], securing the sensor network against compromised
sensor nodes [5], hosting services such as data aggregation
[12] [13], or monitoring of WSNs [8] [15]. In this paper,
we also assume the common case of static sensor networks in
which the position of the sensor nodes are fixed.

Previous work in sensor network routing [10] [2] as well as
QoS routing in wireless ad hoc Networks [14] largely ignores

load balancing issues. Hsiao et al [9] designs a rebalancing
scheme to achieve load balancing for wireless access networks,
though not wireless sensor networks. This work assumes the
existence of an initial unbalanced tree that is then readjusted
or rebalanced using their algorithm, and selects a random
neighbor for rebalancing. In contrast, our algorithm presents a
complete solution that forms the initial tree, and rebalances
this tree using topological knowledge rather than random
selection.

The key contributions of this paper are in the following three
areas. First, we identify the importance of the node-centric
approach. Second, we formulate a node-centric load-balancing
problem that helps construct the routing and monitoring struc-
tures for an asymmetric sensor network. Third, we present the
construction algorithms for load balancing.

II. L OAD BALANCING IN SENSORNETWORKS

A node-centric load balancing strategy considers the cumu-
lative load of data traffic from child nodes in a routing tree on
their parent nodes. The WSN routing tree is rooted in the base
station. The load of child sensor nodes adds to the load of each
upstream parent in the tree. Hence, the sensor nodes nearest
the base station will be the most heavily loaded. The goal
of node-centric load balancing is to evenly distribute packet
traffic generated by sensor nodes across the different branches
of the routing tree.

A shortest path routing algorithm executed on a sensor grid
rooted in a base station doesnt guarantee that the resulting
shortest path tree is load balanced. Figure 1(a) illustrates that
a shortest path tree that minimizes the number of hops can
result in a highly unbalanced tree. This is because selecting the
shortest path doesn’t account for the effect of load aggregation
on upstream links. The base station is the clear node at the
root of the tree, and the assumption is of a uniform grid with
each node generating the same load, i.e. generating the same
amount of periodic sensor data. In comparison, a balanced tree
is shown in Figure 1(b), where the load is precisely the same
on each of the branches emanating from the root. The tradeoff
of achieving a load-balanced tree is that some nodes will have
a longer path to the root than the shortest path, e.g. nodeX
in Figure 1.
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a) Shortest Path Tree b) Load Balance Tree
XX

Fig. 1. Unbalanced shortest path tree vs. Top-level balanced tree
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Fig. 2. Load Balanced Trees on the Grid Topology

All nodes in the sensor network periodically broadcast their
existence, e.g. an IMA message in the WSNDiag protocol [11],
and neighboring information. After collecting this information,
the base station constructs the graphG(V,E) (whereV is the
vertex set whileE is the set of all edges). An algorithm is
executed onG to construct a load-balanced tree. The “load”
associated with a given sensor node represents the amount of
data periodically generated by that sensor node.

Load balanced trees can be classified into different cate-
gories. We define the “level” to be the distance from a node to
the base station. A load-balanced tree could be fully balanced,
top-level balanced or hierarchy-balanced. A fully balanced tree
is a tree in which the branches on the same level carry the same
total amount of load. A top-level balanced tree is a tree such
that each branch at the top level closest to the base station
carries the same amount of load [9]. Both fully balanced trees
and top-balanced trees are extreme cases of hierarchy-balanced
trees, i.e. a tree in which the branches in certain levels carry
the same total amount of load. Figure 2 provides examples
that illustrate these three versions of balanced trees in a sensor
grid. In this paper, our node-centric load balancing technique
focuses on constructing a top-balanced tree over the sensor
network. Figure 3 shows a top-balanced tree constructed using
our load balancing algorithm on a 10x10 grid sensor network.

III. L OAD BALANCING ALGORITHM

This section discusses the construction and adjustment of
the top-level balanced tree for a WSN. A grid topology is
assumed for simplicity, though the algorithm is not limited
to a sensor grid. In the grid, one of the nodes is randomly
selected and assigned to be the base station.

To measure how well the load is balanced across different
branches of a routing tree, the Chebyshev Sum Inequality is
selected as the load balancing metric. The definition of the
Chebyshev Sum Inequality is as follows: for alla ⊆ CN and
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Fig. 3. A top-level load balanced tree on a 10x10 grid network

b ⊆ CN ,

a = {a1, a2, a3, . . . , an}

b = {b1, b2, b3, . . . , bn}

and

a1 ≥ a2 ≥ a3 ≥ . . . ≥ an

b1 ≥ b2 ≥ b3 ≥ . . . ≥ bn

Consequently:

n

n∑
k=1

akbk ≥ (
n∑

k=1

ak)(
n∑

k=1

bk)

Let Wbi be the weight (cumulative load) on theith branch
of the routing tree. Form a vector of the weightsw =
{Wb1,Wb2,Wb3, . . . ,Wbn}. For example, in a square grid, the
base station in the center of the grid will have four neighbors,
so there will be four weights.

To assess the degree of balance among the different branch
weights ofw, let a = b = w. In this case, the inequalities will
become

n
n∑

k=1

W 2
bk ≥ (

n∑
k=1

Wbk)2

or,

1 ≥
(
∑n

k=1 Wbk)2

n
∑n

k=1 W 2
bk

with equality if and only if Wb1 = Wb2 = Wb3 = . . . =
Wbn for all Wbk, k ∈ [1, n]. The balance factorθ used in the
algorithm is defined as

θ =
(
∑n

k=1 Wbk)2

n
∑n

k=1 W 2
bk

As the weights in each branch converge to the same value,
i.e. the load across the different branches of the routing tree
becomes more balanced, the balance factor monotonically
increases towards 1. When the weights of all the branches are
equal, the result of the inequality will be 1, i.e. the maximum
value.



TABLE I

BASIC LOAD BALANCING ALGORITHM

M ⇐ Allnodes;
while(M is not empty) do

step 0: Select the lightest most restricted branch
B = B[0]
for each B[i] do

if (Weight(B) 6= Weight(B[i]))
/* select lightest branch */
B ← lighter (B[i], B);

else
/* if same load, select most restricted branch */
B ← minFreedom(B[i], B);

step 1: Select the heaviest border node with most growth space
n′ = n0 ⊆ N , N is Bś border node list
for eachni ⊆ N

if Weight(ń) 6= Weight(ni)
/* Select heaviest border node */
n′ ← heavier(n′, ni);

else
/* Select border node with max growth space */
n′ ←maxFreedom(n′, ni);

step 2: graft node and update metrics
T = T + {n′}

N = N − {n′}
M = M − {n′};
for each unmarked border nodei of n′

N = N + {i};
done

A. Basic Algorithm

The node-centric algorithm iteratively grows a load-
balanced tree outwards from the base station root. At each step,
the algorithm first selects the branch with the lightest load, and
then grafts onto this branch the unassigned/unmarked border
node generating the heaviest load. Intuitively, the algorithm
absorbs the nodes generating the greatest load to the lightest
branches to achieve balance. In addition, a crucial observation
is that absorbing the heaviest nodes at the earliest possible
step maintains the greatest flexibility for future balance. In
comparison, absorbing the heaviest nodes at the end of the
algorithm could lead to highly unbalanced trees.

If there are multiple “heaviest” border nodes, as in a uniform
sensor network, then select the unmarked border node with the
greatest “growth space”. Intuitively, the algorithm expands or
grows the routing tree into the most open areas in the sensor
grid before filling in the crowded areas. The motivation is
to maximize the flexibility in terms of routing options at each
step. This approach reduces the chance that a given branch will
become hemmed in, unable to grow, which would create an
unbalanced tree with an abridged branch carrying an unusually
light load.

The pseudo code for the algorithm is shown in Table I. The
base station collects the initial topology and load information
and computes the backbone tree from graphG. We define the
following variables: the current treeT ; the array of branches
B[i]; the selected branchB; lists of the border nodes for each
branchN [], and the set of unmarked nodesM .

A key concept in this algorithm is the “growth space” of a
node, i.e. a measure of the freedom to grow the tree towards
this node. The greater the growth space, the more open area
there is to expand the load-balanced routing tree through this
node. Each sensor node has a number of unmarked neighbors.
The growth space of a node is the sum of the number of
unmarked neighbors of all the node’s unmarked neighbors
minus common links. For example, Figure 4 shows a load
balanced tree in the process of construction, with four branches
emanating from the root base station. In Figure 4(a), node
Z has 2 unmarked neighbors to its east and south, while
each of these unmarked neighbors has 3 unmarked neighbors
themselves. Therefore, the growth space ofZ equals 3 + 3 -
(2 common links) = 4, as shown in Figure 4(b).

The growth space is used in the algorithm of Table I in
two places. First, it is used in step 0 to break ties between
equally lightly loaded branches. The growth space of abranch
is defined as the sum of the growth spaces of all nodes within
the branch. This is a measure of how much freedom the
branch has to expand. If there is a tie between multiple lightly
loaded branches, then the branch with the most restrictions,
i.e. smallest growth space, is selected. This enables restricted
branches the most opportunity to grow, and avoid being
hemmed in, which would lead to unbalanced trees. Second, the
growth space is used in step 1 to break ties between equally
heavily loaded border nodes, for the reasons outlined earlier.

a) UnmarkedNeighbors
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b) Growth Spaces
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Fig. 4. (a) Number of unmarked neighbors of each node (b) growth space
of each node

The time complexity of the algorithm is comparable to the
algorithm constructing the shortest path tree, because at the
end of each iteration, information related to neighbor nodes
and branches needs to be updated. The modifications are
similar to those on the path length after each iteration in the
Dijkstra algorithm. With appropriate data structures supported,
the time complexity could beO(nlogn).

B. Adjustment

While the basic algorithm produces a roughly load balanced
tree at the top level, an additional adjustment algorithm is
needed to achieve further load balancing. There are sev-
eral adjustment techniques available. The random adjustment
method [9] has been previously used to re-adjust a roughly
balanced tree. However, these algorithms are blind to the
topology information. Here we propose a spiral adjustment
algorithm that uses the topology information obtained in the
first phase.



TABLE II

ADJUSTMENTALGORITHM

Avr ←− the average number of the nodes on a brunch
B ←− Heaviest Brunch that has maximum neighbors
While (Not meet the stop criteria) do

if Weight(B) is bigger than average
δ = |B| −Avr;
if there is nodem that has load close toδ

Pushm to B′s unmarked neighbor
else

connect all leaf nodes to neighboring branches
that can improve the balance factor

if Weight(B) is smaller than average
Pull the leave nodes from the neighbor

B = the next connected unmarked neighbor

After the first phase, i.e. after the basic algorithm has been
completed, the adjustment algorithm iteratively rebalances the
tree by moving nodes from the heaviest loaded branches to
more lightly loaded neighboring branches. First, the most
heavily loaded branch is found, and the deviation from the op-
timally balanced load is calculated by subtracting the branch’s
load from the average load of an optimally balanced tree.
Second, a node within this heaviest branch is selected to be
moved to a neighboring branch. The algorithm first attempts to
move a node whose load most closely matches the deviation.
If such a node cannot be moved, e.g. it is an interior node,
then the algorithm searches among all of its border nodes
that are also leaves. The algorithm continues to migrate leaf
nodes to neighboring branches as long as the balance factor
is improved. The algorithm finishes after a stop criterion is
reached, e.g. stop after 10 iterations.

The algorithm spirals in the sense that it rotates through
each of the tree’s top-level branches, either pushing neighbors
from heavily loaded branches to lighter ones, or by pulling
neighbors to lightly loaded branches from heavier ones. Ta-
ble II provides the pseudo-code for the adjustment algorithm.

IV. SIMULATION AND PERFORMANCEEVALUATION

We have built a Java simulator to evaluate the load balancing
performance of our spiral node-centric strategy, and have
compared the balance factor resulting from our basic algorithm
with the routing trees produced by breadth-first-search (BFS)
and shortest path routing in sensor networks. Square sensor
grids with both uniform and non-uniform load distributions
were studied. The convergence speed of our spiral adjustment
algorithm was also compared to a random adjustment algo-
rithm.

First we evaluate the load balancing performance of our
basic algorithm compared with shortest path tree (SPT) and
the tree created by BFS. The shortest path tree was generated
using Dijkstra’s algorithm using a link cost of 1 for each link.
Since there will be many nodes at each iteration that are an
equal distance from the SPT, i.e. all border nodes are exactly
distance 1 from the SPT, then a node is randomly selected. In
practice, heuristics such as lowest address ID are used to break
such ties. The BFS algorithm grows the tree from the root in

a rotational fashion, rotating between branches. All nodes a
distanceN hops from the root are appended to the branches
in rotational fashion, before proceeding to all nodesN + 1
hops from the root.

Fig. 5. Average Performance Comparison

Fig. 6. Worst Performance Comparison

Figure 5 and Figure 6 assess the balance factor of the routing
trees produced by the three algorithms as a function of the
square grid’s length on a side for a uniform load. For each
of the square lengths, the experiment is executed 20 times.
The root is assigned randomly in each set of the experiments.
From Figure 5, the shortest path algorithm produces the
most unbalanced trees, while our basic algorithm is slightly
better balanced on average than BFS. In the worst, our basic
algorithm considerably outperforms both SPT and BFS. Worst
cases occur when the root base station is located near the edge
or corner of the square grid, so that both BFS and SPT produce
highly unbalanced trees, i.e. some branches are hemmed in
and therefore especially short. In contrast, our basic algorithm
attempts to expand the lightest branches into open space, to
avoid confining the growth of branches.

In Figure 7, we randomly assign different load-generating
weights to several nodes. Each of the selected nodes is
assigned weight 20, while all the other nodes have weight
1. The number of “heavy nodes” is increased from 1 to 10. In
each case, we repeat the experiment for 20 times. The square
grid is20x20. Figure 8 shows that our basic algorithm achieves
much better load balancing than BFS and SPT for uneven
sensor networks, because BFS and SPT are not accounting for
load aggregation. In comparison to uniform sensor networks,



Fig. 7. Average Performance Comparison in an uneven sensor network

Fig. 8. Worst Performance Comparison in an uneven sensor network

our basic algorithm has more trouble balancing uneven load
generators yet is still relatively successful.

Figure 9 shows that the convergence speed of our spiral
adjustment algorithm is at least twice as fast as a random
adjustment algorithm, because our node-centric approach uses
topology information like branch load factors.

Figure 3 illustrates the tree structure after applying our
entire algorithm with adjustment to a10x10 grid. At the end of
the basic construction algorithm, the branch numbers are 27,
26, 21, and 25. The balance factor is 0.996. After adjustment,
the number of nodes on each branch is 25, 25, 25, 24, and the
balance factor is increased to 0.9997. The final tree achieves
maximum balance as shown in Figure 3.

V. CONCLUSION

In this paper, we provide a node-centric model for load
balancing of wireless sensor networks. Our load balancing
mechanism grows trees iteratively from the base station.
First, the most lightly loaded and most confined branches
are selected for growth. Second, the heaviest nodes with
the maximum growth space are selected. After establishing
a loosely balanced tree, we run adjustments that migrate
subtrees to neighboring trees, and thereby achieve greater
balance. Our algorithm achieves considerably better balanced
trees than bread-first-search and shortest-path routing, both for
uniform and unevenly weighted nodes in a square topology.
We introduce a load balancing metric based on the Chebyshev
Sum inequality.

Fig. 9. Performance Comparison between the Random adjustment and the
spiral adjustment

REFERENCES

[1] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao,
“Habitat Monitoring: Application Driver for Wireless Communications
Technology”, Proceedings of the First ACM SIGCOMM Workshop on
Data Communications in Latin America, 2001.

[2] A. Manjeshwar and D. P. Agrawal. “Teen: A routing protocol for
enhanced efficiency in wireless sensor networks”. In 1st International
Workshop on Parallel and Distributed Computing Issues in Wireless,
2001.

[3] D. Estrin, L. Girod, G. Pottie, M. Srivastava , “Instrumenting the
world with wireless sensor networks” In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2001),
Salt Lake City, Utah, May 2001.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci. “Wireless
Sensor Networks: A Survey”, Computer Networks, 38(4): 393-422, March
2002.

[5] J. Deng, R. Han, S. Mishra, “A Performance Evaluation of Intrusion-
Tolerant Routing in Wireless Sensor Networks”, IEEE 2nd International
Workshop on Information Processing in Sensor Networks (IPSN ’03),
2003, Palo Alto, California.

[6] J. Hill, R. Szewcyzk, A. Woo, S. Hollar, D. Culler, K. Pister, “System
Architecture Directions for Networked Sensors”. Proceedings of Ninth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, November 2000.

[7] J. Staddon, D. Balfanz and G.Durfee “Efficient tracing of failed nodes in
sensor networks” In WSNA ‘02.

[8] J. Zhao, R. Govindan and D. Estrin, “Residual Energy Scans for Moni-
toring Wireless Sensor Networks”, IEEE Wireless Communications and
Networking Conference (WCNC’02), Orange County Convention Center,
Orlando, FL, USA, 17-21 March, 2002.

[9] P. H. Hsiao, A. Hwang, H. T. Kung, and D. Vlah. “Load-Balancing
Routing for Wireless Access Networks”. IEEE Infocom, April 2001.

[10] Q. Li, J. Aslam, and D. Rus. “Hierarchical power-aware routing in
sensor networks”. In Proceedings of the DIMACS Workshop on Pervasive
Networking, May 2001.

[11] S. Chessa, P.Santi, “Crash Faults Identification in Wireless Sensor
Networks”, Computer Communications, Vol. 25, No. 14, pp. 1273-1282,
Sept. 2002.

[12] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny
aggregation service for ad hoc sensor networks”, in USENIX Symposium
on Operating Systems Design and Implementation, 2002.

[13] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting
Aggregate Queries Over Ad-Hoc Wireless Sensor Networks”, in Work-
shop on Mobile Computing Systems and Applications, 2002.

[14] S. S. Lee, M. Gerla “Fault Tolerance and Load Balancing in QoS
Provisioning with Multiple MPLS Paths” IWQoS 2001: 155-169.

[15] Y. J. Zhao, R. Govindan and D. Estrin, “Sensor Network Tomography:
Monitoring Wireless Sensor Networks” Student Research Poster, ACM
SIGCOMM 2001, San Diego, CA, USA. August 2001


