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The scoring function is one of the most important components in structure-based drug design.

Despite considerable success, accurate and rapid prediction of protein–ligand interactions is still a

challenge in molecular docking. In this perspective, we have reviewed three basic types of scoring

functions (force-field, empirical, and knowledge-based) and the consensus scoring technique that

are used for protein–ligand docking. The commonly-used assessment criteria and publicly

available protein–ligand databases for performance evaluation of the scoring functions have also

been presented and discussed. We end with a discussion of the challenges faced by existing

scoring functions and possible future directions for developing improved scoring functions.

1. Introduction

As the number of three-dimensional protein structures deter-

mined by experimental techniques grows, computational tools

such as molecular docking have played an increasing role in

the functional study of proteins and structure-based drug

design.1–6 In all the computational methodologies, one

important problem is the development of an energy scoring

function that can rapidly and accurately describe the inter-

action between protein and ligand. Several reviews on scoring

are available in the literature.7–11

There are three important applications of scoring functions

in molecular docking. The first of these is the determination of

the binding mode and site of a ligand on a protein.9 Given

a protein target, molecular docking generates hundreds of

thousands of putative ligand binding orientations/conformations

at the active site around the protein. A scoring function is used

to rank these ligand orientations/conformations by evaluating

the binding tightness of each of the putative complexes.

An ideal scoring function would rank the experimentally

determined binding mode most highly. Given the determined

binding mode of a ligand, scientists would be able to gain a

deep understanding of the molecular mechanism of ligand

binding and to further design an efficient drug by modifying

the protein or ligand.9

The second application of a scoring function, which is

related to the first application, is to predict the absolute

binding affinity between protein and ligand. This is parti-

cularly important in lead optimization.4 Lead optimization

refers to the process to improve the tightness of binding for

low-affinity hits or lead compounds that have been identified.

During this process, an accurate scoring function can greatly

increase the optimization efficiency and save costs by compu-

tationally predicting the binding affinities between the protein

and modified ligands before the much more expensive step of

ligand synthesis and experimental testing.

The third application, perhaps the most important one in

structure-based drug design, is to identify the potential drug

hits/leads for a given protein target by searching a large ligand

database, i.e. virtual database screening.6 A reliable scoring

function should be able to rank known binders most highly

according to their binding scores during database screening.

Given the expensive cost of experimental screening and
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sometimes unavailability of high-throughput assays, virtual

database screening has played an increasingly important role

in drug discovery.

All of these three applications, ligand binding mode

identification, binding affinity prediction, and virtual database

screening, are related to each other. Presumably, an accurate

scoring function would perform equally well on each of them.

Despite over a decade of development, scoring is still an open

question. Many existing scoring functions perform well only

on one or two of the three applications. Roughly, the scoring

functions can be grouped into three basic types according to

how they are derived: force field-based, empirical, and

knowledge-based. In this perspective, we have reviewed several

important aspects of scoring functions for protein–ligand

docking, as outlined in Fig. 1. Specifically, we will first briefly

review different categories of scoring functions in section 2.

We will then describe the commonly-used criteria for

performance assessment of a scoring function in section 3.

We will also review the publicly available protein–ligand

databases for developing and validating scoring functions in

section 4. Finally, challenges and future directions for scoring

function development will be discussed in the Conclusion and

Discussions.

2. Brief review of scoring functions

Over the years, different scoring functions have been

developed that exhibit different accuracies and computational

efficiencies. In this section, we will briefly review the scoring

functions in literature developed for protein–ligand inter-

actions in molecular docking. Some of the commonly-used

scoring functions are summarized in Table 1 and grouped into

three broad categories.

2.1 Force field scoring function

Force field (FF) scoring functions are developed based on

physical atomic interactions,51 including van der Waals

(VDW) interactions, electrostatic interactions, and bond

stretching/bending/torsional forces. Force field functions and

parameters are usually derived from both experimental data

and ab initio quantum mechanical calculations according to

the principles of physics. Despite its lucid physical meaning, a

major challenge in the force field scoring functions is how to

treat the solvent in ligand binding.

One typical force field scoring function in molecular

docking is the scoring function of DOCK whose energy

parameters are taken from the Amber force fields.12,52,53 The

scoring function is composed of two energy components of

Lennard-Jones VDW and an electrostatic term

E ¼
X
i

X
j

Aij

r12ij
� Bij

r6ij
þ qiqj

eðrijÞrij

 !
ð1Þ

where rij stands for the distance between protein atom i and

ligand atom j, Aij and Bij are the VDW parameters, and qi
and qj are the atomic charges. Here, the effect of solvent is

implicitly considered by introducing a simple distance-

dependent dielectric constant e(rij) in the Coulombic term.

Despite the computational efficiency of the force field scoring

function of DOCK, the distance-dependent dielectric factor

cannot account for the desolvation effect, an important

solvent effect that charged groups favor aqueous environments

whereas non-polar groups tend to stay in non-aqueous

environments. The desolvation energy is a many-body inter-

action term and depends on specific geometric and chemical

surrounding environments of the considered solute atoms. If

the desolvation effect is ignored, a scoring function would be

biased on Coulombic electrostatic interactions and therefore

would tend to select highly charged ligands.

A rigorous way to account for the solvent effect is to treat

water molecules explicitly. Techniques such as free energy

perturbation (FEP) and thermodynamic integration (TI) use

explicit water representation (see ref. 3 and 54 for review).

However, these methods, together with their simplified

approaches such as LIE, PROFEC and OWFEG (see ref. 3

and references therein) are too computationally expensive to

be used in virtual database screening. In addition, while

simulations with explicit water molecules are theoretically

ideal/rigorous, the accuracy of the methods is also limited by

the sampling issue and by the accuracy of the force field. This

in turn depends on both the mathematical form and the

parameterization thereof. To reduce the computational

expense, some accelerated force field models have been

Fig. 1 An illustration of the categories and evaluations of the scoring

functions for protein–ligand docking.
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developed for scoring use in molecular docking by treating

water as a continuum dielectric medium. Typical examples of

such implicit solvent models include the Poisson–Boltzmann/

surface area (PB/SA) model55–57 and the generalized-Born/

surface area (GB/SA) model,58–60 that are often used in

post-scoring of docking programs. Shoichet and colleagues

applied a modified Born equation to calculate the electrostatic

component of ligand solvation.13,14 In their study, the

electrostatic potential of the protein is calculated by using

the finite-difference Poisson–Boltzmann (PB) method

implemented in DelPhi,12,55 and partial atomic charges are

calculated with the Gasteiger algorithm61 implemented in the

program SYBYL (Tripos) or with the semi-empirical quantum

mechanical approach implemented in the program AMSOL.62

The desolvation energy penalty for the ligand was calculated

by assuming full desolvation of each ligand atom or of the

whole ligand. The method was validated by screening the

Available Chemicals Directory (ACD) against T4 lysozyme

mutants and dihydrofolate reductase (DHFR).

The PB/SA63–69 and GB/SA15–17,70–77 approaches have been

successfully used for relative potency studies and virtual

screening tests. For example, Zou et al. accounted for the

solvation effect in ligand binding free energy calculations using

a GB/SA approach.15,16 Specifically, the solvent-screened

electrostatic interactions and the electrostatic desolvation

costs are calculated with the GB model. The hydrophobic

contributions for non-polar atoms are estimated using the

solvent-accessible surface areas (SA) of the atoms. The van der

Waals energies are calculated using Lennard-Jones potentials.

Then the weights for the electrostatic, van der Waals, and

hydrophobic contributions to the free energy of binding are

optimized so that the predicted binding scores agree well with

the experimental affinity data for known inhibitors and known

inhibitors are distinguished from random molecules in

database screening. The GB/SA formulation implemented in

DOCK78,79 as SDOCK was validated on three systems:

dihydrofolate reductase (DHFR), trypsin, and a fatty acid-

binding protein. To enhance the computational efficiency, a

pairwise format of GB was parameterized for protein–ligand

docking,16,17 which takes only about 0.5s per orientation

(with minimization) on a Silicon Graphics Octane R12000

workstation.

After thorough and systematic comparison between PB

and GB on protein–ligand complexes with a wide range of

electrostatic component of binding energies (from �5 to

25 kcal mol�1), Zou and colleagues showed that being able

to reproduce the solvation energy of a ligand or a protein

calculated with PB is not necessarily suitable for ligand

binding calculations. Additional quantities should be used

for evaluation, particularly quantities such as the partial

desolvation energy of the receptor.17,70 To warrant the

accuracy and efficiency, they proposed a multiscale GB

approach for the use of virtual screening. In this approach

atoms are divided into two groups: The few atoms in the first

group are most likely to be critical to binding electrostatics;

their contributions are calculated with accurate GB models at

the sacrifice of speed. The rest atoms (second group) may be

treated with a fast GB method.70

In addition to the challenge in rapidly and accurately

accounting for the solvent effect in electrostatics, how to

combine individual energy terms is also difficult. Usually,

empirical weighting coefficients have to be introduced because

each energy component is calculated from unrelated

methods.15,16,18,19 For example, the electrostatic component

can be calculated with Coulombic, PB or GB approaches. The

VDW energy component is commonly represented by

Lennard-Jones potentials. The hydrophobic interaction term

is often approximated as being proportional to the change of

solvent-accessible surface area. These terms have quite

different scales, and thereby cannot be added up without

weighting factors. The weighting factors are obtained by

fitting experimental binding data, etc. There may be more

than one set of empirical weighting coefficients to achieve

comparable answers.15,16 Although it is possible to find

appropriate weighting coefficients for a specific protein or

protein family, it is difficult to obtain a universal set for

diverse protein–ligand complexes. Furthermore, even accurate

electrostatic energy calculations can be blown off course by

poor treatment of entropic contributions. Finally, it is well-

known that individual free energy terms may not be additive.80

2.2 Empirical scoring function

A second kind of scoring functions are empirical scoring

functions, which estimate the binding affinity of a complex

on the basis of a set of weighted energy terms

DG ¼
X
i

Wi � DGi ð2Þ

where DGi represents different energy terms such as VDW

energy, electrostatics, hydrogen bond, desolvation, entropy,

hydrophobicity, etc. The corresponding coefficients Wi are

determined by fitting the binding affinity data of a training

set of protein–ligand complexes with known three-dimensional

structures.24–30,32–35,81,82 Compared to the force field scoring

functions, the empirical scoring functions are much faster in

binding score calculations due to their simple energy terms.

By calibrating with a dataset of 45 protein–ligand

complexes, Böhm developed an empirical scoring function

(SCORE1) consisting of four energy terms: hydrogen bonds,

ionic interactions, the lipophilic protein–ligand contact

Table 1 Types of scoring functions

Type Scoring function

Force field-based DOCK,12 DOCK3.5(PB/SA),13,14 DOCK/GBSA(SDOCK),15–17 AutoDock,18,19 GOLD,20 SYBYL/D-Score,12

SYBYL/G-Score20

Empirical FlexX,21 Glide,22 ICM,23 LUDI,24,25 PLP,26,27 ChemScore,28 SCORE,29 X-Score,30 Surflex,31 SYBYL/F-Score,21

LigScore,32 MedusaScore,33 AIScore,34 SFCscore35

Knowledge-based ITScore,36–38 PMF,39,40 DrugScore,41,42 DFIRE,43 SMoG,44,45 BLEEP,46,47 MScore,48 GOLD/ASP,49 KScore50
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surface, and the number of rotatable bonds in the ligand.24

This empirical scoring function was further improved by

expanding the dataset to 82 protein–ligand complexes with

known 3D structures and binding constants and by considering

the energy parameters for the following terms: the number and

geometry of intermolecular hydrogen bonds and ionic inter-

actions, the size of the lipophilic contact surface, the flexibility

of the ligand, the electrostatic potential in the binding site,

water molecules in the binding site, cavities along the

protein–ligand interface, and specific interactions between

aromatic rings.25 Eldridge et al. presented an empirical scoring

function referred to as ChemScore by taking into account

hydrogen bonds, metal atoms, the lipophilic effects of atoms,

and the effective number of rotatable bonds in the ligand.28

The scoring function was calibrated using 82 ligand–receptor

complexes with known binding affinities and was tested using

two other sets of 20 and 10 protein–ligand complexes,

respectively. Based on a larger set of 200 protein–ligand

complexes, Wang et al. developed a new empirical scoring

function, X-Score, consisting of four energy terms including

VDW interactions, hydrogen bonds, hydrophobic effects and

effective rotatable bonds.30

By including different empirical energy terms, empirical

scoring functions have been used in many well-known

protein–ligand docking programs such as FlexX21 and

Surflex.31 How to avoid double-counting problems is a

difficult issue for empirical scoring functions with many energy

terms. Their general applicability may also depend on the

training set due to their nature of fitting binding affinities of a

small dataset. With the rapid increase in the number of

protein–ligand complexes with known 3D structures and

binding affinities, it is possible to develop a relatively general

empirical scoring function by training with known binding

constants of thousands of diverse protein–ligand complexes.

2.3 Knowledge-based scoring function

A third kind of scoring functions are knowledge-based scoring

functions (also referred to as statistical-potential based scoring

functions), which employ energy potentials that are derived

from the structural information embedded in experimentally

determined atomic structures.83–85 The principle behind

knowledge-based scoring functions is simple: Pairwise

potentials are directly obtained from the occurrence frequency

of atom pairs in a database using the inverse Boltzmann

relation.86–89 For protein–ligand studies, the potentials are

calculated by

w(r) = �kBT ln[g(r)], g(r) = r(r)/r*(r) (3)

where kB is the Boltzmann constant, T is the absolute

temperature of the system, r(r) is the number density of the

protein–ligand atom pair at distance r, and r*(r) is the pair

density in a reference state where the interatomic interactions

are zero.

The idea of the inverse Boltzmann method for knowledge-

based potentials comes from statistical mechanics in the

physics field.89 According to the analytical integral equation

for the pair distribution function g(r) in the simple fluid

system, the interaction potentials by the inverse Boltzmann

method are actually the mean-force potentials rather than the

true potentials in these systems.89,90 Moreover, the protein

system is quite different from the simple fluid system due to the

effects of atomic connectivity, excluded volume, composition,

etc.88 Therefore, w(r) are not the true mean-force potentials,

either.90 Despite these limitations, the inverse Boltzmann

method provides a simple and effective way to convert a

histogram of atom–atom distances into a suitable function

with the dimension of energy for complicated protein systems.91

Since the pioneering work by Tanaka and Scheraga,83 a large

number of knowledge-based scoring functions have been

developed and widely applied to protein structure prediction

and protein–ligand studies (see ref. 92 for review).

Compared to the force field and empirical scoring functions,

the knowledge-based scoring functions offer a good balance

between accuracy and speed. Because the potentials in eqn (3)

are extracted from the structures rather than from attempting

to reproduce the known affinities by fitting, and because the

training structural database can be large and diverse, the

knowledge-based scoring functions are quite robust and

relatively insensitive to the training set.36,37,39,40 Their pairwise

characteristic also enables the scoring process to be as fast as

empirical scoring functions.

However, there is a challenge in deriving knowledge-based

scoring functions, which is the reference state (see eqn (3)). As

pointed out by Thomas and Dill88 and other groups, an

accurate reference state is not achievable. Therefore, how to

calculate r*(r) of the reference state becomes a longstanding

hurdle in deriving knowledge-based potentials. Below we will

use the reference state treatment to classify various knowledge-

based scoring functions.

Most of the current knowledge-based scoring functions

approximate the reference state with an atom-randomized

state by ignoring the effects of excluded volume, interatomic

connectivity, etc.88 Gohlke et al. developed a knowledge-based

scoring function (DrugScore) based on 17 atom types and

1376 protein–ligand complex structures.41 The scoring func-

tion consists of a distance-dependent pair-potential term and a

surface-dependent singlet-potential term. It was validated by

using two sets of protein–ligand complexes (91 and 68

complexes in each set). A further comparative evaluation of

DrugScore and AutoDock shows that DrugScore yields

slightly superior results in flexible docking.93 Recently, an

improved version (DrugScoreCSD)42 was also developed based

on the Cambridge Structural Database (CSD) of small

molecules,94 which contain low-molecular-weight structures

with higher resolution than huge-molecular-weight structures

in the Protein Data Bank (PDB).95 Mitchell et al. presented a

statistical potential model, BLEEP, using 40 atom types.46

This model was tested on nine serine protease–inhibitor

complexes and obtained a correlation coefficient of 0.71

(or R2 = 0.50) between the calculated energy scores and the

experimental binding data. A further test on a set of

90 protein–ligand complexes shows a good correlation (R =

0.74 or R2 = 0.55) in affinity predictions.47 Application of

BLEEP to the 77 complexes used by Muegge and Martin39

yields a correlation of R2 = 0.28.96 Based on 725 protein–

ligand complexes from the PDB, Ishchenko and Shakhnovich

presented an improved version of SMoG44 (referred to as
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SMoG2001).45 SMoG2001 uses 13 atom types, two distance

intervals, and a reference state determined by a self-consistent

method. Applying SMoG2001 to Muegge and Martin’s test

set gives a correlation coefficient of 0.68 (or R2 = 0.46).45

Yang et al. presented a new knowledge-based scoring function

M-Score to account for the mobility of protein atoms based

upon 2331 protein–ligand complexes.48 M-Score describes the

location of each protein atom by a Gaussian distribution based

upon the isotropic B-factors, which results in a smoothing effect

on the pairwise distribution functions and thereby smoothen

its knowledge-based potentials.

In addition to adopting the traditional atom-randomized

reference state, researchers have also tried to improve the

accuracy of the reference state by introducing some

corrections or scalings. The potential model by Muegge and

Martin, PMF (potential of mean force), was the first

knowledge-based scoring function to be extensively tested

for affinity predictions.39 Based on 34 ligand atom types and

16 protein atom types, the distance-dependent pair potentials

were derived using 697 protein–ligand structures in which a

ligand volume factor is introduced to correct the reference

state. The model was tested on a diverse set of 77 protein–

ligand complexes with known binding affinities and outper-

formed LUDI24 and SMoG,44 yielding a high correlation

(R2 = 0.61) between the calculated scores and the experi-

mental binding constants. The PMF scoring function was also

successfully applied to docking/scoring studies of weak ligands

for the FK506 binding protein97 and inhibitors for matrix

metalloprotease MMP-3.98 Recently, a newer version of PMF

(PMF04) has been developed using a much larger database of

7152 protein–ligand complexes from the PDB and received

similar results.40 Zhang et al. developed a knowledge-based

statistical energy function for protein–ligand, protein–protein,

and protein–DNA complexes by using 19 atom types and a

distance-scale finite ideal-gas reference state (DFIRE).43 The

scoring function obtained a correlation coefficient of 0.63 on

100 protein–ligand complexes, 0.73 for 82 protein–protein

complexes, and 0.83 for 45 protein–DNA complexes,

respectively.

No matter whether one chooses an atom-randomized state

or a more physical approximation, the accuracy of the

reference state remains a problem in knowledge-based scoring

functions. The problem is more prominent for binding mode

predictions and virtual screening, as the pairwise potentials,

which are derived from nicely-bound structures, are not

sufficiently sensitive to different ligand positions and may give

good scores even to bad/wrong modes. Attempting to solve

this problem, Huang and Zou have recently developed a new

kind of knowledge-based scoring function (referred to as

ITScore) using an iterative method so as to circumvent the

accurate calculation of the reference state.36,37,99–101 The basic

idea of the iterative method is to adjust the pair potentials uij(r)

by iteration until the interaction potentials reproduce the

experimentally determined pair distribution function in the

training set, yielding a set of potentials that can discriminate

the native structures from decoys.102–105 During the iteration

procedure, the improvement for the potentials is guided

through the difference between the predicted and experi-

mentally observed pair distribution functions rather than

through accurate calculation of the aforementioned reference

state. Here, the predicted pair distribution function gij(r) is

calculated from the ensemble of the native structures and a

set of well-sampled decoys according to the Boltzmann

probability. Therefore, the iterative method circumvents the

reference state problem faced by traditional knowledge-based

scoring functions. Another advantage of the iterative method

is its consideration of the full binding energy landscape of the

complexes by including both the native structures and decoys

during the calculation of gij(r), instead of considering only the

energy minima (i.e., native structures) like conventional

knowledge-based scoring functions do. Extensive evaluations

on diverse test sets showed that ITScore yielded good

performances on predictions of ligand binding modes and

affinities and on virtual screening of compound databases.36,37

Very recently, Huang and Zou have included the solvation

effect and configurational entropy in ITScore. The new scoring

function, referred to as ITScore/SE, has further improved the

performance of ITScore.38

Inspired by the knowledge-based scoring functions, a

knowledge-based quantitative structure–activity relationship

(QSAR) approach has recently been introduced for scoring

protein–ligand interactions.106,107 In this type of QSAR

approaches, the distance-dependent atom pair occurrences

are used as descriptors for QSAR analysis by using a

machine-learning method to fit the binding affinities of a

training set. They differ from traditional knowledge-based

scoring functions in using machine learning rather than reverse

Boltzmann relationship, and in using binding affinities as well

as structural data. One of the advantages of the machine-

learning method is its ability to fit the binding affinities of a

very large training set. For example, in a very recent study by

Ballester and Mitchell,107 the scoring function (RF-Score)

derived from the machine-learning method yielded a high

correlation (R = 0.953) for a large training set of 1105

protein–ligand complexes.

2.4 Consensus scoring

Despite a good number of scoring functions that have been

developed, none of them is perfect in terms of accuracy

and general applicability. Every scoring function has its

advantages and limitations. To take the advantages and

balance the deficiencies of different scoring functions, the

consensus scoring technique has been introduced to improve

the probability of finding correct solutions by combining the

scores from multiple scoring functions.108 The critical step in

consensus scoring is the design of an appropriate consensus

scoring strategy of individual scores so that the true modes/

binders can be discriminated from others accordingly.109,110

Commonly used consensus scoring strategies include vote-by-

number, number-by-number, rank-by-number, average rank,

linear combination, etc.111 Examples of consensus scoring are

MultiScore,112 X-Cscore,30 GFscore,113 SCS,114 and SeleX-CS.115

3. Criteria for evaluating scoring functions

In response to the three important applications of a scoring

function as described in Introduction, three related but

independent criteria are commonly used to evaluate the
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performance of a scoring function for its ability in binding

mode identification, binding affinity prediction, and virtual

database screening.

One of the essential measures for the performance of a

scoring function is its ability to distinguish native binding

modes from decoys. Namely, given a set of decoys for a

protein–ligand complex, a reliable scoring function should

be capable of ranking the native structure to the top by the

calculated binding scores. In docking applications, successful

prediction of a native binding mode is commonly defined by

the rmsd value between the top ligand conformations and the

experimentally observed (native) structure. If rmsd is r2.0 Å,

the prediction is considered successful. Because of its simplicity

and ease of implementation, the rmsd criterion for binding

mode prediction has been widely used in the field. However,

this criterion could be problematic in some cases. For example,

small or nearly symmetrical ligands are likely to obtain good

rmsd values even when they are randomly placed in a small

active site. On the contrary, for a large flexible ligand, the large

rmsd value due to a solvent-exposed, unimportant group may

hide the correctness in prediction of the overall binding mode.

To overcome these limitations, several alternative methods

have been presented for pose evaluations, such as relative

displacement error (RDE),116 interaction-based accuracy

classification (IBAC),117 real space R-factor (RSR),118 and

Generally Applicable Replacement for rmsD (GARD).119

A second important measure for a scoring function is its

ability to predict the binding affinity of a complex, i.e. how

tightly the ligand binds the protein. It is generally difficult to

achieve a score scale similar to experimental binding data.

(Certainly, one may scale the calculated scores to fit the

normal affinity range.) Therefore, the commonly-used

criterion for affinity prediction is the Peason correlation

between the calculated scores and the experimental data,

which is calculated as follows:

R ¼
PN

k¼1 ðxk � hxiÞðyk � hyiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 ðxk � hxiÞ

2
h i PN

k¼1 ðyk � hyiÞ
2

h ir ð4Þ

where N is the number of tested complexes. xk and yk are the

experimentally determined binding energy and the calculated

score for k-th complex, respectively. h� � �i is an arithmetic

average over all the complexes. Yet, the correlation between

the predicted and experimental binding energies does not have

to be linear for a scoring function. Therefore, the Spearman

correlation coefficient, which calculates the correlation

between two sets of rankings, may serve as a better index for

ranking the complexes in order:

Rs ¼ 1� 6
PN

k¼1 d
2
k

NðN2 � 1Þ ð5Þ

where the complexes in the test set are ranked by their known

affinities and calculated scores, respectively, and dk is the

difference in two rankings for the kth complex.

Compared to binding mode prediction, binding affinity

prediction is more challenging to be assessed. One major

reason is the uncertainties of the collected experimental affinity

data that may come from different experimental conditions by

different research groups or the inherent experimental error

of an assay.

The third criterion for assessing a scoring function is its

capability of selecting potential binders (hits) from a large

database of compounds for a given protein target. The

practical application is virtual screening in computer-based

drug design, which is often used to identify lead compounds in

drug discovery. Virtual database screening tests whether or

not a scoring function is able to rank the known binders/

inhibitors above many inactive compounds in a database. The

enrichment test is a commonly-used criterion to quantify the

performance of a scoring function in virtual database screening.

The enrichment is defined as the accumulated rate of active

inhibitors/binders found above a certain percentile of the

ranked database that includes the active binders and inactive

ligands. A higher enrichment at a fixed percentage of the

ranked database can be taken to indicate a better scoring

function. Another measurement for virtual database screening

is AUC, the area under the receiver operating characteristic

(i.e., ROC) curve.120,121 This method is normally more appro-

priate when the number of inactive ligands is comparable to

the number of active binders.

Theoretically, an accurate scoring function should be able to

perform equally well on all of the three criteria on any test set.

However, due to the inherent limitations, most of the existing

scoring functions usually perform well on only one or two of

the criteria and fail on others. For example, Wang et al.122

showed that SYTYL/F-Score yields a good success rate (74%)

in binding mode prediction with a test set of 100 protein–

ligand complexes (Table 2), but performs poorly with a

correlation coefficient of R = 0.30 in binding affinity predic-

tion with the same test set (Table 3). Similar examples were

also found in the comparative assessment of 16 scoring

functions on a larger test set of 195 protein–ligand complexes

by Cheng et al.123 Success in virtual database screening usually

requires good performance in both binding mode and affinity

predictions. A scoring function that yields a good correlation

in binding affinity prediction does not necessarily perform well

Table 2 Success rates of 16 scoring functions for Wang et al.’s test set
of 100 diverse protein–ligand complexes, using the criterion of
rmsd r2.0 Å (from Huang and Zou, 2010)38

Scoring function Type of scoringa Success rate (%)

ITScore/SE38 K 91
DrugScoreCSD42 K 87
ITScore37 K 82
Cerius2/PLP26,27 E 76
SYBYL/F-Score21 E 74
Cerius2/LigScore32 E 74
DrugScorePDB41 K 72
Cerius2/LUDI24,25 E 67
X-Score30 E 66
AutoDock18 F 62
DFIRE43 K 58
DOCK/FF12 F 58
Cerius2/PMF39 K 52
SYBYL/G-Score20 F 42
SYBYL/ChemScore28 E 35
SYBYL/D-Score12 F 26

a ‘‘K’’ stands for knowledge-based scoring functions, ‘‘E’’ for empirical

scoring functions, and ‘‘F’’ for force field scoring functions, respectively.
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in database ranking.124 For example, PMF-Score yielded a

high correlation (R2 = 0.61) in binding affinity prediction on

the PMF validation set of 77 complexes (Fig. 2), but

performed much less satisfactorily in virtual database screening

and failed to identify any binder on two of four tested targets at

the 5% of the ranked database (Table 4). In addition, the

performances of scoring functions are test set-dependent. For

example, ITScore and PMF-Score perform significantly better

on the PMF validation set than on Wang et al.’s set in binding

affinity prediction (Fig. 2 and Table 3). For the PMF validation

set, all of the tested scoring functions perform better on the

serine protease than the others (Fig. 2). Therefore, to fully

evaluate the performance of a scoring function, the above three

criteria should be examined with multiple test sets.

4. Databases for evaluating scoring functions

In addition to the success criteria for evaluating scoring

functions, another important issue in developing an efficient

scoring function is the construction of an appropriate training/

test set. Commonly-used (but not exhaustive) criteria for

constructing an appropriate training/test set include the

following properties: The complexes in the set should be high

quality structures with no atomic clashes (e.g. crystal structures

with high resolutions); The set of complexes should cover a

wide range of binding affinities and diverse protein types

(except for developing a special scoring function for a specific

protein family); The ligands should be drug-like and bind

non-covalently to the protein. Overlaps between the training

set and the test sets should be carefully avoided. Examples of

the protein–ligand complex databases that can be used to

construct a training or test set are listed as follows:

1. LPDB (http://lpdb.chem.lsa.umich.edu/)125

2. PLD (http://chemistry.st-andrews.ac.uk/staff/jbom/group/

PLD.xls)126

3. Binding DB (http://www.bindingdb.org/bind/)127

4. PDBbind (http://sw16.im.med.umich.edu/databases/

pdbbind/)128,129

5. Binding MOAD (http://www.bindingmoad.org/)130

6. AffinDB (http://www.agklebe.de/affinity)131

5. Conclusion and discussion

We have reviewed the scoring functions currently used for

protein–ligand interactions in molecular docking. We have

also described the commonly-used criteria/methods for

scoring assessment in three different applications: binding

mode prediction, binding affinity prediction, and database

screening. Finally, we have briefly depicted the criteria for

constructing an appropriate training/test set and the publicly

available protein–ligand databases for such purposes.

Despite considerable progress, current scoring functions are

still far from being universally accurate, considering the test

set-dependency of their performance and the fact that many of

the scoring functions failed on one or two of the three

widely-used criteria. To improve the universal applicability

of the empirical scoring functions, a large training set of

complexes with known affinity data are desired for parameter

fitting. For force field and knowledge-based scoring functions,

explicit and accurate inclusion of the desolvation and entropic

effects is requisite to improve the accuracy. The categorization

of atom types with a good balance of the statistics of the pair

occurrences and the number of atom types is also important

for knowledge-based scoring functions. Extension of the

pairwise potentials to many-body potentials theoretically will

help improve the accuracy of knowledge-based scoring

functions but practically remains unknown because of the

introduction of many more parameters to be determined. Lack

of a universal set of weighting coefficients for different energy

terms for diverse protein–ligand complexes is a challenge for

force field scoring functions. What is even more challenging,

neglect or inaccurate treatment of entropic effects may easily

render useless the hard effort on accurate electrostatic calcula-

tions in force field scoring. Transition metal ions such as zinc

Fig. 2 Correlations of binding affinity predictions for 7 knowledge-

based scoring functions with the PMF validation set of 77 protein–

ligand complexes (all) that consists of five classes: 16 serine protease

(ser), 15 metalloprotease (met), 18 L-arabinose binding protein (L-ara),

11 endothiapepsin (end), and 17 diverse protein–ligand complexes

(oth).39 The correlation parameter here is the square of correlation

coefficient (R2) rather than correlation coefficient itself (R) to maintain

consistency with the original data. The correlation data for

ITScore/SE, ITScore, BLEEP and SMoG2001 are taken from our

previous study,38 and those for DrugScorePDB and DrugScoreCSD

were calculated by the DrugScoreONLINE server (http://pc1664.

pharmazie.uni-marburg.de/drugscore/).

Table 3 Correlation coefficients between the experimentally deter-
mined binding energies and the calculated binding scores of 17 scoring
functions for Wang et al.’s test set of 100 complexes (from Huang and
Zou, 2010)38

Scoring function Function type Correlation (R)

ITScore/SE K 0.65
ITScore K 0.65
X-Score E 0.64
DFIRE K 0.63
DrugScoreCSD K 0.62
DrugScorePDB K 0.60
Cerius2/PLP E 0.56
SYBYL/G-Score F 0.56
KScore K 0.49
SYBYL/D-Score F 0.48
SYBYL/ChemScore E 0.47
Cerius2/PMF K 0.40
DOCK/FF F 0.40
Cerius2/LUDI E 0.36
Cerius2/LigScore E 0.35
SYBYL/F-Score E 0.30
AutoDock F 0.05
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impose great parameterization difficulty for all scoring

functions. Another issue is how to evaluate the increasing

number of scoring functions being developed.132 Comparing

different scoring functions is not always possible if they are

tested on different sets. Although some comparison studies

have been done by researchers,122,124,133–136 publicly available

benchmarks such as CCDC/Astex set,137 CSAR (http://www.

csardock.org/), and DUD (http://dud.docking.org/)138 are

invaluable for development of new and existing scoring

functions.
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