
Integrated Access Control and Intrusion Detection for Web Servers
�

Tatyana Ryutov, Clifford Neuman, Dongho Kim and Li Zhou
Information Sciences Institute

University of Southern California�
tryutov, bcn, dongho, zhou � @isi.edu

Abstract

Current intrusion detection systems work in isolation
from access control for the application the systems aim to
protect. The lack of coordination and inter-operation be-
tween these components prevents detecting and responding
to ongoing attacks in real time, before they cause damage.
To address this, we apply dynamic authorization techniques
to support fine-grained access control and application level
intrusion detection and response capabilities. This paper
describes our experience with integration of the Generic Au-
thorization and Access Control API (GAA-API) to provide
dynamic intrusion detection and response for the Apache
Web Server. The GAA-API is a generic interface which may
be used to enable such dynamic authorization and intrusion
response capabilities for many applications.

1 Introduction and Motivation

Web servers continue to be attractive targets for attack-
ers seeking to steal or destroy data, deny user access or em-
barrass organizations by changing web site contents. Fur-
thermore, because web servers must be publicly available
around the clock, the server is an easy target for outside in-
truders. In order to penetrate their targets, attackers may

�
Effort sponsored by the Defense Advanced Research Projects Agency

(DARPA) and Air Force Research Laboratory, Air Force Materiel Com-
mand, USAF, and the Xerox Corporation under the following agreements:
(1) F30602-00-2-0595,Dynamic Policy Evaluation of Containing Network
Attacks Project (DEFCN); (2) DABT63-94-C-0034, Security Infrastruc-
ture for Large Distributed Systems Project (SILDS); (3) J-FBI-95-204,
Global Operating System Technologies Project (GOST); and (4) DE-FC03-
99ER25397, Diplomat project. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory, U.S. Department of Energy or the U.S.
Government. Figures and descriptions were provided by the authors and
are used with permission.

exploit well-known service vulnerabilities. A web server
can be subverted through vulnerable CGI scripts, which may
be exploited by meta characters or buffer overflow attacks.
These vulnerabilities may be related to the default installa-
tion of the server or may be introduced by careless writing
of custom scripts.

Web servers are also popular targets for Denial of Service
(DoS) attacks. An attacker sends a stream of connection re-
quests to a server in an attempt to crash or slow down the
service. Launching a DoS attack against a web server can be
accomplished in many ways, including ill-formed HTTP re-
quests (e.g., a large number of HTTP headers). As the server
tries to process such requests it slows down and becomes un-
able to process other requests. In addition, web servers ex-
hibit susceptibility to password guessing attacks.

To address these risks, web servers require increased se-
curity protection. Effective system security starts with secu-
rity policies that are supported by an access control mech-
anism. Access control policy to be enforced should de-
pend on the current state of the system, e.g., time of day,
system load or system threat level. More restrictive orga-
nizational policies may be enforced after hours, when the
system is busy or if suspicious activity has been detected.
Unfortunately, many web servers (e.g., Apache and IIS)
support only limited identity- and host-based policies that
deny/allow access to protected resources. The policies are
checked only when an access request is received to deter-
mine whether the request should be permitted or forbidden.
These policies do not support observing and reporting sus-
picious activity (e.g., embedding hexadecimal characters in
a query) and modifying system protection as a result.

Thus, the security policies must not only specify legiti-
mate user privileges but also aid in the detection of threats
and adapt their behavior based on perceived system threat
conditions. Even a single instance of a request for a vul-
nerable CGI script or malformed request should be reported
immediately and countermeasures should be applied. Such
countermeasures may include:
- generating audit records;
- notifying network servers that are monitoring security rel-

1

evant events in the system;
- tightening local policies (e.g., restricting access to local
users only or requesting extra credentials);
- modifying overall system protection. Examples include
terminating the session, logging the user off the system, dis-
abling local account or blocking connections from particular
parts of the network or stopping selected services (e.g., dis-
able ssh connections).

These actions would be followed by an alert to the se-
curity administrator, who can then assess the situation and
take the appropriate corrective actions. This step is impor-
tant, since an automated response to attacks can be used by
an intruder in order to stage a DoS (the intruder could have
impersonated a host or a user).

Traditional access control mechanisms were not de-
signed to aid the detection of threats or to adjust their behav-
ior based on perceived threat conditions. Common counter-
measures to web server threats depend on separate compo-
nents like firewalls, Intrusion Detection Systems (IDSs), and
code integrity checkers. While these components are useful
in detecting some kinds of attacks, they do not fully address
a web server’s security needs. For example, firewalls can
deny access to unauthorized network connections, but they
can not stop attacks coming in via authorized ports. In the
general case, IDSs provide only incomplete coverage, leav-
ing sophisticated attacks undetected. Other disadvantages
include: large number of false positives and inability to pre-
emptively respond to attacks. Integrity checkers can detect
unauthorized changes to files on a web site, but only after
the damage has been done.

Motivated by the multitude of web server vulnerabilities
and generally unsatisfactory server protection, we propose
integrated approach to web server security - the Generic Au-
thorization and Access-control API (GAA-API) that sup-
ports fine-grained access control and application level intru-
sion detection and response.

The GAA-API evaluates HTTP requests and determines
whether the requests are allowed and if they represent a
threat according to a policy. Our approach differs from other
work done in this area by supporting access control policies
extended with the capability to identify (and possibly clas-
sify) intrusions and respond to the intrusions in real time.
The policy enforcement takes three phases:
1. Before requested operation (e.g., display an HTML file or
run a CGI program) starts; to decide whether this operation
is authorized.
2. During the execution of the authorized operation; to de-
tect malicious behavior in real-time (e.g., a user process con-
sumes excessive system resources).
3. When the operation is completed; to activate post exe-
cution actions, such as logging and notification whether the
operation succeeds/fails. For example, alerting that a partic-
ular critical file (e.g., /etc/passwd) was modified can trigger

a process to check the contents of the file (e.g., check for a
null password).

By being integrated with the web server and having the
ability to control the three processing steps of the requested
operation, the GAA-API can respond to suspected intrusion
in real-time before it causes damage, whether it is site de-
facement, data theft or a DoS attack.

The disadvantage of the proposed approach is that a web
server has to be modified in order to utilize the GAA-API.
However, once the relatively easy integration is completed,
it becomes possible to handle access control decisions and
application level intrusion detection simultaneously. Fur-
thermore, since the GAA-API is a generic tool, it can be
used by a number of different applications with no modifi-
cations to the API code. In this paper we focus on the web
server. However, the API can provide enhanced security for
applications with different security requirements. We have
integrated the GAA-API with Apache web server, sshd and
FreeS/WAN IPsec for Linux.

2 Policy Representation

The Extended Access Control List (EACL) is a simple
language that we implemented to describe security policies
that govern access to protected resources, identify threats
that may occur within application and specify intrusion re-
sponse actions. An EACL is associated with an object to be
protected and specifies positive and negative access rights
with optional set of associated conditions that describe the
context in which each access right is granted or denied. An
EACL describes more than one set of disjoint policies. The
policy evaluation mechanism is extended with the ability to
read and write system state. The implementation is based on
conditions that provide support for monitoring and updating
internal system structures and their runtime behaviors.

A condition may either explicitly list the value of a con-
straint or specify where the value can be obtained at run
time. The latter allows for adaptive constraint specification,
since alowble times, locations and thresholds can change in
the event of possible security attacks. The value of condition
can be supplied by other services, e.g., an IDS.

In our framework, all conditions are classified as:

1. pre-conditions specify what must be true in order to
grant or deny the request, e.g., access identity,
time, location and system threat level.

2. request-result conditions must be activated whether
the authorization request is granted or whether the re-
quest is denied, e.g., audit and notification.

3. mid-conditions specify what must be true during the
execution of the requested operation, e.g., a CPU us-
age threshold that must hold during the operation
execution.

2

4. post-conditions are used to activate post execution ac-
tions, such as logging and notification whether the op-
eration succeeds/fails.

Failure of some of these conditions may signal suspicious
behavior,e.g., access is requested at unexpected times or un-
usual locations. Some conditions can trigger defensive mea-
sures in response to a perceived system threat level, e.g., im-
pose a limit on resource consumption or increase auditing.

A condition block defines a conjunction of a totally or-
dered set of conditions. Conditions are evaluated in the or-
der they appear within a condition block.

An EACL entry consists of a positive or negative ac-
cess right and four optional condition blocks: a set of pre-
conditions, a set of request-result conditions, a set of mid-
conditions and a set of post-conditions.

An EACL consists of an ordered set of disjunctive
EACL entries. An EACL representation supports disjunc-
tion and conjunction of conditions to activate different con-
trol modes. A transition between the disjoint EACL entries
is regulated automatically by reading the system state (e.g.,
time of day or the system threat level). Detailed EACL syn-
tax is given in the Appendix.

In the current framework, the evaluation of entries within
an EACL and evaluation of conditions within an EACL en-
try is totally ordered. Evaluation of an EACL starts from
the first to the last in the list of EACL entries. The resolu-
tion of inconsistent authorizations is based on ordering. The
entries which already have been examined take precedence
over new entries.

The order has to be assessed before EACL evaluation
starts. Determining the evaluation order is currently done
by a policy officer. We recognize that the function of defin-
ing the order of EACL entries and conditions within an en-
try can be best served by an automated tool to ensure policy
correctness and consistency and to ease the policy specifi-
cation burden on the policy officer. We plan to design and
implement such tool in the future. For further details about
the authorization model see [4].

The GAA-API provides a general-purpose execution en-
vironment in which EACLs are evaluated.

2.1 Policy Composition

Policy Composition is a process of relating separately
specified policies. Our framework supports system-wide
and local policies. This separation is useful for efficient pol-
icy management. Instead of repeating policies that apply to
all applications in individual application policies, we define
these policies as a separate system-wide policy that is applied
globally and is consulted on all the accesses to all applica-
tions. Local policies allow users and applications to define
their own policy in addition to the global one.

The composed policy is constructed by merging the
system-wide and local policies. First, system-wide policies
are retrieved and placed at the beginning of the list of poli-
cies. Then the local policies are retrieved and added to the
list. Thus, system-wide policies implicitly have higher pri-
ority than the local policies.

A system-wide policy specifies a composition mode that
describes how local policies are to be composed with the
system-wide policy. The framework supports three compo-
sition modes:

expand
A system-wide policy broadens the access rights beyond
those granted by local policies. It is the equivalent of a dis-
junction of the rights. The access is allowed if either the
system-wide or the local policy allows the access. This is
useful to ensure that a request permitted by the system-wide
policy can not fail due to access rejection at the local level.

narrow
A system-wide policy narrows the access rights so that ob-
jects can not be accessed under particular conditions regard-
less of the local policies. The policy that controls access
to an object may have mandatory and discretionary compo-
nents. Generally, mandatory policy is set by the domain ad-
ministrator, while discretionary policy is set by individuals
or applications. The mandatory policies must always hold.
The discretionary policies must be satisfied in addition to the
mandatory policies. Thus, the resulting policy represents the
conjunction of the mandatory and discretionary policies.

stop
If a system-wide policy exists, that policy is applied and lo-
cal policies are ignored. An administrator may require com-
plete overriding of the local policies with the system-wide
policies. This is useful in order to react quickly to an attack.
One might use the stop mode to shut down certain compo-
nent systems. This is also useful when the administrator
wants to, for example, allow access to a document (e.g., a
system log file) only to himself. If he specifies a policy us-
ing the expand mode, then additional access can be granted
at the local level. If he uses narrow mode, the local policies
could add additional restrictions that can deny the access.

To evaluate several separately specified local (or system-
wide) policies, we take a conjunction of the policies.

3 GAA-API and IDS interactions

The data extracted from an application at the access con-
trol time can be supplemented with data from a network- and
host-based IDSs to detect attacks not visible at the applica-
tion level and reduce false alarm rate.

The current GAA-API interaction with an IDS is limited
to determining the current system threat profile and adapt-
ing the security policy to respond to changing security re-
quirements. Our next task is to support closer interaction be-

3

tween the GAA-API and different IDSs. Here are the kinds
of information � that the GAA-API can report to IDS:

1. Ill-formed access requests, which may signal an at-
tack. Because the GAA-API processes access requests
by applications, the API can apply application level
knowledge to determine whether the request is prop-
erly formed.

2. Accesses requests with parameters that are abnormally
large or violate site’s policy.

3. Access denial to sensitive system objects.

4. Violating threshold conditions, e.g., the number of
failed login attempts within a given period of time.

5. Detected application level attacks. The report may in-
clude threat characteristics, such as attack type and
severity, confidence value and defensive recommenda-
tions.

6. Unusual or suspicious application behavior such as cre-
ating files.

7. Legitimate access request patterns. This information
can be used to derive profiles that describe typical be-
havior of users working with different applications.

The GAA-API can request a network-based IDS to re-
port, for example, indications of address spoofing. This in-
formation can be used in addition to the application level at-
tack signatures to further reduce the false positive rate and
avoid DoS attacks. This is particularly important for apply-
ing pro active countermeasures, such as updating firewall
rules and dropping connections.

The API can request information for adjusting policies,
such as values for thresholds, times and locations. The val-
ues may depend on many factors and can be determined by
a host-based IDS and communicated to the GAA-API.

4 The Apache Access Control

Apache’s access control system provides a method for
web masters to allow or deny access to certain URL paths,
files, or directories. Access can be controlled by requir-
ing username and password information or by restricting the
originating IP address of the client request. Access control
is usually confined to specific directories of the document
tree. When processing client’s request to access a document
Apache looks for an access control file called .htaccess in
every directory of the path to the document. Here is a sam-
ple .htaccess file:
�
This information can be used locally by modules that implement the

application level intrusion/misuse detection, as described in Section 7
and/or forwarded the information to IDSs for analysis.

Order Deny, Allow
Deny from All
Allow from 10.0.0.0/255.0.0.0
AuthType Basic
AuthUserFile /usr/local/apache2/.htpasswd-isi-staff
Require valid-user
Satisfy All
The “Allow from 10.0.0.0/255.0.0.0” allows connections
only from hosts within the specified IP range. All other
hosts will get a “Permission Denied” message. The “Re-
quire valid-user” requires that the user enter a username and
password. These username/password pairs are stored in a
separate file specified by the “AuthUserFile” directive.

5 Adding GAA-API to Enhance the Access
Control of the Apache Server

Unfortunately, the current version of Apache does not
support flexible fine-grained policies. Within the Apache
configuration file, the directive Satisfy All specifies that both
of the constraints on IP address and user authentication
should be satisfied to authorize an access request. Satisfy
Any means that the request will be granted if either of the
two constraints is met. However, these directives can not
express a policy with logical relations among three or more
constraints. Therefore, new semantics must be introduced
to specify a more flexible access control policy. Here are the
major advantages of the integration:

1. Besides making decisions of whether a request is ac-
cepted or rejected, the GAA-API libraries provide rou-
tines that can execute certain actions, such as log-
ging information, notifying administrator, etc. Fur-
thermore, the routines can be activated whether the
request succeeds/fails (when defined as request-result
conditions) or whether the requested operation suc-
ceeds/fails (when defined as post-conditions). Thus,
the GAA-API supports fine-tuning of the notification
and audit services.

2. The GAA-API is structured to support the addition of
modules for evaluation of new conditions. Web mas-
ters can write their own routines to evaluate conditions
or execute actions and register them with the GAA-
API. Moreover, the routines can be loaded dynami-
cally so that one does not need to recompile the whole
Apache package to add new routines.

3. The semantics of EACL format supported by the GAA-
API can represent all logical combinations of security
constraints.

4. The GAA-API supports adaptive security policies,
which detect security breaches and respond to attacks
by modifying security measures automatically.

4

System Configuration File

Initialize GAA-API

Build list of EACLs

System Policy File

Local Configuration File

Local Policy File

Post Execution Actions

Check Authorization

list of requested rights

registered routines
and internal stractures

Initialization

Phase

Request

request_rec Build list of requested rights

4

1

Per-request

Phases

Apache Modules

HTTP_DECLINED
HTTP_OK

list of EACLs

operation status

3 Execution Control

HTTP_AUTHREQUIRED

2.b

2.c

2.d

2.a

S

Sm

Translate access decision

p

Sa

Figure 1. GAA-Apache integration

6 GAA-Apache Access Control

The GAA-API is integrated into Apache by modifying
the ���
	����
���� ������	���� function. The “glue” code extracts
the information about requests from the Apache core mod-
ules, initializes the GAA-API, calls the API functions to
evaluate policies, and finally returns access control decision
and status values to the modules. The GAA-Apache inte-
gration is shown in Figure 1. The GAA-API makes use of
system-wide and local configuration and policy files. The
configuration files list routines and parameters for evaluat-
ing conditions specified in the policy files. The system-wide
policy applies to all applications in the system. The local 3
status values:
1. authorization status ��� indicates whether the request is
authorized, not authorized or uncertain.
2. mid-condition enforcement status ��� .
3. post-condition enforcement status ��� .

The status values (����� � �"!$#%����� &(')#%����� *+���),-�) are
obtained during the evaluation of conditions in the relevant
EACL entries:
����� � �"! - all conditions are met;
����� &(' - at least one of the conditions fails;
����� *+���),-� - none of the conditions fails but there is at
least one condition that is left unevaluated. The GAA-API
returns ����� *+���",-� if the corresponding condition evalua-
tion function is not registered with the API.

1. Initialization phase. When the server daemon of
Apache starts, first the GAA-API is initialized by call-

ing ./��� ��0��213�4�65476	 and .8��� 0�	�9 ��� that extract and
register condition evaluation and policy retrieval rou-
tines from the system and local configuration files,
fetch the system policy file, and generate internal struc-
tures for later use.

2. The access control phase starts with receiving a re-
quest to access an object (e.g., HTML file or CGI
script).

(a) The ./��� ./	%1 :$;=<>	��=1 ?
:�54����@ ��0�A
: function is
called to obtain the security policies associated
with the requested object. The function reads the
system-wide policy file, converts it to the inter-
nal EACL representation and places it at the be-
ginning of the list of EACLs. Next, the function
retrieves and translates the local policy file and
adds it to the list. The system and local policies
are composed as described in Section 2.1.

(b) The request is converted into a list of requested
rights. The context information (e.g., system con-
figuration, server status, client status and the de-
tails of access request) that may be used by the
condition evaluation routines is extracted from
the �$	�B$C�	��%1 �$	�� structure and is added to re-
quested right structure as a list of parameters.
These parameters are classified with “type” and
“authority” so that GAA-API routines that eval-
uate conditions with the same type and authority
could find the relevant parameters.

5

(c) Next, the .8��� ����	��D� ��C�13��:$�$�476�E13�4:$0 function is
called to check whether the requested right is au-
thorized by the the ordered list of EACLs. This
function finds the EACL entries where the the re-
quested right appears and calls the registered rou-
tines to evaluate pre- and request-result condi-
tions in the entries. If there are no pre-conditions,
the authorization status is set to ����� � �"! . Oth-
erwise, the pre-conditions are evaluated and the
result is stored in the authorization status � � .
If the request-result conditions are present in the
entry, the conditions are evaluated and the inter-
mediate result is calculated. The conjunction of
the intermediate result and � � is stored in the au-
thorization status ��� .

(d) Finally, the status ��� is translated to the Apache
format and is passed to the Apache core mod-
ules as a return value of the ���
	����
���� ������	����
function. ����� �-�"! is translated to FHG
G�I '�J
(Apache can grant the request). ����� &K' is trans-
lated to FLG�G�I ML� N�O/P%&Q�)M (Apache should reject
the request). In some cases, the ����� *+���",-�
is translated to FHG�GRI �)S�G�FUT�� V)S�P%T��-M , in other
cases to FLG�GRI ML�"N�O/P%&U�-M .

In particular, the ����� *+���",-� is used to enforce
adaptive redirection policies. Apache may use
the redirection for minimizing the network de-
lay, load balancing or security reasons. For ex-
ample, redirect to a replica server that is clos-
est to the client in terms of network distance.
The redirection policies encoded in the pre-
conditions specify, characteristics of a client, cur-
rent system state and URL that must serve the
client. With this setup, the GAA-API first checks
the pre-conditions that encode client’s informa-
tion and system state. The condition of type
pre cond redirect encodes the URL and is
returned unevaluated. When Apache receives
the FHG
G�I �)S�G�FUT�� V)S�P3T��-M , the server checks
whether there is only one unevaluated condition
of the type pre cond redirect and creates a
redirected request using the URL from the con-
dition value.

3. The execution control phase consists of starting the
operation execution process and calling the
.8��� 	�W�	���C�13��:$0 ��:$0X13�$:�5 function which checks if the
mid-conditions associated with the granted access right
are met. The result is returned in ��� . The implemen-
tation of this phase has not been completed yet.

4. During the post-execution action phase
the .8��� ?
:$�Y1 	�W�	��DC�13��:$0 ���=13��:$0�� function is called to

enforce the post-conditions associated with the granted
rights. This function performs policy enforcement af-
ter the operation completes by executing actions such
as notifying by email, modifying system variables,
writing log file, etc. The operation execution status
(indicating whether the operation succeeded/failed) is
passed to the .8��� ?
:$�Y1 	�W
	���C813�4:$0 ���=13��:$0�� . If no post-
conditions are found, ����� � �"! is returned, otherwise
the post-conditions are evaluated and the result is re-
turned in � � .

7 Deployments

In this section we describe several examples to illustrate
how our framework can be deployed to enable fine-grained
access control and intrusion detection and response.

7.1 Network Lockdown

We first show how our system adapts the applied authen-
tication policies to require more information from a user
when system threat level changes. Consider an organization
with the following characteristics:

Z Mixed access to web services. Access to some web re-
sources require user authentication, some do not.

Z An IDS supplies a system threat level. For example,
low threat level means normal system operational state,
medium threat level indicates suspicious behavior and
high threat level means that the system is under attack.

Z Policy: When system threat level is higher than low,
lock down the system and require user authentication
for all accesses within the network. Strong authentica-
tion protects against outside intruders. To some extent,
authentication may help to reduce insider misuse. In
particular, insiders are discouraged if the identity of a
user can be established reliably.

System-wide policy:
eacl mode 1 # composition mode narrow

EACL entry 1

neg access right * *

pre cond system threat level local =high

Local policy:
EACL entry 1

pos access right apache *

pre cond system threat level local >low
pre cond accessID USER apache *

The system-wide policy specifies mandatory requirement
“No access is allowed when system threat level is high” that

6

can not be bypassed by a local policy. The local policy spec-
ifies that all Apache accesses have to be authenticated if the
system threat level is higher than “low”.

7.2 Application level Intrusion Detection

We next show how the system supports prevention of
penetration and/or surveillance attacks by detecting a CGI
script abuse.
System-wide policy:
eacl mode 1 # composition mode narrow

EACL entry 1

neg access right * *

pre cond accessID GROUP local BadGuys

Local policy:
EACL entry 1

neg access right apache *

pre cond regex gnu ‘‘’*phf*’ ’*test-cgi*’’’

rr cond notify local

on:failure/email:sysadmin/info:CGIexploit
rr cond update log local

on:failure/BadGuys/info:IP

EACL entry 2

pos access right apache *

Entry 1 in the system-wide policy specifies mandatory re-
quirement that members of the group BadGuys are denied
access. Evaluation of the pre-conditionpre cond group
includes reading a log file of the suspicious IP addresses
and trying to find an IP address that matches the address
the request was sent from. Entry 1 in the local policy con-
tains a pre-condition pre cond regex that examines the
request for occurrence of regular expressions *phf* and
test-cgi. If no match is found, the GAA-API pro-
ceeds to the next EACL entry that grants the request.

If this condition is met, the request is rejected.
The rr cond notify condition sends e-mail to the sys-
tem administrator reporting time, IP address, URL at-
tempted and a threat type.
Next, the rr cond update log updates the group
BadGuys to include new suspicious IP address from the re-
quest.

New signatures can be specified using regular expres-
sions and numeric comparison. For example, the following
pre-condition detects a particular DoS attack:
pre cond regex gnu ’*///////////////////*’

Evaluation of this condition includes checking the request
for presence of a large number of ”/” characters that most
likely indicates an attempt to exploit a well-known apache
bug that slows down Apache and fills up logs fast.

The pre-condition pre cond regex gnu ’*%*’

detects malformed URLs (part of the URL contains the per-
cent character). This may indicate ongoing attack, such as

NIMDA. NIMDA exploits Microsoft IIS vulnerabilities by
sending a malformed GET request.

The pre-condition pre cond expr local >1000

checks that the length of input to a CGI script is no longer
than 1000 characters. This condition detects a buffer over-
flow attacks, e.g., Code Red IIS attack.

Adding suspicious hosts to the BadGuysmay allow our
system to stop attacks with unknown signatures. Often vul-
nerabilities are tested by scripts that generate a number of re-
quests. Each request exploits a particular bug. If the system
identifies requests from an address as matching known at-
tack signature, then subsequent requests from that host (ini-
tiated by the same script), checking for vulnerabilities we
might not yet know about, can still be blocked. Further,
since this blacklist is specified in a system-wide policy, the
list is shared by many of our hosts that improves security of
the system overall.

8 Performance

In our experiment, we used the system-wide and local
policy files shown in Sections 7.1 and 7.2, respectively. The
experiment was performed 20 times on a PC with an Intel
1.8GHz Pentium 4 CPU, running RedHat Linux v7.1.

On average, GAA-API functions took 5.9 milliseconds
(ms) without email notification (53.3 ms with email notifica-
tion) while running Apache functions including GAA-API
functions took 19.4 ms (66.8 ms with email notification).
The overhead introduced by the GAA-API is 30% if email
notification is not taken into account. If the email notifica-
tion is enabled, the overhead increases to 80%.

9 Implementation Status and Future Work

The GAA-API implementation is available at
http://www.isi.edu/gost/info/gaaapi/source.
The API has been integrated with several applications, in-
cluding Apache, sshd and FreeS/WAN IPsec for Linux.

To improve efficiency of the GAA-Apache integration
we will add support for caching of the retrieved and trans-
lated policies for later reuse by subsequent requests. We will
investigate a possibility of implementing a simple profile
building module and anomaly detector (implemented using
conditions) to support anomaly-based intrusion detection in
addition to the signature-based.

We plan to implement the execution control phase for
Apache. We will explore the utility of mid-conditions for
protection from untrusted downloaded code, such as Java
applets and Netscape plug-ins. The mid-conditions will
control actions of the downloaded content on a client ma-
chine throughout the execution of the content.

7

We plan to design a policy-controlled interface for estab-
lishing a subscription-based communication channels to al-
low GAA-API and IDSs to communicate.

10 Related Work

AppShield [5] is a proprietary policy-based system that
protects web servers. The AppShield intercepts and ana-
lyzes all requests and dynamically adjusts its security policy
to prevent attackers from exploiting application-level vul-
nerabilities. It uses dynamic policy not by looking for the
signatures of suspicious behavior but by knowing the in-
tended behavior of the site and rejecting all other uses of the
system.

Emerald architecture [2] includes a data-collection mod-
ule integrated with Apache Web server. The module ex-
tracts the request information internal to the Apache server
and forwards it to an intrusion detection component that an-
alyzes HTTP traffic.

Both AppShield and Emerald systems are designed
specifically for the web servers and can not be used for other
types of applications. In contrast, the GAA-API provides a
generic policy evaluation and an application-level intrusion
detection environment that can be used by different applica-
tions.

Almgren, et. al., [1] provide an overview of the occur-
rences of web server attacks and describe an intrusion de-
tection tool that analyzes the CLF logs. The tool finds and
reports intrusions by looking for attack signatures in the log
entries. However, the monitor can not directly interact with
a web server and, thus, can not stop the ongoing attacks.

11 Conclusions

Traditional access control mechanisms have little abil-
ity to support or respond to the detection of attacks. In this
paper we presented a generic authorization framework that
supports security policies that can detect attempted and ac-
tual security breaches and which can actively respond by
modifying security policies dynamically. The GAA-API
combines policy enforcement with application-level intru-
sion detection and response, allowing countermeasures to be
applied to ongoing attacks before they cause damage. Be-
cause the API processes access control request by applica-
tions, it is ideally placed to apply application-level knowl-
edge about policies and activities to identify suspicious ac-
tivity and apply appropriate responses.

12 Appendix

We use the Backus-Naur Form to denote the elements of our
EACL language. Items inside round brackets, () are optional.

Curly brackets, [�\ , surround items that can repeat zero or more
times. A vertical line, |, separates alternatives. Items inside dou-
ble quotes are the terminal symbols. An EACL is specified accord-
ing to the following format:
eacl ::= (composition mode) [entry\
entry ::= pright conds | nright

pre cond block rr cond block

pright ::= "pos access right" def auth value

nright ::= "neg access right" def auth value
conds ::= pre cond block rr cond block

mid cond block post cond block

pre cond block ::= [condition\
rr cond block ::= [condition \
mid cond block ::= [condition\
post cond block ::= [condition \
condition ::= cond type def auth value

composition mode ::= "0"|"1"|"2"

cond type ::= alphanumeric string

def auth ::= alphanumeric string

value ::= alphanumeric string

References

[1] M. Almgren, H. Debar, and M. Dacier.
A lightweight tool for detecting web server attacks.
In Proceedings of NDSS 2000, Network and Dis-
tributed System Security Symposium. The Internet So-
ciety, February 2000.

[2] M. Almgren and U. Lindqvist. Application-Integrated
Data Collection for Security Monitoring. Proceedings
of the Fourth International Symposium on the Recent
Advances in Intrusion Detection (RAID’2001), num-
ber 2212 in LNCS, pages 22-36, 2001.

[3] R. Bace and P. Mell.
Intrusion Detection Systems. NIST Special Publica-
tion on Intrusion Detection Systems. National Institute
of Standards and Technology, August, 2001.

[4] T. V. Ryutov and B. C. Neuman.
The Set and Function Approach to Modeling Autho-
rization in Distributed Systems.
In Proceedings of the Workshop on Mathematical
Methods and Models and Architecture for Computer
Networks Security, May 2001, St. Petersburg Russia.

[5] Sanctum, Inc. http://www.sanctuminc.com/

8

