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Artificial Touch: a BioRobotic approach 

This thesis is the result of part of the research activities carried out during a three year PhD 

program in BioRobotics at the Scuola Superiore Sant’Anna di Studi Universitari e di 

Perfezionamento, Pisa, Italy, under the supervision of Prof. Maria Chiara Carrozza. 

The focus is on artificial tactile sensing, aiming at the design of a sensorized fingertip for 

integration into mechatronic hands within both upper limb prosthetics and humanoid robotics. 

The original contributions by the PhD candidate were in the design and fabrication of bioinspired 

artificial tactile sensing systems, the development of mechatronic tools for their evaluation in 

parallel to studies on the human sense of touch, the implementation of experimental protocols, 

and the elaboration and assessment of models for the interpretation and critical analysis of 

experimental results. 

The study was funded by the Scuola Superiore Sant’Anna with a dedicated doctoral scholarship, 

and by the EU FP6 Naniobiotact (Nano-engineering biomimetic tactile sensors) and FP7 

Nanobiotouch (Nano-resolved multi-scan investigations of human tactile sensations and tissue 

engineered nanobiosensors) research projects under the NMP (Nanosciences, Nanotechnologies, 

Materials and new Production Technologies) theme. A particular collaboration, as confirmed by 

joint journal publications, was established with the Department of Physiology of University of 

Gothenburg (Prof. Johan Wessberg) and with the Bio-medical and Micro Engineering Research 

Centre, School of Mechanical Engineering of University of Birmingham (Prof. Mike Ward). 

The development of artificial tactile systems is one of the chief open challenges in robotics and is 

directly linked with the findings and debate on human touch. Therefore, the research activities 

were undertaken with a biorobotic approach (Dario et al., 2008), merging a systematic study of 

state of the art of artificial tactile sensing in parallel with that of literature of neurophysiology of 

human touch. BioRobotics offers the possibility to develop emulator of the human subjects, with 

different characteristics and design parameters, to selectively evaluate the related effect. As a 

consequence, this approach fosters the definition of design parameters while developing 

bioinspired tactile sensory systems but it could be also useful to provide hints and suggestions to 

develop experimental protocols and models in neurophysiology. 

Among the various properties that an artificial tactile system should be able to sense, texture is 

one of the most challenging and less established (Oddo et al., IEEE TRo 2011). This is 

dedicatedly addressed in this study, which investigates the (bioinspired) encoding of textural 

features of tactile surfaces, with a particular focus on roughness. 

The development of a tactile sensory system which is able to mimic the human sense of touch in 

the encoding of textures, and is compact enough to be integrated into articulated artificial fingers, 

would significantly improve dexterous manipulation (e.g., exploited in industrial, service, or 
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assistive robotics) and upper limb prosthetics (Dario, 1991; Howe, 1994; Bicchi, 2000). 

Particularly, within prosthetics one of the main drawbacks of current commercial systems is the 

lack of (tactile) sensory feedback (Biddiss et al., 2007); as a consequence, the user is unable to 

feel an item held by the hand. Such ideal sensory feedback system is schematically composed by 

two main modules: the artificial sensory subsystem and the interface subsystem. While this 

research study targets the design, development and experimental evaluation of the former 

subsystem, its bioinspired implementation (with particular regards to the kind of encoding of 

tactile information) could also reveal to be effective in its porting to the interface subsystem. 

As it will be detailed in Section 1, while addressing the encoding of textural features, in robotics 

the major sources of bioinspired design are human Pacinian (type-II) mechanoreceptors as an 

alternative to either Merkel or Meissner (both are type-I) units. These alternative options reflect 

the open debate in the neuroscience community with respect to human touch. 

In this work, the choice (motivated and detailed in Section 3) was to get the major design inputs 

from the potential role that in humans has been hypothesized for high-density surface-located 

type-I mechanoreceptors (Vallbo and Johansson, 1984; Yoshioka et al., 2001; Johnson & 

Yoshioka, 2001). As a consequence, this results in the assumption that the gathering of textural 

information takes benefit from the implementation of an artificial tactile system which can 

encode dynamic events with a low threshold in sensitivity, narrow receptive field and human-like 

high density of surface-located taxels. To this aim, piezoresistive and capacitive 

MicroElectroMechanical Systems (MEMS) were used as core sensors in this research study, and 

their integration into tactile arrays as well as their evaluation were driven by bioinspiration and 

biomimetism according to such design choice, particularly for the definition of the physical 

features, the experimental protocols, and the data analysis techniques. 

This research attempt was partitioned into a number of particular objectives, most of which 

resulted in the publication of the related achievements. Selected and adapted excerpts from such 

published results are integrated in the thesis, while the complete publications list is provided at 

the end of the manuscript and the significant full papers are annexed as an appendix to this work. 

Particularly, out of the total number of papers coauthored by the PhD candidate, the contents 

from six ISI journal publications and one IEEE conference paper (finalist for best student paper 

award) were integrated in the thesis. Below, each section of the thesis is associated to its 

particular research topics and to the related significant papers coauthored by the PhD candidate. 

 Section 1 – investigation of methods, established findings and open debate in neuroscience with 

respect to the coding and perception of textural features of tactile surfaces, as a source of 

bioinspiration in the biorobotic study (this Section is in part unpublished, and in part is excerpted 

from Oddo et al., Sensors 2009; Oddo et al., Mechatronics 2011; Oddo et al., Sensors 2011; Oddo 

et al., IEEE TRo 2011): 

o roughness as a fundamental dominant dimension of texture; 

o established electrophysiological methods (with particular reference to 

microneurography); 
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o established psychophysical methods; 

o mechanoneurotransduction phenomena in the human hand, with particular references to 

the classes of mechanoreceptors and possible strategies for the coding of textural features 

of tactile stimuli; 

o role of fingerprints; 

o relevance of motion (dynamic touch) and role of kinesthesia; 

o possible perceptual strategies based on neural codes; 

o experimental protocols: 

 static- vs. dynamic- touch; 

 passive- vs. active- touch. 

 Section 2 – design, development and assessment of a mechatronic tactile stimulation platform 

for human and artificial passive-touch studies (this Section is mostly excerpted from Oddo et al., 

Mechatronics 2011): 

o motivation of the need of such a robotic device in human and artificial passive-touch 

protocols; 

o particular requirements and reinforced constraints to guarantee platform suitability with 

human electrophysiological techniques such as microneurography; 

o original platform design; 

o platform assessment: 

 traditional robotic validation; 

 original validation via microneurographic recordings. 

 Section 3 – bioinspired design, development and assessment of artificial tactile systems for the 

discrimination of textures (this Section is mostly excerpted from Oddo et al., Sensors 2009; Oddo 

et al., IEEE RoBio 2009; Muhammad et al., SNA 2011; Muhammad et al., MNE 2011; Oddo et 

al., Sensors 2011; Oddo et al., IEEE TRo 2011) 

o artificial tactile encoding of roughness via spectral cues: frequency-locking: 

 requiring constant, known or dedicatedly measured fingertip-stimulus relative 

tangential velocity; 

 frequency-locking dominated by spatial coarseness of tactile stimulus vs. by 

fingertip patterning (fingerprints), as a function of the physical design (bioinspired to 

type-I vs. to type II mechanoreceptors) of the artificial fingertip; 
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o design of artificial tactile sensory systems based on different technologies and bioinspired 

to particular features of the human fingertips: 

 integrating arrays of capacitive or piezoresistive MEMS sensors; 

 density and positioning of sensing units bioinspired to type I mechanoreceptors; 

 compliant packaging; 

 biomimetic fingerprints; 

 progressively going towards full integration into an anthropomorphic, articulated 

robotic finger; 

o passive-touch evaluation, via the purposely developed mechatronic platform, with forces, 

velocities and tactile stimuli as for and in parallel to human-touch studies: 

 constant and known fingertip-stimulus relative tangential velocity; 

 discrimination of gratings via frequency-locking; 

 parallel human-touch study via microneurography, to evaluate the significance of 

the frequency-locking approach in artificial touch; 

 study of directional isotropy as a function of shape of fingerprints; 

oactive-touch evaluation via a robotic finger mimicking human tactile exploratory tasks: 

 stereotyped trajectory; 

 discrimination of gratings via frequency-locking; 

 discrimination suitability of textiles via frequency-locking; 

o phase-locking for artificial roughness encoding: 

 providing tactile cues additional to those carried out by principal frequencies only; 

 potentially appropriate for overcoming the restrictive conditions on (constant, 

known, or dedicatedly measured) velocity, encountered with frequency-locking. 

Section 4 – conclusions and future directions (overviews on future directions are in part 

excerpted from Oddo et al., Sensors 2009; Oddo et al., Mechatronics 2011; Oddo et al., Sensors 

2011 and Oddo et al., IEEE TRo 2011, and in part are unpublished): 

o summary of research strategy and objectives and of achieved results; 

o proposed modular artificial-touch model being potentially appropriate for sensory 

feedback in upper limb prosthetics and artificial intelligence in (humanoid) robotics. 
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1. Texture encoding and perception in dynamic-touch 

Roughness is associated to the spatial modulation of the surface and has been described in the 

literature as the sense of spatial coarseness (Yoshioka et al., 2007); it is a major dimension of 

texture, together with softness to which it is orthogonal (Hollins et al., 1993); during tactile 

exploratory tasks, it conveys most of discrimination information with respect to the other minor 

textural dimensions such as stickiness, warmness, bumpyness, harshness, etc., resulting in a 

consolidated agreement for a primacy of the smooth-rough dimension as a descriptor, even if not 

unique, of surface textures (Hollins et al., 1993; Yoshioka et al., 2007; Yoshioka & Zhou, 2009); 

furthermore, in humans roughness is mediated by neural mechanisms which are also involved in 

tactile guidance during dexterous manipulation (Yoshioka et al., 2001; Johansson & Flanagan, 

2009). 

As regards the neurophysiologic experimental paradigms to study the human sense of touch, in 

the periphery the activity of single afferents in the skin can be recorded using the 

microneurography technique (Vallbo et al., 2004); CNS activity can be probed using 

electroencephalography (EEG) to reconstruct cortical sources (Grave de Peralta et al., 2001), 

while sensory thresholds and percepts can be assessed using psychophysical methods (Hollins & 

Risner, 2000). 

A varied set of spatial features of tactile stimuli should be taken into account for investigating the 

neural coding and perception of roughness. Therefore, to reduce the dimensionality of the 

analysis, the features of tactile stimuli were typically investigated by separate and controlled 

variation of particular parameters of standardized surfaces (Jones & Lederman, 2006). As an 

example, considering ridged tactile stimuli (gratings), which are widely used to investigate 

roughness encoding in neurophysiological studies (Johnson & Yoshioka, 2001), the effect of 

controlled variations in groove width, ridge width, ridge orientation, ridge height, fine finishing, 

etc. was typically evaluated in the literature (Jones & Lederman, 2006). In human psychophysical 

experiments some groups highlighted the presence of a relatively narrow region where perceived 

roughness increases together with the groove width of ridged stimuli, followed by a flattened 

perception in case of very coarse gratings, up to 8.5 mm of groove width (Lawrence et al., 2007). 

In parallel to this, using embossed dots a monotonic function between roughness and dots spacing 

was presented (Meftah et al., 2000), while an inverse ―U‖ shape was also shown since, depending 

on the height of the raised elements, a very coarse patterning may be perceptually considered as 

an almost smooth surface (Klatzky  et al., 2003). Therefore, regardless on the particular 

differences which could be pointed out in the perceptual curves due to the specific experimental 

conditions and surfaces (Johnson & Yoshioka, 2001; Jones & Lederman, 2006), an established 

findings is that the surface pattering (at both micro- and macro- scales) of tactile stimuli is 

actually represented along the smooth-rough dimension of texture; definitely, the intensity of 

roughness perception monotonically increases together with spatial coarseness at least in a range 

from very fine up to medium-coarse tactile stimuli. 
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Fig. 1. Structure and location of tactile mechanoreceptors in a section of glabrous skin of the hand (freely adapted 

from Vallbo & Johansson, 1984). The Merkel cell neurite complexes (Slowly Adapting type I, SAI) have a density in 

the order of 70 units/cm2 in the fingertips, are located at the interface between epidermis and dermis, have small 

receptive field with distinct borders and show static response to sustained indentations. The Meissner corpuscles 

(Fast Adapting type I, FAI or also Rapidly Adapting, RA) have a density in the order of 140 units/cm2 in the 

fingertips, are located in the dermis at the interface between epidermis and dermis, have small receptive field with 

distinct borders and fast adaptation to varying mechanical stimulation, with no static response to sustained 

indentations. Ruffini endings (Slowly Adapting type II, SAII) have a density in the order of 10 units/cm2 in the 

fingertips, are located in the dermis layer, have large receptive field with obscure borders and show static response to 

sustained indentations. Pacinian Corpuscles (Fastly Adapting type II, FAII or also PC) have a density in the order of 

20 units/cm2 in the fingertips, are deeply located (subcutis layer), have large receptive field with obscure borders and 

fast adaptation to varying mechanical stimulation, with no static response to sustained indentations. 

Considering dynamic exploration of extremely fine textures, various researchers showed that 

humans can detect even up to microtextures (LaMotte & Srinivasan, 1991) and that the human 

perception of roughness is severely degraded in case of lack of tangential motion between the 

fingertip and the tactile stimuli, i.e. considering dynamic vs. static touch (Morley et al., 1983; 

Gardner & Palmer, 1989; Radwin et al., 1993; Jones & Lederman, 2006). 

In contrast to the consolidated findings reported above, the physical determinant of perceived 

roughness is not yet fully understood (Jones & Lederman, 2006), and the detailed neuronal 

mechanisms and relative contributions of the different classes (Fig. 1) of human 

mechanoreceptors in the encoding of roughness remain to be identified (Yoshioka et al., 2007). 

Therefore, an established agreement has not been reached yet neither on the most informative 

mechanoreceptors (particularly as regards the role of Merkel, Meissner and Pacini corpuscles) 

nor on the coding strategy (e.g., temporal, spatial, spatiotemporal, intensity) used by humans to 

map the roughness dimension of texture. 
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Various studies aimed at demonstrating that roughness is encoded by the Pacinian system for fine 

textures (Hollins et al., 2001; Bensmaïa and Hollins, 2003-2005): Hollins and Risner supported 

the Katz’s duplex theory, according to which roughness is supposed to be mediated by different 

classes of mechanoreceptors via vibrational cues for fine forms and via spatial cues for coarse 

textures (Hollins & Risner, 2000): particularly, PC were considered to have a key function in the 

coding of fine patterns. Conversely, Johnson and colleagues presented human psychophysical 

studies and complementary electrophysiological results with monkeys supporting a unified 

peripheral neural mechanism (Fig. 2) for roughness encoding of both coarse and fine stimuli, 

based on the spatial variation in the firing rate of slowly adapting type I (SAI; Merkel) afferents 

(Connor et. al, 1990; Connor et al., 1992; Blake et al., 1997; Yoshioka et al., 2001). 

 

 

Fig. 2. Model by Yoshioka et al. 

(2001), proposing roughness 

encoding based on spatial 

variation in the firing rate of SAI 

units, revealed by means of 

excitatory (E) and inhibitory (I) 

afferents located in neighboring 

regions of the fingerpad. 

 

 

As it will detailed in the discussion of the biorobotic artificial touch studies (Sections 3 and 4), a 

notable hypothetical human model, based on coincidence detection of neural events (Fig. 3), was 

recently accounted by Johansson and Flanagan (2009). 
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Such model proposes that: i) the relative timing of neural spikes elicited in (neighboring) tactile 

units of the fingertip conveys significant information during manipulation activities; ii) the spikes 

pass through neural afferents showing differentiated delays one to the other (due to dispersion of 

conduction velocity) in the pathways up to the second order (Cuneate) neurons; iii) second order 

neurons propagate the firing events to the higher stage in case that the differential delay 

introduced by the afferent pathways compensates the relative spike timing at the level of 

mechanoreceptors in the fingerpad; iv) the tactile stimulus is pre-perceptually represented 

through the pattern of second order neurons being activated (i.e. those detecting a coincidence of 

incoming neural spikes, and thus propagating the firing up to the higher stage) during finger-

surface mechanical interaction. 

 

 
Fig. 3. Hypothetical model, accounted by Johansson and Flanagan (2009), based on coincidence detection of neural 

events for the fast processing of afferent information. 

 

 

Such ongoing debate in the neuroscience community is currently represented only in part within 

the robotic studies on the artificial mimicry of the sense of touch. 

As an example, various robotic research papers (Edwards et al., 2008; de Boissieu et al., 2009; 

Scheibert et al., 2009) exclusively considered the Pacinian system as a design reference, and this 

biorobotic research study also aims at proposing a different approach. 

The following selected quotes from a milestone study by Yoshioka, colleagues and Johnsson 

(2001), also dealing with the shift from verificationism towards falsificationism occurring to 

epistemology in the middle of the XX
th
 century, better provide an insight on the open 

neuroscience debate (which applies to robotics as well). 
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“Hollins and his colleagues have provided evidence of this hypothesis by showing that intense, 

high-frequency vibration can make a relatively smooth surface feel less smooth (Hollins et al., 

2000). However, after it is demonstrated that the SA1 hypothesis accounts for roughness 

perception for fine and coarse surfaces, the first hypothesis seems moot. Why (to invoke 

parsimony) would the nervous system use two different mechanisms when one mechanism 

accounts for the perceived roughness of both fine and coarse surfaces? But this is a logical, not 

an empirically based, argument. The empirical finding is that we could, in fact, find no 

correlation between any measure of the PC discharge and the subjective roughness judgments 

reported in the psychophysical experiments; because the PCs responded equally vigorously to 

fine and coarse surfaces, every PC measure yielded nearly the same predicted roughness. The 

neural basis for the observations by Hollins and his colleagues is unclear; the intense, high-

frequency vibration could have affected the discharge of SA1 and RA afferents as well as that of 

PC afferents, or it could have affected some central interaction between the PC and SA1 systems 

(Tommerdahl et al., 1999). 

... The argument that roughness perception is accounted for by variation in firing rates between 

SA1 afferents is based on the ideas of falsification (Popper, 1959; Platt, 1964); when there are 

many possible explanations, one can arrive at a single explanation only by demonstrating the 

adequacy of that explanation and the falseness of the rest. First, consider adequacy. 

... There are no data of which we are aware that suggest that SA1 spatial variation does not 

account for roughness perception. Second, consider falseness. The test of the falseness of a 

putative neural code in these studies was inconsistency, not just that it fitted the results less well 

than did another hypothesis. If two surfaces evoke neural responses with the same neural coding 

measure (e.g., PC impulse rate) but one is perceived as smooth and the other rough, then that 

measure cannot be the basis for the two percepts. The consistency test has resulted in the 

rejection of all codes based on PC responses (Lederman et al., 1982; Connor et al., 1990; and 

the present study), all codes based on RA responses (Lederman et al., 1982; Johnson and Hsiao, 

1994; Blake et al., 1997), all codes based on SA2 responses [by analysis of data reported in 

Phillips et al. (1992) and Phillips and Matthews (1993)], all codes based on mean impulse rate 

(Connor et al., 1990; Connor and Johnson, 1992), and all temporal codes (Connor and Johnson, 

1992). Our working hypothesis is that the brain uses a single neural coding mechanism for all 

surfaces. An alternative possibility is that different neural codes are used for different surfaces.” 

The lack of complete understanding of the neural coding of texture via the mechanoreceptors in 

the human fingertip applies to the interaction between the tactile stimuli, the epidermal ridges and 

the mechanoreceptors as well (Gerling & Thomas, 2008). Focusing on the fingerprints, they were 

hypothesized as vibration promoters (Scheibert et al., 2009) and their structure was shown to 

increase the sensitivity in tactile activities with a major effect on surface located type I receptors 

(Maeno et al., 1998; Yamada et al., 2002); Pacinian Corpuscles were also considered as detectors 

of fingerprint-mediated stimulus-related vibrations (Srinivasan et al., 1990). Evidence was 

provided with monkey subjects that gratings locally oriented parallel to the finger ridges elicit 

stronger response than tactile stimuli oriented along the orthogonal direction (Wheat & Goodwin, 

2000). However, the association of the directional anisotropy, observed in both SAI and RA 
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population responses, to physical phenomena is still unclear, as from the following selected 

quotes (Bensmaïa et al., 2006): 

“There are two hypotheses as to the cause of the observed anisotropy in afferent responses to 

gratings, one mechanical and the other neural. The effect of grating orientation may be due to a 

structural anisotropy in the skin. 

... Another possibility is that the anisotropy in the response is due to afferent branching … 

 The extent to which mechanical anisotropy and afferent branching play a role in producing the 

observed effects of grating orientation on spatial modulation is unclear.” 

 

To investigate those phenomena, in the final design presented in this work, the density and 

positioning of sensing units on the artificial fingerpad mimicked that of surface-located type-I 

human mechanoreceptors; the polymeric packaging layer was compliant and recovered its 

original shape after the application of tactile stimuli; biomimetic fingerprints were embossed onto 

the surface of the covering material; the effect of their shape on the encoding of tactile vibrational 

cues was investigated with a dedicated differential study via selective and precise variation of the 

curvature of ridges embossed onto the fingerpad; roughness encoding was investigated via 

passive stimulation of the artificial fingertip and during active exploratory tasks by a robotic 

finger. 

Passive- and active- touch are the main experimental paradigms used in the literature to study the 

neuronal mechanisms of the sense of touch in the human hand, and were the common framework 

for the evaluation of the artificial tactile systems developed during the PhD program. 

Various definitions of the passive- and active- paradigms are actually possible, and one of those 

involves considerations on the energy flow associated to the dynamic phases of the tactile 

experience (Prescott, 2011). With such a definition, similarly to passive measurement 

instruments, in dynamic passive-touch the (kinetic) energy required to apply the relative motion 

between the sensory system and the tactile surface is provided via the surface under test. 

Conversely, in active-touch protocols the (kinetic) energy to achieve the dynamic tactile 

stimulation condition is provided by an actuated mechanism closely integrated with the (human 

or artificial) sensory system. 

A possible application of such definition to dynamic-touch studies (either passive- or active-) 

results in the core of the tactile stimulation sequence being characterized by a tangential relative 

motion between the fingerpad and the textured surface, and the difference between passive- and 

active- is in the body (i.e., fingertip or tactile stimulus) which actually moves with respect to an 

absolute reference frame. The relative motion can be obtained by sliding the tactile stimulus 

while the fingertip is still (passive- dynamic-touch) (Yoshioka et al., 2001), or by exploration via 

the finger (active- dynamic-touch) while the tactile stimulus is static (Lawrence et al., 2007). 
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While considering the deformation of skin tissues, established findings showed that passive- and 

active- passive protocols are equivalent (e.g., up to 4 N in Birznieks et al., 2001). In addition, one 

may wonder whether this is the same at perceptual level, considering that in passive-touch there 

is a lack of voluntary movement, while in active-touch the percept may be integrated by 

kinesthetic afferent sensory feedback or by efference copy associated to motion dynamics of the 

body part. However, with respect to this particular point, a dedicated study (Lederman, 1981) 

excluded any difference in the perception of roughness by passive- and active- touch. 

In both human and artificial passive-touch studies, the presentation of tactile stimuli should be 

replicated several times repeatably in the same conditions to infer models based on statistical 

analysis of acquired data (Johansson & Birznieks, 2004); also, the passive-stimulation operation 

should avoid to introduce spurious information by the system delivering the tactile surfaces. To 

this aim, a dedicated mechatronic platform was designed, fabricated and assessed, as it will be 

detailed Section 2. The so developed mechatronic platform enabled a variety of 

electrophysiological studies on the human sense of touch via the microneurographic technique. 

The PhD candidate participated in part and had direct access to such microneurography (Vallbo 

et al., 2004) experimental sessions and data, carried out under passive-touch protocols at the 

Department of Physiology of University of Gothenburg and approved by the ethics board of the 

University of Gothenburg. 

During microneurography, the subjects were seated comfortably in a dentist’s chair, the left arm 

resting in a vacuum cast for stabilization and maximum comfort. Tungsten needle electrodes 

were inserted in the left median nerve, 8 cm above the elbow. The nerve signal was band-pass 

filtered at 200-4000 Hz, sampled at 12.8 kHz together with analog data from a purposely 

developed tactile stimulation mechatronic platform, and stored on a PC using the ZOOM/SC 

system developed at the Department of Physiology, Umeå University, Sweden. Recorded nerve 

impulses were inspected off-line on an expanded time scale using in-house software implemented 

in MATLAB (The Mathworks) and were accepted for subsequent analyses only if they could be 

validated as originating from a single afferent. Before running the experimental protocol, the 

units’ responses and receptive fields were explored using calibrated nylon filaments (von Frey 

hairs) and were classified as SAI, SAII, RA, or PC according to the adaptation of the response to 

sustained stimulation and size of the receptive field (Vallbo & Johansson, 1984; Chambers et al., 

1972). 

Enabled by the collaboration with the Department of Physiology of University of Gothenburg, 

the possibility to have access to a significant human microneurography dataset was a key element 

towards the development of biomimetic artificial tactile sensory systems and the elaboration of 

models and discrimination strategies bioinspired to the observed mechanoneurotransduction 

phenomena. In total, the PhD candidate had access to a dataset with impulses of single tactile 

afferents in the left index and middle fingers which were recorded in 36 human healthy 

volunteers during passive-touch protocols implemented by means of the purposely designed 

mechatronic tactile stimulation platform (Oddo et al., Mechatronics 2011) discussed in Section 2. 
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2. Tactile stimulation in passive-touch 

To achieve standardization and repeatability, the passive-touch approach requires a robotic 

stimulator that enables detailed analyses of receptor response or Central Nervous System (CNS) 

processing in human studies, or of encoding of tactile cues in artificial touch, through controlled 

variation of stimulation parameters, of stimulus spatial coarseness, materials and tribological 

properties, to make comparisons between sessions or participants, or to average over a large 

number of replications. 

There are a number of particular requirements in the design of such a robotic tactile stimulation 

device. First, to allow repeatable experiments with standardized conditions, accuracy and 

precision in the control of stimulation parameters, such as the contact force and the sliding 

velocity profile, is required. Second, the device must guarantee a range of forces and movement 

velocities covering those that would be used by humans in the exploration of textures, while both 

normal and tangential forces need to be recorded as they are fundamental for human touch 

investigation. Studies on discriminative touch (Johnson & Yoshioka, 2001; Jones & Lederman, 

2006) suggested: for the indentation force a range of at least 100 mN–5 N, with a control 

accuracy of about 5% of the reference force and sensing resolution within a few mN; 100 mm of 

stroke along the sliding direction and velocities up to 150 mm/s with µm position sensing 

resolution and steady state control accuracy. Such requirements apply to both artificial and 

human touch studies but, as it is detailed in the following, the latter ones present additional 

constraints due to the particular neurophysiological experimental methods while dealing with the 

biological system. The third challenging requirement, given that some classes of tactile receptors 

are highly sensitive to vibration up to 400 Hz or more (Connor & Johnson, 1992), is in 

developing a stimulator that could get into contact with the human finger free from any spurious 

vibration that could interfere with the encoding of tactile stimuli. Fourth, electrophysiological 

methods such as microneurography and EEG involve recording of signals in the µV range, and 

electromagnetic interference from the robotic system has to be minimized. Fifth, these 

experiments can require the participant to sit in a natural position and to remain relaxed for hours. 

Hence, the subject’s comfort puts stringent demands on the mounting of the device and on the 

control laws of each DoF so that it can be adapted in 3D space to the position of the subject’s 

arm, hand and finger (Birznieks et al., 2001). Finally, the programming operation by the 

experimenter to implement the targeted protocols has to be simple and flexible, and 

upgradeability of the platform should be possible. 

The reviewed previous works span from platforms with flat or curve extended textured stimuli 

for studying the application of ridged or dotted surfaces to the fingerpad, to other devices with 

wide or pointed probes, to pinned stimulators for applying spatio-temporal indentation profiles 

with an array of contact locations. Some neurophysiological studies addressed the response of 

single afferents to the applied stimuli, while others took into account population of 

mechanoreceptors. Nevertheless, as regards the studies on texture perception and its related 
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dimensions (e.g., roughness), one of the major limitations of most of reviewed platforms is that 

they were developed for experiments in monkeys rather than humans, then presenting less 

demanding requirements since higher level of invasiveness is tolerated in animal model studies 

(Goodwin and Morley, 1987; LaMotte et al., 1998). Conversely, in this research study the parallel 

investigation of mechanoneurotranduction phenomena of the human hand was a strategic 

objective to foster the effective bioinspired design of artificial tactile sensory systems. 

A considerable input was given in the 70’s by the availability of digital controllers (Looft and 

Williams, 1979) which enabled the design of mechatronic platforms with customizable motion 

profiles to address specific experimental paradigms. This is confirmed by the fact that in the 80’s 

a few platforms integrated complex mechanisms (Goodwin et al., 1985) for tuning the desired 

stimulation parameters. Furthermore, the analog circuitry was reduced as much as possible, 

remaining between the sensors and the controller only, and between the controller and the 

actuators or, at most, for implementing low-level force (or position) servo control (Byrne, 1975; 

Looft and Williams, 1979; LaMotte et al., 1983). As a matter of fact, almost all the reported 

tactile platforms employed digital processors for data storage at least, and for the generation of 

force and position references. In contrast to the almost standardized architecture for the control 

electronics, a greater variability could be found between the core mechanisms of the reported 

systems. 

 

 

Fig. 4. Electromechanical tactile stimulator 

used by Birznieks and colleagues (2001). The 

design of the platform also considered 

ergonomic design since it was applied to 

human touch studies under the 

microneurographic technique (which requires 

the participant to sit relaxed for several hours 

in order to maintain stable electrical contact 

with the recorded tactile unit). 
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Fig. 5. A schematic diagram of 

the scotch yolk stimulator 

(Goodwin et al., 1985). 

 

In the class of devices that were built to study the neural coding and perception of texture, 

Goodwin et al. (1985) used a scotch yolk driven by a DC motor which rotated at constant speed 

for producing a sinusoidal motion (Fig. 5). The stimulus was attached magnetically to a holding 

block mounted on a shaft actuated by the yolk. The amplitude was tuned modifying the 

mechanism, while the frequency could be continuously varied from 0.1 Hz to 2.0 Hz, choosing 

between a discrete set of reduction ratios or by modifying the driving voltage of the motor. The 

motion control was completely in open-loop, relying on the non-backdrivability of the 

mechanism in spite of subject-machine interaction. Digital electronics was integrated for storing 

the position of the stimulator and the finger-stimulus interaction force only, resulting in a lack of 

flexibility of the experimental protocol. 

The advanced stimulator shown by LaMotte et al. (1983) controlled the sliding motion and the 

indentation position or load force of a selectable surface which, in turn, contacted and stroked the 

skin of the fingerpad in passive-touch studies (Fig. 6). The stimulus could be selected among 

eight flat plates carrying textured surfaces. The user could select the motion profiles, allowing the 

definition of the horizontal and vertical displacements or the load force, and the displacement 

velocities. The controlled Degrees of Freedom (DoFs) were moved by means of hydraulic 

actuators. A horizontal displacement of 50 mm and a bandwidth of 16 Hz, monitored by means of 

a LVDT transducer, were obtained. Similar performances were achieved for the indentation axis, 

whose range was limited to 6.3 mm in order to achieve higher position accuracy. Moreover, the 

indentation axis could be controlled with a force feedback servo by means of a force transducer. 

However, with respect to the objectives of the current study, such system did not guarantee 

suitable stroke (50 mm), maximum velocity (112 mm/s) and overshoot (3.2 mm for 

displacements of 40 mm) for the position controller; moreover, it was too bulky to be easily 

oriented in 3D space and relied on the early digital electronics available at the time. 
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Fig. 6. Left: the advanced tactile stimulator by LaMotte and colleagues (1983) for controlled movements of a set of 

textured surfaces across the skin. Right: an example system (Johnson & Phillips, 1988) belonging to the class of 

rotating drum stimulators.  

A number of groups (Darian-Smith & Oke, 1980; Johnson & Phillips, 1988; Romo et al., 1993; 

Radwin et al., 1993; Wheat et al., 2004) utilized beams for the application of stimuli to the 

subjects. The devices shown by Darian-Smith and Oke (1980) and by Johnson and Phillips 

(1988), the latter being an improved version of the stimulator described by Johnson and Lamb 

(1981), had a rotating drum with embossed patterns mounted at one end of a pivot beam (Fig. 6-

right). The drum was rotated at constant velocity by using DC motors with speed control. 

Remarkably, Johnson and Phillips (1988) used a fully automated computer controlled approach, 

which could be changed to manual mode depending on the specific needs. As the authors state, 

they faced the problem of operating a compromise between the need for precision and the need to 

keep the processing load on the controller at a reasoning level, operating a reduction in the drum 

shaft-encoder resolution (to about 942 m respect to the original 47 m one) partially 

compensated by means of a linear interpolation. Such a problem is nowadays less evident thanks 

to the considerable improvements in digital electronics. A major difference between the two 

rotating drum platforms regards the motion along the indentation direction. Darian-Smith and 

Oke (1980) chose an electronically controlled solenoid for enabling the counterweight to apply 

the desired force, while Johnson and Phillips (1988) used a torque motor driven in open loop 

mode for regulating the interaction force. Conversely, here a relevant design constraint is to 

achieve closed-loop controlled fingertip-stimulus normal contact force, so that it could be 

modulated regardless of external disturbances or deviations from nominal operative conditions. 

This requirement suggests to avoid pivot beam structures with counterweight or open-loop torque 

motors (Darian-Smith & Oke, 1980; Johnson & Phillips, 1988), which rely on the static 

counterbalance of forces and torques without taking into account dynamic effects. 
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Both the rotating drums platforms used dampers, also applied to other devices (Romo et al., 

1993; Wheat et al, 2004; Oddo et al., Mechatronics 2011), for minimizing any transient increase 

in the contact force at the onset of the stimulation, or to reduce the propagation of vibrations to 

the human subject. Considering the major limitations with respect to the objectives of this study, 

the rotating drum by Darian-Smith and Oke (1980) had too high minimum velocity (from 20 

mm/s to 180 mm/s), together with too narrow load force range (from 196 mN to 980 mN). The 

similar device by Johnson and Phillips (1988) had reduced maximum velocity (up to 15 mm/s), 

but adequate movement range (100 mm) and resolution (2.5 µm). 

The stimulator described by Romo et al. (1993) showed a reduced maximum velocity as well, and 

limited force and positioning ranges; it employed a probe (Fig. 7)  which was scanned across the 

hand of primates in any direction with a 25 mm range, 0.5 µm sensing resolution and 2 µm 

positioning precision under digital control; the maximum indentation force was 588 mN, while 

velocities were from 4 mm/s to 120 mm/s. 

Another class of tactile stimulators is represented by pinned systems (Bliss et al., 1970; Gardner 

& Palmer, 1989; Killebrew et al., 2007). A noticeable number of such devices has been reported 

in literature (wideband devices were shown by Summers and Chanter, 2002 and by Kyung et al., 

2006), being of great interest for pointed and distributed stimulation of the fingerpad stimulation, 

also allowing flexible experimental paradigms with a variety of spatio-temporal stimulation 

profiles (Vidal-Verdú & Hafez, 2007). On the other hand, the pinned stimulator approach does 

not typically allow experiments with textured materials, which are addressed in this study. 

 

Fig. 7. Design of the scanning probe stimulator 

suitable for indenting and sliding punctuated 

stimuli to the fingerpad (Romo et al., 1993). 
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A 2 DoFs mechatronic system (Oddo et. al, Mechatronics 2011) was dedicatedly developed to 

enable passive-touch protocols for this research study on the sense of touch, with a common core 

stimulation apparatus between human and artificial experiments. The developed platform fulfils 

all the requirements detailed above for passive-touch tactile stimulation and was replicated in five 

exemplars with customizations for electrophysiological, psychophysical, and artificial touch 

studies and for tribological experiments on different tactile surfaces as well. It can be used to 

perform neurophysiological studies in humans with techniques such as microneurography and 

EEG (Beckmann et al., 2009) even in combination with psychophysical experimental paradigms. 

Also, it is suitable for tribological and artificial touch studies as well. 

The platform could indent and slide sequences of textured stimuli (lodged in 77 mm X 32 mm 

changeable plates) to the fingerpad with feedback-controlled normal contact force and parametric 

sliding trajectories while recording (Smith et al., 2002; Libouton et al., 2010) the normal and 

tangential forces at finger-stimulus interface; a voice-coil actuator (NCC05-18-060-2X, H2W 

Tech.) applied the indentation force with a 12.7 mm stroke, and a linear guide (LTP 60.180.0804-

02, SKF Multitec) driven by a DC motor (RE35, Maxon Motors) applied the sliding motion 

through a 4 mm pitch ball bearing screw, allowing a maximum velocity of 300 mm/s and a stroke 

of 110 mm. Linear Current Amplifier Modules (LCAM, Quanser), guaranteeing very low 

electromagnetic interference, were chosen for driving the actuators. Switching power devices 

were avoided since the typical (10–50 kHz) range for PWM carrier frequency is higher than half 

the microneurography sampling rate, but just outside the cutoff frequency of the bandpass filter 

preceding the sampling block. Hence, even introducing shielding techniques, a residual slight 

coupling between the PWM carrier frequency and µV range microneurography data could have 

been aliased at significant low frequencies, affecting the band of interest. 

The robotic system has been devised with an open design approach since it is simple to command 

via a graphical user interface and is upgradable thanks to the FPGA control electronics. This 

design choice represented an advancement with respect to state of the art systems coherently with 

the trend showed in the literature of mechatronic tactile stimulators, which used digital 

controllers (Looft & Williams, 1979) for avoiding to integrate complex mechanisms such as in 

the scotch yolk stimulator (Goodwin et al., 1985) and reducing as much as possible the analog 

circuitry (LaMotte et al., 1983; Looft et al., 1979; Byrne et al., 1975; Schneider et al., 1995). 

Despite this design solution is promising, only a few mechatronic tactile stimulators were based 

on FPGA control electronics (Wagner et al., 2002; Pasquero et al., 2007). 

For the platform presented by Oddo and colleagues (Mechatronics 2011), this choice was 

operated for two main reasons: i) to allow future upgradeability of the architecture of control 

electronics (e.g. by instantiating on the same FPGA a number of additional parallel soft-core 

processors, peripherals, custom digital hardware modules, etc.); ii) to achieve, via hardware-

software codesign, a multi-layered hierarchical controller (Fig. 9) allowing low-level parallel 

(Astarloa et al., 2009) scheduling of periodic routines implementing the motion control laws and 

of interruptions managing the communication (commands and platform data) functions. 
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Therefore, the multi-layered hierarchical control architecture partitioned the tasks between a 

general purpose PC and the embedded FPGA hardware-programmable logics, which was 

interfaced to the sensors and power current drivers of the platform (Fig. 9a). 

The HIGH-level layer ran a Graphical User Interface (GUI) to generate, save, load or execute 

buffers of HIGH-level commands and for displaying the received platform data. The MID-level 

layer was in charge of interpreting HIGH-level commands, of point-to-point trajectory generation 

for the linear guide LOW-level controller, of force target generation for the voice coil LOW-level 

controller, and of transmitting the platform variables to the GUI for display purposes and to the 

acquisition systems for electrophysiological or artificial touch experiments. 

The dimensioning of the 2 DoFs LOW-level control laws took into account the mechanical 

characteristics of the fingertip (Serina et al., 1997; Pawluk & Howe, 1999; Nakazawa et al., 

2000); both the controllers were in closed loop with integrator to reject disturbances (e.g. variable 

friction) or modifications of the boundary conditions (e.g. the inclination of the platform in 3D 

space for adapting it to the position of the subject during microneurography); also, they had ad 

hoc dead bands (Fig. 9b) to prevent any steady state vibration (Iskakov et al., 2007). 

 

 
Fig. 8. Mechatronic tactile stimulation platform by Oddo et al. (Mechatronics 2011). (a) Experimental set-up during 

microneurography: frame hold by spherical joint (1), hand-finger support system (2), vacuum cast for arm support 

(3), carrier for stimuli (4), load cell (5), voice-coil actuator assembly for indentation of stimuli (6), linear guide for 

tangential sliding of stimuli (7), DC motor with encoder (8). (b) Fingerpad-stimulus interface with finger fixation 

system and free fingers support. (c) Examples of the used stimuli glued to a changeable aluminum plate: a couple of 

ridged stimuli (9), smooth plastic and rough sandpaper (10). 
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Fig. 9. From Oddo et al. (Mechatronics 2011). (a) Overview of the Dynamic Platform hierarchical controller. (b) 

Block diagram of the LOW-level closed-loop position controller along the sliding direction. (c) Block diagram of the 

LOW-level closed-loop force controller along the indentation direction. 
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Fig. 10. From Oddo et al. (Mechatronics 2011). Sample protocols that can be implemented with the mechatronic 

platform. Three runs acquired at 5 kHz through Ethernet digital transmission, of the same sequence of commands are 

superimposed to show high repeatability. The plots represent, from the top: position of the translational slider (target 

and actual), error in tracking the reference slider position, indentation force at finger-stimulus interface (target and 

actual), error in tracking the reference indentation force, tangential force component along the direction of the sliding 

motion, Boolean channel switching each time a new high-level command is executed. Phases 2 and 15, at the 

beginning and at the end of the protocol, are the loading and unloading of the smooth aluminum stimulus to the 

finger. In phase 3 the stimulus is stroked for 50mm at 25 mm/s and normal contact force at 200 mN; phases 5 and 6 

are normal contact force steps from 200 mN to 800 mN and then to 400 mN; from phase 7 to phase 11 the normal 

contact force is held at 400 mN, while the stimulus is stroked for 30 mm at constant speed of 20 mm/s (phase 7), 

while two (phase 9, 15 mm amplitude at 0.5 Hz) or three (phase 10, 5 mm amplitude at 1 Hz) sine waves are 

executed, or while a fifth order polynomial trajectory is followed (phase 11). Phase 13 is a position ramp from 50 

mm to 30 mm in 1.5 s and normal contact force set to 200 mN. The left inset shows a zoom on the transitory between 

phase 4 and phase 5. The right inset shows a zoom on dynamic phase 7. 

Traditional indices (tracking error along the 2 DoFs and confidence intervals to evaluate 

repeatability) were calculated for assessing the controllers of the 2 DoFs over repeated tactile 

stimulation runs. Such quantitative indexes confirmed adequate control performances (example 

protocols are shown in Fig. 10): the reference slider position is tracked with an error lower than 

28 µm for ramps (phases 3, 7 and 13 in Fig. 10); reference sine waves (phases 9 and 10) having 

peak velocities up to 47.1 mm/s are followed with error lower than 68 µm; and 5th order 

polynomial trajectories (phase 11) present a Tracking Error lower than 43 µm. As regards the 

regulation of the indentation force, all the calculated parameters showed absolute Tracking Error 

lower than 20 mN, while the normalized error was comprised between 1.6% and 6.6%. As a 

further relevant result, the extremely reduced values of the confidence intervals (typically in the 

order of few permille points of the reference target) confirm that the developed mechatronic 

platform guarantees excellent repeatability in the presentation of tactile stimuli (Oddo et al., 

Mechatronics 2011). 
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This achievement is fundamental in touch studies: even if the tracking of the reference curves 

may get relatively worse in certain conditions, the actual trajectories under feedback control are 

almost coincident among different runs. 

Apart for the particular design choices and results for traditional robotic assessment, the research 

work presented by Oddo et al. (Mechatronics 2011) also provided methodological contributions 

on the possibility to use the human mechanoreceptors as instrumental sensors, to assess platform 

compatibility with the exacting demands of electrophysiological methods, specifically the lack of 

electromagnetic interference and absence of spurious vibrations. 

The lack of significant electromagnetic interference coupling with the electrode for 

microneurography due to the platform was investigated by means of analysis of neural recordings 

from a SAI unit (left index finger), under three experimental conditions: i) Manual Stimulation 

(MS)-mode: while the platform was not actuated, the experimenter manually stimulated the 

finger of the subject (test subject) from which neural data was recorded; ii) Closed Loop (CL)-

mode: a 1600 µm periodic ridged stimulus was indented and scanned across the fingertip of a 

second subject (control subject), in close proximity to the fingertip of the test subject (from which 

neural data was recorded), with 500 mN feedback controlled contact force, sliding distance of 20 

mm and velocity set to 20 mm/s; iii) Open Loop (OL)-mode: to double check whether or not the 

time varying driving current (related to the indentation DoF actuator in feedback force control) 

affected the microneurography results, the same protocol of point ii) was operated apart for the 

fact that the indentation was in open loop by supplying a constant current to the voice-coil 

actuator, resulting in a normal contact force of about 750 mN before the onset of stimulus sliding 

motion. Noise amplitude distribution was evaluated in the three experimental conditions 

described above. 

No relevant noise pickup was observed in the raw nerve signals (top plots of Fig. 13) recorded 

during platform movement or when the force control was engaged, as an effect of the selected 

linear power drivers for the actuators instead of switching ones. Fig. 11 depicts neural data from a 

SAI unit of the test subject in the three MS-mode, CL-mode and OL-mode experimental 

conditions detailed above. Neural spikes are identified in MS-mode and marked with dots, 

corresponding to the phases during which the finger of the test subject was manually probed. The 

spike template applied for spike sorting in MS-mode was then used to evaluate whether or not 

neural spikes were elicited under the two other stimulation conditions due to electromagnetic 

interference by the platform (since the fingertip of the test subject was not mechanically 

stimulated in CL-mode and OL-mode, and a SAI unit is expected to be silent in that condition). 

Noticeably, no spikes could be identified in both the CL-mode and OL-mode, confirming that the 

platform did not induce vibrations resulting in spurious neural firing. As one could expect, the 

mechatronic platform had an effect in the background neural noise, confirmed by the higher 

amplitude of the CL-mode and OL-mode traces if compared to the spike-free regions of the MS-

mode one. However, the overlap of the traces shows that the increase in noise was not enough to 

mask the spikes occurring while manually probing (MS-mode) the fingertip of the test subject. 
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Fig. 11. From Oddo et al. (Mechatronics 2011). Neural recordings under the three MS-mode, CL-mode and OL-

mode experimental conditions, described in Section 3.2, are depicted in the top plot for assessment of platform 

electromagnetic compatibility with the microneurographic technique. Left to right, the insets in the second row from 

the top show zooms on neural data recorded from the test subject with MS-mode, CL-mode and OL-mode. The 

position of the translational slider and the normal component of the indentation force are shown as well under both 

the CL-mode and OL-mode experiments. 

 

 
Fig. 12. From Oddo et al. (Mechatronics 2011). Statistical neural noise analysis for each of the three MS-mode, CL-

mode and OL-mode stimulation conditions. The probability that the neural signal belongs to a bin (width set to 0.4 

lV) is evaluated based on amplitude levels experimentally occurring in 38 s of data at 12.8 kHz. The solid line shows 

Gaussian fitting of noise probability density. 
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A statistical noise analysis is presented in Fig. 12 for each of the three MS, CL and OL 

stimulation conditions, where the probability that the neural signal belongs to a bin (width set to 

0.4 µV) is evaluated based on amplitude levels experimentally occurring in 38 s of data at 12.8 

kHz. A Gaussian fitting is shown as well in Fig. 12: platform activation causes a non relevant 

increase in noise standard deviation from 2.82 µV (MS-mode) to 3.43 µV (OL-mode) and 3.48 

µV (MS-mode), and had almost no effect in its mean value. 

To directly assess the presence of biologically significant vibrations introduced by the platform, 

the spectra resulting from the point processes of identified neural spikes was calculated 

considering the firing of RA units during indentation and sliding motion of a smooth 

polypropylene plastic surface, in comparison to that occurring with periodic gratings having 

spatial period between 280 µm and 1920 µm. 

As shown in Fig. 13b depicting a single RA afferent, after the expected short burst of impulses at 

the start of motion, this unit fired only sporadic impulses. The spectra of the firing for all the data 

from the same RA unit is shown in Fig. 13c for 1600 µm spatial period grating, meaningfully 

depicting the modulation of firing at the expected fundamental frequency (i.e. the ratio between 

the sliding velocity and the spatial period of the presented surface; further related details are 

provided in Section 3) of 12.5 Hz at a sliding velocity of 20 mm/s, as well as significant 

modulation at harmonics up to 200 Hz. Therefore, the spatial period of the grating was revealed 

as a modulation of firing frequency as the ridges of the surface were sliding across the receptive 

field of the RA unit, confirming the high sensitivity in encoding the mechanical characteristics of 

the stimulating surface in this unit. This frequency locking experimental outcome will be 

discussed more in details in the next section with a dedicated focus on artificial touch and on the 

ongoing parallel human touch investigation. In the frequency domain, the spectrum for all the 

data from stimulation with a smooth plastic surface in the same unit reveals no periodic firing or 

pickup of vibrations (Fig. 13d). To succeed in this objective, a relevant design choice was the 

introduction of custom dead bands (Fig. 9b and c) which allowed errors lower than specific 

thresholds to occur, thus avoiding vibrations produced by continuous sub-threshold error-

correction control actions. 

Human microneurography recordings also confirmed excellent repeatability (Fig. 13a), being 

mainly a consequence of the intrinsically reduced jitter in the scheduling of periodic control tasks 

by the implemented hierarchical control architecture (particularly, the hardware programmable 

FPGA logics for the embedded controller). Similar results were obtained in all recorded afferents. 

The dedicated design of the platform allowed to implement a wide variety of passive- (Oddo et 

al., Sensors 2009; Oddo et al., IEEE RoBio 2009; Oddo et al., Sensors 2009; Muhammad et al., 

MNE 2011; Oddo et al., IEEE TRo 2011) and active- (Beccai et al., 2009; Oddo et al., IEEE TRo 

2011) protocols in artificial touch studies, also supported by parallel human touch outcomes via 

the microneurographic technique (Oddo et al., Sensors 2011), as it is detailed in Section 3. 
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Fig. 13. From Oddo et al. (Mechatronics 2011). Microneurographic recording from a RA (Meissner) tactile afferent 

unit. (a) Stimulation with a ridged grating. Records from top, recorded nerve signal, instantaneous rate of nerve 

discharges during three repeated runs of the same stimulus, slider position. (b) Stimulation with a smooth plastic 

surface on the same unit, records as in A. (c) Spectrum of nerve discharge during ridged grating stimulation. Solid 

lines show p < 0.01 confidence limits. (d) Spectrum for a smooth surface as in C. 
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3. Passive-  and  active-  artificial  discrimination  of  textures 

Finite element analyses modeling the fingerpad during dynamic touch tasks showed that temporal 

frequency changes at the position of receptors encode information on spatial coarseness of the 

tactile stimuli (Konyo et al., Eurohaptics 2005). As for human touch studies, periodic ridged 

tactile stimuli (gratings) can provide significant information in the experimental evaluation of 

artificial tactile systems, also because they are standardized test surfaces which can be used as a 

kernel to decompose and represent more general polyharmonic surfaces (Bensmaïa & Hollins, 

2005; De Boissieu et al., 2009) encountered in everyday life exploratory tasks. 

Some studies showed that the spatial period ΔpS of a grating is in inversely proportional 

relationship with the principal frequency fprinc(t) of the mechanical vibration elicited when a 

motion occurs at finger-stimulus interface with v(t) relative velocity (Konyo et al., IEEE IROS 

2005), such that: 
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Therefore, the frequency-locking behavior introduced by Equation (1) consists in a decreasing 

value of the frequency of the vibration while increasing the stimulus spatial period, and in a 

frequency value increasing together with the stimulus sliding velocity. Such relationship is 

motivated by considering that during a stimulus-fingerpad relative motion characterized by 

constant velocity v, two adjacent ridges of the grating get into contact with the same region of 

the fingertip after a time lag equal to ΔpS/v, thus eliciting a repetitive and stationary mechanical 

wave. The inverse of such time lag is the vibratory frequency in Equation (1), which is time 

dependent in case of sliding velocity being non-constant with time. 

Provided that it is possible to estimate somehow the relative instant velocity v(t), or in the 

simpler case that velocity is constant or a priori known, Equation (1) represents an effective 

encoding of roughness (i.e., spatial coarseness ΔpS), which may be useful for discrimination of 

surfaces. 

Also, electrophysiological results showed modulation of the firing patterns by mechanoreceptors 

in the fingerpad being coherent with Equation (1), both in monkey (Darian-Smith & Oke, 1980) 

and in human subjects (Oddo et al., Mechatronics 2011, Oddo et al., Sensors 2011). In artificial 

touch, successful encoding based on Equation (1) is in the capability to elicit such vibrations by 

stimulus-skin interface, by motion dynamics and by contact mechanics, and to gather them via 

the sensing units integrated in the finger. It is remarkable to point out that the particular amount 

of contact force at tactile stimulus-fingertip interface has no effect in modulating the value of the 

principal frequency, provided that the applied load is in the adequate range for eliciting the 

mechanical vibration and for allowing such periodic wave to be gathered by the sensing units 

(Oddo et al., IEEE RoBio 2009). 
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Several tactile sensing technologies have been investigated and were reported in comprehensive 

reviews on the topic (Lee & Nicholls, 1999; Maheshwari & Saraf, 2008; Dahiya et al., 2010; 

Yousef et al., 2011). Most of studies for artificial roughness encoding showed experimental 

results under passive-touch protocols with precise control and knowledge of the relative sliding 

velocity v(t), i.e. surfaces were presented to a still sensorized fingertip which was not integrated 

into an actuated finger, or without relative movements of finger phalanxes (mechanical linkages) 

in case of integration. Therefore, while aiming at discrimination of textures, the non-realistic (i.e., 

appropriate for a controlled environment only such as in laboratory investigation, in application-

specific industrial contexts, etc.) but informative passive-touch condition allowed for 

normalization of Equation (1) with respect to sliding velocity v, guaranteeing a frequency 

encoding being a function of spatial coarseness ΔpS only (Mukaibo et al., 2005; Okamoto et al., 

2006; Edwards et al., 2008; Oddo et al., Sensors 2009; Oddo et al., IEEE RoBio 2009; 

Muhammad et al., MNE 2011; Oddo et al., Sensors 2011). 

Looking at the background of previous studies referring to Equation (1) as a potential method for 

roughness encoding, an approach was to develop a finger-like multilayered texture sensor 

integrating five strain gauges (Fig. 14a) mimicking Meissner corpuscles (RA). Such artificial 

tactile system was shown to be appropriate for identifying the difference in roughness, softness 

and frictional properties of various materials (Mukaibo et al., 2005; Zhang et al., 2006). Textural 

information was quantitatively retrieved by estimating the vibrational frequency excited while 

indenting and sliding a periodic stimulus with spatial wavelength in the millimeters range 

(Okamoto et al., 2006), showing significant results down to 0.6 mm (Mukaibo et al., 2005). 

Roughness encoding as in Equation (1) was achieved for 200 µm wavelengths as well, but the 

results were not fully significant possibly due to the size of the artificial tactile system (Fig. 14b), 

being it three times higher than that of the human finger. This is confirmed by the improved 

performance shown by Hidaka et al. (2009) with a modified design mimicking the actual 

dimensions of the human finger. Remarkably, the value of the fundamental frequency (Equation 

1) was not affected by a change in the indentation depth (Fig. 14c), which modulated its absolute 

amplitude without any practical effect on its relative appearance with respect to the other spectral 

components (Mukaibo et al., 2005). 

The same approach based on Equation (1) was previously shown in dynamic- passive-touch by 

Scheibert et al. (2004) for a pair of very fine surfaces, having spatial periods set to 60 µm and 140 

µm (Fig. 15), which were encoded by means of MEMS technology embedded into a polymeric 

packaging material. However, in such work the contact force was considerably high (7 N) with 

respect to the typical values used by humans in texture discrimination activities. 

A fingertip shape tactile sensor integrating a microphone, referring to the Pacinian system as a 

source of bioinspired design, has also been investigated to quantify textural features (Edwards et 

al., 2008) presented by medium-coarse stimuli producing a square wave 1 mm in height, varying 

in wavelength from 1 to 4 mm in 0.5 mm increments (Fig. 16). 
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(a) 

 
(c) 

 
(b) 

Fig. 14. From Mukaibo et al. (2005) and Zhang et al. (2006). a) Schematic structure of the tactile sensor; b) 

fabricated tactile sensor; c) spectral analysis with a periodic grating, showing coherence with Equation (1) at three 

indentation levels. 

 

Fig. 15. From Scheibert et al. (2004). 

Spectra of the tangential contact force 

measured while sliding three tactile stimuli 

at constant sliding velocity (30 mm/s) and 

high contact force (7 N), showing coherence 

with Equation (1). a) smooth stimulus; b) 

stimulus with 60 µm periodic patterning; c) 

stimulus with 140 µm periodic patterning. 
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(a) 

 
(c) 

 
(b) 

Fig. 16. From Edwards et al. (2008). a) Artificial finger with microphone as a sensing element; b) Experimental 

setup for passive-touch evaluation of patterned disks; c) experimental spectral (power in dB vs. frequency in Hz) 

signatures of disks presenting a ridged patterning. 

Wettels et al. (2008) developed a tactile sensor array consisting of a rigid core surrounded by a 

weakly conductive fluid contained within an elastomeric skin. The sensor uses the deformable 

properties of the fingerpad and tactile information relative to the contact force is retrieved from 

impedance measurements via embedded electrodes (Wettels et al., 2008; Lin et al., 2009). 

Feasibility of dynamic roughness encoding was stated via time-frequency inspection in the work 

by Fishel et al. (2008) by means of a pressure sensor located away from the skin and functioning 

as a hydrophone in an fluid. However, the experimental outcomes shown in such work by Fishel 

and colleagues went in an opposite direction with respect to the ones discussed above, since a 

lack of a velocity induced modulation effect was shown (Fig. 17). Therefore, the spectral patterns 

elicited in the output of the remote pressure sensor did not follow the frequency-locked behavior 

stated by Equation (1), and the vibrational signatures were associated by the authors to the 

occurrence of slip regardless of the actual instant sliding velocity. 
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Fig. 17. Experimental results by Fishel et al. (2008) contrasting with Equation (1). 

Most probably, such phenomenon was due to the particular design of the artificial finger, since 

the sensing element was at considerable distance from the location of contact with the surface. 

Moreover, rather than under automatic control, the artificial finger was manually moved by the 

operator over specimens, confirming the importance of the availability of a mechatronic platform 

(as discussed in Section 2) to evaluate artificial tactile systems under precise experimental 

conditions guaranteeing significance of experimental data. 

State of the art cross shape 3D MEMS sensors (Beccai et al., 2005) were integrated with 

polymeric packaging in a compliant 2x2 tactile array which was developed and evaluated for 

roughness encoding (Oddo et al., Sensors 2009). As previously demonstrated, the used 

microsensor (Fig. 18b) is appropriate for integration into a packaging architecture resulting in a 

robust and compliant tactile system for application within artificial hands (Beccai et al, 2008). 

Such integration can thus yield to a robust yet highly sensitive device offering the possibility to 

provide information about static contact forces and dynamic events with one tactile element.  

In the bare configuration of the sensor, the cylindrical mesa, located at the center of the cross-

shape structure, transmits an externally applied force to the sensor inducing stresses in the four 

tethers where four p-type piezoresistors are implanted. The fractional change in resistance ΔR/R 

of each piezoresistor of the microsensor is proportional to the longitudinal and the transversal 

stress components, while the design of the sensor is such that the transversal stress component in 



 

 36 
the implanted piezoresistors is negligible with respect to the longitudinal one (Oddo et al., 2007). 

In a packaged configuration, each single sensor of the array provides local information on the 

contact interaction at its interface with the surrounding polymeric material, with the advantages 

of distributed tactile sensing (as discussed by Hosoda et al., 2006); in addition, the used tactile 

sensors also provide directional information by means of the output readings from the four 

piezoresistors. 

Although the MEMS sensor is suitable, both bare (Beccai et al., 2005) or packaged (Beccai et al., 

2008), for solving the contact force, the raw voltage readings were used in all the studies for 

artificial roughness encoding integrating the device (Oddo et al., Sensors 2009; Oddo et al., IEEE 

RoBio 2009; Beccai et al., 2009; Oddo et al., Sensors 2011; Oddo et al., IEEE TRo 2011). As 

stated by the authors, such choice represents an added value of the system, not only because the 

contact force was not addressed in the studies discussed in the following, but mainly because it 

turns out into a technique being more robust and less-time consuming for the operator. This also 

avoided the need for smart techniques guaranteeing fast and accurate calibration (as well as 

periodic re-calibration operations) of each MEMS before packaging, as done with this device by 

Oddo and colleagues (2007), or after packaging as for example performed by Vásárhelyi  et al. 

(2007) with another but similar sensor together with the introduction of an analytical model for 

point contact loads. 

In the research study by Oddo and colleagues (Sensors 2009) four microsensors were integrated 

into a 2x2 array, with a pitch of 2.3 mm (indicated by ΔX in Fig. 18), via flip-chip bonding on a 

silicon carrier chip connecting the 9 NiAu pads of each microsensor. The silicon carrier chip was 

wire bonded by means of 25 µm Al wires to a Printed Circuit Board (PCB) in order to connect 

the array to the external readout instrumentation (detailed in Oddo et al., 2009). The developed 

system had in total 16 sensitive elements to external mechanical stimuli in an area of about 21 

mm
2
 (i.e., 0.76 channels/mm

2
), similarly to the density of SAI mechanoreceptors in humans (70 

units/cm
2
; Johansson & Vallbo, 1979; Vallbo & Johansson, 1984). 

The packaging of the array of silicon sensors was developed so that the resulting artificial tactile 

system could present a selection of characteristics inspired to those of the human fingerpad. The 

round shape of the packaging of the array was chosen based on the anthropomorphic features of 

the distal phalanx of the cybernetic hand CyberHand (Carrozza et al., 2006; Beccai et al., 2007; 

Beccai et al., 2008). The curved geometry was also identified in order to increase the portion of 

load gathered by the sensors in case of contact with a planar textured surface (according to 

Vásárhelyi et al., 2006). As shown in Fig. 18, the dimensioning parameters for the packaging 

where r0 and d, which were set to 8 mm and 1.3 mm, respectively, for obtaining adequate 

sensitivity as well as partially overlapping sensing ranges between nearest-neighbour MEMS 

units and acceptable low-pass spatial filtering effect (cf. a related significant study by Shimojo et 

al., 1997) with respect to the used stimuli. The packaging material was polyurethane (Poly 74-40, 

PolyTek, USA), protected by an outer thin protective layer of polyimide having thickness of 0.05 

mm and shore A 82 hardness (ST1882, Stevens Urethanes, USA) in order to prevent wear. 



 

 37 
The experimental analysis of the tactile sensor array was performed by using medium-coarse 

regular gratings, with spatial periods from 2.6 mm to 4.1 mm. The contact force was set within 

the range used by humans in the discrimination of fine forms during active dynamic touch 

experience (Lederman, 1974) and the sliding velocities matched the range commonly used in 

related neurophysiologic studies (Darian-Smith & Oke, 1980): by means of the mechatronic 

platform discussed in Section 2 (Oddo et al., Mechatronics 2011), the tactile stimuli were 

indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 

48 mm/s (TABLE I; Fig. 18d). 

The tactile sensor array demonstrated repeatable contact imaging during the static stimulus 

indentation phases of the experimental protocol (Oddo et al., Sensors 2009). To provide an 

example of the consistency between the surface geometry and the static artificial touch 

representation, it is remarkable to observe the output signals variations relatively to the steps 

between phases A (starting of data acquisition) and B (sensor loading) and between phases D 

(steady state after stimulus sliding) and E (sensor unloading) in Fig. 19, which points out that the 

step heights varied between different experimental runs depending on the used grating (but not on 

the velocity, as it is detailed in Oddo et al., Sensors 2009). This property was welcome and was 

due to the fact that, meanwhile in such phases the mechatronic platform kept unchanged the 

horizontal position of the tactile stimulus, a variation of the grating periodicity modified the 

portion of the ridge under each MEMS unit. 

 

However, as is also the case in human touch studies (discussed in Section ), static imaging is a 

limiting approach since it would require a high density of sensing elements to reliably 

discriminate fine textures (Kim et al., 2005). Conversely, in case that the relative sliding velocity 

is known or measured somehow, the application of a tangential sliding motion allows to 

overcome such limitation taking advantage of the elicited vibrational cues, as from Equation (1). 

 

In the dynamic passive-touch experimental work by Oddo et al. (Sensors 2009) this resulted in a 

repeatable (as confirmed from analysis of average Pearson cross-correlation coefficients, all 

being close to 1) and expected (TABLE I) frequency shift of sensor outputs depending on the 

applied stimulus and on its scanning velocity. 
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TABLE I. 

Tested periodic stimuli in passive-touch protocols, and expected fundamental frequency (Equation 1) in sensor 

outputs as a function of the stimulus spatial period ΔpS and constant sliding velocity v (Oddo et al., Sensors 2009: 

red; Oddo et al., IEEE RoBio 2009: green; Muhammad et al., MNE 2011: blue; Oddo et al., IEEE TRo 2011: yellow, 

Oddo et al., Sensors 2011: violet). The combination with v=10.0 mm/s and ΔpS=480 µm is in overlap between two 

studies with different fingertip designs (Oddo et al., IEEE RoBio 2009; Oddo et al., IEEE TRo 2011), as well as the 

one with ΔpS=400 µm (Oddo et al., IEEE TRo 2011; Oddo et al., Sensors 2011). 

 

Stimulus spatial period ΔpS 

410

0 

µm 

360

0 

µm 

310

0 

µm 

260

0 

µm 

190

0 

µm 

139

8 

µm 

120

0 

µm 

100

0 

µm 

899 

µm 

800 

µm 

600 

µm 

480 

µm 

440 

µm 

400 

µm 

360 

µm 

320 

µm 

Stimulu

s sliding 

velocity 

v 

0.05 

mm/

s 

      
0.04 

Hz 

0.05 

Hz 
 

0.0

6 

Hz 

0.0

8 

Hz 

  
0.13 

Hz 
  

0.1 

mm/

s 

      
0.08 

Hz 

0.10 

Hz 
 

0.1

3 

Hz 

0.1

7 

Hz 

  
0.25 

Hz 
  

0.25 

mm/

s 

      
0.21 

Hz 

0.25 

Hz 
 

0.3

1 

Hz 

0.4

2 

Hz 

  
0.63 

Hz 
  

0.5 

mm/

s 

      
0.42 

Hz 

0.50 

Hz 
 

0.6

3 

Hz 

0.8

3 

Hz 

  
1.3 

Hz 
  

1.0 

mm/

s 

      
0.83 

Hz 

1.0 

Hz 
 

1.3 

Hz 

1.7 

Hz 
  

2.5 

Hz 
  

2.0 

mm/

s 

      
1.7 

Hz 

2.0 

Hz 
 

2.5 

Hz 

3.3 

Hz 
  

5.0 

Hz 
  

4.0 

mm/

s 

      
3.3 

Hz 

4.0 

Hz 
 

5.0 

Hz 

6.7 

Hz 
     

5.0 
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s 

        
5.6 

Hz 
  

10.

4 

Hz 

 
12.5 

Hz 
 

15.6 

Hz 

6.7 
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s 

           

13.

9 

Hz 

15.

2 

Hz 

16.7 

Hz 
  

10.0 

mm/

s 

        

11.

1 

Hz 

  

20.

8 

Hz 

22.

7 

Hz 

25.0 

Hz 

27.

8 

Hz 

31.3 

Hz 

15.0 
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s 

3.7 

Hz 

4.2 

Hz 

4.8 

Hz 

5.8 

Hz 
            

20.0 
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s 

        

22.

2 

Hz 

  

41.

7 

Hz 

 
50.0 

Hz 
 

62.5 

Hz 

30.0 

mm/

s 

7.3 

Hz 

8.3 

Hz 

9.7 

Hz 

11.5 

Hz 
            

40.0 
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44.

5 
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83.

3 

Hz 

 
100.

0 Hz 
 

125.

0 Hz 

48.0 
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Hz 

18.5 
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Fig. 18. From Oddo et al. (Sensors 2009). (a) 3D design of the tactile sensor array. (b) Top: The 2x2 MEMS array 

compared with human finger; bottom: a FIB image of the MEMS sensor. (c) Top view of the sensor array. (d) 

Schematic representation of a cross section of the packaged tactile array and grating dimensions. Groove width gw 

ranged from 2.0 mm to 3.5 mm, resulting in ΔpS values reported in TABLE I, while ridge height h and ridge width 

rw had fixed values indicated (in mm) in figure. The key phases of the experimental protocol are indicated in the 

figure. 
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(a) 

 
(b) 

Fig. 19. From Oddo et al. (Sensors 2009). Time plot of the readings from piezoresistor 1 of MEMS sensors 1 and 2 

of the array. Gratings having 3.6 mm (a) and 2.6 mm (b) spatial periods were applied with translational speed set to 

15 mm/s (TABLE I). The frequency modulation due to the variation of the stimulus can be appreciated via cursory 

inspection of the plots. The steps corresponding to the loading and unloading of the stimulus (phases A-B and D-E) 

may be more or less evident in a specific unit of the array depending on whether the ridge of the grating falls under a 

sensor unit or not (static imaging by the tactile sensor array). 

To identify the principal frequency (Equation 1), the results of the study by Oddo et al. (Sensors 

2009) demonstrated the better processing quality guaranteed by using structured information 

from different units of a tactile sensor array, fitting pairs of sensor outputs over sinusoidal 

waveforms having the same frequency (Fig. 20) instead of applying a naïve Fourier analysis 

separately on each channel. 

This processing choice allowed to overcome frequency discretization limitations which could be 

encountered with FFT while considering narrow observation windows. The technological 

approach together with the proposed frequency estimation method guaranteed an error from 1.7% 

down to 0.5% over the range (between 3.7 Hz and 18.5 Hz, reported in TABLE I) of principal 

frequencies associated to the spatial coarseness of the experimented tactile stimuli. Therefore, the 

experimental results for dynamic artificial touch with medium-coarse periodic gratings 

demonstrated remarkable coherence between the principal frequency commonly revealed by the 

packaged MEMS sensor units and the expected one. Moreover, the data analysis procedure was 

potentially suitable for most near real-time settings, guaranteeing outstanding performance down 

to observation windows having 0.4 s duration. The fitting procedure also revealed to be robust 

tough, in addition to the observable principal frequency shift associated to the combination of the 

used grating and stimulus sliding velocity, the signal power had overtones (the first three or four 

harmonics of the fundamental frequency) introduced by both the non-linear packaging material 

and the sharp edges of the periodic ridged surfaces. 

Therefore, the technological and the signal processing outcomes of the work by Oddo et al. 

(Sensors 2009) were a successful preliminary attempt to artificially achieve roughness encoding 

in case of medium-coarse patterning, i.e. a deterministic link was obtained between the spatial 

coarseness of the presented stimuli and the features extracted from the outputs of the spatially-

located sensors. 
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Fig. 20. From Oddo et al. (Sensors 2009). Fitting of a sine wave, over a pair of outputs from the tactile array, to 

identify the principal frequency according to Equation (1). The plot refers to experimental data resulting from the 

sliding motion (v=15 mm/s) of a grating with spatial period ΔpS=3.1 mm. 

A similar investigation was in parallel carried out (in collaboration with the Micro Engineering 

Research Centre of University of Birmingham) by means of a purposely developed capacitive 

technology (Muhammad et al., SNA 2011), which was experimented for roughness encoding in 

passive-touch (Muhammad et al., MNE 2011). The finger mock-up was obtained by means of 

sensing elements consisting of an upper 2 µm highly doped single crystal silicon diaphragm, a 2 

µm air cavity formed by sacrificial layer releasing and a lower electrode consisting of highly 

doped silicon. The edges of the sensing diaphragm were fixed by supporting oxide structures. A 

cross sectional schematic diagram of a single tactile unit is shown in Fig. 21a. The diaphragm 

dimensions were 500 µm x 400 µm. Each tactile unit was 150 µm apart, allowing for high 

density of sensing structures within a given area (Fig. 21b). The array which was fabricated and 

tested in the studies by Muhammad and colleagues (SNA 2011; MNE 2011) had 4 individual 

microfabricated capacitors as sensing elements (Fig. 21b). 

 

 
(a) 

 
(b) 

 

Fig. 21. From Muhammad et al. (SNA 2011; MNE 2011). (a) Top: schematic representation of the tactile sensor 

array showing geometrical dimensions of devices and cross sections of sensors and reference devices. Bottom: 

optical image showing the profile of the sensing membrane. (b) SEM image of 1x4 linear tactile sensor array 

showing geometrical dimensions of device. 
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Fig. 22. From Muhammad et al. (MNE 2011). (a) Expected and experimentally determined, based on Equation (1), 

grating spatial periods at three different scan velocities and (b) FFT spectrum for single measurement depicting the 

experimental peak frequency fpeak, showing meaningful coherence with the expected principal frequency fprinc 

(TABLE I). 

The array of capacitive sensors was packaged with a 200 µm thin layer of PDMS (Sylgard 184) 

to protect the chip from damage and to provide a skin-like covering for transmitting applied loads 

to the sensing diaphragm. 

Experimental results under a dynamic passive-touch protocol at very low sliding velocities 

(TABLE I) and contact forces (10 mN) consisted in the quantitative evaluation of the capacitive 

sensing technology via five gratings varying in spatial periodicity from 400 µm to 1200 µm with 

a 200 µm step, and qualitative assessment of discrimination suitability with fabrics. 

Remarkably, in the evaluation with gratings a significant coherence of the experimental peak 

frequency fpeak with the expected principal frequency fprinc was observed according to the values 

predicted by Equation (1). The presented experimental results have a particular relevance 

especially considering that very low contact forces and sliding velocities were evaluated 

(Muhammad et al., MNE 2011), much lower than the other values used in the parallel studies 

(TABLE I). Therefore, Equation (1) was further validated as a common law underlying the 

physical phenomena of dynamic touch sensing, regardless of the particular sensing technology 

(piezoresistive or capacitive) and without too limiting constraints on the boundary conditions of 

the tactile stimulation procedure. 

As a further step towards integration of the artificial touch system into robotic hands (Carrozza et 

al., 2006; Controzzi et al., 2008; Beccai et al., 2008.; Cipriani et al., 2009; Cipriani et al., 2010), 

an improved version of the MEMS sensor by Beccai et al. (2005) was employed to overcome 

previous limitations which allowed to develop a finger mock-up only (Oddo et al., Sensors 2009) 

rather than a fingertip mimicking human anthropometry (Oddo et al., IEEE RoBio 2009; Beccai 

et al., 2009; Oddo et al., Sensors 2011; Oddo et al., IEEE TRo 2011). 
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In those subsequent works the array was built by connecting four microsensors via flip-chip 

bonding directly on a rigid-flex board which was concurrently designed with the distal phalanx of 

an artificial finger in order to achieve the following outcomes: 

a 2x2 array of 4 microsensors integrated in an artificial fingertip with robust (both 

mechanical and electrical) connection and with all the conditioning electronics fully 

integrated on board; 

a 2x2 sensing array that could be suitably packaged with skin-like materials without 

affecting the tactile array itself nor compromising the integration in the artificial fingertip; 

suitability for integration into articulated fingers to be applied in anthropomorphic robotic 

hands. 

The bare sensor array, depicted in Fig. 23, had 16 channels as total tactile sensor outputs for 

transducing the mechanical interaction with external tactile stimuli, and it had a pitch of 2.36 

mm, therefore achieving a density of 0.72 channels/mm
2
 (16 channels / 22.28 mm

2
). This was 

similar to the innervation density of SAI (Merkel) mechanoreceptors in humans (70 units/cm
2
; 

Johansson & Vallbo, 1979; Vallbo & Johansson, 1984), which have been considered as a mean 

for roughness encoding in studies with monkeys (Yoshioka et al., 2001). 

The sensors of the array are labeled as S1, S2, S3 and S4 (according to Fig. 27A and Fig. 37A), 

while the outputs of each sensor are labeled as P1, P2, P3 and P4 (as shown in Fig. 27B and Fig. 

37B). P1 and P3 are related to piezoresistors implanted on the cross shape structure on tethers 

oriented across the finger axis, while P2 and P4 are on tethers oriented along the finger. 

Unlike the previous approach (Oddo et al., Sensors 2009), the wire bonding could be avoided in 

the new design because of the rigid-flex board solution. Also, with respect to the previous study a 

new version of the electronics was used; the number of discrete components was reduced because 

of the improved design of the MEMS sensor, enabling the full integration in the distal phalanx of 

a robotic finger. Each piezoresistor-resistor arm was supplied by means of a 5V DC regulated 

voltage, and the node between each piezoresistor and the completing integrated resistor was 

directly acquired without pre-amplification by means of a 16-channel 24-bit Analog to Digital 

Converter (ADS1258, Texas Instruments) with tunable sampling frequency. Depending on the 

application, different sampling frequencies were possible (values typically used were in the range 

between 250 Hz and 400 Hz) by: i) modulating the overall conversion rate (this operation affects 

the signal to noise ratio S/N) of the ADC lodged onto the fingertip, or ii) selecting the number of 

converted channels (this operation does not affect S/N) without changing the overall conversion 

rate of the ADC. 
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Fig. 24 shows a diagram of the experimental set-up used in all the passive-touch studies 

following the full integration of sensor array and electronics into the distal phalanx (Oddo et al., 

IEEE RoBio 2009; Oddo et al., Sensors 2011), prior to full evaluation in active-touch (Beccai et 

al., 2009; Beccai et al., 2011; Oddo et al., IEEE TRo 2011). The experimental procedures were 

similar to that of the previous study (Oddo et al., Sensors 2009). 

 

 
Fig. 23. From Oddo et al. (IEEE RoBio 2009). The developed rigid-flex board integrating the 2x2 array of MEMS 

sensors. 

 

 
Fig. 24. From Oddo et al. (IEEE RoBio 2009). Block diagram and picture of the experimental setup implementing 

the control of the tactile stimulator together with the acquisition of data from the MEMS sensor array in passive-

touch protocols. 

Fingerprints, varying in coarseness and shape, were embossed onto the surface of the packaging 

material encapsulating the MEMS sensors in all the research works (Oddo et al., RoBio 2009; 

Beccai et al., 2009; Beccai et al., 2011; Oddo et al., Sensors 2011; Oddo et al., IEEE TRo 2011) 

which used the array depicted in Fig. 23. This design choice followed the significant 

contributions by Maeno and colleagues in the simulative analysis (Maeno et al., 1998; Yamada et 

al., 2002) and artificial emulation (Yamada et al., 2002; Hidaka et al., 2009) of fingerprints, 

showing that their structure increases the sensitivity in tactile activities with a major effect on 

surface-located type I receptors. 
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In a preliminary study (Oddo et al., IEEE RoBio 2009), biomimetism was pursued by designing a 

bi-layer packaging with increasing hardness going from the inner layer to the external surface, by 

introducing fingerprints, by mimicking the positioning of surface-located type I human 

mechanoreceptors and by allowing the design to be compatible with a thin protective layer 

mimicking stratum corneum of the human skin. 

Fig. 25 shows a model of the packaged sensor array and the fabricated prototype having 

concentric medium-coarse ridges with groove width set to 0.7 mm and ridge width to 0.5 mm 

(hence being scaled-up, about three times, with respect to human fingerprints) and curvature 

radius between 9.75 mm and 15.75 mm. PDMS (Sylgard 184, Dow Corning, USA) was used as 

an external layer, stacked over an inner film of Dragon Skin (Smooth-On, USA). The result of the 

integration of the packaged tactile sensor array in the artificial fingertip is shown in Fig. 26. 

 

Fig. 25. From Oddo et al. (IEEE RoBio 2009). a) 

Cross-section of the sensor array showing the sensors 

positioning and the packaging structure; b) rigid-flex 

board with sensor array and packaging wrapped 

around a human index-finger distal-phalanx; c) close-

up view of a fabricated prototype with bi-layer 

packaging and ridges. 

 

 

Fig. 26. From Oddo et al. (IEEE RoBio 2009). 

Integration of the fabricated prototype in the distal 

phalanx of the robotic fingertip; the proximal-distal and 

radial-ulnar directions are shown. 

Though the assessment was preliminary in the work by Oddo et al. (RoBio 2009), specific 

foundations were posed to go towards a final fingertip design (Oddo et al., Sensors 2011) and to 

implement the subsequent experimental protocols in active touch (Beccai et al., 2009; Beccai et 

al., 2011; Oddo et al., IEEE TRo 2011). In such preliminary passive-touch dynamic experiments 

(Oddo et al., IEEE RoBio 2009, summarized in TABLE I) under regulated normal contact forces 

(between 100 mN and 400 mN), the frequency shift of the principal spectral component was 

observed in sensor outputs coherently with Equation (1), as a function of the spatial periodicity 

(from 400 µm to 1900 µm) of the gratings and their sliding velocity (from 5 mm/s to 40 mm/s). 



 

 46 
Moreover, in its preliminary experimental evaluation (Oddo et al., IEEE RoBio 2009), the 

fingertip integrating the tactile sensor array was oriented to provide stimulus motion selectively 

along the proximal-distal direction or along the radial-ulnar direction (Fig. 26). Remarkable 

encoding of roughness was revealed with fine gratings particularly when the stimulation was 

operated along the proximal-distal direction of the finger, showing a more consistent frequency-

locked (Equation 1) behavior if compared to the radial-ulnar stimulation. This phenomenon was 

evident in the form of appreciable time-domain vibrations during proximal to distal stimulus 

sliding motion, or in the form of a principal tone coherent with the expected one in the frequency 

domain. As a matter of fact, due to the value of the curvature radius of the artificial ridges of the 

fingertip, in the proximal to distal stimulation condition the sliding motion of the ridges of the 

grating was mainly across the fingerprints, while in the radial to ulnar the sliding motion of the 

ridges of the grating was mainly along the fingerprints. This is the reason why the ridges 

embossed onto the packaging material particularly behaved as vibration promoters under the 

proximal-to-distal motion condition, enhancing the artificial roughness encoding capabilities of 

the artificial finger. The vibrations arose in the radial-ulnar direction for coarse stimuli only, and 

always showed lower amplitude than under the distal-proximal stimulation condition. 

Such preliminary experimental findings were further examined under a dedicated research 

activity (Oddo et al., Sensors 2011). In such subsequent study, the influence of fingerprints and 

their curvature in tactile sensing performance was investigated by comparative analysis of 

different design parameters of an artificial fingertip inspired to the biological model, having 

straight or curved fingerprints, while leaving unchanged the other design features (Fig. 27): the 

morphology of the packaging encapsulating the sensor array (i.e. the curvature of fingerprints, as 

depicted in Fig. 27A-B) was selectively varied, and the consequences on directional isotropy 

were evaluated by means of dynamic- passive- experiments varying the reciprocal orientation 

between the artificial fingertip and the gratings (Fig. 27C and Fig. 30). Such analysis was 

inspired to previous observations with monkey subjects, providing evidence that gratings locally 

oriented parallel to the finger ridges elicit stronger response than tactile stimuli oriented along the 

orthogonal direction (Wheat & Goodwin, 2000). 

In order to support the significance of the artificial touch results, in parallel (Fig. 29) 

electrophysiological studies were carried out (Oddo et al., Sensors 2011) by means of 

microneurographic recordings of the activity of single, identified afferent units in the fingert ips of 

healthy human volunteers (Vallbo et al., 2004). 
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Fig. 27. From Oddo et al. (Sensors 2011). Design of the biomimetic fingertip integrating the rigid-flex board with 

2x2 MEMS sensor array and readout electronics. Fingerprints embossed in the polymeric packaging had two 

curvatures. Panel A shows fingertip a design with straight fingerprints. Panel B shows fingertip b design with 

curved fingerprints. The inset shows two elements of the array of MEMS sensors. The piezoresistors (P1…P4) and 

the sensors (S1…S4) of the array are labeled according to the convention used in the text. Panel C shows a drawing 

of the experimental setup for indenting and sliding tactile stimuli in dynamic passive-touch experiments. An example 

human finger model is overlapped as a comparison to the developed biomimetic fingertip. The finger is rotated in 

steps of 10° along the z-axis (stimulus sliding across the distal phalanx in the depicted configuration, i.e. θ=90°). The 

inset provides a close-up view of stimulus-artificial finger interface (stimulus sliding along the distal phalanx in the 

depicted configuration, i.e. θ=0°). 

Recently it has been asserted that human fingerprints contribute to the encoding of fine textures 

as they may perform spectral selection and amplification of tactile information in the frequency 

band, centered at about 250 Hz, of optimal sensitivity of Pacinian afferents (Scheibert et al, 

2009). However, in such work Scheibert and colleagues, by experimenting an artificial tactile 

sensing technology, showed a principal frequency differing from Equation (1), since the spatial 

period Δpf of fingerprints appeared (instead of Δps) in the dominant vibrations gathered by the 

tactile sensor, resulting in fprinc = v/Δpf . This means that the encoding of relative sliding velocity 

only, without any modulating effect due to roughness of the tactile stimulus, was achieved via the 

dominant frequency (while textural information was stated to be coded in the sidebands of the 

principal frequency). Such principal frequency encoding being a function of velocity only is 

confirmed in the study by Damian et al. (2010), applying the principle for slippage speed 

detection. Similar considerations apply to the same kind of vibrations dominated by the structure 

of fingerprints, reported as a potential way to encode roughness in the study by Wettels and 

colleagues (2008). Most probably, in the work by Scheibert et al. (2009) the dominance of finger 

skin geometry (Δpf) on stimulus surface features (Δps) in the retrieved principal spectral 

component was: i) activated by the used stimulus, whose edges were positioned randomly (white-

noise 1D patterning, i.e. extremely polyharmonic), and ii) gathered thanks to the quite wide 

receptive field of the sensor due to the relatively thick 2 mm packaging layer (a relevant related 

analysis is provided by Vásárhelyi et al., 2006) mimicking the positioning of deeply located (i.e. 

type II) Pacinian mechanoreceptors. 
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Conversely, in the dedicated experimental analysis on the role and contribution of fingerprints in 

artificial roughness encoding (Oddo et al., Sensors 2011), a different kind of biomimetism was 

sought in the packaging design. A fine skin-like layer was fabricated above the MEMS sensors, 

as for the positioning of slowly adapting type I (SAI; Merkel) and rapidly adapting (RA; 

Meissner) units: the artificial epidermal ridge had a height h1 of 170 μm, while the thickness h2 of 

the homogeneous packaging layer covering the sensor array was 600 μm (Fig. 28); The 

coarseness of human fingerprints (between-ridge distance typically comprised within 0.3 mm and 

0.5 mm; Peters et al., 2009) was also mimicked: in finger a (Fig. 27A), fingerprints were 

embossed with straight parallel ridges having between-ridge distance Δpf set to 400 μm, while 

finger b (Fig. 27B) had concentric fingerprints with groove and ridge widths as for prototype a, 

and the fingerprint passing from the center of the sensor array had curvature radius of 4.8 mm. 

The encapsulation was performed by means of soft polymeric packaging (Dragon Skin, Smooth-

On, USA), having shore A 10 hardness and recovering its original form after a mechanical 

stimulation. 

To make a comparative analysis (Oddo et al., Sensors 2011) between the human subject and the 

artificial system, the same class of ridged tactile stimuli was presented to both the biomimetic 

fingertip (Fig. 29B) and to human subjects (Fig. 29A) via dynamic passive-touch protocols 

implemented through the same core mechatronic platform (Oddo et al., Mechatronics 2011, 

discussed here in Section 2) that can indent the stimuli to the fingertip and slide them in a smooth 

tangential fashion (Fig. 27C). 

 

 
Fig. 28. From Oddo et al. (Sensors 2011). Cross section of the biomimetic fingertip, showing two sensors of the 

array and the structure and dimensions of fingerprints. The array pitch ΔX is 2.36 mm, the fingerprints have between-

ridge distance Δpf set to 400 µm, while their thickness h1 is 170 µm. The thickness h2 of the homogeneous packaging 

layer covering the sensor array is 600 µm. 
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A B 

Fig. 29. From Oddo et al. (Sensors 2011). Experimental set-up in human (Panel A) and artificial (Panel B) touch 

experiments. 1: core mechatronic tactile stimulation platform; 2: pair of half-gratings; 3: human and biomimetic 

finger support; 4: first stage of microneurography electronics; 5: display with neural data for experiment monitoring; 

6: single full-grating; 7: rotational stage with goniometer. 

With such parallel investigation, evidences of a modulation mechanism according to Equation (1) 

were provided with RA human mechanoreceptors for fine and coarse gratings and with SAI for 

coarse gratings only (both RA and SAI are type I mechanoreceptors; Fig. 1), as it is detailed in 

the following. 

Fig. 31 shows sample nerve recordings, gathered from the median nerve above the elbow using 

the microneurographic technique (Vallbo et al., 2004), from a human RA receptor during 

stimulus sliding motion across the distal phalanx (i.e. θ=90°). The subject’s fingerprint at the 

location of the depicted RA unit has a tangent oriented at approximately 46° from the direction 

parallel to the ridges of the gratings (= 44° degrees from the direction of the sliding motion). 

Spectral analysis of the nerve discharge patterns (Rosenberg et al., 1998) showed significant 

modulation at the frequency determined by the stimulus spatial period ΔpS, according to Equation 

(1). A similar relationship depending on the stimulus spatial period was observed in the activity 

of single human mechanoreceptors with receptive fields in the finger tips of the second and third 

fingers. Particularly, for the tested gratings in the 280-520 µm spatial period range, this 

frequency-locked modulation was for 8 of 9 RA afferents units where this was tested, but not in 

any of the SAI units (n=5). For gratings in the 1600-1920 µm spatial period range, the 

modulation was observed in all of the tested RA and SAI units (n=7 and 5, respectively; 10-20 

mm/s sliding velocity). Moreover, it should be noted that the average discharge rates of single 

tactile afferents never directly reflected the spatial periods of the stimuli. As an example, average 

discharge rate was 40 Hz for the unit in Fig. 31A, and 55.5 Hz for the unit in Fig. 31B. Thus, 

there was no 1:1 (or higher order) locking of the nerve discharges, but the spatial periodicity were 

reflected as a frequency modulation (Equation 1) of the discharge patterns. 



 

 50 
In the artificial touch study on fingerprints (Oddo et al., Sensors 2011), the indentation force was 

200 mN, which is one of the values used in the parallel human touch study and is within the 

range used by humans during tactile exploratory tasks (Jones & Lederman, 2006); the force level 

was not varied since the previous related artificial touch studies (Oddo et al., Sensors 2009; Oddo 

et al., IEEE RoBio 2009) showed that a modulation of the contact force in the 100 mN – 1 N 

range resulted in a principal frequency being coherent with Equation (1). The velocity was 10 

mm/s, which is the lower boundary of the range of exploratory velocities typically used by 

humans (Lederman, 1983), and was not varied in this work since previous studies (Oddo et al., 

Sensors 2009; Oddo et al., IEEE RoBio 2009; Oddo et al., IEEE TRo 2011) showed (up to 48 

mm/s, in Oddo et al., Sensors 2009, as reported in TABLE I) that a change in velocity coherently 

modulates the principal frequency according to Equation (1). 

According to the experimental protocol, the two artificial fingertip prototypes a (straight 

fingerprints, Fig. 30-top) and b (curved fingerprints, Fig. 30-bottom) were evaluated by rotating 

them from θ=0° (stimulus sliding along the distal phalanx, Fig. 30-left) to θ=90° (stimulus sliding 

across the distal phalanx, Fig. 30-right) in steps of 10°, thus indenting and sliding the ridged 

stimuli with ten different fingertip orientations. 

 θ=0° … θ =90° 

Straight 

fingerprints 

(fingertip a) 

 

… 

 

Curved 

fingerprints 

(fingertip b) 

 

… 

 
Fig. 30. From Oddo et al. (Sensors 2011). Protocol for the artificial touch experiments: the two biomimetic fingertip 

prototypes, differing in the curvature of fingerprints, were rotated in steps of 10° from θ=0° (stimulus sliding along 

the distal phalanx) to θ=90° (stimulus sliding across the distal phalanx). 

Importantly, the BioRobotic investigation in artificial touch (Oddo et al., Sensors 2011) showed 

that the structure of fingerprints affects the directional isotropy in the encoding of the principal 

spatiotemporal frequency of stimuli (Equation 1): curved fingerprints guaranteed higher 

directional isotropy than straight fingerprints, as it is detailed in the following. Moreover, such 

experimental results were coherent with those shown by Chen and colleagues (2006) by means of 

carbon microcoils embedded into an elastic polysilicone matrix, mimicking Meissner (RA) 

corpuscles. 
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Fig. 31. From Oddo et al. (Sensors 2011). Panels A and B show microneurographic recordings from human single 

tactile RA afferents in the fingertips during stimulation as in Fig. 27C and Fig. 29A; a 10 mm/s sliding motion was 

applied across the distal phalanx. Panels C and D show spectral analysis of the nerve discharge trains from 12 

repeated stimulus runs for the units shown in A and B. Grating spatial periodicity ΔpS is 280 µm in A and C, 360 µm 

in B and D. Principal frequencies resulting from Equation (1) according to the specific combination of grating spatial 

periodicity ΔpS and sliding velocity v are 35.7 and 27.8 Hz for Panels C and D, respectively, with meaningful 

coherence with the depicted experimental results. Horizontal lines in C and D show p<0.01 confidence limits for  

Fig. 32. significant frequency modulation. 

In Fig. 33 and in Fig. 34 time domain data from single channels (Piezoresistor 2 of Sensor 1 and 

Piezoresistor 4 of Sensor 4, respectively) of the experimented biomimetic fingertip designs is 

plotted above the related Short Time Fourier Transform (STFT). The insets on the right of the 

STFT plots show the spectra obtained by applying a Fast Fourier Transform (FFT) to the single 

channel data highlighted in red in the time domain plots. Particularly, Fig. 33A-B shows time 

domain traces from Piezoresistor 2 of Sensor 1 in fingertip b (see Fig. 27 for the labeling of 

sensors of the tactile array) during stimulation with 360 µm and 440 µm regular gratings rotated 

at an angle θ = 10°. The periodic patterns at 27.8 Hz (360 µm grating) and at 22.7 Hz (440 µm 

grating) associated to the spatial periodicity of tactile stimuli are clearly visible either in time 

(vibrational component), in frequency (dominant peak in the FFT, marked with a dotted line) and 

in time-frequency (red region, marked with a dotted line in the STFT) domains. Since the sliding 

velocity remains constant in the performed experiments, the dominant frequency of the vibrations 

elicited by the tactile stimulus is proportional to the inverse of the spatial period of the grating 
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(Equation 1), while the intensity of the vibrations increases with the spatial period. Both these 

effects appear to be coherent with the study by Bensmaïa and Hollins (2003), where the 

mechanical vibrations recorded in the fingertip of human subjects are shown to scale down in 

peak frequency and to increase in peak-to-peak amplitude while increasing the spatial period. 

The relevance of the dynamic stimulation phase (i.e. the dataset corresponding to surface-

fingertip tangential relative motion) to extract vibrational patterns which are correlated to the 

stimulus surface features is confirmed by the STFT spectrograms depicted below the time domain 

plots, which show a sudden frequency step at the onset of the stimulus sliding-motion. The 

spectral pattern remains stable while the periodic grating is stroked at constant velocity. More 

importantly, as confirmed by the FFT spectra, the frequency peak corresponds to the expected 

value depending on the applied stimulus according to Equation (1), i.e. 27.8 Hz for the 360 μm 

surface and 22.7 Hz for the 440 μm one. As previously anticipated, this artificial vibrational 

roughness encoding is meaningfully coherent with the parallel microneurography results in 

humans, and with previous studies with monkeys (Darian-Smith & Oke, 1980). 

 

 
Fig. 33. From Oddo et al. (Sensors 2011). Encoding of stimulus spatial period Δps in either time, frequency and 

time-frequency domains. Data belongs to Piezoresistor 2 of Sensor 1 of the biomimetic fingertip and was acquired 

while sliding at 10mm/s (200mN indentation force) the 440 μm (Panel A) and 360 μm (Panel B) periodic stimuli 

over the biomimetic fingertip with curved fingerprints (shown in Fig. 27B). According to Equation 1, the expected 

principal frequency was 22.7 Hz (A) or 27.8 Hz (B). The rotation of the fingertip was 10° with respect to the 

stimulus sliding direction (reference frame shown in Fig. 27C). 
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A comparison between the A-D and the E-H panels in Fig. 34 shows the effect of the curvature of 

fingerprints in the encoding of stimulus spatial features in relation to the rotation of the 

biomimetic fingertip. The four rows show results for θ = 10°, θ = 20°, θ = 40° and θ = 90°. There 

is higher isotropy with the curved fingerprints than with the straight ones, which have a strongly 

preferred direction when the sliding is closer to the direction along the distal phalanx (i.e. across 

the fingerprints). As shown in Fig. 34A, with straight fingerprints the vibratory patterns are 

noticeable either in time and frequency domains for θ = 10°, while those patterns are 

considerably reduced and masked by the other spectral components when the fingertip is rotated 

(Fig. 34B-D) so to have a sliding oriented closer to the direction across the distal phalanx (i.e. 

along the fingerprints). 

Extended analysis of the spectrum of readings from both the biomimetic finger designs as a 

function of the rotation angle θ brings evidence of the higher anisotropy anticipated above for 

straight fingerprints (Fig. 35A compared to Fig. 35B). Within the plots shown in Fig. 35, the 

expected (Equation 1) principal frequency is represented by a straight red line, while for output 

PiSj (i
th

 piezoresistor of j
th

 sensor, according to Fig. 27A-B) the correctly identified dominant 

peaks (arising for frequencies higher than a 2.5 Hz threshold) are marked with red circles in the 

figures. 

 
Fig. 34. From Oddo et al. (Sensors 2011). Encoding of stimulus spatial period ΔpS as a function of fingertip rotation 

θ for both the prototypes with straight and curved fingerprints. Data belongs to Piezoresistor 4 of Sensor 4 and was 

acquired while sliding at 10 mm/s (200 mN indentation force) the 440 μm periodic stimulus over the biomimetic 

finger with straight fingerprints (Panels A to D) and with curved fingerprints (Panels E to H). According to 

Equation 1, the expected principal frequency was 22.7 Hz. A description of each row of the subplots is provided 

within Fig. 33. The plotted results are obtained by rotating the finger of an angle θ set to 10° (A, E), 20° (B, F), 40° 

(C, G) and 90° (D, H) with respect to the stimulus sliding direction. 
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Fig. 35. From Oddo et al. (Sensors 2011). Single-sided normalized amplitude spectra as a function of the rotation of 

the biomimetic fingertip with straight (Panel A) and curved (Panel B) fingerprints. Data is related to 4.096s subsets 

gathered from Piezoresistor 4 of Sensor 4 (P4S4) while the stimulus was indented and rubbed tangentially to the 

finger. Normal stimulus-fingertip contact force was set to 200mN, while the sliding velocity was 10mm/s. According 

to Equation 1, the expected principal frequency (marked with a red straight line) was 22.7 Hz. The red circles 

highlight the correctly identified (by applying Equation 2) peak frequency per each stimulation combination. Higher 

isotropy as a function of the rotation angle is appreciated with the fingertip having curved fingerprints. 

It is significant to point out that, differing from Fig. 35A (straight fingerprints), in Fig. 35B 

(curved fingerprints) the peak is not at θ=0° but at θ=10°. This is a consequence of the curvature 

of fingerprints, which affects the sensitivity of the packaged system in tradeoff with the preferred 

direction of Piezoresistor P4, hence widening the region of effective roughness encoding as a 

function of the finger rotation angle θ: the tangent to the curved fingerprints at the location of 

Sensor S4 is orthogonal to the x axis sliding motion direction (and contemporarily parallel to 

ridges of the grating) when θ=17.4° (i.e., >10°), while piezoresistor P4 shows its maximum 

sensitivity (Beccai et al., 2005; Oddo et al., 2007) to tangential loads (reaching the sensor through 

the packaging material) being oriented along the direction of its tether, which is aligned with the 

x axis when θ=0° (i.e., <10°). 

Remarkably, the observed peak frequency values were at the expected values depending on the 

tested stimulus spatial period and constant sliding velocity (Equation 1): the shape of the 

fingerprints was shown to have an effect on the possibility to promote and sense such vibrations 

(therefore modulating, up to masking, their amplitude), not in shifting the peak values on the 

frequency axis. Such results presented with simple gratings appear to go in the direction of those 

with more complex surfaces presented by Bensmaïa & Hollins (2005), since in such work the 

mechanical vibrations were found to have spectra repeatably related to the surfaces which were 

experimented with different subjects (therefore, having different fingerprints one to the other) at 

constant finger-stimulus relative velocity. 
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The experimental analysis of the artificial fingertip suggests that the structural anisotropy of 

fingerprints, due to their shape, has a major role in determining the level of anisotropy in the 

encoding of tactile stimuli spatial features. The sensory systems with straight fingerprints 

embedded in the skin-like packaging had noticeably higher directional preference, while higher 

isotropy was observed with curved ones. As from the quotations reported in Section , 

Bensmaïa and colleagues (2006) raised the open question whether the anisotropy observed in 

humans is related to the structural anisotropy of the skin or to afferent branching at neural level. 

In the work by Oddo and colleagues (Sensors 2011), the experimented biomimetic artificial 

fingertips differed in the packaging skin-like layer design only; moreover, the anisotropy was 

observed on a channel by channel basis, not only as an aggregated effect among different outputs 

of the array. Therefore, from a robotic point of view the presented results agree with the 

hypothesis according to which the directional anisotropy is affected by the structure of 

fingerprints. Starting from these initial results, further investigations are needed to evaluate a 

potential concurrent role of afferent branching at neural level. 

Definitively, the obtained results (Oddo et al., Sensors 2011) provide inputs for the design of 

artificial sensory systems to best encode textural features in case that the target active-touch 

application has or has not a preferred direction for the finger-stimulus relative motion. 

 

In the literature, a significant study for the artificial active-touch discrimination of textures was 

presented by Hosoda and colleagues (2006), by means of a soft fingertip with a smooth surface 

embedding in a random manner strain gauges and PVDF films at different depths of the rubber 

layers, allowing for active discrimination of five different types of materials based on the analysis 

of variance of the dynamic sensor outputs (Fig. 36); however, a closed modeling of the 

relationship between sensor outputs and the spatial coarseness (i.e., the physical quantity related 

to roughness) of tactile stimuli was not provided. 

 
Fig. 36. Left: multi layered fingertip with randomly distributed strain gauges and PVDF film sensors, integrated in 

an exploratory robotic finger for active discrimination of tactile surfaces. Right: discrimination of five materials 

based on readings from a strain gauge and variance of signals from a pair of PVDF films located in different layers 

of the finger (Hosoda et al., 2006). 
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Some other works presented the integration of tactile sensing in actuated robotic fingers, but the 

focus has been mainly on grasp stabilization rather than on the encoding of spatial coarseness. 

Examples are the Gifu III Robotic Hand (Mouri et al., 2002) and the DLR II Hand (Huang et al., 

2006) with embedded 6-axis force sensors. 

In a recent work (Oddo et al., IEEE TRo 2011) the passive roughness-encoding studies discussed 

above were extended to the application with an active robotic finger (Fig. 37) to emulate the 

possible behavior of a robotic or prosthetic hand in exploring objects. The objective was to 

develop an exploratory artificial finger equipped with tactile microsensors at its fingertip and a 

method for robust discrimination of surfaces based on roughness encoding during stereotyped 

movements. Such a system may be exploited in future next generation hand prostheses (Carrozza 

et al., 2006; Cipriani et al., 2010) with the aim of providing non-invasive or invasive afferent 

sensory feedback. 

The robotic finger (Fig. 37d) was human sized (Buchholz et al., 1992), tendon driven (Carrozza 

et al., 2006; Cipriani et al., 2009; Cipriani et al., 2010) and underactuated (Birglen & Gosselin, 

2004; Luo et al., 2004), i.e. with more DoFs than actuators, as Hirose’s soft finger (1985). The 

array of MEMS sensors and the design of the packaging layer were the same as for fingertip b 

with curved fingerprints (Fig. 27B and Fig. 28) discussed above (and detailed in Oddo et al., 

Sensors 2011). 

With the robotic finger, the coherence between the theoretical (Equation 1) and the experimental 

fundamental frequency was initially demonstrated, as a control condition, in passive-touch 

(TABLE I). The passive-touch study was intended to show and evaluate the encoding principle 

(Equation 1) with the complete articulated finger (rather thant with the fingertip as discussed 

above), under a protocol allowing to directly decouple the contribution of velocity v(t) from 

stimulus spatial coarseness ΔpS. After a first active contact by the finger, gratings having very 

close spatial periods (400, 440 and 480 µm) were stroked at controlled known velocity by a 

simplified version of the mechatronic tactile stimulation platform discussed in Section 2 (Oddo et 

al., Mechatronics 2011). 

In the core set of experiments, as experimental condition, the approach was evaluated under a full 

active-touch protocol with the robotic finger mimicking via a pre-programmed trajectory the 

natural exploratory movement by the hand, and without measuring the actual instant sliding 

velocity (to establish a technique avoiding the need for proprioceptive kinesthetic information). 

Active-touch experiments were implemented by contacting the tactile stimulus controlling the 

MCP joint (phases 1-2 of Fig. 37d), and subsequently flexing the PIP and DIP joints (phase 3b of 

Fig. 37d) so to perform a smooth human-like exploratory task lasting 2s. The contact forces at 

finger-stimulus interface, recorded by a load cell, were comprised within 100 and 300 mN and 

therefore belonged to the range used in human exploratory tasks (Jones & Lederman, 2006). 
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Fig. 37. From Oddo et al. (IEEE TRo 2011). a) 

Distal phalanx of the robotic finger, in comparison 

to human hand, integrating the 2x2 sensor array (S1 

to S4), electronics and polymeric packaging with 

fingerprints; the square with white borders 

highlights the 22.3 mm2 area of the array, where a 

72 units/cm2 density is reached. b) Close up view of 

sensor S4 of the array. The four outputs of the 

sensor are marked at the roots of the tethers of the 

cross-shape structure. For all the sensors of the 

array, P1 and P3 are on tethers oriented across the 

finger, while P2 and P4 are on tethers oriented 

along the finger. c) Design of the sensor array 

showing the fingerprints, having 400 µm ridge to 

ridge distance; the curvature radius of the 

fingerprint highlighted in red is 4.8 mm. d) Setup, 

reference frame and phases of the protocol for the 

passive-touch (1, 2 and 3a) and active-touch (1, 2 

and 3b) experiments. The 2 degrees of actuation 

(DoA) are obtained via independent control of MCP 

joint and underactuated coupling between the PIP 

and DIP joints. 

The core active-touch results with gratings as tactile stimuli (Oddo et al., IEEE TRo 2011) 

demonstrated a surface identification approach based on (i) the implementation of a stereotyped 

feedforward exploratory trajectory: this is bioinspired to sensorimotor control models (Scott et 

al., 2004) since it is based on planned motion trajectory rather than continuous feedback from 

dedicated proprioceptive sensors; (ii) time-frequency analysis via wavelet transform on the 

outputs of the tactile sensors, showing a clustering of the fundamental frequency as a function of 

the tactile stimulus; (iii) k-NN (k nearest neighbors) discrimination based on extracted 

fundamental frequency from the sensor array, without requiring dedicated proprioceptive sensors 

for the time-varying end-effector velocity, yielding 97.6% worst case discrimination accuracy in 

active-touch conditions (while in the control passive-touch study 100% accuracy was achieved 

by means of a look up table). 

In the process towards discrimination of surfaces via roughness encoding, a wavelet analysis 

technique (Grinsted et al., 2004) was introduced to take into account that the end-effector 

velocity could be time variant in active-touch experiments. As a consequence, the fundamental 

frequency (Equation 1) would dynamically modulate within each exploratory session while 

rubbing the surface. To allow retrieving such dynamic frequency-modulation, the continuous 

Wavelet Transform (WT) was used, expanding into a time-frequency space the output signals 

from the sensor array. More reliably than the single-channel WT, the Cross Wavelet Transform 

(XWT) was applied to identify time-frequency regions with high common power between outputs 

from different sensors of the array, hence establishing a robust elaboration method based on 

combined processing of pairs of sensor outputs. 
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Fig. 38. From Oddo et al. (IEEE TRo 2011). Time domain plots under a passive-touch run with the 480 µm grating 

(P1S1, P1S2 and P1S4, according to the labeling of Fig. 37b-c, are shown). The stimulus sliding motion starts at 

t1=0.5 s with a 6.7 mm/s velocity up to t2=2.0s, when the velocity is raised to 10 mm/s. The sliding motion stops at 

t3=3.0s. Vibrational encoding of stimulus spatial period is appreciated between t1=0.5s and t3=3.0s. The plots on the 

right show a zoom on the encoding of stimulus controlled velocity step at t2=2s. Sensors S1 and S2 are on the distal 

part of the fingerpad in symmetrical positions with respect to the axis of the finger, and thus the related P1S1 and 

P1S2 signals are in-phase during the stimulus sliding motion. Sensor S4 is more proximal on the fingerpad and so 

P1S4 shows a phase difference with respect to P1S1 and P1S2. The phase difference between S4 and S1/S2 outputs 

is not affected by the varying velocity (Equation 2). 

 

 
Fig. 39. From Oddo et al. (IEEE TRo 2011). Time domain plots under an active-touch experiment with the ridged 

tactile stimulus having spatial period Δp=480µm (P1S1, P1S2 and P1S4, according to the labeling of Fig. 37b-c). 

The graphs show experimental data comprising the load, rubbing and unload phases of the active-touch exploratory 

task. The plot on the right focus on the active rubbing of the ridged stimulus, showing vibrational encoding of 

roughness. Similarly to the passive-touch experiment shown in Fig. 45, the signal from P1S1 is in phase with P1S2 

and shows a phase difference with P1S4, as expected from Equation (2). 

 

The application of the WT and of the XWT is graphically represented with colors mapping the 

normalized power in time-frequency space, where the 5% significance level is highlighted as a 

thick contour. In addition, the XWT provides information about the local relative phase 

differences between sensor outputs. Phase information obtained via XWT(O1,O2) is also 

graphically represented, by arrows pointing right or left if the signals are in-phase or in anti-

phase, pointing down if sensor output O1 leads O2 of π/2 and pointing up if O2 leads O1. 
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Fig. 40. From Oddo et al. (IEEE TRo 2011). WT on single channels (P1S4, P1S1 and P1S2) of the array and XWT on 

channel pairs P1S4-P1S1 and P1S1-P1S2. The plots focus on the active-touch exploration of the 480 µm stimulus by 

the robotic finger, showing the frequency encoding during the rubbing phase of stimulus spatial period and of the 

time variant velocity according to Equation (1). The shifting of the high-power red zone towards higher frequencies 

reveals that the end-effector velocity varied (increasing) with time while rubbing the sample. High-power regions in 

time-frequency space are colored in red and maximum cross-power intents tMP are indicated for both the channel 

pairs. The thick contour surrounding the red region identifies the 5% significant level. The arrows in the XWT plots 

are a graphical representation of the phase difference between the pairs of channels (pointing right: in-phase; left: 

anti-phase; down: series1 leading series2 by 90°). 

As depicted in Fig. 38, in passive-touch the vibrational roughness encoding lasted steadily (1.6% 

maximum standard deviation with respect to the expected principal frequency) for all the sliding 

motion of the stimulus; conversely, in active-touch each unit of the array best encoded the tactile 

stimulus in a subset only of the exploratory task. This phenomenon was due to the varying 

inclination of the fingertip in active-touch, which resulted in a shift of the center of pressure on 

the fingerpad. As a consequence, the active stereotyped exploratory task presented a subset 

lasting about 150 ms during which the spatial coarseness of the tactile stimuli was encoded with 

vibrational cues by at least one unit of the array (cf. Fig. 39). An overlap of about 80 ms was 

observed (Fig. 39-right and Fig. 41) for the combined vibrational activation of distal sensor units 

(S1 and S2) and proximal sensor ones (S3 and S4, the former not shown for the sake of graphical 

clearness). 
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Fig. 41. From Oddo et al. 

(IEEE TRo 2011). Active-

touch vibrational frequency 

encoding in time domain of 

the grating spatial period, by 

sensor outputs P1S1, P1S2 

and P1S4. Moreover, P1S1 

and P1S2 were always in-

phase, while the phase 

difference with P1S4 varied 

depending on the surface, 

coherently with Equation (2). 

In the depicted figure, this is 

confirmed by the horizontal 

shift of the blue trace with 

respect to the red and green 

ones while comparing the 

plots for the three different 

gratings. 

 

The data analysis technique identified the significant regions resulting, in time-frequency space, 

in maximum cross-power between adjacent units of the array. Even in the condition of non-

constant end-effector velocity (Fig. 40) while actively exploring surfaces, due to the execution of 

movements being stereotyped across the runs, the so identified principal frequency values 

showed a clustering (Fig. 42) as a function of spatial coarseness of tactile stimuli, confirming a 

roughness encoding being applicable to machine learning classifiers for discrimination of textures 

(Oddo et al., IEEE TRo 2011). It is significant to point out that, coherently with the physical 

model underlying Equation (1), finer grating spatial periods Δp resulted in higher frequencies in 

both the axes of Fig. 42. 

 

Fig. 42. From Oddo et al. (IEEE TRo 2011). 

Scatter plot of the run-by-run mean values of  

the fundamental frequencies identified by two 

pairs of sensor outputs under the active-touch 

protocol. A clear clustering is shown depending 

on the explored surface, and coherent frequency 

increase while decreasing the spatial period Δp 

of the grating. The ellipses depict low dispersion 

of data within each cluster, as a result of 

significant repeatability.  These are centered on 

the centroid of each cluster, and have axes 

lengths set to twice the standard deviation of 

experimental principal frequency values 

belonging to each cluster. 
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To quantitatively assess discrimination accuracy in active-touch, the training and test operation of 

the k-NN classifier was performed 10000 times, by using a leave-M-out validation for evaluation 

of discrimination performance: M experimental runs out of the 24 active-touch ones were 

randomly selected as a test set, while the others were used to train the nearest neighbor classifier, 

provided that each of the three stimuli appeared with the same number of occurrences, i.e. (24-

M)/3, in every training set. Therefore, for each train and test operation, M=3 results in a classifier 

being trained over 7 random runs out of the 8 repeated ones per stimulus, down to a single 

random training run per stimulus with M=21. The latter condition is a worst case evaluation 

because a training set based on a single experimental observation would be more sensitive to the 

potential occurrence of outliers. Due to high repeatability, a k-NN classification applied to data of 

Fig. 42 guaranteed excellent discrimination performance: a 97.6% identification accuracy (i.e., 

much higher than the 1/3 performance in case of random choice) was obtained in the worst case 

training based on a single run per stimulus and the other runs used as validation set (leave-21-

out); the accuracy raised to 100% with all the gratings by using at least 4 runs per stimulus as a 

training set (leave-12-out). 

Therefore, surfaces differing down to 40 µm were identified in active-touch by both hardware 

and processing method based on exteroceptive tactile information (Oddo et al., IEEE TRo 2011). 

As a consequence of high accuracy, the 40 µm threshold underestimates the potential 

performance and the developed technology could ensure better results while tested with finer 

stimuli. 

In addition, preliminary active-touch experimental results with five textiles (differing in texture 

or orientation) were also shown as a proof of discrimination feasibility in a more realistic tactile 

stimulation scenario (in comparison to gratings) with everyday life surfaces (Oddo et al., IEEE 

TRo 2011). 

In the active-touch study by Oddo and colleagues (IEEE TRo, 2011), the five surfaces were a fine 

denim cut along two different orientations (Fig. 43a-b), a coarse denim cut along two different 

orientations (Fig. 43c-d) and a nap textile (Fig. 43e). For all the runs and textiles, here the XWT 

was calculated on channel pairs to inspect data. Fig. 43 depicts one XWT(P1S1,P1S2) example 

for each textile. 

Remarkably, each textile showed a repeatable specific pattern in time-frequency space in all the 

experimental runs (Oddo et al., IEEE TRo 2011). 

Such repeatability was confirmed calculating the correlation indexes for each time-domain raw 

single sensor output over all the combinations of pairs of repeated runs with the same textile. As 

an example, average correlation coefficients for channel P1S1 over repeated runs are 0.96 ±0.01 

for textiles A and E, 0.97 ±0.01 for textiles B and C and 0.98 ±0.01 for textile D. All the 
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coefficients are very close to one with significant confidence interval, demonstrating high 

repeatability. Moreover, average correlation coefficients lower in a range between 0.78 and 0.90, 

with significant confidence as well, while considering combinations of runs related to pairs of 

different stimuli, thus confirming the suitability for the discrimination of realistic surfaces.  

However, textiles present a surface structure being more complex and realistic with respect to 

gratings. Therefore, a number of spectral components rather than a single fundamental frequency 

should be taken into account in order to yield high classification performance (up to the full time-

varying spectrum, to succeed in the discrimination of unspecified tactile stimuli having a very 

complex surface structure). 

Remarkable achievements were presented in the literature in the passive-touch identification of 

general surfaces, showing that significant information could be extracted in the frequency domain 

from information gathered via tactile sensors (Mayol-Cuevas et al., 1998; Tanaka, 2001; 

Mukaibo et al., 2005; de Boissieu et al., 2009). Considering that a complex texture can be 

intended as a combination of gratings with appropriate spatial periods, such studies and the 

active-touch work by Oddo and colleagues (IEEE TRo, 2011) confirm the significance of the 

previous principal frequency approach while dealing with simplified but standardized surfaces 

such as gratings. 

 
Fig. 43. From Oddo et al. (IEEE TRo 2011). The left plots show the XWT on channel pair P1S1-P1S2 during active 

rubbing of five textiles. The textured structure of each specimen is shown on the right by means of optical 

microscopy (Hirox KH-7700 digital microscope). The relative positioning of sensors S1 and S2 is marked on the 

right images, together with an arrow representing the active rubbing direction. 



 

 63 
In all the passive-touch experiments discussed above, velocity was constant and known (TABLE 

I), while in active-touch it was not directly measured. However, as a final evaluation of tested 

velocity range in comparison to typical human exploratory tasks, this information can be 

reconstructed by inverting Equation (1) via the knowledge of tested stimuli and measured 

maximum (75.9 Hz) and minimum (49.8 Hz) principal frequencies recorded during the active-rub 

operations (Oddo et al., IEEE TRo 2011). This resulted in active-touch velocities monotonically 

increasing approximately from 22 mm/s to 31 mm/s within the significant time-frequency region 

of each run. Thus, the tested velocities belong to the wide range (from a few mm/s up to more 

than a hundred of mm/s) used by humans during active exploratory tasks (Jones & Lederman, 

2006). 

Moving from the observation that humans appear to be able to discriminate tactile stimuli in such 

wide velocity range without any significant velocity induced effect on perceived roughness 

(Lederman 1983, Meftah 2000), one may observe that an encoding of roughness solely based on 

Equation (1) might be affected by a perceptual inversion in case that coarser tactile stimuli are 

rubbed at higher velocity than that of finer ones. In the research works discussed above, this was 

avoided in passive-touch by precise knowledge and control of the sliding velocity, while in 

active-touch the potential inconvenience was overcame by means of a stereotyped exploratory 

motion. However, in real robotic applications, as well as in human exploratory tasks, the velocity 

is neither constant nor the trajectory is exactly the same among different tactile experiences. A 

possible hypothesis in human touch, as well as a feasible option in robotics would be to deal on 

proprioceptive information to measure such velocity, and then normalize Equation (1). However, 

this approach would be compromised by a motion occurring to the tactile surface while actively 

exploring it. Moreover, as discussed in Section , the contribution of kinesthetic afferents was 

excluded by a study by Lederman (1981) with respect to roughness perception in humans. 

Therefore, it would be welcome for an artificial tactile sensing system to smartly unravel the 

velocity dependence of Equation (1), without the need for proprioceptive kinesthetic information, 

under unconstrained exploratory tasks. The availability of distributed tactile sensors (as the tactile 

sensing system in the human hand is distributed) gives the opportunity to address this objective, 

as it is detailed in the following. 

A smart solution was proposed by Shinoda and Ando (1999), via a vertical sampling principle 

implemented by means of a pair of separated pressure probes, to determine a single dominant 

spatial frequency of the tactile stimulus and the full spatial spectrum of an arbitrary surface (Fig. 

44). In their work, the discrimination operation did not require a priori knowledge of the relative 

sliding velocity, because the dependence of the spectra on the velocity was normalized by using 

observers being spatially located vertically at different depths of the tactile sensor, which could 

measure the lag for the mechanical wave produced by the sliding stimulus to propagate from the 

top layer to the deeper one. 
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Fig. 44. Positioning (a) of the 

pressure sensing units in the 

tactile system based on 

vertical sampling (Shinoda & 

Ando, 1992), and passive 

touch experimental setup (b). 

 

Differently from the approach by Shinoda and Ando, horizontal sampling was proposed in the 

active-touch study by Oddo and colleagues (IEEE TRo 2011). Phase information between 

neighboring sensors was taken into account as a further feature in addition to the fundamental 

frequency useful for discriminating among surfaces. 

Considering piezoresistors belonging to sensor tethers which are oriented along the same 

direction, the gathered output signals are expected to show vibrational components having a 

phase difference Δφi,j being not dependent on the sliding velocity of the stimulus: 

S

ij

ji
p

y






,

, 2
 

(2) 

Where Δyj,i = yi - yj is the difference of the y coordinates of Sensor Si and Sensor Sj (while 

considering sensors aligned along the finger axis, i.e. S1-S4 and S2-S3, Δyj,i corresponds to the 

2.36 mm pitch of the array in case that the plane of the sensors is parallel to the stimulus), 

according to the labeling introduced in Fig. 37a. This results in signals always in-phase if 

considering the couple S1-S2 or the couple S3-S4, and with phase differences depending on the 

tactile stimulus for the other combinations. 

In passive-touch, during finger-stimulus contact, sensors S1 and S2 of the array on the distal part 

of the phalanx were simultaneously aligned under the same ridge of each grating (same y 

coordinate, i.e. Δy1,2=0, according to the reference frame in Fig. 37d). Therefore, coherently with 

Equation (2), the outputs from piezoresistors belonging to sensor tethers which are oriented along 

the same direction (e.g. P1S1 and P1S2) were in-phase for all the runs regardless of the grating 

spatial period. This is also confirmed in time domain by Fig. 38 (in-phase P1S1 and P1S2 

signals) and depicted by the horizontal arrows in time-frequency space of the XWT(P1S1,P1S2) 

plots in Fig. 45. Conversely, a phase difference was observed from sensor units lodged at 

different positions along the axis of the finger (e.g. P1S1 and P1S4, represented with red and blue 

traces in Fig. 38 and with arrows in the second subplot of Fig. 45). Velocity had no effect on the 

phase relationships, as shown by the arrows before and after the velocity variation at t2=2.0s in 

Fig. 45. This property of phase locking is coherent with Equation (2) (since no velocity appears 

in the equation) and can be applied to remove the velocity dependence of Equation (1). 
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However, a problem occurs with respect to Equation (2): phase differences can be experimentally 

measured only in a 2π range, introducing limiting conditions for inverting Equation (2) (i.e.: Δp > 

2Δypitch=4.72 mm or Δp > Δypitch=2.36 mm depending on the actual knowledge of the sign of the 

relative finger-stimulus velocity). This means that, by just considering two spatially located 

sensors of a regular array, phase differences can be analytically reconstructed only in case that 

two sensors are encountered along the rubbing direction within a half or full spatial wavelength 

of the tactile stimulus. Such limiting conditions for spatially distributed sampling are equivalent 

to the Nyquist theorem for time domain sampling. 

Gratings with different spatial period ΔpS caused a modulation in the relative phase between units 

lodged along the direction of the finger axis (e.g. S4 with respect to S1 and S2) in active-touch as 

well (Oddo et al., IEEE TRo 2011). Consistently with Equation (2), the phase difference between 

units aligned across the finger axis (e.g. S1-S2, with Δy1,2=0mm) did not modulate. As an 

example from two couples of outputs from the array in both time (inspecting the relative timing 

between vibratory peaks in Fig. 39) and time-frequency (inspecting the arrows in Fig. 40) 

domains, the signals from P1S1 and P1S2 were in-phase, while a phase difference was observed 

between P1S4 and P1S1. The same behavior is shown in Fig. 41 for all the three used gratings 

(varying in Δp), as confirmed by the horizontal shift of the blue trace with respect to the red and 

green ones (Oddo et al., IEEE TRo 2011). 

It is relevant to point out that the phase relationships around the red high power time-frequency 

regions (i.e. around tMP time instants indicated in the plots) depicted for active-touch in Fig. 40 

were consistent with the passive-touch ones (cf. Fig. 45). This is observable by comparing the 

arrows (equal down-right pointing) in the significant regions of the two figures. 

Related future directions, also considering recent human touch hypotheses (Johansson & 

Flanagan, 2009) as a potential source of bioinspired design and data analysis, are discussed in 

Section 4. 
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Fig. 45. From Oddo et al. (IEEE TRo 2011). WT on single channels (P1S4, P1S1 and P1S2) of the array and XWT on 

channel pairs P1S4-P1S1 and P1S1-P1S2. The plots focus on the velocity step during the passive-touch presentation 

of the 480 µm stimulus to the robotic finger. 
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4. Conclusions and future research directions 

The research activities on artificial tactile sensing focused on the discrimination of textures with 

specific reference to the roughness dimension. Three main objectives were concurrently 

addressed under a biorobotic approach, resulting in the specific technological and scientific 

outcomes summarized below. 

1) Investigation of the experimental methods, findings and debate with respect to the human 

sense of touch, with particular reference to: 

a) the classes of mechanoreceptors and strategies involved in the neural coding and 

perception of textures in comparison to the particular structure of the human hand and of 

the afferent neural pathways, as a source of bioinspired design in the biorobotic study; 

b) the techniques (such as microneurography) and tactile stimulation procedures (mainly 

passive- and active- protocols) which are typically used in (dynamic) touch studies to 

characterize the biological system and to assess electrophysiological and psychophysical 

models, as a source of bioinspired experimental evaluation in the biorobotic study; 

c) the methodological approaches undertaken in the assessment of models and theories, as a 

source of bioinspired critical analysis of (experimental versus expected) results in the 

biorobotic study. 

2) Design, development and assessment of a custom mechatronic platform (Oddo et al., 

Mechatronics 2011) for tactile-stimulation under passive-touch protocols, to foster the parallel 

studies on the human sense of touch and on its artificial mimicry: 

a) particular requirements were addressed due to the exacting demands of 

electrophysiological methods (microneurography and EEG), and dedicated design choices 

were operated to deal with the particular tactile stimulation conditions and protocols 

targeted in human and artificial touch studies; 

b) the system was conceived to enable parametric, precise, repeatable and smooth stimulus 

indentation and tangential sliding over the (human/artificial) fingerpad, under standardized 

conditions, no induced vibrations, no significant electromagnetic interference, and simple 

programming by the experimenter; 

c) an original methodological contribution was provided in the experimental assessment of 

the appropriate design of the platform. This was achieved by merging the evaluation of 

traditional quantitative error indexes (to evaluate the performance in tracking reference 

trajectories) together with a validation using the human mechanoreceptors as instrumental 

sensors in order to assess the compatibility of the platform with the exacting demands of 

electrophysiological methods (particularly, the lack of significant electromagnetic 

interference and absence of spurious vibrations); 
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d) the availability of the mechatronic tactile stimulation platform enabled the passive-touch 

biorobotic studies on artificial tactile sensing, as an investigation parallel to the 

experimental analysis of the human sense of touch (Oddo et al., Sensors 2009; Oddo et al., 

IEEE RoBio 2009; Beccai et al., 2009; Beccai et al., 2011; Oddo et al., IEEE TRo 2011; 

Oddo et al., Sensors 2011); 

e) the dedicated design and architecture of the platform enables electrophysiological and 

psychophysical systematic studies on the human sense of touch. 

3) Design, development and assessment of artificial tactile systems, integrating arrays of MEMS 

sensors (Oddo et al., Sensors 2009; Oddo et al., IEEE RoBio 2009; Beccai et al., 2009; 

Muhammad et al., SNA 2011; Muhammad et al., MNE 2011; Beccai et al., 2011; Oddo et al., 

Sensors 2011; Oddo et al., IEEE TRo 2011): 

a) mimicking particular structural features of the biological system, with particular 

reference to human type I mechanoreceptors and fingerprints (Oddo et al., Sensors 2011; 

Oddo et al., IEEE TRo 2011); 

b) evaluation under experimental protocols (passive- and active-) inspired to 

electrophysiological and psychophysical human touch studies; 

c) evaluation with contact forces and velocities in the range used by humans during tactile 

exploratory tasks; 

d) addressing open scientific topics (mechanoreceptors being more informative with respect 

to texture, coding strategies, role of fingerprints) on the human sense of touch and on its 

bioinspired mimicry (positioning of sensing units, processing algorithms, packaging 

design); 

e) integration (in the final design of the fingertip: Oddo et al., IEEE TRo 2011) into an 

articulated robotic finger mimicking human anthropometry and flexion-extension degrees 

of freedom; 

f) using periodic gratings (with spatial periods comprised between 320 µm and 4.1 mm) as 

tactile stimuli, experimental validation of a frequency-locking mechanism in both passive- 

(with constant and known sliding velocity: Oddo et al., Sensors 2009; Oddo et al., IEEE 

RoBio 2009; Beccai et al., 2009; Muhammad et al., SNA 2011; Muhammad et al., MNE 

2011; Oddo et al., Sensors 2011; Oddo et al., IEEE TRo 2011) and active- (with non-

constant and unknown velocity, but stereotyped exploratory motion: Oddo et al., IEEE TRo 

2011) artificial touch: the outputs of the MEMS sensors showed spectra with a principal 

frequency being directly proportional to the instant relative velocity between the artificial 

finger and the specimen and inversely proportional to the spatial period of the grating 

(Equation 1), therefore operating an encoding of roughness; 
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g) showing the substantial processing advantage in using more than one output of the array 

for finding out the common principal frequency produced during dynamic presentation 

(passive-touch) or exploration (active-touch) of periodic gratings; 

h) under passive-touch stimulation with constant sliding-velocity, exact coherence between 

the frequency-locking artificial coding and the spectra resulting from the analysis of the 

neural firing by human mechanoreceptors. In human touch this phenomenon was observed 

for all the (fine and coarse) tested gratings in a large proportion of recorded RA human 

mechanoreceptor afferents; the same applies to the recorded SAI units in case of coarse 

stimuli only; 

i) excellent accuracy in the passive- and active- artificial tactile discrimination of gratings 

by means of the frequency-locking mechanism; 

j) in the stereotyped active-touch experiments with gratings, tactile information was enough 

for the successful discrimination of surfaces via the frequency-locking mechanism, without 

the need to integrate information from dedicated sensors for end-effector velocity; 

k) suitability of the developed artificial touch technologies for discrimination of realistic 

specimens (Oddo et al., MNE 2011; Oddo et al., IEEE TRo 2011), such as textiles, via a 

spectral analysis on sensor outputs, therefore extending the frequency-locking mechanism 

to polyharmonic surfaces; 

l) showing that the structure of fingerprints affects the directional isotropy in the encoding 

of the principal spatiotemporal frequency of stimuli: under a dedicated differential passive-

touch study with gratings, curved fingerprints guaranteed higher directional isotropy than 

straight fingerprints (Oddo et al., Sensors 2011); 

m) experimental evidences of a phase-locking mechanism (Equation 2) stating that the 

variations in the phase differences between sensor outputs are directly proportional to the 

distance between the tactile units (which is known by design) and inversely proportional to 

the spatial coarseness (i.e., the physical quantity associated to perceived roughness) of the 

tactile stimulus (Oddo et al., IEEE TRo 2011); therefore, such experimental results support 

the possibility to include phase differences from adjacent sensor outputs as a further 

discrimination feature additional to the spectral signature of tactile stimuli (cf. frequency-

locking); 

n) ready for integration into mechatronic hands of humanoid robots (Oddo et al., IEEE TRo 

2011);  

o) ready for integration into robotic hands for prosthetic applications aiming at providing 

sensory feedback with bioinspired coding of tactile information (Oddo et al., IEEE TRo 

2011). 
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In both humanoid robotics and prosthetics, an artificial tactile system would take benefit from the 

feasibility of hard real-time discrimination under unconstrained non-constant exploratory 

velocities by the mechatronic hand. According to the results presented in this research study, the 

combination of frequency-locking and phase-locking, together with a smart irregular physical-

positioning of sensor units (getting design inputs from the biological model), could enable such 

desired features. This is briefly introduced in the following to provide a few hints on the possible 

future research directions. 

Irregular physical-positioning could allow to obtain a system of multiple and independent phase 

relationships (Equation 2) overcoming the Nyquist-like aliasing effect discussed in Section 3 with 

respect to space-domain sampling via the distributed array. Therefore with such an approach, 

similar to the human tactile system (Yoshioka et al., 2001), spatial features finer than the nearest 

neighbor spacing of tactile units could be discriminated under general unconstrained trajectories 

by the finger, overcoming the limiting condition of stereotypization for the exploratory motion 

(Oddo et al., IEEE TRo 2011). 

To smoothly merge the frequency- and phase- locking mechanisms, the hypothetical human 

model based on coincidence detection of neural spikes (Fig. 3, discussed in Section ) proposes 

a relevant source of bioinspiration (Johansson & Flanagan, 2009). This results into the biorobotic 

model depicted in Fig. 46, which proposes an integrated spatio-temporal discrimination approach, 

rather than spatial (i.e. taking into account static stimulus representation by distributed sensor 

units) or temporal (i.e. taking into account the vibrational stimulus representation by single sensor 

units) only. Such biorobotic model follows the research direction suggested by Shimojo and 

Ishikawa (1993), since they proposed a spatial filter function adaptively tuning to the sensor-

stimulus relative motion parameters, therefore pointing out the centrality of a spatio-temporal 

approach in tactile sensing. 

Under the proposed biorobotic model (Fig. 46): i) the sensor outputs would be converted into 

neural-like spikes; ii) their phase differences would select, via the compensating effect introduced 

by the pipeline of delay blocks, the instant pattern of activation in the mesh of second-order 

artificial neurons; iii) the frequency of the recorded mechanical vibrations would modulate the 

rate of activation; iv) machine learning techniques would associate the dynamic pattern of 

activated second-order artificial neurons to the explored textured surface. 

Purposely, the proposed model (Fig. 46) does not include a dedicated proprioceptive sensory 

system for kinesthetic information (e.g., end-effector velocity): this choice could open a 

dedicated biorobotic investigation on the possible self-sufficiency of the tactile system for 

discrimination of surfaces under general non-stereotyped active exploratory tasks (as discussed in 

Section  with respect to passive- vs. active- touch in the study by Lederman, 1981), in order to 

go towards a common theory for human and robot mediated coding and perception of texture. 

Importantly, this could also open various possibilities while pursuing the integration of artificial 

touch technology into an upper limb prosthesis, via non-invasive (e.g. vibrating tactors, 

Kaczmarek et al., 2001) or invasive (e.g. direct peripheral neural feedback, Dhillon & Horch, 

2005; Rossini et al., 2010) interfaces. 
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Fig. 46. Future directions towards spatiotemporal processing of textural information in artificial touch. Application 

scenarios (non invasive and invasive sensory feedback in proshetic applications, and humanoid robotics) are 

associated to each module of the proposed model. 
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a b s t r a c t

The development of a mechatronic tactile stimulation platform for touch studies is presented. The plat-
form was developed for stimulation of the fingertip using textured surfaces, providing repeatable tangen-
tial sliding motion of stimuli with controlled indentation force. Particular requirements were addressed
to make the platform suitable for neurophysiological studies in humans with particular reference to elec-
trophysiological measurements, but allowing a variety of other studies too, such as psychophysical, tri-
bological and artificial touch ones. The design of the mechatronic tactile stimulator is detailed, as well
as the performance in tracking reference trajectories. Using microneurography, we recorded from human
tactile afferents and validated the platform compatibility with the exacting demands of electrophysiolog-
ical methods, comprising the absence of spurious vibrations and the lack of relevant electromagnetic
interference.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To study neuronal mechanisms of the sense of touch in the hu-
man hand, active or passive protocols are used. In active touch the
subjects are asked to explore tactile stimuli [1], while in passive
studies tactile stimuli are presented to the fingertip, which is kept
still [2]. The exploration or presentation of stimuli should be repli-
cated several times in the same conditions to infer models based
on statistical analysis of acquired data [3]. To achieve standardiza-
tion and repeatability, the passive touch approach requires a ro-
botic stimulator that enables detailed analyses of receptor
response or Central Nervous System (CNS) processing through con-
trolled variation of stimulation parameters, of stimulus materials,
spatial coarseness and tribological properties, to make compari-
sons between sessions or participants, or to average over a large
number of replications. As regards the neurophysiologic experi-
mental paradigms, in the periphery the activity of single afferents
in the skin can be recorded using the microneurography technique
[4]; CNS activity can be probed using electroencephalography
(EEG) to reconstruct cortical sources [5], while sensory thresholds
and percepts can be assessed using psychophysical methods [6].

This study presents the development of a 2 DoFs mechatronic
system that could indent and slide textured stimuli to the finger-
pad with feedback-controlled normal contact force and parametric
sliding trajectories while recording the normal and tangential
forces at finger-stimulus interface. The robotic system has been de-
vised with an open design approach since it is simple to command
via a graphical user interface, is upgradable thanks to the FPGA
control electronics, and can be used to perform neurophysiological
studies in humans with techniques such as microneurography and
EEG [7] even in combination with psychophysical experimental
paradigms. Also, it is suitable for tribological and artificial touch
studies as well and it allows to implement a wide variety of proto-
cols for active [8] and passive studies [9].

There are a number of particular requirements in the design of
such a robotic device. First, to allow repeatable experiments with
standardized conditions, accuracy and precision in the control of
stimulation parameters, such as the contact force and the sliding
velocity profile, is required. Second, the device must guarantee a
range of forces and movement velocities covering those that would
be used by humans in the exploration of textures, while both nor-
mal and tangential forces need to be recorded as they are funda-
mental for human touch investigation. Studies on discriminative
touch [10,11] suggested: for the indentation force a range of at
least 100 mN–5 N, with a control accuracy of about 5% of the refer-
ence force and sensing resolution within a few mN; 100 mm of
stroke along the sliding direction and velocities up to 150 mm/s
with lm position sensing resolution and steady state control accu-
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racy. The third challenging requirement, given that some classes of
tactile receptors are highly sensitive to vibration up to 400 Hz or
more [12], is in developing a stimulator that could get into contact
with the human finger free from any spurious vibration that could
interfere with the encoding of tactile stimuli. Fourth, electrophys-
iological methods such as microneurography and EEG involve
recording of signals in the lV range, and electromagnetic interfer-
ence from the robotic system has to be minimized. Fifth, these
experiments can require the participant to sit in a natural position
and to remain relaxed for hours. Hence, the subject’s comfort puts
stringent demands on the mounting of the device and on the con-
trol laws of each DoF so that it can be adapted in 3D space to the
position of the subject’s arm, hand and finger [13].

Finally, the programming operation by the experimenter to
implement the targeted protocols has to be simple and flexible,
and upgradeability of the platform should be possible.

All these requirements and specifications have hitherto not
been addressed by a single device in the scientific literature. LaM-
otte and colleagues presented an advanced stimulator [14], which
was too bulky to be easily oriented in 3D space and which relied on
the early digital electronics available at the time; the scotch yolk
stimulator [15] used a complex mechanism resulting in a lack of
flexibility of the experimental protocol; the rotating drum stimula-
tors [16,17] regulated the indentation force in open loop, and thus
could not reject external disturbances. Finally, with respect to
studies on encoding of texture and its related dimensions (e.g.
roughness), most platforms were developed for experiments in
monkeys [18] rather than humans, then presenting less demanding
requirements since higher level of invasiveness is tolerated in ani-
mal model studies.

Here, we outline the development of a platform that fulfils all
these requirements for tactile stimulation in human studies, and
that was replicated in five exemplars with customizations for elec-
trophysiological, psychophysical, and artificial touch studies and
for tribological experiments on different tactile surfaces as well.
A typical passive touch sequence, with stimulus indentation and
sliding is presented and quantitative indexes are calculated for
assessing over repeated runs the performances of the controllers
of the 2 DoFs. Using microneurography, we recorded from human
tactile afferents under passive touch stimulation and showed that
the platform is compatible with the exacting demands of electro-

physiological methods, specifically the absence of spurious vibra-
tions and lack of electromagnetic interference.

2. Materials

2.1. Mechanism and actuation

The core system had two orthogonal DoFs (Fig. 1) to indent and
slide the tactile stimulus tangentially to the fingerpad. A voice-coil
actuator (NCC05-18-060-2X, H2W Tech.) applied the indentation
force with a 12.7 mm stroke. A linear guide (LTP 60.180.0804-02,
SKF Multitec) driven by a DC motor (RE35, Maxon Motors) applied
the sliding motion through a 4 mm pitch ball bearing screw, allow-
ing a maximum velocity of 300 mm/s and a stroke of 110 mm. The
propagation of the small vibrations produced by the screw was fil-
tered by applying four vibration isolation mounts (520053, Radia-
flex) at the corners of the interface between the voice-coil actuator
and the linear guide. Each of the used vibration isolation mounts
had an axial stiffness (indentation direction) of 133.3 N/mm and
a radial stiffness (sliding direction) of 16.7 N/mm. Considering
the parallel of the four elements, the resulting axial stiffness was
533.3 N/mm and the radial stiffness was 66.7 N/mm. This means
that, by applying a 500 mN indentation force (i.e. a typical value
in the targeted experimental protocols) a maximum deformation
of 1 lm will occur. Moreover, in the developed platform the axial
deformation is not subjected to very limiting constraints since, as
detailed in the following, the indentation axis is under force con-
trol. Oppositely, the resulting stiffness along the sliding direction
needs attention since such axis is under position control. In this
case, a tangential force component of 500 mN (i.e. a typical exper-
imental value) will cause a deformation of 7.5 lm along the sliding
direction (resulting from equilibrium of forces) and an acceptable
(lower than 0.02�, resulting from equilibrium of torques) misalign-
ment between the sliding direction and the tactile stimulus on top
the voice-coil actuator, complying with the design constraints. Lin-
ear Current Amplifier Modules (LCAM, Quanser), guaranteeing very
low electromagnetic interference, were chosen for driving the
actuators. Switching power devices were avoided since the typical
(10–50 kHz) range for PWM carrier frequency is higher than half
the microneurography sampling rate, but just outside the cutoff

Fig. 1. (a) Experimental set-up during microneurography: frame hold by spherical joint (1), hand-finger support system (2), vacuum cast for arm support (3), carrier for
stimuli (4), load cell (5), voice-coil actuator assembly for indentation of stimuli (6), linear guide for tangential sliding of stimuli (7), DC motor with encoder (8). (b) Fingerpad-
stimulus interface with finger fixation system and free fingers support. (c) Examples of the used stimuli glued to a changeable aluminum plate: a couple of ridged stimuli (9),
smooth plastic and rough sandpaper (10).
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frequency of the bandpass filter preceding the sampling block (fur-
ther details in Section 3.1). Hence, even introducing shielding tech-
niques, a residual slight coupling between the PWM carrier
frequency and lV range microneurography data could have been
aliased at significant low frequencies, affecting the band of interest.

2.2. Stimuli and fingertip-hand support and mechanical assembly

An aluminum carrier for the stimuli was integrated above the
voice coil (Fig. 1). The carrier could house sequences of textured
stimuli on a 77 mm � 32 mm changeable plate.

The finger fixation system allowed a stable positioning while
the stimuli were applied to the central part of the fingertip, and
contemporarily could be disentangled operating on a screw to
alternate passive and active touch protocols (Fig. 1b). This paper
presents passive touch protocols only: artificial active touch was
preliminary tested with a robotic actuated finger [9], while human
active touch will be investigated in future works.

The subject’s nail could be fixed with superglue or adhesive
medical tape to a plastic resin curved support which was then se-
cured to a custom passive 3D joint with solid angle protractor for
fine positioning. The other fingers of the hand could be either posi-
tioned on a flat ergonomic support or left free depending on what
the subject felt was most comfortable.

The two DoFs actuation, sensors and mechanical components
integrating stimuli and fingertip-hand supports were lodged in
an aluminum frame (Fig. 1a). Since microneurography relies on
the experience of the investigator and it is very complex to arbi-
trarily and precisely choose a specific single afferent unit to record
from, platform adaptation in 3D space was fundamental to access
large portions of fingerpad. Moreover, the subject cannot move
after that the tactile unit has been identified. Hence, at the top,
the mechanical structure was interfaced with a spherical joint
(808RC4, Manfrotto) to a multi-DoFs passive-joint mechanical sup-
port grounded on the floor (Fig. 1a). The overall system could be
swiveled towards and from the hand in simple manner and dexter-
ously oriented, with 3D rotations up to about 30�, to fit the finger-
pad recorded unit and the particular position of the subject during
the experiments. To the authors’ knowledge, in literature it has not
been yet reported a tactile stimulation platform allowing such a
high adaptability in 3D space for studies on texture dynamic
encoding. The two DoFs control laws were designed to cope with
this required 3D adaptation, as it is detailed in Section 2.4.

2.3. Sensors

The targeted experimentations required the measurement of
either the normal and the tangential components of finger-stimu-
lus contact force, as these are relevant information to be investi-
gated in correlation with texture encoding in humans [19,20].
Moreover, the force measurement was required to implement
feedback force control along the indentation axis, in order to pre-
vent deviations from nominal conditions to have major effects
(most of all the variable inclination of the platform to fit the partic-
ular position of the subject’s finger), as in a model based design
would occur. A load cell (Nano43, ATI IA) was used for this purpose.
The transducer was located as much distal as possible, close to the
end effector just under the carrier, to limit the inertial effects on
the load cell measurements (e.g.: since the mass of the current car-
rier is 80 g, a relatively high acceleration of 250 mm/s2 affects the
force reading along the direction of motion with a 20 mN inertial
component), while contemporarily allowing to change the tactile
stimuli. A battery operated PCB, with low-noise bipolar instrumen-
tation amplifiers (INA128, TI) and 16 bit multi-channel A/D con-
verter (ADS8345, TI), was designed to interface the load cell with
the control electronics achieving a RMS noise level of 2.1 mN. A

4096 levels per turn incremental optical encoder (MR Type L-
1024, Maxon) measured the displacement of the linear guide with
a resolution of 0.98 lm and two magnetic limit switches were inte-
grated at the extremities of the linear ball screw guide for delimi-
tating the workspace.

2.4. Hierarchical control

A multi-layered hierarchical control architecture was imple-
mented, partitioning the tasks between a general purpose PC and
an embedded hardware-programmable logics (Fig. 2a).

The HIGH-level layer ran a GUI (Labview, NI) to generate, save,
load or execute buffers of HIGH-level commands and for displaying
the received platform data. The implemented curves for the linear
guide position were a ramp, a sine wave and a polynomial fifth or-
der wave, which had settable parameters and could be interlaced
obtaining almost arbitrary motion profiles. The indentation force
reference was modulated by the experimenter via sequences of
commands. The set of commands for both the DoFs could be ex-
tended by modifying the software libraries.

MID- and LOW-level control layers were embedded in a Field
Programmable Gate Array (EP2C35 FPGA, Altera) with a 100 MHz
principal clock, partitioning [21] the control and communication
tasks between custom hardware logic modules and a soft-core pro-
cessor (Nios II/f) running C/C++ software routines. This design
choice represented an advancement with respect to state of the
art systems coherently with the trend showed in the literature of
mechatronic tactile stimulators, which used digital controllers
[22] for avoiding to integrate complex mechanisms such as in
the scotch yolk stimulator [15] and reducing as much as possible
the analog circuitry, [14,22–24]. Despite this design solution is
promising, only a few mechatronic tactile stimulators were based
on FPGA control electronics [25,26]. For the platform presented
here, this choice was operated for two main reasons: (1) to allow
future upgradeability of the architecture of control electronics
(e.g. by instantiating on the same FPGA a number of additional par-
allel soft-core processors, peripherals, custom digital hardware
modules, etc., as partially shown here in Section 3.2); (2) to
achieve, via hardware-software codesign, parallel scheduling of
periodic routines implementing the motion control laws and of
interruptions managing the communication (commands and plat-
form data, at high rate in the upgraded architecture with Ethernet
mentioned in Section 3.2) functions. The MID-level layer was in
charge of interpreting HIGH-level commands received through
RS232, of point-to-point trajectory generation for the linear guide
LOW-level controller, and of force target generation for the voice
coil LOW-level controller. The RS232 was also used for transmit-
ting the platform variables to the GUI for display purposes. The
more relevant variables (three contact force components at fin-
ger-stimulus interface, target normal contact force component
F\(t)des, actual linear guide position and its target position x(t)des,
an on–off trigger signal switching each time that a new command
was executed) were converted to an analog output at 1 kHz over 16
bit (DAC8581, TI) for flexible integration and synchronization with
analog signal acquisition systems, for example during
microneurography.

LOW-level logic modules, designed in HDL, were instantiated
onboard the FPGA to interface with the incremental optical enco-
der of the translational stage and to enhance safety by asynchro-
nously deactivating the power drivers in case of unplanned
workspace violations indicated by the limit switches. Data from
the ADC of load cell electronics was acquired by means of dedi-
cated FPGA custom hardware modules as well, implementing cir-
cular reading of the six load cell channels via SPI and a digital
filter (16 kHz : 1 kHz oversampling-averaging-desampling per
channel) to reduce the noise level by a factor of 1/

p
16. This oper-
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ation was relevant to meet the targeted performance for both force
sensing and control. The parallel hardware implementation in
FPGA logics avoided to load the processor with such operations,
while an instruction based software approach could have been af-
fected by jitter while scheduling load cell ADC high-rate interrupts.
The LOW-level controller was interfaced to the power drivers
through a dual 12 bit DAC (TLV5618, TI) and implemented (zero-
order-hold digitalization at 1 kHz) the 2 DoFs control laws, which
were in closed loop with integrator to reject disturbances (e.g. var-
iable friction) or modifications of the boundary conditions (e.g. the
inclination of the platform in 3D space for adapting it to the posi-
tion of the subject during microneurography).

In the Laplace domain, the linear guide position controller
Cp(s) had 2-zeros-2-poles and an ad hoc dead band (Fig. 2b) of
±2 encoder counts, to prevent any steady state vibration [27].
Due to the quasi non backdrivability of the screw mechanism,
the dynamics along the sliding direction was modeled without
considering the interaction with the finger and the controller
was dimensioned to have closed loop stability, at least 6 dB of
amplitude margin and 45� of phase margin, zero error at steady
state and reference trajectory tracking error in the order of tens
of lm.

The normal component of the stimulus-fingertip contact force
was regulated with a 1-zero-1-pole Cf(s) closed loop controller
and an ad hoc dead band (Fig. 2c), set to ±6.3 mN (i.e. three times
the measurement standard deviation reported in Section 2.3), to
avoid steady state vibrations.

As shown in Eq. (1), both the controllers had an integrator, to
reject any steady state error apart for the tolerance admitted by
the dead bands to avoid vibrations.

CpðsÞ ¼ kp
ðsþ sp1Þðsþ sp2Þ

sðsþ sp3Þ
ð1aÞ

Cf ðsÞ ¼ kf
ðsþ sf 1Þ

s
ð1bÞ

In order to define the Cf(s) coefficients, the stimulus-fingertip con-
tact mechanics was modeled along the normal direction to the sep-
aration surface.

Naming y the position of the end effector along the indentation
direction and yf the position of first contact with the fingerpad
(Fig. 1c), the vertical DoF dynamics is described by:

Mtot€yðtÞ þ fv _yðtÞ þ fcsignð _yðtÞÞ þMtotg þ KnlðyðtÞ � yf Þ ¼ FVCðtÞ
if yðtÞP yf ð2aÞ

Fig. 2. (a) Overview of the Dynamic Platform hierarchical controller. (b) Block diagram of the LOW-level closed-loop position controller along the sliding direction. (c) Block
diagram of the LOW-level closed-loop force controller along the indentation direction.
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Mtot€yðtÞ þ fcsignð _yðtÞÞ þMtotg ¼ FVCðtÞ if yðtÞ < yf ð2bÞ

where Mtot is the total mass moving vertically, g is the gravitational
acceleration, fc is the dynamic friction force along the vertical DoF,
FVC is the force provided by the voice coil, fv (2.5 Ns/mm) and Knl

take into account the mechanical characteristics of the fingertip
[28–30], i.e. the viscosity and the non-linear elasticity, respectively.
Given that Cf(s) has to control the normal component of the contact
force, the dynamics for y(t) P yf was considered for fitting the com-
pensator. Eq. (2a) was linearized for dimensioning the closed loop
controller: the dynamic friction was neglected as the vertical mo-
tion is supported by low friction miniaturized linear motion rolling
guides; Mtotg was neglected because it does not affect system
dynamics being an additive constant contribution; the non-linear
coefficient Knl was changed in the linear coefficient Kl (3.5 N/mm),
providing an estimation of human finger stiffness up to 1000 mN.

Considering the previous simplifications, Eq. (1a) resulted in:

Mtot€yðtÞ þ fv _yðtÞ þ KlðyðtÞ � yf Þ ¼ FVCðtÞ ð3Þ

To obtain the transfer function Gf ¼ Fn
ContðsÞ=FVCðsÞ, the ~y ¼ y� yf

( _~y ¼ _y and €~y ¼ €y) coordinate change was applied to Eq. (3). In the La-
place domain this resulted in:

ðMtots2 þ fvsþ KlÞ~yðsÞ ¼ FVCðsÞ ð4Þ

The normal contact force Fn
Cont was measured by the load cell

and defined as:

Fn
ContðtÞ ¼ fv _~yþ Kl~y ð5Þ

In the Laplace domain:

Fn
ContðsÞ ¼ ðfvsþ KlÞ~yðsÞ ð6Þ

So that:

Gf ðsÞ ¼
Fn

ContðsÞ
FVCðsÞ

¼ fvsþ Kl

Mtots2 þ fvsþ Kl
ð7Þ

Starting from (7), the Cf(s) coefficients were set in order to sat-
isfy the following requirements: closed loop stability, at least 6 dB
of amplitude margin and 45� of phase margin, zero error at steady
state and indentation force tracking error in the order of tens of
mN.

3. Methods

3.1. Microneurography

Impulses of single tactile afferents in the left index and middle
fingers were recorded using the microneurographic technique in
16 human healthy volunteers [4]. The experiments presented in
this work were carried out at the Department of Physiology of Uni-
versity of Gothenburg and were approved by the ethics board of
the University of Gothenburg. The subjects seated comfortably in
a dentist’s chair, the left arm resting in a vacuum cast for stabiliza-
tion and maximum comfort. Tungsten needle electrodes were in-
serted in the left median nerve, 8 cm above the elbow. The nerve
signal was band-pass filtered at 200–4000 Hz, sampled at
12.8 kHz together with analog data from the platform, and stored
on a PC using the ZOOM/SC system developed at the Department
of Physiology, Umeå University, Sweden. Recorded nerve impulses
were inspected off-line on an expanded time scale using in-house
software implemented in MATLAB (The Mathworks) and were ac-
cepted for subsequent analyses only if they could be validated as
originating from a single afferent. The units’ responses and recep-
tive fields were explored using calibrated nylon filaments (von
Frey hairs) and were classified as SAI, SAII, RAI, or PC according

to the adaptation of the response to sustained stimulation and size
of the receptive field [31,32].

3.2. Experimental protocol

Sliding motions of a smooth aluminum stimulus (Fig. 1c) were
applied with different indentation force levels to the index finger
of a human subject to show sample protocols allowed by the open
platform. To point out the flexibility in the upgrading of the chosen
architecture, thanks to the used hardware-programmable logics,
platform variables were transmitted to a PC via Ethernet at 5 kHz
(significantly higher rates were possible) by a second parallel pro-
cessor instantiated onboard the FPGA, similarly to [8]. Dynamic
performance indexes, calculated on repeated runs of the same buf-
fer of commands, are defined and provided in Section 4.

To assess the repeatability of reiterated stimulus presentations
during electrophysiological measurements, periodic ridged stimuli
were fabricated from TUFSET Rigid Polyurethane thermosetting
plastics material, measuring 32 mm � 35 mm and mounted in
pairs on changeable plates (Fig. 1c). While gathering neural data
via microneurography from 12 RA, 7 SAI, 3 SAII and 2 Pc single
afferent units in the fingerpad, the platform applied sliding mo-
tions, repeated in runs of 12, across the distal phalanx using stimuli
with spatial period between 280 lm and 1920 lm, with normal
contact force set to 100 mN, 200 mN or 400 mN, sliding distance
of 24 mm and velocity from 5 mm/s up to 40 mm/s. To directly as-
sess the presence of biologically significant vibrations introduced
by the platform, 2 RA units were in addition similarly stimulated
using a smooth polypropylene plastic surface as well. The spectra
resulting from the point processes of identified neural spikes were
calculated.

The lack of significant electromagnetic interference coupling
with the electrode for microneurography due to the platform was
investigated by means of analysis of neural recordings from a SAI
unit (left index finger), under three experimental conditions: (1)
Manual Stimulation (MS)-mode: while the platform was not actu-
ated, the experimenter manually stimulated the finger of the sub-
ject (test subject) from which neural data was recorded; (2) Closed
Loop (CL)-mode: a 1600 lm periodic ridged stimulus was indented
and scanned across the fingertip of a second subject (control sub-
ject), in close proximity to the fingertip of the test subject (from
which neural data was recorded), with 500 mN feedback controlled
contact force, sliding distance of 20 mm and velocity set to 20 mm/
s; (3) Open Loop (OL)-mode: to double check whether or not the
time varying driving current (related to the indentation DoF actu-
ator in feedback force control) affected the microneurography re-
sults, the same protocol of point 2 was operated apart for the
fact that the indentation was in open loop by supplying a constant
current to the voice-coil actuator, resulting in a normal contact
force of about 750 mN before the onset of stimulus sliding motion.
Noise amplitude distribution was evaluated in the three experi-
mental conditions described above.

4. Results and discussion

4.1. Dynamic performance evaluation

Fig. 3 shows some sequences of commands implemented by the
developed tactile stimulator. Error parameters were defined to
quantitatively assess the dynamic performances of the mechatron-
ic platform while indenting and sliding tactile stimuli on a human
finger, as detailed in the following:

RMSEpos ctrlðta; tbÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jtb � taj

Z tb

ta

ðxðtÞdesi � xðtÞiÞ
2dt

s
ð8Þ
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RMSEforce ctrlðta; tbÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jtb � taj

Z tb

ta

ðF?ðtÞdesi � F?ðtÞiÞ
2dt

s
ð9Þ

where RMSE is the Root Mean Square Error (related to the sliding
position or to the indentation force) in the [ta, tb] time interval of
the ith run of the considered reference trajectory. Actually, the con-
tinuum time integrals in Eqs. (8) and (9) are computed by means of
a discrete summation, since the system is discrete time, with 5 kHz
packet transmission frequency via Ethernet.

Among N repetitions, the Tracking Error (TE) is defined as the
mean value of the calculated RMS Error for each run, with a confi-
dence interval DTE associated to the standard deviation of the RMS
Error parameters:

TEpos ctrlðta; tbÞ ¼
1
N

XN

i¼1

RMSEpos ctrlðta; tbÞi ð10Þ

TEforce ctrlðta; tbÞ ¼
1
N

XN

i¼1

RMSEforce ctrlðta; tbÞi ð11Þ

DTEpos ctrlðta; tbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðRMSEpos ctrlðta; tbÞi � TEpos ctrlðta; tbÞÞ2
vuut

ð12Þ

DTEforce ctrlðta; tbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðRMSEforce ctrlðta; tbÞi � TEforce ctrlðta; tbÞÞ2
vuut

ð13Þ

The tracking error parameters, calculated over N = 10 runs of
the protocol shown in Fig. 3, are summarized in Table 1, confirming
adequate control performances. Table 2 summarizes the Tracking
Error along the indentation axis, with normalization to the normal
contact force reference.

The error parameters are calculated for each phase of the proto-
col shown in Fig. 3, where the interval [ti�1, ti] is related to the ith
phase. The results provided within Table 1 considered subsets of
each stimulation phase too, obtained discarding the first 150 ms
of data at the onset of each motion. This operation was performed
to assess the tracking performances more fairly, since the reference
trajectories or their first derivatives had discontinuities, thus
affecting the tracking error at the transition between two subse-
quent phases of the protocol. The error parameters summarized
in Table 1 point out that the reference slider position is tracked
with an error lower than 28 lm for ramps (phases 3, 7 and 13), that
reference sine waves (phases 9 and 10) having peak velocities up to
47.1 mm/s are followed with error lower than 68 lm, and that the
tested 5th order polynomial trajectory (phase 11) presents a Track-
ing Error lower than 43 lm. As regards the regulation of the inden-

Fig. 3. Sample protocols that can be implemented with the mechatronic platform. Three runs, from the 10 repetitions acquired at 5 kHz through Ethernet digital
transmission, of the same sequence of commands are superimposed to show high repeatability. The plots represent, from the top: position of the translational slider (target
and actual), error in tracking the reference slider position, indentation force at finger-stimulus interface (target and actual), error in tracking the reference indentation force,
tangential force component along the direction of the sliding motion, Boolean channel switching each time a new high-level command is executed. Phases 2 and 15, at the
beginning and at the end of the protocol, are the loading and unloading of the smooth aluminum stimulus to the finger. In phase 3 the stimulus is stroked for 50 mm at
25 mm/s and normal contact force at 200 mN; phases 5 and 6 are normal contact force steps from 200 mN to 800 mN and then to 400 mN; from phase 7 to phase 11 the
normal contact force is held at 400 mN, while the stimulus is stroked for 30 mm at constant speed of 20 mm/s (phase 7), while two (phase 9, 15 mm amplitude at 0.5 Hz) or
three (phase 10, 5 mm amplitude at 1 Hz) sine waves are executed, or while a fifth order polynomial trajectory is followed (phase 11). Phase 13 is a position ramp from 50 mm
to 30 mm in 1.5 s and normal contact force set to 200 mN. The left inset shows a zoom on the transitory between phase 4 and phase 5. The right inset shows a zoom on
dynamic phase 7.
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tation force, all the calculated parameters showed (Table 1) abso-
lute Tracking Error lower than 20 mN, while the normalized error
was comprised between 1.6% and 6.6% (force reference is at 0 N
in phases 1 and 15 and the normalization thus results in a Not a
Number). The high value appearing for TEforce_ctrl(t1, t2) (both abso-
lute in Table 1 and normalized in Table 2) is misleading, since
phase 2 included a free flight motion of the stimulus before con-
tacting the finger. By discarding the first part of data, the TEfor-

ce_ctrl(t1 + 150 ms, t2) index calculated in phase 2 becomes
comparable to the other phases, as shown in Table 1 and in Table 2.

As a further relevant result, the extremely reduced values of the
confidence intervals DTE summarized in Tables 1 and 2, and the
overlapping curves within different runs of Fig. 3 confirm that
the developed mechatronic platform guarantees excellent repeat-
ability in the presentation of tactile stimuli. This achievement is
fundamental in touch studies: even if the tracking of the reference
curves may get relatively worse in certain conditions, the actual
trajectories under feedback control are almost coincident among
different runs.

4.2. Microneurography validation experiments

The excellent repeatability, being mainly a consequence of the
intrinsically reduced jitter in the scheduling of periodic control
tasks by the implemented hierarchical control architecture (partic-
ularly, the hardware programmable FPGA logics for the embedded
controller), is confirmed by human microneurography recordings
too, which showed very strong similarity over repeated runs using
periodic ridged stimuli. An example from a RA (Meissner) afferent
unit is shown in Fig. 4a, where the instantaneous rate plots from
different runs highlight the repeatability of the stimuli delivered
by the platform, and the stability of the mounting of the finger.
Here, the 1600 lm spatial period of the TUFSET surface is revealed
as a modulation of firing frequency as the ridges of the surface
were sliding across the receptive field of the RA unit. Similar re-

sults were obtained in all other recorded afferents. With respect
to repeatability, the availability of the switching trigger shown in
Fig. 3 (both as a bit in the digital Ethernet stream and as a physical

Table 1
Position and force control tracking error parameters, calculated for each stimulation phase depicted in Fig. 3.

Phase ta tb TEpos_ctrl(ta, tb) [lm] DTEpos_ctrl(ta, tb) [lm] TEforce_ctrl(ta, tb) [mN] DTEforce_ctrl(ta, tb) [mN]

1 t0 t1 1.5 0.0 2.3 0.9
t0 + 150 ms t1 1.7 0.0 2.4 1.0

2 t1 t2 1.5 0.0 126.1 3.2
t1 + 150 ms t2 1.6 0.0 13.2 1.5

3 t2 t3 89.3 0.7 13.3 1.9
t2 + 150 ms t3 27.9 0.3 12.8 1.9

4 t3 t4 87.6 3.3 11.6 1.5
t3 + 150 ms t4 37.0 1.1 10.2 1.5

5 t4 t5 2.8 0.5 38.8 0.9
t4 + 150 ms t5 2.9 0.5 13.0 3.4

6 t5 t6 0.5 0.9 24.5 1.8
t5 + 150 ms t6 0.5 0.9 10.9 2.7

7 t6 t7 60.7 0.2 13.2 0.8
t6 + 150 ms t7 19.5 0.2 11.6 1.1

8 t7 t8 32.9 1.3 11.4 1.1
t7 + 150 ms t8 14.9 1.4 11.3 1.0

9 t8 t9 161.0 1.2 15.4 0.9
t8 + 150 ms t9 58.8 0.3 14.7 0.7

10 t9 t10 125.4 1.7 19.1 1.6
t9 + 150 ms t10 67.4 0.3 19.1 1.6

11 t10 t11 87.1 1.5 14.0 1.3
t10 + 150 ms t11 42.6 0.3 13.6 1.3

12 t11 t12 7.6 0.3 17.9 0.9
t11 + 150 ms t12 7.8 0.5 9.6 1.2

13 t12 t13 21.4 1.3 10.8 1.7
t12 + 150 ms t13 9.7 0.3 10.4 1.9

14 t13 t14 23.2 0.3 10.2 1.3
t13 + 150 ms t14 13.6 0.8 9.9 1.3

15 t14 t15 1.4 0.7 16.3 1.6
t14 + 150 ms t15 1.4 0.8 5.9 2.5

Table 2
Tracking error parameters for force feedback control along the indentation axis,
normalized to the normal contact force reference, calculated for each stimulation
phase depicted in Fig. 3.

Phase ta tb %TEforce_ctrl(ta, tb) %DTEforce_ctrl(ta, tb)

1 t0 t1 NaN NaN
t0 + 150 ms t1 NaN NaN

2 t1 t2 63.0 1.6
t1 + 150 ms t2 6.6 0.7

3 t2 t3 6.6 0.9
t2 + 150 ms t3 6.4 0.9

4 t3 t4 5.8 0.7
t3 + 150 ms t4 5.1 0.8

5 t4 t5 4.8 0.1
t4 + 150 ms t5 1.6 0.4

6 t5 t6 6.1 0.5
t5 + 150 ms t6 2.7 0.7

7 t6 t7 3.3 0.2
t6 + 150 ms t7 2.9 0.3

8 t7 t8 2.9 0.3
t7 + 150 ms t8 2.8 0.2

9 t8 t9 3.9 0.2
t8 + 150 ms t9 3.7 0.2

10 t9 t10 4.8 0.4
t9 + 150 ms t10 4.8 0.4

11 t10 t11 3.5 0.3
t10 + 150 ms t11 3.4 0.3

12 t11 t12 9.0 0.4
t11 + 150 ms t12 4.8 0.6

13 t12 t13 5.4 0.8
t12 + 150 ms t13 5.2 1.0

14 t13 t14 5.1 0.6
t13 + 150 ms t14 5.0 0.6

15 t14 t15 NaN NaN
t14 + 150 ms t15 NaN NaN
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channel for interfacing with the analog instrumentation for elec-
trophysiological measurements) allows to precisely synchronize
multiple runs of the same protocol, thus enabling in future studies
the quantitative investigation of the biological system through sta-
tistical analysis on huge datasets.

In the time domain, the immunity from spurious vibrations was
confirmed by microneurography recording from RA units using a
smooth plastic surface, shown in Fig. 4b. After the expected short
burst of impulses at the start of motion, this unit fired only spo-
radic impulses. The spectra of the firing for all the data from the
same RA unit is shown in Fig. 4c for 1600 lm spatial period grating,
meaningfully depicting the modulation of firing at the expected
fundamental frequency (i.e. the ratio between the sliding velocity
and the spatial period of the presented surface) of 12.5 Hz at a slid-
ing velocity of 20 mm/s, as well as significant modulation at har-
monics up to 200 Hz, thus revealing the high sensitivity in
encoding the mechanical characteristics of the stimulating surface
in this unit. In the frequency domain, the spectrum for all the data
from stimulation with a smooth plastic surface in the same unit re-

veals no periodic firing or pickup of vibrations (Fig. 4d). To succeed
in this objective, a relevant design choice was the introduction of
custom dead bands (Fig. 2b and c) which allowed errors lower than
specific thresholds to occur, thus avoiding vibrations produced by
continuous sub-threshold error-correction control actions.

4.3. Electromagnetic noise assessment

No relevant noise pickup was observed in the raw nerve signals
(top plots of Fig. 4) recorded during platform movement or when
the force control was engaged, as an effect of the selected linear
power drivers for the actuators instead of switching ones. Platform
electromagnetic compatibility with the microneurography tech-
nique was quantitatively assessed, as presented in the following.
Fig. 5 depicts neural data from a SAI unit of the test subject in
the three MS-mode, CL-mode and OL-mode experimental condi-
tions detailed in Section 3.2. Neural spikes are identified in MS-
mode and marked with dots, corresponding to the phases during
which the finger of the test subject was manually probed. The spike

Fig. 4. Microneurographic recording from a RA (Meissner) tactile afferent unit. (a) Stimulation with a ridged grating. Records from top, recorded nerve signal, instantaneous
rate of nerve discharges during three repeated runs of the same stimulus, slider position. (b) Stimulation with a smooth plastic surface on the same unit, records as in A. (c)
Spectrum of nerve discharge during ridged grating stimulation. Solid lines show p < 0.01 confidence limits. (d) Spectrum for a smooth surface as in C.
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template applied for spike sorting in MS-mode was then used to
evaluate whether or not neural spikes were elicited under the
two other stimulation conditions due to electromagnetic interfer-
ence by the platform (since test subject fingertip was not mechan-
ically stimulated in CL-mode and OL-mode, and a SAI unit is
expected to be silent in that condition). Noticeably, no spikes could
be identified in both the CL-mode and OL-mode, confirming that
the platform did not induce neural firing and hence validating
the results presented above, since the spectra of Fig. 4 were related
to the identified neural spikes (i.e. a point process). As one could
expect, the mechatronic platform had an effect in the background
neural noise, confirmed by the higher amplitude of the CL-mode
and OL-mode traces if compared to the spike-free regions of the
MS-mode one. However, the overlap of the traces shows that the
increase in noise was not enough to mask the spikes occurring
while manually probing (MS-mode) the fingertip of the test sub-

ject. Despite the main message conveyed by Fig. 5 is related to plat-
form electromagnetic noise assessment, a compared visual
inspection of the CL-mode and OL-mode force traces points out
as well the stabilizing effect of closed loop indentation force con-
trol with respect to constant current open loop one, particularly
from the onset of the sliding motion. A statistical noise analysis
is presented in Fig. 6 for each of the three MS, CL and OL stimula-
tion conditions, where the probability that the neural signal be-
longs to a bin (width set to 0.4 lV) is evaluated based on
amplitude levels experimentally occurring in 38 s of data at
12.8 kHz. A Gaussian fitting is shown as well in Fig. 6, and the re-
lated parameters are summarized in Table 3, showing significant
fitting confidence. Platform activation causes a non relevant in-
crease in noise standard deviation DN from 2.82 lV (MS-mode)
to 3.43 lV (OL-mode) and 3.48 lV (MS-mode), and had almost
no effect in its mean value MN. Hence, no relevant difference was
observed between closed loop and constant current open loop
modalities, confirming that the spectra extracted (Fig. 4) from
the point processes of identified spike trains were not electromag-
netically induced by the specific indentation force controller.

5. Conclusions

The design and experimental validation of a mechatronic tactile
stimulator was presented in this work as a new tool for the inves-
tigation of human touch. The system was conceived to enable para-
metric, precise, repeatable and smooth stimulus presentation with

Fig. 5. Neural recordings under the three MS-mode, CL-mode and OL-mode experimental conditions, described in Section 3.2, are depicted in the top plot for assessment of
platform electromagnetic compatibility with microneurography technique. Left to right, the insets in the second row from the top show zooms on neural data recorded from
the test subject with MS-mode, CL-mode and OL-mode. The position of the translational slider and the normal component of the indentation force are shown as well under
both the CL-mode and OL-mode experiments.

Fig. 6. Statistical neural noise analysis for each of the three MS-mode, CL-mode and
OL-mode stimulation conditions, described in Section 3.2. The probability that the
neural signal belongs to a bin (width set to 0.4 lV) is evaluated based on amplitude
levels experimentally occurring in 38 s of data at 12.8 kHz. The solid line shows
Gaussian fitting of noise probability density.

Table 3
Gaussian distribution neural signal background noise fitting parameters (mean MN
and standard deviation DN) and related confidence intervals for evaluating platform
electromagnetic compatibility under the three MS-mode, CL-mode and OL-mode
tactile stimulation conditions described in Section 3.2.

Stimulation condition MN (lV) DN (lV)

MS-mode �2.81 ± 0.01 2.82 ± 0.01
CL-mode �2.72 ± 0.02 3.48 ± 0.01
OL-mode �2.72 ± 0.02 3.44 ± 0.01
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standardized conditions, no vibrations and simple programming
for indenting and sliding the surfaces on the fingerpad. Moreover,
the chosen FPGA solution guaranteed to the platform adequate
throughput together with design upgradeability [8,33], which
was not typical of tactile stimulation systems previously reported
in the literature [22,14,34].

Future works will present results of ongoing studies on the
measurement of peripheral neural firing and brain responses by
means of microneurography and EEG, and of (even combined) psy-
chophysical experiments on human touch. In parallel, the same
system is enabling studies on artificial tactile sensors in robotics
[8,33] and future investigations will focus on artificial touch eval-
uation of a variety of tactile surfaces, such as textiles.
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Abstract: A compliant 2x2 tactile sensor array was developed and investigated for 

roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with 

polymeric packaging providing in total 16 sensitive elements to external mechanical 

stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. 

Experimental analysis of the bio-inspired tactile sensor array was performed by using 

ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with 

regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 

mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the 

applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz 

with an overall maximum error of 1.7%. The tactile sensor could also perform contact 

imaging during static stimulus indentation. The experiments demonstrated the suitability of 

this approach for the design of a roughness encoding tactile sensor for an artificial 

fingerpad. 

Keywords: MEMS tactile sensor array; bio-inspired sensor; roughness encoding; dynamic 

touch; static contact imaging. 

 

OPEN ACCESS



Sensors 2009, 9                            

 

3162

1. Introduction 

Artificial tactile sensors which aim to mimic human discrimination capabilities should encode 

information correlated with the stimulus spatial features, with its motion dynamics as well as with 

contact mechanics. Roughness is a fundamental feature for texture perception [1,2,3], which has been 

associated with the spatial modulation of the used stimuli (i.e. “surface coarseness”) [4]. In 

experiments on human perception of tactile roughness the type of used surfaces often have patterns 

(gratings or rising dots) with features that can be independently varied in size and spacing [5,6]. This 

way, unlike for natural surfaces in which the spatial pattern features vary randomly, the physical 

characteristics of the explored surface, on which roughness perception is based, can be studied and 

identified. 

The physical determinant of perceived roughness is not yet fully understood [2,4] and there is a 

varied set of spatial features that should be taken into account for studies on roughness perception 

(e.g., using ridged stimuli: groove width, ridge width, ridge orientation, ridge height, material 

compliance, surface lubrication and fine finishing, etc.). In human psychophysical experiments, for 

example, some groups highlighted the presence of a relatively narrow region where the sense of 

roughness increases together with the groove width of ridged stimuli, followed by a flattened 

perception in case of very coarse gratings (up to 8.5 mm of groove width) [7]. In parallel to this, using 

embossed dots, some researchers presented monotonic functions of roughness and dots spacing [5], 

while an inverse “U” shape was shown in [8]. 

Considering dynamic exploration of extremely fine textures, various researchers showed that 

humans can detect even up to microtextures [9], highlighting the role of fingerprint ridges as vibration 

promoters [10] and considering the Pacinian Corpuscles as vibration detectors [11]. Some groups 

joined the Katz’s duplex theory considering vibrations useful for revealing fine forms, and a spatial 

mechanism (i.e. the static image of the contact between the texture and the finger) as the basis for 

coarse surfaces roughness perception [12]. Importantly, in the last decade, other groups proposed and 

gave evidence to a unified peripheral neural mechanism highlighting the role of SA1 afferents with 

respect to the other mechanoreceptors [13,1]. 

The understanding of the neural mechanisms underlying roughness encoding is in progress, 

however evidence was given to the fact that temporal frequency changes of tactile information play a 

major role in roughness perception in humans [5]. Finite element analyses using human finger model 

during dynamic touch showed that spatial information of the textured surface are related to temporal 

frequency changes at the position of tactile receptors [14]. In touch activities, if humans have the 

ability to estimate somehow the relative hand velocity v between the textured surface and the exploring 

finger, the spatial period Δp of the surface can be perceived by detecting the temporal frequency of the 

vibration [15], such that: 

p

v
f


  (1) 

The findings and debate of researchers on human touch are directly linked with the development of 

artificial tactile sensors, which is one of the chief challenges in robotics. Many technologies have been 

investigated and can be analysed in comprehensive reviews on the topic [16,17]. For the above 
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reasons, with regards to the many reported efforts to reproduce human capability to detect texture, the 

developed sensors were mainly based on the analysis of the vibration gathered during dynamic 

exploration or on the contact imaging [18] by means of static indentation. An approach was to develop 

a finger-like multilayered texture sensor integrating five strain gauges for identifying the difference in 

roughness, softness and frictional properties of various materials [19]. Employing such device, the 

texture information of a surface was quantitatively detected by estimating the vibrational frequency 

excited by indenting and sliding a periodic stimulus with spatial wavelength in the millimiters range 

[20]. A similar method was previously shown in [21] for finer surfaces. Another noticeable solution 

was presented in [22], where a spatial filter function was used adaptively depending on sensor-stimulus 

relative motion parameters, thus pointing out the centrality of a spatio-temporal approach in tactile 

sensing. Hosoda and colleagues developed a soft fingertip with randomly distributed strain gauges and 

PVDF films at different depths [23], allowing for discrimination of five different types of materials. 

Other recent biomimetic fingertips focused on the transduction properties, which could be either 

acoustic [24] or electrical [25], of the packaging materials for converting the surface features of the 

explored textures into recorded vibrations. Finally, one of the most recent developments is represented 

by a high-resolution thin film sensor built by Maheshwari and Saraf [26] by means of a layer-by-layer 

self-assembly technique, that responds to an applied force either with electroluminescent emissions or 

with a change in current density. A charge-coupled device (CCD) camera was used to capture the 

electroluminescent emissions from the sensor providing imaging stress distribution with spatial 

resolution of about 40 µm. 

In this work, the investigated artificial tactile sensor integrates a MEMS array having a number of 

sensing elements (16 channels in about 20 mm2, i.e. 0.8 channels/mm2) similar to the innervation 

density of Slowly Adapting type 1 (SA1) mechanoreceptors in the hand (about 1 unit/mm2) [27]. The 

technological approach is based on a 3D MEMS core unit [28] with a soft and compliant packaging. 

As previously demonstrated, the microsensor can be integrated with a packaging architecture resulting 

in a robust and compliant tactile sensor for application in artificial hands, while sensitive enough to 

detect slip events, showing that silicon based tactile sensors can go beyond laboratory practice [29]. 

In the long term, the presented artificial approach aims, on one side, at developing a device capable 

of mimicking the texture discrimination properties of the human hand and which can be integrated in 

an anthropomorphic artificial hand, while on the other it is intended as an artificial model to be used as 

a test bench for neuroscientific hypotheses describing the mechanisms of roughness perception. This 

long term objective gets inspiration from the above mentioned work of Yoshioka and colleagues [13], 

in which it was shown that spatial variation in the firing rates of SA1 units-only can account for 

roughness perception even when the explored texture is finer than the SA1 innervation density. 

In order to go in such direction, the specific objective of the current work was to gather the 

vibrations which are supposed to be the basis for the encoding of roughness in dynamic touch, as well 

as to perform static imaging of the contact with the same array of tactile sensors. The present 

experimental analysis evaluates whether there is a substantial processing advantage in using more than 

one output of the array for finding out the common principal frequency produced during dynamic 

stimulus presentation. This way, by merging the estimation of the common frequency detected by 

more than one sensor unit together with the knowledge of the sliding velocity of the applied stimulus, 

texture related features could be extracted. The suitability of the sensor for both static contact imaging 
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and vibration detection was evaluated by means of an experimental protocol containing both 

motionless and dynamic contact phases involving forces and velocities in the range of those used by 

humans in discriminative touch . 

The paper is organized as follows. In Section 2 the design of the sensor array is shown, describing 

the elementary MEMS unit, the packaging and the readout electronics. In Section 3 the experimental 

protocol and the used data analysis methods are presented. Section 4 shows the experimentation with 

the array prototype, which has been carried out with ridged stimuli sliding at constant velocity and 

regulated normal force after and before a static indentation phase. Finally, results are discussed in 

Section 5 and future work insights are given in the Conclusions. 

2. Materials 

2.1. MEMS Sensor Array 

The elementary cell of the array was the 3D MEMS sensor described in [28], shown in Figure 1, 

which has a high aspect ratio 3D structure (1.5 mm×1.5 mm×625 μm). In the bare configuration of the 

sensor, the cylindrical mesa, located at the center of the cross-shape tethers, transmits an externally 

applied force to the sensor inducing stresses in the four tethers where four p-type piezoresistors are 

implanted. The fractional change in resistance ΔR/R of each piezoresistor of the microsensor is 

proportional to the longitudinal and the transversal stress components, while the design of the sensor is 

such that the transversal stress component in the implanted piezoresistors is neglectable with respect to 

the longitudinal one. In the current experimentation four microsensors were bonded on a silicon carrier 

chip connecting the 9 NiAu pads of each microsensor by means of a micro-soldering paste by using 

flip-chip bonding method. As stated in the Introduction in this study attention was paid in developing 

an array with a density of sensing elements that could be compared to the innervation density of 

Slowly Adapting type 1 (SA1) mechanoreceptors in the hand (≈ 1 unit/mm2) [27]. The tactile sensor 

array, depicted in Figure 1, had 16 channels as total tactile sensor outputs. It had a pitch of 2.3 mm 

(indicated by ΔX in Figure 1) for technological reasons, i.e. mainly because of the operation room 

needed for the flip-chip bonding method and layout of the carrier chip. The resulting area of the 

sensing array was of 21.16 mm2 inscribing each MEMS unit inside a square of area 5.29 mm2. The 

silicon carrier chip was wire bonded by means of 25 µm Al wires to a Printed Circuit Board (PCB) in 

order to connect the array to the external instrumentation. The perimeter of the array was secured with 

a two component epoxy glue in order to protect the wire bonding and to improve the stability of the 

silicon carrier chip.  

The MEMS tactile array was packaged with a synthetic material (as explained in the next section) 

that mechanically filters the external applied load and creates a distribution of stresses in the new 

configuration of microsensor and packaging, with respect to the externally applied stimulus. For the 

investigation reported in the present work, the outputs of the piezoresistors (i.e. the sensing elements) 

have been analyzed directly for their dynamic behaviour, whilst they have not been used to extract the 

three components of an applied force. This avoided to address the calibration of each MEMS before 

packaging, as done with this device in [30], or after packaging as for example performed in [31] with a 

different sensor together with the introduction of an analytical model for point contact loads. 
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2.2. Packaging 

The packaging of the bare silicon sensors array was developed so that the resulting tactile sensor 

could have compliance and softness characteristics inspired to those of the human fingerpad. Previous 

investigations for the application in an anthropomorphic artificial hand were considered, in which it 

was demonstrated that it is possible to integrate the silicon microsensor in a soft and compliant, but 

robust packaging [29]. In particular, the round shape of the packaging of the array was chosen based 

on the anthropomorphic features of the distal phalanx of the cybernetic hand CyberHand [32,33].  

In parallel, a suitable curved geometry was identified in order to increase the portion of load gathered 

by the sensors in case of contact with a planar textured surface, as pointed out in [34]. As shown in 

Figure 1, the dimensioning parameters for the packaging where r0 and d, which were set to 8 mm and 

1.3 mm, respectively, for obtaining adequate sensitivity as well as partially overlapping sensing ranges 

between nearest-neighbour MEMS units and acceptable low-pass spatial filtering effect [35] with 

respect to the used stimuli. 

 

Figure 1. (a) 3D design of the tactile sensor array. (b) Top: The 2×2 MEMS array 

compared with human finger; bottom: a FIB image of the MEMS sensor. (c) Top view of 

the sensor array. (d) Schematic showing a cross section of packaging design and grating 

dimensions. Groove width gw ranged from 2.0 mm to 3.5 mm (see Table1), while ridge 

height h and ridge width rw had fixed values indicated (in mm) in figure. The phases of the 

experimental protocol are also indicated. 

 



Sensors 2009, 9                            

 

3166

The 2×2 array was packaged with polyurethane (Poly 74-40, PolyTek, USA) and an outer thin 

protective layer of polyimide having thickness of 0.05 mm and shore A 82 hardness (ST1882, Stevens 

Urethanes, USA) in order to prevent the inner packaging from wearing. In fact, preliminary trials 

demonstrated that the ridged stimuli can damage the packaging of the array. In the present study, a 

type of polyurethane with shore A 40 hardness (instead of the previous shore A 45 [29]) was used 

attempting a step forward in human finger mimicry. Moulds hosting the array were built with rapid 

prototyping resin using a 3D printer, and the liquid part A and part B were poured immediately after 

being mixed and degassed. The polyimide layer was applied after polyurethane curing and showed 

excellent adhesion provided that the air between the cover and the thin sheet was removed. Moreover, 

the protective layer was secured by means of a frame also built in rapid prototyping resin. 

2.3. Readout Electronics 

Each piezoresistor was connected in series to a surface mount resistor (R1 … R16) located on the 

designed PCB, as shown in Figure 2(a). The values of R1 … R16 were all set to 820 Ω, which is close 

to the mean resistance of the piezoresistors of the 2×2 array, thus almost achieving sensitivity 

maximization from the quarter bridge voltage divider. The used quarter bridge topology produces a 

variation of the acquired voltage proportional to the fractional change in resistance of each 

piezoresistor. Capacitors (C1 … C16, all having capacitance of 1 µF) were placed in parallel to each 

completing resistor, resulting in a low-pass single pole filter at about 390 Hz (i.e. 

CRCRR piezopiezo 
1

)//(2

1
 ) for reducing the noise level at frequencies outside the band of interest. 

The piezoresistor-resistor arms were supplied by means of a 5V DC regulated voltage, and the node 

between each piezoresistor and the completing resistor was directly acquired without pre-amplification 

by means of a 16-channel 24-bit Analog to Digital Converter (ADS1258, Texas Instruments). Each 

channel was sampled at a frequency of 241 Hz, which could be varied via software up to 24.7 kHz 

selecting a subset of channels and changing the conversion options of the used ADC. Considering the 

chosen sampling frequency and the cut-off of the RC low-pass filter, the fulfillment of the Nyquist 

theorem for aliasing avoidance mainly relied on the expected baseband properties of the gathered 

signals (refer to Figures 4 and 5 in the following for a qualitative validation of such assumption). 

Digital data transfer between the ADC and the acquisition system was performed by means of SPI 

protocol. The data acquisition system was based on Field Programmable Gate Array (FPGA) 

technology (CycloneII, Altera) and had a 64 bit hardware timer running at 50 MHz, so that the 

acquisition of each channel had a time reference with resolution of 20 ns and practically unlimited 

length. Acquired data was buffered by a soft-core processor (NiosII, Altera) instantiated onboard the 

FPGA and transmitted at the end of each session to a Personal Computer with JTAG UART protocol, 

as shown in Figure 2(b). The storage of data was allowed within the Nios II Integrated Development 

Environment by enabling the option “Filing System to open files on the PC” in the Altera Host Based 

File System. 
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Figure 2. Schematic view of the readout electronics (a). Block diagram of the overall 

experimental setup (b). 

 
(a) 

 
(b) 

3. Methods 

3.1. Experimental Protocol 

The packaged array was mounted on a mechatronic tactile stimulator capable of indenting the 

sensor with force feedback control and stroking a stimulus over it with precise position control. The 

configuration of the array/stimulus interface and the experimental protocol are reported in Figure 1(d) 

while Figure 2(b) shows a diagram of the overall experimental set-up. 

Four types of stimuli were built with rapid prototyping resin material, with spatial periods Δp 

varying from a minimum of 2.6 mm to a maximum of 4.1 mm, as detailed in Table 1. 



Sensors 2009, 9                            

 

3168

In order to evaluate whether the sensor outputs could be processed for automatically recognizing the 

instant of contact, data acquisition started prior to the phase during which the stimulus contacted the 

sensor array (phase A). In a second phase of the experiment, the stimulator was commanded to contact 

the tactile sensor (phase B). The sensor array was loaded setting at 1 N the reference of the normal 

force feedback controller given that such value is in the middle of the force range used by humans in 

fine forms discrimination during active dynamic touch experience [36]. 

The loading resulted in a contact spike in the signals gathered from the MEMS array. The target 

force level was held for 1 s. After that, the sliding of stimulus started (phase C) along the x-axis 

[piezo1-piezo3 direction of Figure 1(b)] while maintaining enabled the force feedback controller, thus 

obtaining a stimulation with normal force held at 1 N and tangential force depending on the contact 

mechanics and on the motion dynamics. 

Three different translational velocities (15 mm/s, 30 mm/s and 48 mm/s) of the stimulus were 

chosen for overlapping with the range commonly used in related neurophysiologic studies [37]. The 

direction of motion (along the x-axis as shown in Figure 1) was always the same, as well as the sign of 

velocity and the starting absolute position. The sliding was applied for 60 mm, providing dynamic 

stimulations of 4 s, 2 s or 1.25 s depending on the applied velocity. At the end of the sliding motion 

there was a steady state of 1 s at 1 N (phase D) and, finally, the tactile sensor array was unloaded 

(phase E). The initial and final static phases of the protocol were performed with repeatable conditions 

in order to enable analyses on static imaging capabilities of the sensor in addition to the dynamic 

behaviour investigation. 

3.2. Common Frequency Detection 

Preprocessing 

During the sliding of the periodic ridged stimulus over the packaged sensor array (phase C; see 

Figure 1), the output signal mi,j from the i-th piezoresistor of the j-th MEMS unit of the 2×2 array 

clearly showed a principal frequency component f, while the contact and the unloading operations 

could be revealed by the first spike and the last step in the outputs, as shown in Figure 3. 

Defining as v  the sliding velocity of the grating, the relationship reported in Equation (1) is 

expected for f. 

Referring to Figure 1 (d) and Table 1, the spatial period Δpk of the of the k-th grating is given by the 
sum of the groove width and of the ridge width, thus: kkk rwgwp  . 

 

Table 1. Grating groove width (gw) and spatial period (Δp) with respect to the sample 

type. Ridge width (rw) was fixed to 0.6 mm for all types. 

Grating number 1 2 3 4 

gw (mm) 2.0 2.5 3.0 3.5 

Δp (mm) 2.6 3.1 3.6 4.1 

In order to be able to detect the common frequency between all the fitting curves of the output 

signals, attention was paid in respecting the Nyquist condition for the sampling frequency (
2
Cff  ) 
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with a safety factor, such that at least 13 samples per period were guaranteed even in the worst case 
stimulation conditions (i.e. minimum grating periodicity kp  and maximum speed of the stimulus, as 

shown in Table 2). 

 

Table 2. Expected principal frequency from sensor outputs depending on the spatial 

periodicity (Δp) and on the sliding velocity (v) of the applied grating. 

Expected 

frequency vs. Δp 

and v 

Δp = 4.1 mm Δp = 3.6 mm Δp = 3.1 mm Δp = 2.6 mm 

v = 15 mm/s 3.66 Hz 4.17 Hz 4.84 Hz 5.77 Hz 

v = 30 mm/s 7.32 Hz 8.33 Hz 9.68 Hz 11.54 Hz 

v = 48 mm/s 
11.71 Hz (not 

tested) 

13.33 Hz (not 

tested) 
15.48 Hz 18.46 Hz 

 

To ensure data quality, a simple procedure was implemented to remove prior to processing data that 

was not useful for the dynamic analysis of the recorded signals. The redundancy in the system was 

used by jointly observing the outputs of two piezoresistors from different MEMS sensors. Since the 

contact spike mentioned in Section 3.1 was less pronounced for some piezoresistors than for others, the 

best defined spike was extracted from either one of the two time series. 

To this end: 

      initjiinitji
j

ttmmedianttms  ,,maxmaxarg  
(2) 

selects the sensor s whose data was used for initial spike detection. Here, tinit = 0.8s is a time threshold 

before which the spike is expected to appear. The location of the spike tspike is then detected by: 

  tmt si
t

spike ,maxarg  (3) 

and used for both time series. According to the measurement protocol, the movement starts at t = 1.0s 

after the spike, and ends after 60mm of stimulus have been traversed. The effective sample length was 

set to Leff = 55mm for pre-processing operations, in order to avoid introducing invalid data in case of 

inherent timing variations. The start and the end of the valid range thus were: 

ttt spikestart   (4)

v

L
tt eff

startend 
 (5)

with ν denoting the sliding velocity of the grating. 

Ten different combinations of sliding velocity and grating periodicity were formed, as detailed in 

Section 4, Table 3. Four measurement runs of the sensor array were carried out for each combination, 

yielding a total of 40 runs. In the following, these data series are referred by number, with run 1 to 4 

belonging to combination one, run 5 to 8 to combination 2 and so forth. Figure 3 shows typical outputs 

of the procedure, which performed flawlessly on all 40 data sets. 
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Figure 3. Automatic contact detection applying Equations (2) and (3) and selection of the 

stimulus sliding phase (phase C, indicated in green in the plots) by means of Equations (4) 

and (5) using piezoresistor 1 of MEMS sensors 1 and 2 of the array. The plots refer to data 

series 12 (a) and 16 (b), where a grating of 4.1 mm spatial periodicity was applied with 

translational speeds of 15 mm/s and 30 mm/s, respectively, according to Tables 2 and 3. 

The red line marks the detected spike, blue data are cropped for common frequency 

analysis. 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

An optional pre-processing step consisted in chopping the time series into time windows of size w. 

In most practical applications with gradually or abruptly changing surface characteristics, a trade-off 

will have to be found between the response delay given by the finite window size, and the accuracy of 

retrieval. Here this is investigated with non-overlapping windows to minimize redundancy, while in 

practice one could probably use strongly overlapping windows and thus higher update rates, if enough 

computation power is available. 
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Fast Fourier Transform 

The most important prerequisite for advanced use of the developed sensor array was to establish a 

robust retrieval procedure for the fundamental spatio-temporal frequency of the system. As a first step, 

the two selected piezoresistors voltage time series underwent a Fast Fourier Transform (FFT) 

separately, to find a first guess for the fundamental frequency f, namely at the maximum of the 

periodogram. Note that by selecting the maximum peak as the fundamental frequency using naïve 

Fourier analysis, a discretization error of up to: 

wN

f
f C

2

1

2

1

2

1
  (6) 

occurred, where fC = 241 Hz was the channel sampling frequency and N the number of data points in 

the time window. The first guess magnitude of the fundamental oscillation was also difficult to read 

from the spectrum, because it would have to include contributions from the slopes surrounding the 

central peak. The solutions implemented in the following overcame this inconvenience. While it would 

certainly improve accuracy to average the contributions surrounding the fundamental frequency peak 

and/or to take into account overtones that often can be seen in the spectra, this procedure would 

involve several heuristic decisions about thresholds and boundaries. 

Least squares fitting 

In order to overcome to the discretization problem mentioned above, during dynamic stimulation 

each sensor output was fitted with a sine wave by using Equation (7): 

  jijijiji ttfABm ,,,, 2sin    (7) 

where: 

 jim ,  is the signal obtained from the i-th piezoresistor of the j-th MEMS unit of the 2×2 array; 

 jiB ,  and jiA ,  are the offset and the amplitude of the sine waves used for fitting each jim , ; 

 jit , is an offset time which well fits the sine waves with data acquired during the exploration 

phase; 
 f  is the common principal frequency coming out from the output signals using the analysis 

described below; observe that f is expected to be the same for all the outputs of the sensor array. 

Therefore, a simpler second step was chosen, where a function of the form: 

 )(2sin),,,,( ,,,,,, jijijijijiji ttfABtBAfth  
 (8) 

was defined to be fitted to each channel’s time domain data (see also Equation (7)). This was done by 

performing a gradient descent on the error function (considering piezoresistor 1 of MEMS sensors 1 

and 2) overall the runs of a same combination of grating and velocity: 

     
k

kkkk tmtBAfthtmtBAfthE 2
2,12,12,12,1

2
1,11,11,11,1 )(),,,,()(),,,,(  (9) 

with k running over all data points in the chosen time window, tk the sampling instants and mi,j(tk) the 

signal obtained from piezoresistor i of unit j of the array. Thus there were seven fitting parameters: 
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A1,1, A1,2, B1,1, B1,2, t1,1, t1,2, and f. The purpose of this procedure was to both remove the discretization 

errors of the FFT, and introduce a priori information, because all the sensors were dragged over the 

same physical surface at the same speed, and then the same fundamental frequency was expected. It is 

possible to extend this method to include all valid piezoresistor readings from all sensors, if additional 

accuracy is required. To test this retrieval procedure, data from all measurement series was processed, 

averaging over the four measurements of each configuration of grating width and velocity. The data 

window width w was varied from 0.2 s to 1.0 s. For each w, the start of the time window was stepped 

through from tstart to tend-w in steps of 50 ms. 

3.3. Error Parameters and Repeatability 

The RMS error between the estimated frequency and the nominal one was used as a quality index 

for comparing the FFT results with the fitting procedure described above, i.e.: 

  



qn

alnoestimatedmethod Cfqnf
qn

wC
,

2
min )(),(

1
),(  (10) 

where the subscript method may be FFT or LSq depending on the usage of Naïve Fourier analysis or 

time domain least squares fit, respectively, for estimating the principal frequency. Moreover, n loops 

over all time windows in a measurement run, and q over all four runs belonging to parameter 

combination C and window size w. Also, a relative error parameter was used by dividing the RMS 

error of Equation (10) by the nominal frequency fnominal(C) and expressing the result as a percentage. 

Repeatability was checked by pairwise cross-correlation of the measurement timeseries of 

piezoresistor i of MEMS unit j during the stimulus sliding phase (cf. Figure 3) of the four runs sharing 

one parameter combination C, and averaging the results. Hence, with l and p denoting two of those 

four runs:  

 
  






















 






pl

t

tt pji

pjipji

lji

ljilji
ji

ka

a

mtmmtm

k
Cr

,,

,,,,

,,

,,,,
,

)()(

1

1

12

1
)(


 (11) 

is the average Pearson cross-correlation coefficient. Measurements m had to be shifted by up to half a 

cycle relative to each other to account for phase differences due to the lack of synchronization between 

the starting of data saving and the starting of stimulation between different runs. Therefore, the inner 

sum runs over the remaining overlap region ta to ta+k, for which the mean signal m  and the standard 

deviation σ are calculated. 

4. Experimental Results 

This Section reports the experimental results obtained indenting and sliding the used ridged stimuli 

according to the parameters given in Table 2. The first part reports the preliminary naïve Fourier 

analysis which was performed in the process for establishing a robust retrieval procedure for the 

principal frequency induced by the grating spatial periodicity and sliding speed. Those preliminary 

results, as expected, were affected by considerable and oscillatory discretization errors depending on 

the chosen observation window. The second part shows the results with the proposed least squares 
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fitting procedure, which guaranteed very high accuracy and quite fast error convergence increasing the 

observation window. Furthermore, the results with the least squares fitting are compared with the Fast 

Fourier Transform ones. Qualitative and quantitative evidence of data repeatability is given in the third 

part. Finally, the last subsection concerns results on the static imaging capabilities as another major 

feature of the designed sensor.  

Fast Fourier Transform 

The preliminary naïve Fourier analysis showed a considerable discretization error, according to 

Equation (6). This error can be quite significant for small windows, since the fundamental frequencies 

considered lie in the order of 1 to 10 Hz in this experiment. Figure 4 shows a typical Fourier analysis 

covering the full range of a sliding measurement (phase C, depicted in Figure 1). As a rather extreme 

example, the results using FFT with a 0.35 s time window analysis can be seen in Figure 5. 

 

Figure 4. Naïve Fourier analysis (lower plot) over the full length of a typical dataset 

considering a single channel of a sensor unit of the array (upper plot). The maximum 

Fourier peak is selected as a frequency estimate, which leads to a discretization error of  

up to half a bar width (cf. Equation (6)) if the true frequency happens to lie in between two 

bars. 

 

 

Figure 5. As Figure 4, but for a different data series and a narrower window of 0.35 s, 

showing higher discretization error with naïve Fourier analysis. 
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Least Squares Fitting 

Figure 6 shows a graphical representation of the fitting procedure using the maximum allowed time 

window for the considered run. Such figure clearly shows the retrieval of the principal frequency 

coming out from the used combination of stimulation parameters. The frequency estimate errors, 

defined in Section 3.3 for comparing the FFT results with the fitting procedure described at the end of 

Section 3.2, are shown in Figure 7 and Table 3. Results from all windows and experiments were 

averaged for each point in the graphs. 

 

Figure 6. Result of the least squares fitting procedure considering piezoresistor 1 of 

MEMS sensor 1 (blue line) and piezoresistor 1 of MEMS sensor 2 (red line, shifted for 

easing the graphical representation) with a maximum width time window. The plot refers 

to data series 20, where a grating of 3.1 mm spatial periodicity was applied with 

translational speed of 15 mm/s, according to Tables 2 and 3. 

 
 

Table 3. Average RMS errors obtained by FFT (εFFT) and least square fit estimation (εLSq) 

using the full data range. The top row indicates the expected frequency, fnominal , depending 

on the measurement run. The combination C of spatial period ∆p and velocity v associated 

to each measurement run is also indicated. 

Measurement run 
1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40 

fnominal 

[Hz] 
4.17 8.33 3.66 7.32 4.84 9.68 15.48 5.77 11.54 18.46 

C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

∆p 

[mm] 
3.6 3.6 4.1 4.1 3.1 3.1 3.1 2.6 2.6 2.6 

v 

[mm/s] 
15 30 15 30 15 30 48 15 30 48 

piezo1,1 vs. piezo2,1 

εFFT 0.072 0.135 0.113 0.182 0.078 0.168 0.286 0.033 0.053 0.063 

[%] 1.72 1.62 3.1 2.49 1.62 1.73 1.85 0.57 0.46 0.34 

εLSq 0.038 0.105 0.027 0.058 0.052 0.123 0.257 0.053 0.124 0.272 

[%] 0.91 1.26 0.73 0.79 1.08 1.27 1.66 0.93 1.07 1.47 
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Table 3. Cont. 

piezo4,1 vs. piezo2,1 

εFFT 0.072 0.135 0.1 0.152 0.075 0.165 0.257 0.036 0.059 0.189 

[%] 1.72 1.61 2.74 2.08 1.56 1.7 1.66 0.62 0.52 1.03 

εLSq 0.04 0.127 0.029 0.063 0.06 0.126 0.262 0.055 0.123 0.266 

[%] 0.97 1.52 0.,78 0.87 1.24 1.31 1.69 0.95 1.07 1.44 

 

Figure 7. Frequency estimation errors per combination of grating and velocity, averaged 

over all experiments and window positions, versus the width of the observation window. 

Errors for fFFT (blue line) refer to the initial guess obtained through naïve Fourier analysis, 

while the ones for fLSq (green line) are related to the estimates gained by the minimization 

of Equation (9). 

 
 

As expected, errors in the initial guess fFFT ranged from about 
w2

1
 
to almost zero, as the pattern of 

FFT-frequencies moved over the nominal frequency for each setup. However, the second estimation 

step using the least squares fit was very stable and converged for almost all windows larger than 0.4s. 

Using the entire available time series for each experiment, about 1.5s to 5s, leaded to the average 

errors shown in Table 3. To check consistency, results using piezoresistor 1 from MEMS sensors 1 and 

2 in Equation (9) were compared to those using piezoresistor 1 from MEMS sensors 2 and 4. The 

errors obtained seem to agree very well, as shown in Table 3. 
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Repeatability 

Figure 8 shows plots of the same channels within different runs having the same experimental 

conditions. Moreover, the cross-correlation coefficients defined in Section 3.3 confirmed a high degree 

of repeatability within one set of parameters C.  

 

Figure 8. Time plot of the readings from piezoresistor 1 of MEMS sensors 1 and 2 of the 

array. The plots refer to data series 6 (a) and 7 (b), where a grating of 3.6 mm spatial 

periodicity was applied with translational speed of 30 mm/s, according to Tables 2 and 3. It 

is noticeable to observe the high repeatability, as well as the similarity with Figure 9(a), 

which only differs for the stimulus translational speed and thus results in an expansion of 

the time scale during phase C. 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

As an example, for piezoresistor 1 of MEMS sensor 1 the average Pearson correlation coefficients 

ranged from 0.87 to 0.97, while for piezoresistor 1 of MEMS sensor 2 their values went from 0.80 to 

0.89 depending on the chosen parameters combination C. Moreover, all the coefficients for the 
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channels close to the leading edge (e.g. MEMS sensor 1) of the stimulus during the sliding motion 

(phase C) were always higher than the ones for the channels at the falling edge (e.g. MEMS sensor 2) 

of the stimulus; this phenomenon is discussed in Section 5. The frequency modulation due to the 

variation of the stimulus can be appreciated in Figure 9, while a comparison between Figure 8 and 

Figure 9(a) points out the effect of stimulus velocity variation. 

 

Figure 9. Time plot of the readings from piezoresistor 1 of MEMS sensors 1 and 2 of the 

array. The plots refer to data series 1 (a) and 31 (b), where gratings of 3.6 mm and 2.6 mm 

spatial periodicity were applied with translational speed of 15 mm/s, respectively, 

according to Tables 2 and 3. The frequency modulation due to the variation of the stimulus 

can be easily appreciated. The steps corresponding to the loading and unloading of the 

stimulus (phases A-B and D-E) may be more or less evident in a specific unit of the array 

depending on whether the ridge of the stimulus falls under a sensor unit or not, showing the 

static imaging potentiality of the tactile sensor array. 

 

(a) 
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Static Imaging 

In parallel to the analysis of the frequency shift due to the variation of dynamic stimulation 

conditions, another major experimental result concerned the static imaging capabilities of the 

developed tactile sensor array. This further outcome was possible by choosing a proper experimental 

protocol, which included static phases in the initial and final parts of stimulation with repeatable 

conditions overall the runs. Figures 3, 8 and 9 show such results. 

5. Discussion 

The experimental results shown for dynamic artificial touch with medium-coarse periodic gratings 

demonstrated the perfect coherence between the principal frequency commonly revealed by the 

packaged MEMS sensor units and the expected one, as shown in Table 3 and Figure 7, as well as the 

consistency between the surface geometry and the static image of the stimulus-sensor interface. 

Looking at the background of neurophysiological and psychophysical touch studies briefly reported 

in the Introduction, the technological and the signal processing outcomes of this work may be 

classified as a successful preliminary attempt to artificially achieve roughness encoding in case of 

medium-coarse patterning, i.e. a deterministic link (see Table 3) was obtained between the “spatial 

coarseness” of the presented stimuli and the features extracted from the sensor outputs. 

These results pointed out the better processing quality guaranteed by using structured information 

from different units of a tactile sensor array instead of naïve Fourier analysis separately on each 

channel, overcoming frequency discretization limitations. These limitations are shown in Figures 4 and 

5, which differ both in the time window length used for FFT and in the grating periodicity. The latter is 

the reason for the 1.4 Hz difference between the nominal frequencies, which could not be detected 

with FFT due to the low resolution of the FFT in the relevant frequency range (width of bars ~0.5 Hz 

in Figure 4 vs. ~2.5 Hz in Figure 5). As a consequence, using the naïve FFT approach to retrieve the 

frequency in a 0.35 s time window for both data series, would result in the two gratings being not 

distinguished, as shown in the respective plots of Figure 7. On the contrary, with the least squares 

fitting procedure the separation was well feasible, and the common frequency expected when indenting 

and sliding at constant speed periodic ridged surfaces across an array of sensors was accurately 

estimated. The technological approach together with the proposed frequency estimation method 

guaranteed an error from 1.7% down to 0.5% over the range of spatial frequencies considered, 

independently of the combination of MEMS sensor units used (see Table 3). Moreover, as shown in 

Figure 7, limiting the evaluation to fixed size time windows reduced the accuracy somewhat, but the 

method stayed stable down to 0.4 s window size, making it potentially suitable for most near real-time 

settings. The applied method revealed to be robust even if, in addition to the observable principal 

frequency shift associated to the combination of the used grating and stimulus sliding velocity, the 

signal power had overtones (the first three or four harmonics of the fundamental frequency) introduced 

by both the non-linear packaging and the sharp edges of the periodic ridged surfaces. On the contrary, 

the fitting based on Fourier analysis resulted in an oscillatory behavior of the error respect to the 

observation window length. Further stability and precision with the gradient descent fitting method 



Sensors 2009, 9                            

 

3179

could be gained by taking into account all four MEMS sensors and tuning the sampling rate according 

to the target application.  

As depicted in Figure 8 and confirmed by the calculated average Pearson cross-correlation 

coefficients, the gathered data had high repeatability across different runs of the same experimental 

conditions. Furthermore, as seen in Figure 8 already, MEMS sensor 1 produced higher voltage 

amplitudes, leading to a better Signal-to-Noise (S/N) ratio, which in turn caused the higher correlation 

between runs with respect to MEMS sensor 2. This effect may be associated to the shape of the 

compliant packaging, which could induce higher stresses in piezoresistors of the sensor unit located at 

the leading edge. Reversing the scan direction (not shown) exchanged the roles of MEMS sensors 1 

and 2 in this regard. Moreover, it is noticeable to observe the excellent similarity between the plots 

shown in Figure 8 and the plot of Figure 9 (a). These graphs only differ for the stimulus translational 

speed and thus result in a compression in the time scale during phase C. 

The modulation of the principal frequency due to the variation of the stimulus can be appreciated in 

the time domain plots of Figure 9. Moreover, as detailed in Figure 10, couples of piezoresistors of a 

sensor unit which are located one in front to the other along the direction of motion [piezoresistors 1 

and 3 in Figure 1(b)] responded with opposite sign to the stimulus. Therefore, even with packaged 

silicon sensors and dynamic stimulations, the symmetries of the static calibration matrix observed in 

[30] for the bare MEMS sensor were still present in this work. 

 

Figure 10. Time plot showing the opposite sign of the variation of the readings from 

piezoresistors 1 and 3 of MEMS 1 during sliding. The plot refers to data series 1, where a 

grating of 3.6 mm spatial periodicity was applied with translational speed of 15 mm/s, 

according to Tables 2 and 3. 

 
Finally, as regards the consistency between the surface geometry and the static artificial touch 

representation, it is remarkable to observe the output signals variations relatively to the steps between 

phases A (starting of data acquisition) and B (sensor loading) and between phases D (steady state after 

stimulus sliding) and E (sensor unloading). Figures 3, 8 and 9 point out that the step heights varied 

between different runs depending on the used grating (but not on the velocity). This was due to the fact 
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that a variation of the grating periodicity modified the portion of the ridge under each MEMS unit, 

being the initial and final position of the stimulus carrier always the same for all runs during phase C. 

6. Conclusions and Future Work 

The experimental analyses performed in this work demonstrated the suitability of the developed 

tactile sensor for revealing medium-coarse spatial features of the explored surface, both with dynamic 

and static stimulation. Future work will focus on performing similar experiments incorporating the 

developed technology in a bio-inspired mechatronic finger. Given that the feasibility of using a 

polyimide thin protective layer has been shown in this investigation, the actuated finger may use a 

polyimide glove (mimicking the human stratum corneum) for preventing the sensor to be worn or 

damaged by water or grit. Moreover, because of the possibility to integrate the readings from the array 

with proprioception information during active touch tasks, the combination of information regarding 

the estimated common frequency and the velocity of the finger could solve Equation (1) and provide 

quantitative measurements revealing texture properties of the explored stimuli. Investigations will also 

be performed in implementing processing strategies to separate the velocity and periodicity 

information contained in Equation (1) directly from the measurements of the array, thus avoiding the 

need to use the knowledge of the stimulus sliding velocity (in case of passive touch experiments) or 

proprioception information from an actuated finger (in case of active touch ones). Experiments will be 

performed with other stimuli, addressing not only a medium-coarse spatial periodic pattering, but also 

more general fine textures (e.g. sandpapers, gratings with oblique or aperiodic ridges or 2D patterning, 

…) and the frequency content due to the kind of material. In that case, the focus could move from 

principal frequency analysis to spectral analysis over the full frequency range, or to wavelet transform 

if the frequency content is supposed to change with respect to time and/or stimulus-sensor relative 

positioning. Moreover, the fact that the MEMS sensor is triaxial may be exploited in future work with 

stimuli having 2D patterning: in this paper, the raw sensor outputs were directly analyzed guaranteeing 

great accuracy in principal frequency retrieval without encoding the force vector at MEMS-packaging 

interface or at packaging-stimulus interface.  

These planned experiments will require some modifications to the packaging design (e.g. lower 

thickness, material with different hardness or viscosity, introduction of fingerprints, etc.) in order  

to achieve even a higher sensitivity and selectivity for each MEMS unit [31,34] and a reduction of  

the low-pass spatial filtering effect introduced by the materials embedding the sensor [35] while  

still providing robustness for application in artificial hands dexterously interacting with the 

environment [29,32]. 

Finally, future investigations will experiment with artificial tactile sensors the unified paradigm 

proposed by Yoshioka and colleagues [13] for the perception of fine and coarse textured surfaces, in 

order to go towards a common theory for human and robot mediated coding and decoding of tactile 

stimuli. 
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a b s t r a c t

This paper presents the development of a MEMS based capacitive tactile sensor intended to be incor-
porated into a tactile array as the core element of a biomimetic fingerpad. The use of standard
microfabrication technologies in realising the device allowed a cost efficient fabrication involving only
a few process steps. A low noise readout electronics system was developed for measuring the sen-
sor response. The performance of both bare and packaged sensors was evaluated by direct probing of
individual capacitive sensor units and characterising their response to load–unload indentation cycles.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There is a growing need for reliable, low cost tactile sens-
ing devices for applications in areas such as robotics, minimal
invasive surgery and automation of industrial manufacturing pro-
cesses [1]. The last thirty years has seen tremendous progress in
research on the design and development of tactile sensors. While
earlier studies explored various transduction principles and sensor
requirements, recent work in the field has involved the develop-
ment of sensor prototypes that are tailored for specific applications.
Biological tactile receptors in the human fingertips, also known as
mechanoreceptors, serve as an inspiration for the development of
robotic tactile sensors [2–6]. The biological tactile system offers
a sophisticated mechanism through which subtle variations in
texture can be perceived and this provides a standard for the per-
formance of artificial tactile devices.

When developing sensors for incorporation into a robotic finger,
the main challenges arise from the required high spatial and force
resolution, and sufficiently small dimensions that allow integration
within the space constraints of a finger. For robotic applications, the
two main research areas on tactile sensor development are: sensors
for enabling the robot to effectively perform lifting and grasping
tasks and sensors for giving robots the ability to characterise differ-

∗ Corresponding author. Tel.: +44 0121 4144217; fax: +44 0121 4143958.
E-mail address: hbm768@bham.ac.uk (H.B. Muhammad).

ent surface textures [7,8]. Texture is implemented as protrusions or
undulations on the surface of a material that manifests as changes
in forces when a sensor is moved across a surface. A brief overview
of tactile sensors that have been reported to date for robotic appli-
cations and the technologies employed in each case are given in
Table 1. Piezoelectric and piezoresistive principles have most com-
monly been used for the sensing elements. Preceding devices are
generally larger than the mechanoreceptors in the human finger
pad and lack the spatial resolution of the human finger (approx-
imately 1 mm) [9] and its ability to provide the rich data set of
information on spatial distribution of contact forces. To overcome
these limitations, a highly dense array of micro tactile elements is
needed.

The main objective of this work was to develop and charac-
terise highly sensitive Micro Electro Mechanical Systems (MEMS)
based tactile sensors for implementation into a robust microscale
sensing array. The elementary sensor units should be individually
addressable and provide information on spatial features of contact-
ing stimuli. This would eventually allow for surface characterisation
of various textures with the added feature of human finger pad like
spatial resolution. In order to facilitate potential incorporation of
the device into a robotic finger, it requires compatibility with inte-
gration of a layer of elastomeric skin-like material on the surface,
mimicking the compliance and conformance of human skin. Thus
the system would be able to come into contact with textured stimuli
in a biomimetic manner and also be sufficiently sensitive to encode
features of texture related attributes such as roughness.

0924-4247/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Table 1
Overview of tactile sensing devices developed to date for robotic applications.

Author (year) Sensing technology/description Application No. of elements Sensing element size Array pitch Force range Sensitivity

Dario et al. [10] Piezoelectric polymer: Multilayer structure including an
epidermal PVDF layer, a conductive rubber intermediary
layer and bottom PVDF dermal layer

Detection of contact
pressure, hardness and
surface texture

128 – – – 740 mV/N

Howe et al. [7] Accelerometer: Conventional quartz crystal embedded in
polyurethane foam and attached to outer 2 mm silicone
rubber skin

Slip and texture
perception

– 25 mm diameter – – –

Omata et al. [11] Piezoelectric ceramic: PZT element surrounded by 3 mm
diameter hemisphere of silicone

Hardness, softness
detection

– 15 mm × 65 mm – – –

Yeung et al. [12] Piezoresistive polymer: Matrix of Force Sensing Resistors
with elastic overlay

Object recognition 16 × 16 – 1.58 mm – –

Beebe et al. [13] MEMS piezoresistive: Silicon sensing diaphragm with load
transmitting torlon dome
Spatial resolution: 2–4 mm

Force sensing 1 2 mm radius – 0–100 N 1.4 mV/N

Chu et al. [14] MEMS capacitive: Silicon diaphragm, glass + polymer
substrate, elastomer coating
Spatial resolution: 2.2 mm

Robot fingers 3 × 3 0.450 mm radius – 0–1 g 0.13 pF/g in z,
0.32 pF/g in x and y

Maeno et al. [15] Strain gauge: 15 phosphor bronze plates embedding strain
gauges (thickness 0.1 mm) are incorporated within a
silicone rubber body

Detection of slip 15 – – – –

Dargahi et al. [16] Piezoelectric polymer: PVDF film Force sensing 3 – – 0–2 N 57.5 V/N
Mei et al. [17] MEMS piezoresistive: Square silicon membrane and outer

silicone rubber layer
Grip force control,
object recognition

4 × 8 4 mm × 4 mm – 0–50 N 13 mV/N

Leineweber et al. [18] MEMS capacitive: Polysilicon membrane Micromanipulation 8 0.24 mm × 0.24 mm 0.240 mm 0–3 bar 1.35 V/bar
Beccai et al. [19] MEMS piezoresistive: Silicon based flexible sensing

structure with four tethers in a cross-shape and centrally
integrated force transmitting mesa. 4 piezoresistors
implanted in tethers

Biomechanical
applications

1 1.5 mm × 1.5 mm × 0.625 mm – 3 N for normal force
0.5 N for tangential
force

0.026 N−1 in z,
0.054 N−1 in x and y

Hosoda et al. [20] Randomly distributed strain gauges and PVDF film
embedded within an anthropomorphic soft fingertip

Robotic fingers –
texture discrimination

24 – – – 0.1 V/N

Wettels et al. [3] Impedance based: Fingertip shaped with rigid central core
surrounded by weakly conductive fluid and covered by a
silicone elastomeric skin. Spatial resolution: 2 mm

Robotic, prosthetic – – – – 33.3 k�/N

Scheibert et al. [21] MEMS based piezoresistive device embedded in elastomer
film. Cylindrical post attached to a suspended circular
Silicon membrane (with 4 embedded piezoresistive
gauges)

Fingertip like
biomimetic tactile
sensor

1 1 mm radius, 0.1 mm thick – – –
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Fig. 1. Schematic of tactile sensor array showing geometrical dimensions of devices
and cross sections of sensors and reference devices.

For the individual sensing elements a capacitive sensing prin-
ciple is chosen. This offers advantages over commonly employed
piezoresistive, strain gauge and piezoelectric sensing principles in
terms of increased sensitivity, long term drift stability, lower tem-
perature sensitivity and power consumption [22,23]. The devices
are fabricated using well established microfabrication technolo-
gies, allowing for a high density of sensing devices within a given
area and thus mimicking the distributed sensory arrangement in
the human skin. The devices are silicon based and can easily be
incorporated within silicone rubber artificial skin like coating mate-
rials [24].

In the next section, the design, simulation and fabrication pro-
cess of the sensor are presented; Section 3 details the readout
electronics; Section 4 the experimental setup, methodologies and
results; Finally, experimental results are discussed.

2. Sensor description

2.1. Design and operating principle

An individual sensing element consists of an upper 2 �m highly
doped single crystal silicon diaphragm, a 2 �m air cavity formed
by sacrificial layer releasing and a lower electrode consisting of
highly doped silicon. The edges of the sensing diaphragm are fixed
by supporting oxide structures. A cross sectional schematic dia-
gram of a single tactile unit is shown in Fig. 1. The diaphragm
dimensions are 500 �m × 400 �m. Each tactile unit is 150 �m apart
which allows for high density of sensing structures within a given
area. The array fabricated and tested in this work has 4 individ-
ual sensing elements. As shown in Fig. 1, reference capacitors (Cref)
were also included in close proximity to each individual sensor and
designed to be insensitive to applied pressure. They consist of two
silicon plates that are separated by oxide dielectric. The dimensions
of these devices were calculated such that their capacitance would
equal that of the corresponding sensor at zero applied pressure. The
presence of reference capacitors allows the measurement of a dif-
ferential response and therefore eliminating the effects of parasitic
capacitance.

Table 2
Summary of FEA simulation results for case of uniformly distributed pressure of
115 kPa applied to the sensor diaphragm.

Maximum stress at maximum deflection 0.468 GPa
Resonant frequency 587 kHz
Maximum change in capacitance 500 fF

The capacitance Cs of the sensing unit can be expressed as:

Cs(F) = Aε

d
(1)

where Cs(F) is the capacitance of the sensing region, which is
a function of the applied force F, ε is the permittivity of air, A is
the area of the silicon diaphragm and d is the gap between the two
silicon plates.

When a pressure is applied to the surface of the sensor, the
deflection of the sensing membrane will create a change in capac-
itance of the device. The capacitance of the sensor as a function of
applied force can be expressed as:

Cs(F) =
∫ a

x=0

∫ b

y=0

ε

d0 − w(x, y)
dx dy (2)

where w(x, y) is the diaphragm deflection as a function of x and
y coordinates and a and b are the dimensions of the sensing area.
The deflection is dependent on the applied force and dimensions
of the diaphragm. Detailed analyses of the deflection of clamped
sensing diaphragms have been carried out elsewhere and are not
discussed in this paper [25]. Instead, Finite Element Analysis (FEA)
is used to model diaphragm deflection under applied loads (Section
2.2). The sensor capacitance is a non-linear function of the applied
force. Thus the sensitivity of the device is a function of the geomet-
rical dimensions of the sensing diaphragm and the zero pressure
electrode separation d0. A greater sensitivity can be attained by
increasing the length of the sensing membrane and decreasing the
thickness and initial electrode separation distance. The working
range of the device is determined by the initial plate distance d0.
Thus there exists an inherent trade off between increased sensitiv-
ity and device range.

2.2. Simulation

FEA was used to assess the electromechanical behaviour of sens-
ing diaphragms as more accurate results are obtained compared
to analytical solutions, especially for large deflections [26]. Using
Comsol Multiphysics® the performance of the sensor was simu-
lated assuming the case of a uniformly distributed applied pressure
on the surface of the sensing membrane. The model assumes the
contact area of stimulus is in the order of dimensions as the sen-
sor. The results from the simulation are presented in Table 2 and
Fig. 2. A capacitance change of 500 fF was predicted for the applied
pressure range 0–120 kPa (corresponding to forces of 0–24 mN).

Fig. 2. (a) FEA results showing displacement of sensor diaphragm in response to uniformly distributed pressure varying from 0 to 115 kPa, (b) Plot of maximum diaphragm
displacement with pressure, (c) Expected change in capacitance with uniform applied pressure on the sensor diaphragm.



224 H.B. Muhammad et al. / Sensors and Actuators A 165 (2011) 221–229

Fig. 3. Process flow for device fabrication.

This provides a basis for developing the signal acquisition electron-
ics. The maximum stress in the sensing diaphragm found from the
simulation occurs at the edges of the circular etch holes and by
the supported edges of the diaphragm (Fig. 2). The elastic limit is
given by the fracture stress of a (1 0 0) silicon wafer and is in the
range of several GPa [27]. This exceeds the maximum stress that is
expected to be encountered within the working range of the sensor
and is given by the applied force at which the sensing diaphragm
comes into physical contact with the substrate (corresponding to
a maximum displacement of 2 �m). The resonant frequency of the
device was estimated to be 587 kHz. Thus the elementary device is
expected to possess a high dynamic range.

2.3. Fabrication method

To fabricate the sensors, commercially available Bonded and
Etched-Back Silicon-On-Insulator (BESOI) wafers were used as a
substrate. The process flow is schematically illustrated in Fig. 3a–e.
The device layer (top side) of the BESOI had a thickness of 2 �m,
with a 2 �m buried silicon oxide layer and a 300 �m silicon handle
layer (back side) (a). The silicon layers were highly arsenic doped
(n+) with an electrical resistivity lower than 0.006 � cm. A spin

Fig. 4. Optical image showing profile of sensing membrane formed following HF
etch.

coated resist on the top side was patterned by using photolithogra-
phy to define the sensor area and bond pads. Within each defined
sensing area, holes of 5 �m radius were included to allow access for
subsequent sacrificial etching of selected areas of SiO2. These pat-
terns were transferred into the device layer by using Deep Reactive
Ion Etching (DRIE, Bosch process) to form the sensing structures
and sacrificial etch access holes (b). The wafer was then diced into
individual chips of 6 mm × 6 mm in size which were etched using
40% liquid Hydrofluoric (HF) acid solution (c). This early dicing step
prevents damage to the 2 �m thin device layer which could occur
following the subsequent sacrificial etching. The timing of the etch
process is critical in defining the geometrical dimensions of the
sensing diaphragm. Prior to the etching process, the etch rate was
established by monitoring the geometric profile formed (Fig. 4) fol-
lowing a specified etch time period. This is possible as 2 �m thin
Silicon is optically transparent. Thus the chips were etched until
the area defined as the sensing diaphragm had fully released. Fol-
lowing this the chips were rinsed in Isopropyl alcohol and distilled
water, and then dried on a hotplate at 115 ◦C. With this technique,
no stiction of the diaphragm occurred in any of the devices. To
establish external electrical contacts, the chips were coated with a
200 nm thick gold layer using a thermal evaporation process and a
20 nm thick adhesive titanium layer (d). The sensor was hosted on
a standard dual-in-line ceramic package (Spectrum Semiconduc-
tor Materials, INC., 24-DIP). The wiring was performed by means
of a wire bonder using 25 �m aluminum wires (e). For protection
of the wires from damage during testing, they were coated with a
UV curable epoxy (Epo-Tek OG142). Fig. 5 shows Scanning Electron
Microscopy (SEM) images of the sensor cross section, a plan view
of single sensor and the fabricated sensor array.

Fig. 5. (a) Scanning Electron Micrograph (SEM) image of sensor cross section, (b) Sensor structure, (c) 4 × 1 linear sensor array.
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Fig. 6. Experimental setup for probing the sensor with a spherical head. The letters
indicate the core components of the setup, as described in the text.

For protecting sensors from mechanical damage, and for
forming a conformable, skin like coating over the sensors, Poly-
dimethylsiloxane (PDMS, Sylgard 184) was used. This is a silicon
based organic polymer commonly used for embedding or encap-
sulating electronic components. The polymer is supplied as a two
part mix; a monomer and hardener, which are combined at a
weight ratio of 10:1. The mixture was then degassed and controlled
amounts were dispensed onto the sensor. This was left to cure at
100 ◦C for 45 min.

3. Readout electronics

The readout electronics for the tactile sensor array encompassed
high resolution capacitance-to-digital converters (AD7747, Analog
Devices) and was implemented on a Printed Circuit Board (PCB).
The chosen converter has a nominal resolution down to 20 aF and
an accuracy of 10 fF. As reference capacitors were implemented in
the device, a differential capacitive readout was used. This allowed
elimination of drift and common mode variations due to proxim-
ity and parasitic capacitance coupling between the sensor and the
probe. Data from the converters were acquired with a soft-core
processor (NiosII, Altera) instantiated onboard a FPGA (CycloneII,
Altera) by means of I2C communication and then transmitted to
a PC (running a Graphical User Interface implemented in Labwin-
dows/CVI) by means of Ethernet communication. The devices were
configured to work at an update rate of 45 Hz (11.25 Hz each chan-
nel).

4. Experimental methods and results

For characterising the response of the individual sensors, inden-
tation testing was performed. The experimental setup, shown in
Fig. 6, consisted of a loading system, comprising three orthogo-
nal manual micrometric translation stages (A) with crossed roller

bearing (M-105.10, PI, Karlsruhe, Germany). It allowed precise posi-
tioning of a loading probe. The experiments were carried out under
displacement control using constant velocities (depending on the
experimental session) using a Delrin probe with a spherical head (Ø
2 mm) (C). Contact between this part and the sensor was obtained
by a servo-controlled micrometric translation stage (M-111.1, PI,
Karlsruhe, Germany) (D), which allowed the position of the probe
to be finely controlled in the normal direction. Two orthogonally
located cameras were used for positioning the probe over the
required sensing area. In order to measure and record the force
applied to the sensor, a six-component load cell (ATI NANO 17 F/T,
Apex, NC, USA) (E) was placed at the interface between the loading
probe and the servo-controlled micrometric translation stage. The
sensors response was related to the applied force rather than pres-
sure as relating it to the latter would require a precise knowledge
of the actual contact area between the spherical indenter head and
the contact surface.

4.1. Response of bare sensors

The indenter probe was aligned over the bare/unpackaged
sensor diaphragm and advanced towards it at constant velocity
of 0.34 �m/s gradually increasing the applied load. This loading
indentation phase was followed by a steady state phase where the
probe was held static for a time period, and an unloading phase at
the same constant velocity. The maximum displacement applied to
the probe varied between different experimental runs in order to
span the working range and to estimate the resolution performance
of the devices.

The response of the sensor to aforementioned stimulus is shown
in Fig. 7. The upper subplot displays data obtained from the capac-
itance readout system. The plotted change in capacitance, �C, is
the result of a differential reading obtained from deducting the
values of initial and reference capacitance from the capacitance of
the sensor at each time instance. Thus any parasitic effects due to
capacitive coupling are eliminated. The lower subplot is the super-
imposition of the raw measurements by the commercial load cell
and of data (black) obtained by applying a numeric off-line zero-
lag Butterworth filter (using Matlab®, having a cutoff frequency at
1 Hz). Results show that the change in capacitance follows the pat-
terns of the applied load. The sensitivity is a non-linear function
of applied force, as confirmed by the varying slope of Fig. 7(right),
therefore an average sensitivity is specified as 0.035 pF/mN over
the experimented load force range. The devices were indented to
generate a maximum force in the order of 25 mN. Beyond this the
capacitance readout saturated.

The devices demonstrated high force resolution as illustrated
in Fig. 8. Here they showed an ability to respond to forces in the
sub-mN range, thus representing indentation profiles that are not
resolved by the used commercial load cell.

To assess the sensor response to short impulses three subse-
quent stimuli each having 0.2 s pulse width were applied to the
sensor diaphragm via the indentation probe. Testing at shorter
stimulus time periods was limited by the probe velocities attain-
able using the current instrumentation and sampling frequency of
the signal acquisition electronics. Fig. 9 shows the sensor response
to stimuli of <0.2 s. For the given acquisition frequency, no signifi-
cant response delay between the force stimulus and the change in
capacitance (�C) is observed.

4.2. Response of PDMS packaged sensor

4.2.1. Force vs. capacitance characteristic response
For protecting sensors from mechanical damage, the sensors

were coated with a 200 �m thick layer of Polydimethylsiloxane
(PDMS, Sylgard 184), which is a well-known polymer used for sen-
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Fig. 7. (left) Upper traces: response of the bare sensor to three load–unload indentation cycles applied with a spherical probe under position control. Lower traces: unfiltered
and filtered indentation force measurements by the used commercial load cell. A sensitivity of 0.038 pF/mN was experimentally determined. (right) Force vs. change in
capacitance (�C) graph.

Fig. 8. Upper traces: response of a sensor to three “minimum normal force”
load–unload indentation cycles. Lower traces: unfiltered and filtered indentation
force measurements by the used commercial load cell, that it is not able to resolve
the force profile.

sor packaging. As described in Section 4.1, indentation cycles were
applied to the surface of the sensor and response of the sensor
simultaneously measured. The influence of the PDMS packaging
layer on the response of the sensor can be seen in Fig. 10. For

Fig. 9. Upper traces: response of a sensor to three fast load–unload indentation
cycles applied with a spherical probe under position control. Lower traces: unfiltered
and filtered indentation force measurements by the used commercial load cell.

packaged devices, a reduction of the average sensitivity down to
0.068 fF/mN was calculated, in trade-off with the working range,
which coherently increased to 1.7 N.

To assess the packaged sensor response to short impulses three
subsequent stimuli each having 0.7 s pulse width were applied to
the sensor diaphragm via the indentation probe. Testing at shorter
stimulus time periods were limited by the probe velocities. Fig. 11
shows the sensor response to the above mentioned stimuli. No sig-
nificant response delay between the force stimulus and the change
in capacitance (�C) is observed.

4.2.2. Response to lateral sliding stimuli
A nanotribometer (CSM Instruments) was used to test the

response of packaged sensors to lateral sliding stimuli. A spheri-
cal probe 2 mm in diameter was indented into the surface of the
sensor, generating a force of the order of 100 mN. It was then
laterally displaced across the surface to span all the sensor units
within the array at a velocity of 0.65 mm/s. A spatio-temporal plot
is shown in Fig. 12 which presents the response of each sensor
to lateral sliding stimuli. As expected, the distance between peak
outputs of each sensor (calculated using the time period between
peaks and probe velocity) correlates with the centre-to-centre dis-
tance between individual sensing units. The spatial resolution in
biological mechanoreceptors is usually described by a parameter
known as the receptive field of a receptor. It is the area over the

Fig. 10. Upper traces: response of the packaged sensor to three load–unload inden-
tation cycles applied with a spherical probe under position control. Lower traces:
force measurements by the used commercial load cell. A sensitivity of 0.068 fF/mN
was experimentally determined.
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Fig. 11. Upper traces: response of a packaged sensor to three fast load–unload
indentation cycles applied with a spherical probe under position control. Lower
traces: force measurements by the used commercial load cell.

receptor within which a response to mechanical stimulus can be
elicited. In a similar manner, the receptive field of mechanical sen-
sors can be described and depends on the stimulus intensity and
type of stimulus used. Under the above described loading condi-
tions, the spatial response field in one dimension was calculated
(using the time period for which sensor response was generated)
to be approximately 1.5 mm.

4.2.3. Spatial mapping of sensor response
In order to map the spatial response field of the packaged sen-

sors, load–unload indentation cycles were applied at six different
positions (with a period of 200 �m) along the horizontal axis of the
sensing array. The response of 2 adjacent sensors within an array to
increasing forces (generated by indentation testing as described in
Section 4.1) at each position is shown in Fig. 13. The receptive field
of each sensor is seen to increase with indentation depth as indi-
cated by the widening of the response curve with increasing force.
The location where the greatest magnitude of change in capacitance
(greatest force sensitivity) is obtained corresponds to the location
of the centre of the diaphragm. The distance between regions of
maximum sensitivity for 2 adjacent sensors should correspond to
the centre to centre distance between them (550 �m). Approximate
locations of diaphragm centres of each sensor can be deduced from
the results as illustrated in Fig. 13. A negative response from a sen-

Fig. 13. Response of two adjacent sensors S1 and S2 in an array to normal inden-
tation via spherical probe at six positions located 200 �m apart. Centre–centre
distance between S1 and S2 is 550 �m, corresponding with the response seen
through spatial mapping experimentation.

sor was observed when applying indentations to locations at fixed
distances away from the sensor itself. This is most likely related
to local changes to the profile of PDMS that occur during inden-
tation. When applying indentations to polymers constrained by a
rigid substrate, it has been shown that the indenting probe causes
movement of the polymer in the radial direction, perpendicular to
the indenter axis [28]. Excess material displaced from the region
between the probe and the rigid silicon substrate in turn pushes
the surface of the polymer coating upwards in an annular region
surrounding the probe tip as there are no constraints to the free
surface to restrict this movement. Upward displacement of material
will subsequently influence the forces imposed on the sensor gen-
erating an inverse response. The inverse response is beneficial in
identifying the position of the stimulus with respect to the sensing
units.

5. Discussion

A 1 × 4 linear MEMS tactile sensor array was designed and devel-
oped. The fabrication process of the sensors was optimized towards
a minimum number of processing steps and the sole use of simple
standard microfabrication techniques. In comparison with previ-
ously reported MEMS based capacitive devices [14,18], the use of
BESOI wafers as a substrates allowed for fewer and less complex

Fig. 12. Spatio-temporal event plot showing response of sensors in an array located at distances p and 2p apart to lateral sliding stimulus via spherical probe displaced at a
velocity of 0.65 mm/s.
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process steps. Potential difficulties associated with the use of anodic
bonding (a commonly used process in capacitive sensor fabrica-
tion [29]) were avoided. These include, “snap-down” or sticking of
suspended diaphragms due to the presence of electrostatic forces
[30,31], introduction of residual stresses in the sensing diaphragm
as a result of a mismatch in thermal coefficients of bonding sub-
strates and complexities in accessing electrical connections from
the sealed cavity [32,33]. Further, the use of single crystal silicon as
the sensing diaphragm material offers advantages over polysilicon
(reported by Leineweber et al. [18]) as it does not suffer from stress-
related warping that commonly occurs with polysilicon [34,35].

The performance of the sensors was evaluated by applying
controlled displacements to the sensor diaphragm via a spherical
probe and simultaneous recording of the change in capacitance.
The method of applying indentations of controlled amplitudes via
punctate probes to the human finger pad has been previously
demonstrated for assessing the performance of mechanorecep-
tors [9]. As expected, the sensor responded to an increase in
probe indentation depth with an increase in measured capacitance
change. This corresponds with the response of Slowly Adapting
(SAI) mechanoreceptors (i.e. the Merkel cells) that respond to an
increase in indentation depth of probes with an increase in nerve
impulse firing rate [36].

The bare sensor demonstrated high force sensitivity (aver-
age of 0.035 pF/mN) and has a dynamic range of 25 mN. Sensors
packaged with PDMS showed reduced force sensitivity (average
of 0.068 fF/mN) however with an increase in dynamic range to
approximately 1.7 N. Previous studies on human perception of
touch have shown that the finger contact forces used for discrim-
inating roughness range from 0.8 to 1.6 N with an average of 1 N
[37]. The packaged sensors are able to cope with forces within this
range.

Bare and packaged sensors were tested to indentation impulses
of less than 0.2 s and 0.7 s respectively. For the packaged devices
testing at shorter time impulses was limited by the probe speed
attainable using the current instrumentation. As the devices are sil-
icon based, they inherently possess high bandwidth as confirmed
by the FEM simulation. The bandwidth of the tactile system as a
whole is defined by two main factors: The acquisition frequency of
the capacitance detection electronics system, which with the cur-
rently implemented system is 11.25 Hz per channel of the 4 sensors
array, and the response of the PDMS layer.

In their nature of response, the developed sensors particularly
imitate the slowly adapting (SAI) mechanoreceptive units i.e. the
Merkel cells. These receptors generate responses to mechanical
stimuli for as long as a stimulus is present and are hypothesised to
be responsible for conveying information regarding surface form
and texture [38]. These units have small, well defined receptive
fields and are responsible for the high spatial acuity and reso-
lution of the human fingertip which is approximately 1 mm [9].
In tactile sensing, spatial resolution correlates with the distance
between sensing elements in an array and sensing range of each
unit. Considering the density of elements, the sensors were spaced
170 �m apart with an overall centre-to-centre distance of 570 �m.
A high spatial resolution can therefore be anticipated. Addition-
ally with the total sensor unit length of 1840 �m (including the
connection pad and the sensing capacitive element), together with
the 570 �m centre-to-centre distance (Fig. 5c), a density of about
95 channels/cm2 can be achieved. This is comparable to the inner-
vations density of SA I units in the distal part of the finger pad which
is about 70 per cm2 [39].

The receptive field of each sensor was experimentally assessed
analogous to receptive fields of biological mechanoreceptors. Simi-
larities were demonstrated between receptive field characteristics
of the mechanoreceptors and sensors. As in the case of mechanore-
ceptors, the sensors demonstrate a point of maximum sensitivity

(also termed Hot Spot) [40], when the stimulus is applied to the
centre of the sensors receptive field (see Figs. 12 and 13). The
response was shown to progressively decrease as the probe is
indented at locations away from this region. Similar to the patterns
of response found in SA I mechanoreceptive afferents [40], with an
increase in indentation amplitude or stimulus intensity, the size
of the receptive field and the area of overlap between receptive
fields of adjacent sensors in the array tends to increase. Studies
conducted on receptive fields of mechanoreceptive afferents have
shown that nearly half of the mechanoreceptor afferents exhibit
elliptical receptive fields [36]. In this work, the designed sensing
membranes were rectangular; due to this asymmetrical design it
is expected that the response field would be elliptical rather than
circular.

A key design feature in the presented sensing array is the
inclusion of reference capacitors that were implemented in close
proximity to each sensing element. This design choice enhanced the
stability of sensor outputs eliminating the effects of stray capaci-
tance, which is a commonly reported problem in capacitive sensors.

6. Conclusions

A silicon based MEMS capacitive tactile sensor array was
designed and fabricated by means of a cost efficient process, suit-
able for batch manufacturing. Sensors were successfully coated
with skin-like PDMS polymer. The performance of bare and pack-
aged devices were characterised by means of test methods that
have previously been used in assessing the performance of bio-
logical mechanoreceptors. This included indentation testing and
applications of lateral sliding stimuli. Patterns of sensor response
were compared to that of the mechanoreceptors.

Future work will focus on implementing a tactile array incorpo-
rating the sensor elements with varying geometrical dimensions.
This would give rise to a wider dynamic range of the overall device;
the larger sensing units offering higher sensitivity, the smaller units
allowing a higher range of detectable forces with the trade-off of a
lower sensitivity. It is interesting to note that the population of
mechanoreceptor afferents in the fingertip have been shown to
demonstrate variations in sensitivities and in the size and struc-
tures of their receptive fields [41].
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This paper presents a silicon MEMS based capacitive sensing array, which has the ability to resolve forces
in the sub mN range, provides directional response to applied loading and has the ability to differentiate
between surface textures. Texture recognition is achieved by scanning surfaces over the sensing array
and assessing the frequency spectrum of the sensor outputs.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The discrimination of textures is an essential feature of artificial
tactile sensing with applications in robotics, minimal invasive sur-
gery and manufacturing industries. Work on tactile sensor devel-
opment is inspired by the performances of the mechanoreceptors
(biological sensors) of the human finger pad [1–3]. Challenges lie
in the development of devices that are comparable to the
mechanoreceptors in terms of sensitivity, spatial acuity, directional
response to applied force and texture detection. Recently, Oddo et
al. demonstrated a piezoresistive based bio-inspired tactile sensor
array for artificial roughness encoding [4]. The device successfully
discriminated between ridged surfaces with spatial periods from
2.6 mm to 4.1 mm. De Boissieu et al. also demonstrated the perfor-
mance of a similar piezoresistance based device for recognition of
papers and fabrics [5].

The authors have recently described a linear array of MEMS based
tactile sensors intended for incorporation into a robotic finger [6].
The sensing principle was capacitance based because of their advan-
tages in terms of higher sensitivity, long term drift stability, lower
temperature sensitivity and power consumption as compared to
piezoresistive devices that have been used in previous works [7].

Currently there is no consolidated agreement in the literature
regarding the neural mechanisms underlying texture perception
in humans. Hollins and Risner [8] proposed a duplex mechanism
supporting Katz’s hypothesis, i.e. a vibrotactile mechanism account-
ing for the perceived roughness of fine textures and a spatial coding
mechanism for perception of coarse textures. Conversely, Yoshioka

and colleagues proposed a unified paradigm via the spatiotemporal
modulation of the neural activity of SAI afferents [9]. However, an
established finding is the enhanced discrimination sensitivity ob-
tained as a consequence of relative motion between the finger and
the surface. While detecting textures, humans tend to slide their
finger over the surface of interest; this relative motion, eliciting
vibratory mechanical waveforms at finger–object interface, is
hypothesised to be a requirement for the perception of fine textures
[10], whether the neural encoding mechanism is actually temporal
[8] or spatiotemporal [9]. Studies on texture perception often em-
ploy gratings of alternating ridges and grooves as moving stimulus
to the finger pad while simultaneously recording the responses of
the mechanoreceptors and subjects perceptions [9,11]. The main
focus of the current work is to demonstrate the ability of the MEMS
sensors in recognition of different textures, using protocols inspired
by such experiments.

2. Sensor description

A linear array of 4 MEMS based capacitive sensors was designed
and fabricated using a bonded and etched-back silicon-on-insula-
tor (BESOI) wafer as a substrate. Each sensor incorporates an upper
2 lm thick highly doped single crystal silicon diaphragm (resistiv-
ity <0.006 X cm), a 2 lm air cavity formed by sacrificial layer
releasing and a lower electrode consisting of highly doped silicon
(Fig. 1a). Individual sensing elements have dimensions of
500 lm � 400 lm and are separated by 150 lm (Fig. 1b). The de-
vice was packaged with a 200 lm thin layer of PDMS (Sylgard
184) to protect the chip from damage and to provide a skin-like
covering for transmitting applied loads to the sensing diaphragm.
For acquiring signal response from the sensors, the readout
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electronics was implemented with four capacitance-to-digital con-
verters (Analog Devices, AD7747). These devices have a resolution
down to 20 aF and an accuracy of 10 fF. Data from the converters
were acquired with a soft-core processor (NiosII, Altera) instanti-
ated onboard a FPGA (CycloneII, Altera). The devices were config-
ured to work at an update rate of 45 Hz (11.25 Hz each channel).

The performance of sensors has previously been evaluated by
applying controlled displacements to the diaphragm via a
2 mm Ø spherical probe at different locations across the width of
the sensing elements and simultaneously recording the capaci-
tance change [6]. Fig. 1c shows sensor outputs for stimuli applied
at specific points along the sensing axis. The greatest magnitude
of response corresponds to the indentation at the centre of the dia-
phragm; then the sensor output decreases in magnitude with
increasing distances from this point. Given the response behavior,
a comparison of the sensing units can be attempted to the Slowly
Adapting type I (SA-1) mechanoreceptive units, which generate re-
sponses to mechanical stimuli for as long as a stimuli is present
and are hypothesised to convey information regarding surface
form and texture [12].

Variation in responses of sensors in an array can be used to
identify spatial features of a surface. However, such approach could
lack in accuracy when exploring surfaces with spatial features finer
than the spacing between neighbouring sensors. Another option,
which is pursued in the following, is to introduce a relative motion
(resulting in a dynamic touch protocol) between the tactile array
and the stimuli, and to analyse the vibrational patterns arising in
sensor outputs. In principle such an approach may be effective
with a single sensor, but the availability of an array offers several
advantages such as a wider sensorised contact area and the possi-
bility of identifying irregular texture patterns differing along the
specimen. Therefore, experimental results under a dynamic touch
protocol are presented in the next section. Gratings varying in spa-
tial periodicity from 400 lm to 1200 lm (Section 3.1) and fabrics
(Section 3.2) were evaluated.

3. Experimental methodology and results

3.1. Discrimination of gratings varying in spatial periodicity

Five gratings varying in spatial periodicity were fabricated using
multi jet modeling (MJM) technology [13]. The ridge width and

ridge height were kept constant at 200 lm and 400 lm, respec-
tively. The groove width varied from 200 to 1000 lm in increments

Fig. 1. (a) Schematic of cross sections of single sensor, (b) SEM image of 1 � 4 linear tactile sensor array showing geometrical dimensions of device, and (c) Response of
sensors in an array to spatially varying stimuli.

Fig. 2. Temporal plots showing the recorded tangential force (Fy) and the change in
capacitance (DC) by a sensor of the array in response to an applied stimulus via a
grating with a 600 lm spatial period.

Fig. 3. (a) Expected and experimentally determined grating spatial periodicity at
three different scan velocities and (b) FFT spectrum for single measurement
showing peak frequency (fpeak).
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of 200 lm thus generating a range of textures from fine to coarse.
The gratings were tangentially displaced over the sensor surface at
velocities ranging from 0.05 mm/s to 4 mm/s with an average nor-
mal force (Fz) of 10 mN. Low velocities were experimented due to
the limited acquisition frequency of signal recording electronics
(11.25 Hz/channel). To deliver the stimulus to the sensors, a cus-
tom built mechatronic platform which allowed two degrees of
freedom for movement was used. The gratings were mounted to
the moving arm and applied forces were recorded via a commercial
ATI load cell.

Both temporal and spectral domains of sensor signals generated
in response to applied gratings were assessed. A typical temporal
trace of results can be seen in Fig. 2 where the output of a single
sensor follows the variations of the tangential contact force com-
ponent (Fy). Further, the FFT spectrum of the signals from the sen-
sors was calculated for each experimental run and the peak
frequency was determined. Fig. 3a shows the experimentally
determined spatial periodicity of gratings for measurements made
using three different velocities. The spatial periodicity (k) is calcu-
lated from the scanning velocity (c) and peak frequency (fpeak)
(Fig. 3b) according to the equation k = c/fpeak. The results (Fig. 3)
showed that the sensor array was able to distinguish between all
the gratings and good correlation was found between calculated
and experimentally obtained values.

3.2. Discrimination of fabrics

After the successful discrimination of gratings, the tactile sens-
ing device was evaluated with fabrics varying in texture (including
polycotton and nylon). Each fabric was attached to a cylindrical
PDMS probe which was then mounted onto the moving arm of a
tribometer, loaded using a weight of 40 g, and tangentially dis-
placed across the sensor surface. The sensors response to a smooth
surface was also tested in a similar manner using the PDMS probe
directly. Three subsequent experimental runs were carried out
with each run comprising scanning the probe with a velocity of
1 mm/s across the sensors in one direction followed by a subse-
quent scan in the opposite direction. Time domain sensor outputs,
shown in Fig. 4, reveal characteristic responses for each material. In
particular, specific features were observed in peak density and in
the spatial period (determined from the measurement of the time
lag between peaks in capacitance change and from the knowledge
of the scan velocity). These particular features in sensor outputs

could be related to the spatial periodicity of tested fabrics as deter-
mined using SEM (Fig. 4). A directional response to applied tangen-
tial loading was also observed through an apparent enhanced
sensitivity in one scan direction. This can be attributed to factors
such as non-uniform thickness of the packaging layer and an un-
even surface topology which can lead to differences in stress prop-
agation through the material dependent on the scan direction.

4. Conclusions

A MEMS based capacitive sensing array was demonstrated for
texture recognition applications. Using periodic gratings and fab-
rics, the performance of sensors for discrimination of coarse to fine
textures (with feature spacing down to 0.2 mm) was successfully
demonstrated. The availability of an array of tactile sensors will al-
low a combined spatio–temporal approach for the discrimination
of textures, by considering the spectral content of each single sen-
sor output and the variation in responses of spatially located sen-
sors. Further experimental work will investigate scanning of
fabrics in multi directions in order to explore non-periodic/random
topologies.
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Abstract—This work shows the accomplishment of a full 
integration of a biomimetic 2x2 tactile array and related 
electronics in an artificial fingertip. The technological approach 
is based on merging 3D MEMS sensors and skin-like artificial 
materials that are moulded mimicking human epidermal 
ridges. Experimental results using a mechatronic tactile 
stimulator for indenting periodic gratings (spatial periodicity 
from 400 μm to 1900 μm) and sliding them at constant speeds 
(from 5 mm/s to 40 mm/s) under regulated normal contact 
forces (between 100 mN and 400 mN) show that the developed 
sensing technology is suitable for fine roughness encoding: a 
frequency shift of the principal spectral component arising 
from sensor outputs was observed coherently with the spatial 
periodicity of the used ridged stimuli and their sliding velocity. 
Such phenomenon is pointed out with fine gratings particularly 
when the stimulation is operated along the proximal-distal 
direction of the finger (i.e. with sliding motion of the ridges of 
the stimulus across the ridges of the packaging) showing a more 
marked frequency locked behavior if compared to the radial-
ulnar stimulation (i.e. with sliding motion of the ridges of the 
grating along the ridges of the packaging). 

I. INTRODUCTION 
OUGHNESS encoding and perception are enhanced by 
movement [1]. Texture related vibrations generated 

during dynamic touch exploratory tasks are fundamental for 
the discrimination of tactile stimuli [2]-[4]. 

Finite element analyses using human finger model during 
dynamic touch showed that spatial information of the 
textured surface are related to temporal frequency changes at 
the position of tactile receptors [5]. In touch activities, if 
humans have the ability to estimate somehow the relative 
hand velocity v between the textured surface and the 
exploring finger, the spatial period �p of the surface can be 
perceived by detecting the temporal frequency of the 
vibration [5], such that: 

vf
p

=
Δ

                  (1) 

In artificial touch, when considering technological 
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approaches in which mechanical sensing elements are 
embedded in skin-like elastomeric matrices that mimic 
human skin, such vibrations should be elicited by stimulus-
skin interface, by motion dynamics and by contact 
mechanics, and then gathered by the sensing units located 
under the covering material [6]-[8]. 

Stimuli have to be encoded with high sensitivity and 
discrimination capability. The surface conditions, e.g. 
morphology, roughness, hardness etc…, of the skin-like 
materials play a major role and strongly affect the 
deformation of the sensor elements embedded therein. 
Especially stimuli applied in the horizontal direction against 
the surface of the skin-like tactile arrays may result in a 
more effective deformation of the sensor element with a 
fingerprint-type surface than that with a smooth surface [8].  

In parallel, the type of artificial sensor used is a crucial 
choice since the sensor must have a design that allows 
technological coupling with skin-like polymeric packaging 
and also capable of detecting the induced deformation by the 
external mechanical stimuli correspondent to the tactile 
event to be encoded or detected. It has been shown that 
MEMS based tactile sensors can be designed and built with 
a 3D structure that can adequately be packaged with skin-
like polymeric materials so that the sensor and soft 
packaging become a new tactile sensible element like the 
Soft and Compliant Tactile Microsensor reported in [9]. 
Such integration can thus yield to a robust yet highly 
sensitive device offering the possibility to provide 
information about static contact forces and dynamic events 
with one tactile element. This technological approach was 
also ascertained for roughness encoding by building tactile 
sensor arrays [4].  

In this work, the development of a MEMS based 
biomimetic sensor array with  polymeric fingerprint-type 
surface is presented. This approach is proposed for 
promoting texture related vibrations when applying stimuli 
having medium-fine periodic ridged structure. Surface ridges 
were purposely introduced in the packaging design for 
achieving spectral selection and amplification of tactile 
information as has been supposed to happen in the human 
finger [8]. A bi-layer packaging, with increasing hardness 
going from the inner layer to the external surface, was used 
in order to enhance biomimeticity to human skin. The 
biomimetic tactile sensor array and dedicated readout 
electronics were integrated in a distal phalanx of a robotic 
fingertip [10], [11] (which in a previous design hosted one 
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single sensor [12]) which was investigated by means of 
preliminary experimental protocols aimed at studying its 
capability to encode texture related cues. 

II. MATERIALS 

A. MEMS sensor array and electronics for integration in a 
robotic finger 

An improved version of the MEMS presented in [13] was 
employed and the array was built by connecting by flip-chip 
bonding four microsensors by means of a micro-soldering 
paste directly on a rigid-flex board which was concurrently 
designed with the distal phalanx of an artificial finger in 
order to achieve the following results: 
− a 2x2 array of microsensors integrated in an artificial 
fingertip with robust (both mechanical and electrical) 
connection and with all the conditioning electronics 
integrated on board; 
− a 2x2 sensing array that could be suitably packaged with 
skin-like materials without affecting the tactile array itself 
nor compromising the integration in the artificial fingertip. 

The bare sensor array, depicted in Fig. 1, had 16 channels 
as total tactile sensor outputs, and it had a pitch of 2.36 mm. 
Unlike the previous approach [4] the wire bonding could be 
avoided in this case because of the usage of the rigid-flex 
board solution. With respect to the previous study a new 
version of the electronics was used; the number of discrete 
components cold be reduced because of the improved design 
of the MEMS sensor, enabling the full integration in the 
distal phalanx of a robotic finger. Each piezoresistor-resistor 
arm was supplied by means of a 5V DC regulated voltage, 
and the node between each piezoresistor and the completing 
integrated resistor was directly acquired without pre-
amplification by means of a 16-channel 24-bit Analog to 
Digital Converter (ADS1258, Texas Instruments). The 
sampling frequency was set to 350 Hz. The data acquisition 
system was based on Field Programmable Gate Array 
technology (CycloneII, Altera) and the acquisition of each 
channel had a time reference with resolution of 20 ns. Data 
was acquired by a soft-core processor (NiosII, Altera), 
parallel to a second processor by means of which the 
mechatronic stimulator used in experiments (see Section 3-
A) was controlled. Data was transmitted in real-time to a PC 
by means of Ethernet protocol with full digital 
synchronization of stimulus force and position. 

 
Fig. 1. The developed rigid-flex board integrating the 2x2 array of MEMS 
sensors. 
 

B. Packaging with ridges: design, fabrication and 
integration in a robotic finger 

Biomimetism was pursued by designing a bi-layer 
packaging with increasing hardness going from the inner 
layer to the external surface, by introducing ridges, by 
mimicking the positioning of type I human 
mechanoreceptors and by allowing the design to be 
compatible with a thin protective layer mimicking stratum 
corneum of the human skin. 

Figure 2 shows a model of the packaged sensor array and 
the fabricated prototype, having concentric ridges with 
groove width set to 0.7 mm and ridge width to 0.5 mm and 
curvature radius between 9.75 mm and 15.75 mm. PDMS 
(Sylgard 184, Dow Corning, USA) was used as an external 
layer, stacked over an inner film of Dragon Skin (Smooth-
On, USA). 

The result of the integration of the packaged tactile sensor 
array in the distal phalanx of the robotic finger is shown in 
Fig. 3. 

 
Fig. 2. a) Cross-section of the sensor array showing the sensors positioning 
and the packaging structure. b) Rigid-flex board with sensor array and 
packaging wrapped around a human index finger distal phalanx. c) Close-up 
view of a fabricated prototype with bi-layer packaging and ridges. 
 

 
Fig. 3. Integration of the fabricated prototype in the distal phalanx of the 
robotic fingertip; the proximal-distal and radial-ulnar directions are shown. 

III. METHODS 

A. Experimental protocol 
The distal phalanx of the finger was mounted on a 

mechatronic tactile stimulator capable of indenting the 
tactile sensor with force feedback control and stroking a 
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stimulus over it with precise position control. Figure 4 
shows a diagram of the overall experimental set-up. 

The robotic finger integrating the tactile sensor array was 
oriented in such a way to provide stimulus motion 
selectively along the proximal-distal direction or along the 
radial-ulnar direction. 

Six types of medium-fine ridged stimuli, built with 
TUFSET Rigid Polyurethane thermosetting plastics, were 
used with spatial periods �p ranging from a minimum of 320 
μm to a maximum of 1900 μm, as detailed in Table 1. 

Data acquisition started prior to the phase during which 
the stimulus contacted the sensor array (phase A). In a 
second phase of the experiment, the stimulator was 
commanded to contact the tactile sensor (phase B). Three 
different stimulation combinations with regards to the 
finger-stimulus contact force were tested; the sensor array 
was loaded with a sequence of 100 mN, 200 mN or 400 mN 
as the references of the normal force feedback controller,. 

The loading resulted in a contact spike in the signals 
gathered from the MEMS array. The target force level was 
held for 2 s. After that, the sliding of stimulus started (phase 
C) along the proximal-distal or radial-ulnar directions (see 
Fig. 3) depending on the chosen stimulation condition, while 
maintaining enabled the force feedback controller, thus 
obtaining a stimulation with regulated normal force Fz, and 
tangential force Fy depending on the contact mechanics and 
on the motion dynamics. 

Four different stimulus sliding velocities (5 mm/s, 10 
mm/s, 20 mm/s and 40 mm/s) were chosen for overlapping 
with the range commonly used in related neurophysiological 
studies [14]. The sign of velocity and the starting absolute 
position were not varied. The sliding was applied for 60 mm, 
providing dynamic stimulations of 12 s, 6 s, 3 s or 1.5 s 
depending on the applied velocity. At the end of the sliding 
motion there was a steady state of 2 s with contact force held 
(phase D) at the reference value, i.e. 100 mN, 200 mN or 
400 mN as reported above, for the specific session and, 
finally, the tactile sensor array was unloaded (phase E). 

 
TABLE I 

GRATING GROOVE WIDTH (GW), RIDGE WIDTH (RW) AND SPATIAL PERIOD 
(�P) WITH RESPECT TO THE SAMPLE TYPE. 

Grating 
number 1 2 3 4 5 6 

gw (μm) 220 300 380 500 985 1487 
rw (μm) 100 100 100 399 413 413
�p (μm) 320 400 480 899 1398 1900 
 

B. Processing 
The acquired channels underwent a Fast Fourier 

Transform (FFT) in order to perform a pilot evaluation of 
the capabilities of the developed artificial finger to retrieve 

the fundamental spatio-temporal frequency of the system. 
Such operation was performed windowing the acquired data, 
including in the FFT the complete sliding motion (phase C) 
with 100 mN, 200 mN or 400 mN reference contact force. 
On one side, this choice ensured low quantization error, 
while on the other the procedure was not suitable as is for 
being used in real-time applications. Table 2 points out the 
expected principal frequency from sensor outputs as a 
function of the spatial periodicity of the grating and of its 
sliding velocity. It is remarkable to observe that, with 
regards to the value of the principal frequency, the contact 
force was supposed to have no effect provided that it was in 
the adequate range for eliciting the mechanical vibration and 
for allowing such periodic wave to be gathered by the 
sensing units. 

 
TABLE II 

EXPECTED PRINCIPAL FREQUENCY FROM SENSOR OUTPUTS DEPENDING ON 
THE SPATIAL PERIODICITY (�P) AND ON THE SLIDING VELOCITY (V) OF THE 

APPLIED GRATING. 
Expected 
frequency 
vs. �p and 

v 

�p = 
320 
μm 

�p = 
400 
μm 

�p = 
480 
μm 

�p = 
899 
μm 

�p = 
1398 
μm 

�p = 
1900 
μm 

v = 5 
mm/s 

15.625 
Hz 

12.5 
Hz 

10.417 
Hz 

5.562 
Hz 

3.577 
Hz 

2.632 
Hz 

v = 10 
mm/s 

31.25 
Hz 

25.0 
Hz 

20.833 
Hz 

11.124 
Hz 

7.153 
Hz 

5.263 
Hz 

v = 20 
mm/s 

62.5 
Hz 

50.0 
Hz 

41.667 
Hz 

22.247 
Hz 

14.306 
Hz 

10.526 
Hz 

v = 40 
mm/s 

125.0 
Hz 

100.0 
Hz 

83.333 
Hz 

44.494 
Hz 

28.612 
Hz 

21.053 
Hz 

 

 
Fig. 4. Block diagram of the experimental setup implementing the control of 
the tactile stimulator together with the acquisition of data from the MEMS 
sensor array and high-speed transmission of synchronized data by means of 
the Ethernet. The picture on the top-right shows the stimulus-finger 
interface in the proximal-distal stimulation condition with a grating having 
480 μm spatial period. 

IV. EXPERIMENTAL RESULTS 
This Section presents some of the experimental results, in 

the form of time and frequency domain plots, obtained by 
using the stimulation combinations reported in Table 2, with 
both proximal-distal and radial-ulnar stimulation directions. 
For the objectives of this analysis, a single piezoresistor of 
the 16 channels of the 2x2 array was considered. 

896



  

A. Proximal-distal stimulation 

 
Fig. 5. From the first row: time domain plots of the voltage acquired from a piezoresistor of the array; single-sided amplitude spectrum of each of the plots 
shown in the first row during phase C; horizontal position of the stimulus (accounting for the sliding motion); normal and tangential (along the direction of 

the sliding motion) components of the contact force at stimulus-artificial finger interface, measured by means of a 6 axis F/T load cell. In the first column the 
normal component of the contact force is set to 100 mN, in the second to 200 mN and in the third to 400 mN. Some phases of the experimental protocol are 

indicated. The plots refer to stimulation in the proximal-distal direction with a surface having spatial period of 400 μm and sliding velocity of 10 mm/s. 
 

 
Fig. 6. Refer to Fig. 5 for an explanation of the subplots. The plots refer to stimulation in the proximal-distal direction with a surface having spatial period of 

400 μm and sliding velocity of 40 mm/s. 

Phase C
Start of phase D 

End of phase B 
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Fig. 7. Refer to Fig. 5 for an explanation of the subplots. The plots refer to stimulation in the proximal-distal direction with a surface having spatial period of 

1900 μm and sliding velocity of 10 mm/s. 
 

B. Radial-ulnar stimulation 

 
Fig. 8. Refer to Fig. 5 for an explanation of the subplots. The plots refer to stimulation in the radial-ulnar direction with a surface having spatial period of 

400 μm and sliding velocity of 10 mm/s. 
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Fig. 9. Refer to Fig. 5 for an explanation of the subplots. The plots refer to stimulation in the radial-ulnar direction with a surface having spatial period of 

400 μm and sliding velocity of 40 mm/s. 
 
 

 
Fig. 10. Refer to Fig. 5 for an explanation of the subplots. The plots refer to stimulation in the radial-ulnar direction with a surface having spatial period of 

1900 μm and sliding velocity of 10 mm/s. 
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V. DISCUSSION 
The experimental results shown in Section 4 confirmed 

that the design of the ridges for the packaging of the 
artificial fingertip enabled the promotion of stimulus related 
vibrations when medium-fine periodic ridged stimuli were 
used. Moreover, in case of fine stimuli (such as gratings 1, 2 
and 3 of Table I), the results pointed out a more evident 
frequency locking with each expected frequency (Table II) 
when the stimulation was along the proximal to distal 
direction, instead of along the radial to ulnar one (see Fig. 5, 
6 and 7 vs. Fig. 8, 9 and 10). According to (1), the frequency 
locking behavior consisted in a decreasing value of the 
frequency of the vibration while increasing the stimulus 
spatial period, and in a frequency value increasing together 
with the stimulus sliding velocity. 

This phenomenon was evident in the form of appreciable 
time-domain vibrations during proximal to distal stimulus 
sliding motion, or in the form of a principal tone coherent 
with the expected one in the frequency domain. As a matter 
of fact, due to the radius of curvature of the artificial ridges 
of the fingertip, in the proximal to distal stimulation 
condition the sliding motion of the ridges of the grating was 
mainly across the ridges of the packaging, while in the radial 
to ulnar the sliding motion of the ridges of the grating was 
mainly along the ridges of the packaging. This is the reason 
why with the proximal to distal motion the packaging ridges 
behaved as vibration promoters enhancing the artificial 
roughness encoding capabilities of the artificial finger. The 
vibrations arose in the radial-ulnar direction only for coarser 
stimuli and always showed lower amplitude than with the 
distal-proximal stimulation condition. Moreover, it is 
noteworthy to point out, as a qualitative comment to the 
obtained results with respect to contact mechanics, that the 
friction coefficient (which can be evaluated looking at the 
lower subplots from Fig. 5 to Fig. 10) was slightly lower 
with the proximal-distal stimulation condition than with the 
radial-ulnar one. 

Finally, the time and frequency domain plots shown from 
Fig. 5 to Fig. 10 pointed out an increasing value of the 
vibration amplitude by increasing the normal contact force 
or by increasing the spatial period. 

VI. CONCLUSION 
The obtained results were remarkable in terms of both 

tactile sensing technology development and assessment for 
roughness encoding of medium-fine ridged stimuli. This 
research approach will be investigated for what concerns 
smart positioning of transducers, in order to achieve hyper 
tactile spatial resolution,  and packaging geometry in order 
to define modeling and processing techniques for the 
classification of roughness information related to the applied 
tactile stimuli. 
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Abstract: The influence of fingerprints and their curvature in tactile sensing performance is 

investigated by comparative analysis of different design parameters in a biomimetic artificial 

fingertip, having straight or curved fingerprints. The strength in the encoding of the principal 

spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the 

surfaces at controlled normal contact force and tangential sliding velocity, as a function of 

fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher 

directional isotropy than straight fingerprints in the encoding of the principal frequency 

resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. 

In parallel, human microneurography experiments were performed and a selection of results 

is included in this work in order to support the significance of the biorobotic study with the 

artificial tactile system. 

Keywords: MEMS tactile sensor array; fingerprints; biomimetic fingertip; roughness 

encoding; artificial touch; mechanoreceptors; microneurography; human touch; biorobotics. 
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1. Introduction 

In this work we investigate the specific role of fingerprints in artificial touch by building tactile 

systems, inspired to the biological model, that embed artificial fingerprints with different geometries 

while leaving unchanged the other design features. This comparative approach is fundamental to define 

design parameters in developing bioinspired sensory systems but it could be also useful to provide hints 

and suggestions to develop experimental protocols and models in neurophysiology. Biorobotics offers 

the possibility to develop emulator of the human subjects [1], with different characteristics and design 

parameters, as in the work presented in this paper we selectively modify a specific parameter (the 

curvature of fingerprints) to evaluate the related effect. In order to support the significance of the 

artificial touch results, in parallel we present a selection of electrophysiological studies by means of 

microneurographic recordings of the activity of single, identified afferent units in the fingertips of 

healthy human volunteers [2]. 

We address roughness encoding, which is a major independent component of texture (together with 

softness, while stickiness is a minor component) [3,4]. Roughness is associated to the spatial 

modulation of the surface (i.e. spatial coarseness) and its perception is severely degraded in case of lack 

of tangential motion between the fingertip and the tactile stimuli (i.e. dynamic vs. static touch) [5,6]. 

The biomimetic fingertip experimented for artificial roughness encoding was designed and built by 

means of a MEMS based technological approach, integrating an array of microscale tactile sensors and 

polymeric fingerprint-like packaging. Biomimetism was achieved by reaching a density similar to the 

innervation of type I mechanoreceptors in humans (e.g., SAI have a density of about 70 units/cm
2
 [7]), 

by having a fine skin-like packaging layer above the MEMS sensors, as for the positioning of slowly 

adapting type I (SAI; Merkel) and rapidly adapting (RA; Meissner) units, and by mimicking the 

coarseness of human fingerprints (between-ridge distance typically comprised within 0.3 mm and 0.5 

mm [8]). 

To make a comparative analysis between the human subject and the artificial system, the same class 

of tactile stimuli is presented to both the biomimetic fingertip and to human subjects via dynamic passive 

touch protocols implemented through a mechatronic platform that can indent the stimuli to the fingertip 

and slide them in a smooth tangential fashion. We use periodic ridged stimuli (namely gratings, which 

can be considered as a kernel of more realistic polyharmonic surfaces used in various studies [9,10]) in 

order to show, in artificial touch, that the structure of fingerprints affects the directional isotropy in the 

encoding of the principal spatiotemporal frequency of stimuli. In this attempt we get inspiration from 

previous observations with monkey subjects providing evidence that gratings locally oriented parallel to 

the finger ridges elicit stronger response than tactile stimuli oriented along the orthogonal direction 

[11]. 

The working principle of our artificial touch system was explained in [12] and, coherently with other 

human or artificial touch studies [13,14,15], considers the spectral content of the mechanical vibrations 

elicited by textured surfaces. Briefly, when a relative motion occurs at finger-stimulus interface, 

provided that it is possible to estimate somehow the relative velocity v, the spatial period Δps of the 

grating is in inversely proportional relationship with the principal frequency fprinc of the elicited 

mechanical vibration [16], such that: 
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  (1)  

The effectiveness in roughness encoding via dynamic artificial touch is in the capability to elicit such 

vibrations by stimulus-skin interface, by motion dynamics and by contact mechanics, and then to gather 

them via the sensing units located under the covering material [15,17,18,19]. 

Recently it has been asserted that human fingerprints contribute to the encoding of fine textures as 

they may perform spectral selection and amplification of tactile information in the frequency band, 

centered at about 250 Hz, of optimal sensitivity of Pacinian afferents [20]. In such work, Scheibert and 

colleagues, by experimenting an artificial tactile sensing technology, showed a principal frequency 

differing from Equation 1, since the spatial period Δpf of fingerprints appeared (instead of Δps) in the 

dominant vibrations gathered by the tactile sensor, resulting in fprinc = v/Δpf . In our opinion, in [20] the 

dominance of finger skin geometry (Δpf) on stimulus surface features (Δps) in the retrieved principal 

spectral component was (1) activated by the used stimulus, whose edges were positioned randomly 

(white-noise 1D patterning, i.e. extremely polyharmonic), and (2) gathered thanks to the quite wide 

receptive field of the sensor due to the relatively thick 2 mm packaging layer (a relevant related analysis 

is provided in [21]) mimicking the positioning of deeply located (i.e. type II) Pacinian 

mechanoreceptors. 

As stated above, here the design of the tactile system gets inspiration from surface located human 

type I mechanoreceptors, we demonstrate a principal frequency modulation as from Equation 1, and in 

parallel we provide evidences of the same mechanism with RA human mechanoreceptors for fine and 

coarse gratings and with SAI for coarse gratings only (both RA and SAI are type I mechanoreceptors). 

Following this, we investigate in artificial touch how the shape of fingerprints affects the strength of 

principal frequency encoding by the embedded sensors. To this aim, we selectively change the 

morphology of the packaging encapsulating the sensor array (i.e. the curvature of fingerprints embedded 

in the polymeric skin-like outer layer as depicted in Figure 1A-B) and show the consequences on 

directional isotropy by means of experiments varying the reciprocal orientation between the artificial 

fingertip and the presented gratings (Figure 1C). 

The manuscript is organized as follows. Section 2 presents the design of the experimented 

biomimetic fingertips, differing in the curvature of fingerprints, provides a brief description of the 

microneurography technique for human touch studies, and reports the experimental set-up and 

protocols. Section 3 introduces the data analysis techniques for human and artificial touch experiments. 

In Section 4 the experimental results are shown and discussed. Finally, the conclusions are provided in 

Section 5, together with insights on planned future work. 
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Figure 1. Design of the biomimetic fingertip integrating the rigid-flex board with 2x2 MEMS sensor 

array and readout electronics. Fingerprints embossed in the polymeric packaging had two curvatures. 

Panel A shows fingertip a design with straight fingerprints. Panel B shows fingertip b design with 

curved fingerprints. The inset shows two elements of the array of MEMS sensors. The piezoresistors 

(P1…P4) and the sensors (S1…S4) of the array are labeled according to the convention used in the 

text. Panel C shows a drawing of the experimental setup for indenting and sliding tactile stimuli in 

dynamic passive-touch experiments. An example human finger model is overlapped as a comparison to 

the developed biomimetic fingertip. The finger is rotated in steps of 10° along the z-axis (stimulus 

sliding across the distal phalanx in the depicted configuration, i.e. θ=90°). The inset provides a close-up 

view of stimulus-artificial finger interface (stimulus sliding along the distal phalanx in the depicted 

configuration, i.e. θ=0°). 
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2. Materials 

2.1. Biomimetic fingertip 

Four MEMS force micro-sensors [22,23] were integrated in a 2x2 array via flip-chip bonding on a 

rigid-flex board. Each sensor of the array was bonded on the rigid part on the corner of a square with a 

pitch ΔX of 2.36 mm, allowing the 4 tethers of each sensor to be suspended and free to flex under 

externally applied loads while a rigid support guaranteed stable mechanical bonding. Each sensor 

integrated 4 piezoresistors as sensing elements at the roots of the tethers forming a cross shape 

structure equipped with a mesa. This resulted in an array with 16 channels in total for transducing the 

mechanical interaction with external tactile stimuli. Inscribing each sensor in a square of area 5.57 mm
2
, 

a 0.72 channels/mm
2
 (16 channels / 22.28 mm

2
) density was achieved, which mimics the SAI 

innervation density in humans (70 units/cm
2
) [7]. 

The 16 channels of the array were acquired by means of a high resolution (24 bit) Analog to Digital 

Converter (ADS1258, Texas Instruments, USA). The integration of the ADC onboard the fingertip 

allowed to reduce the amount of wires between the fingertip and the outer electronics, requiring power 

supply and a few digital communication channels only, and also guaranteed adequate signal-to-noise 

ratio due to the limited length of the connections routing analog signals. Data was sampled at 250 Hz 

per channel since such value was about one order of magnitude higher than the expected fundamental 

frequencies (as from Equation 1); however, higher sampling frequencies are allowed by 1) increasing the 

overall conversion rate (this operation will affect the signal to noise ratio, but the achieved S/N levels 

guarantee that this is feasible) of the ADC lodged onto the fingertip, or 2) by reducing the number of 

converted channels (this operation will not affect S/N) without changing the overall conversion rate of 

the ADC. Acquired data was transmitted to a PC via Ethernet protocol by a soft-core processor 

(NiosII, Altera, USA) instantiated onboard a FPGA (Cyclone II, Altera, USA). 

The rigid-flex board with MEMS sensor array and readout electronics was integrated in a rigid 

fingertip mimicking human anthropometry (Figure 1 and 3B). The fingertip was designed for application 

to distal phalanxes of robotic hands being appropriate for grasping and manipulation tasks in 

anthropomorphic manner [24,25] and was fabricated with rapid prototyping resin via a 3D printer. 

The packaging skin-like layer of the 2x2 array of MEMS sensors was introduced to have a similar 

function to the epidermal ridges of a human finger that can enhance deformation and frictional 

properties of the fingertip surface. Significant contributions in the simulative analysis [26,27] and 

artificial emulation [27,28] of fingerprints were given by Maeno and colleagues, showing that their 

structure increases the sensitivity in tactile activities with a major effect on surface located type I 

receptors. Therefore, fingerprints were included in the design of the proposed biomimetic fingertip 

considering that the epidermal ridges and grooves of an adult human have width in the 100 – 300 μm 

range, and the typical between-ridge distance is 400 μm [8,26,28]. 

The encapsulation was performed by means of soft polymeric packaging (Dragon Skin, Smooth-On, 

USA), having shore A 10 hardness and recovering its original form after a mechanical stimulation. The 

packaging material was poured directly on the fingertip by means of a mould that allowed to pattern the 

surface of the skin-like layer on top the sensor array. 
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Each single sensor of the array provides local information on the contact interaction at its interface 

with the surrounding polymeric packaging material, with the advantages of distributed tactile sensing 

[29]; in addition, our array of tactile sensors provides also directional information by means of the 

output readings from the four piezoresistors (implanted each at a root of a tether). Therefore, to have 

four outputs from each sensor increases the informative content on the stress state locally at each sensor 

site. 

In order to investigate the role of the shape of fingerprints in texture encoding, two curvatures were 

designed (Figure 1A-B). In finger a, fingerprints were embossed with straight parallel ridges having 

between-ridge distance Δpf set to 400 μm. Finger b had concentric fingerprints with groove and ridge 

widths as for prototype a, and the fingerprint passing from the center of the sensor array had curvature 

radius of 4.8 mm. 

As regards the thickness, here we used an artificial epidermal ridge with a height h1 of 170 μm, while 

the thickness h2 of the homogeneous packaging layer covering the sensor array was 600 μm (Figure 2); 

this resulted in sensing units being located quite close to the surface of the fingerpad, similarly to the 

positioning of type I human mechanoreceptors [26,28]. 

Preliminary load-unload tests with smooth flat surfaces were performed (not shown in this work) and 

showed that, for both the fingertip designs, the design of the packaging allows to reach at least up to 8 

N normal and 4 N tangential forces without any damage to the encapsulated sensors. 

 

Figure 2. Cross section of the biomimetic fingertip, showing two sensors of the array and the structure 

and dimensions of fingerprints. The array pitch ΔX is 2.36 mm, the fingerprints have between-ridge 

distance Δpf set to 400 µm, while their thickness h1 is 170 µm. The thickness h2 of the homogeneous 

packaging layer covering the sensor array is 600 µm. 
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2.2. Microneurography technique for human touch studies 

Impulses of single tactile afferents in the left index and middle fingers were recorded using the 

microneurographic technique in 36 human healthy volunteers [2]. The subjects seated comfortably in a 

dentist’s chair, the left arm resting in a vacuum cast for stabilization and maximum comfort. Tungsten 

needle electrodes were inserted in the left median nerve, 8 cm above the elbow. The nerve signal was 

band-pass filtered at 200-4000 Hz, sampled at 12.8 kHz together with analog data from the tactile 

stimulation mechatronic platform, and stored on a PC using the ZOOM/SC system developed at the 

Department of Physiology, Umeå University, Sweden. Recorded nerve impulses were inspected off-line 

on an expanded time scale using in-house software implemented in MATLAB (The Mathworks) and 

were accepted for subsequent analyses only if they could be validated as originating from a single 

afferent. Before running the experimental protocol, the units’ responses and receptive fields were 

explored using calibrated nylon filaments (von Frey hairs) and were classified as SAI, SAII, RA, or PC 

according to the adaptation of the response to sustained stimulation and size of the receptive field 

[30,31]. 

2.3. Experimental set-up and protocol 

The study focused on experimenting passive-touch protocols in which periodic ridged stimuli were 

indented (z direction, Figure 1C) and slided (y direction) on the human fingertip and on the two artificial 

fingertip prototypes (differing in the curvature of fingerprints). 

The passive-touch stimulation sequences were implemented by means of a mechatronic platform [32] 

with which repeatable experiments could be performed (Figures 1C and 3). This consisted in a 2 DoF 

system that could indent and slide textured stimuli to the fingertip. The system performed a feedback 

control on the normal contact force (i.e. indentation along the z direction) and a precise 

position/velocity control while recording the normal and tangential forces at finger-stimulus interface. 

The tactile stimulator could present stimuli to the fingertip without being affected by spurious vibrations 

and covering a range of forces and movement velocities as those that would be used by humans while 

exploring textures [4,6], i.e. at least from 100 mN up to 5 N indentation force and up to 150 mm/s 

tangential sliding velocity. The same core mechatronic tactile stimulator was used for human (Figure 

3A) and artificial touch (Figure 3B) experiments. Periodic ridged surfaces (gratings), fabricated from 

tufset rigid polyurethane thermosetting plastics material, were tested as tactile stimuli in both human and 

artificial touch experiments. 

Human touch experiments 

During microneurographic experiments, gratings measuring 32 mm x 35 mm each and mounted in pairs 

on changeable plates (Figure 1C and Figure 3A) were experimented. The experiments were performed 

with gratings having spatial period Δps (defined in the inset of Figure 1C) between 280 µm and 1920 

µm, with normal contact force set to 100 mN, 200 mN, 400 mN or 800 mN, sliding distance of 24 mm 

and velocity from 5 mm/s up to 40 mm/s among different sessions. Overall, 10 RA, 5 SAI and 3 SAII 

single afferent units were successfully recorded in the fingerpad with different grating spatial periods, 

while the platform applied the sliding motions, repeated in runs of 12, across the distal phalanx (i.e., 
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according to the reference frame in Figure 1C, θ was fixed at 90°). According to previous studies 

[33,34], the finger-stimulus contact area monotonically increases (positive first derivative), with 

decreasing slope (negative second derivative), with respect to the contact force; such previous studies 

report a contact area lower than 1 cm
2
 at the maximum force loads used in the human touch studies 

presented in this work. However, the preparatory session with calibrated Von Frey hairs, to characterize 

the locations and receptive fields of the recorded human tactile units, guaranteed the contact zone with 

the grating to cover the receptive field of the unit which was recorded during each experimental session. 

Human experiments were conducted according the Declaration of Helsinki and the ethics committee 

at the University of Gothenburg approved the study. 

Artificial touch experiments 

The artificial fingertip was fixed to the tactile stimulator by means of a mechanical support, 

interfaced to a rotational stage with goniometer (07 TRT 508, Melles Griot, USA, depicted in blue in 

Figure 1C and labeled as 7 in the picture of Figure 3B), that kept the fingertip surface parallel to the 

stimulus surface. As for human touch experiments, gratings were used as tactile stimuli. Each grating 

measured 32 mm x 75 mm. Therefore, the experimented gratings had approximately double length than 

those used with human subjects and each was separately (rather than in half-pairs as for human touch 

experiments) mounted on changeable plates. This choice was operated to test a higher sliding distance 

for each stimulus, since in artificial touch there is no relevant constraint to acquire as many data as 

possible within each session, oppositely to the looming risk of missing the nerve signal during human 

microneurography experiments. Two surfaces were evaluated, with spatial periods Δps (defined in the 

inset of Figure 1C) of 360 and 440 μm. The indentation force was 200 mN, which is one of the values 

used in the ongoing human touch study and is within the range used by humans during tactile 

exploratory tasks [6]; the force level was not varied in this work since related previous artificial touch 

studies by our group [12,22] showed that a modulation of the contact force in the 100 mN – 1 N range 

resulted in a principal frequency being coherent with Equation 1. The velocity was 10 mm/s, which is 

the lower boundary of the range of exploratory velocities typically used by humans [35], and was not 

varied in this work since previous studies [12,22,36] already showed (up to 48 mm/s, in [12]) that a 

change in velocity coherently modulates the principal frequency according to Equation 1. A more 

comprehensive investigation is left to future studies, which could investigate the effect on amplitude 

modulation at the expected principal frequency due to variations in the indentation force or in the sliding 

velocity. 

According to the experimental protocol, the two artificial fingertip prototypes a (straight 

fingerprints, Figure 4-top) and b (curved fingerprints, Figure 4-bottom) were evaluated by rotating them 

from θ=0° (stimulus sliding along the distal phalanx, Figure 4-left) to θ=90° (stimulus sliding across the 

distal phalanx, Figure 4-right) in steps of 10°, thus indenting and sliding the ridged stimuli with ten 

different fingertip orientations. After enabling data acquisition, the stimulator applied the 200 mN 

feedback-regulated indentation force to the biomimetic fingertip. Subsequently, the stimulus was 

stroked at 10 mm/s, with the fingertip oriented along the selected direction, while maintaining enabled 

the force feedback controller. The sliding distance was set to 60 mm, providing a dynamic stimulation 

(corresponding to surface-fingertip tangential relative motion) for a duration of 6 s. Before commanding 
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the stimulator to unload the fingertip, a steady state was applied, with contact force held at the 200 mN 

reference value. 

In each experimental run a combination of stimulus (having spatial period Δps) and of fingertip 

orientation angle (θ) was used with a fingertip prototype (a or b). Six runs were repeated per 

combination, resulting in 240 runs in total (2 fingertip designs x 2 gratings x 10 angles x 6 repetitions). 

The velocity and the start and stop absolute positions along the sliding direction were not varied 

among different combinations or among repeated runs with the same combination. 

 

Figure 3. Experimental set-up in human (Panel A) and artificial (Panel B) touch experiments. 1: core 

mechatronic tactile stimulation platform; 2: pair of half-gratings; 3: human and biomimetic finger 

support; 4: first stage of microneurography electronics; 5: display with neural data for experiment 

monitoring; 6: single full-grating; 7: rotational stage with goniometer. 

 

A B 
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Figure 4. Protocol for the artificial touch experiments: the two biomimetic fingertip prototypes, 

differing in the curvature of fingerprints, were rotated in steps of 10° from θ=0° (stimulus sliding along 

the distal phalanx) to θ=90° (stimulus sliding across the distal phalanx). 

 θ=0° … θ =90° 

Straight fingerprints 

(fingertip a) 

 

… 

 

Curved fingerprints 

(fingertip b) 

 

… 

 

 

3. Methods 

3.1 Human touch data analysis 

Neural data was at first inspected and processed in time domain to identify neural events. Then, the 

identified spikes were analyzed by obtaining spectra of the spike trains from single afferent units using 

the approach for frequency domain analysis for point processes [37]. For frequency domain analysis, 1.0 

second data windows without overlap were used, and spectra were obtained from disjoint windows for 

all the available data for a specific stimulus condition (i.e., combination of sliding velocity, surface type, 

and normal force). Quantitative analysis was then performed across all the acquired data to evaluate 

whether or not a specific class of tactile units presented a spectrum with a principal frequency according 

to Equation (1). 

3.2. Artificial touch data analysis 

After a preliminary graphical inspection of data from the biomimetic fingertip in time domain, the 

core analysis was operated in time-frequency domain via Short Time Fourier Transform (STFT) and in 

frequency domain via Fast Fourier Transform (FFT) over 1024 samples (4.096 s of data at 250 Hz) in 

the middle of the stimulus sliding phase. 

A recent study in active touch showed outstanding repeatability of experimental data by means of the 

fingertip having curved fingerprints [36]. Those previous results allowed us to directly consider here the 

aggregated results rather than data on a single run basis, also because real-time is not targeted in this 
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work. Therefore, the six repeated runs per combination were aligned off-line and averaged channel by 

channel, enhancing their statistical significance and emphasizing their informative content. 

For quantitative analysis of biomimetic fingertip experimental results, the principal spectral component 

fpeak is retrieved from outputs of the sensor array in order to evaluate the matching with the expected 

frequency fprinc (Equation 1): 

  PiSjFFTf ffpeak 0
maxarg   (2)  

Where the argmax function returns the frequency, provided that it is higher than the lower boundary f0, 

carrying the highest power in the FFT of the output data from piezoreristor Pi of Sensor Sj. In the 

considered analysis, f0 was set to 2.5 Hz, so to discard the very low-frequency spectral components. 

4. Results and Discussion 

The presented results from human microneurography experiments (Figure 5) provide evidence of 

modulation of single unit firing according to Equation 1. The experiments with the biomimetic fingertip 

show such modulation as well, confirming significance of the presented artificial touch investigation, 

carried out in parallel to human touch studies. A compared analysis of results from biomimetic fingertip 

b with curved fingerprints (Figures 7 and 8E-H and 9B), and from biomimetic fingertip a with straight 

fingerprints (Figures 8A-D and 9A) shows that the curvature of fingerprints has consequences on 

isotropy in the encoding of roughness while rotating the fingertip. 

4.1 Human touch 

Figure 5 shows sample nerve recordings, gathered from the median nerve above the elbow using the 

microneurographic technique [2], from a human RA receptor during stimulus sliding motion across the 

distal phalanx (i.e. θ=90°). The subject’s fingerprint at the location of the depicted RA unit has a 

tangent oriented at approximately 46° from the direction parallel to the ridges of the gratings (= 44° 

degrees from the direction of the sliding motion). Spectral analysis of the nerve discharge patterns [37] 

showed significant modulation at the frequency determined by the stimulus spatial period Δps, according 

to Equation 1. A similar relationship depending on the stimulus spatial period was observed in the 

activity of single human mechanoreceptors with receptive fields in the finger tips of the second and third 

fingers. Particularly, for the tested gratings in the 280-520 µm spatial period range, this frequency-

locked modulation was for 8 of 9 RA afferents units where this was tested, but not in any of the SAI 

units (n=5). For gratings in the 1600-1920 µm spatial period range, it was observed in all of the tested 

RA and SAI units (n=7 and 5, respectively; 10-20 mm/s sliding velocity). The smaller peak at 30.8 Hz in 

Figure 5C reflects a slight periodic modulation of unit firing that is uncorrelated with the periodicities in 

the mechanical stimulus. Moreover, it should be noted that the average discharge rates of single tactile 

afferents never directly reflected the spatial periods of the stimuli. As an example, average discharge 

rate was 40 Hz for the unit in Figure 5A, and 55.5 Hz for the unit in Figure 5B. Thus, there was no 1:1 

(or higher order) locking of the nerve discharges, but the spatial periodicity were reflected as a 

frequency modulation (Equation 1) of the discharge patterns. 



Sensors 2011, accepted manuscript                  

 

 

12 

Figure 5. Panels A and B show microneurographic recordings from human single tactile RA afferents 

in the fingertips during stimulation as in Figures 1C and 3A; a 10 mm/s sliding motion was applied 

across the distal phalanx. Panels C and D show spectral analysis of the nerve discharge trains from 12 

repeated stimulus runs for the units shown in A and B. Grating spatial periodicity Δps is 280 µm in A 

and C, 360 µm in B and D. Principal frequencies resulting from Equation 1 according to the specific 

combination of grating spatial periodicity Δps and sliding velocity v are 35.7 and 27.8 Hz for Panels C 

and D, respectively, with meaningful coherence with the depicted experimental results. Horizontal lines 

in C and D show p<0.01 confidence limits for significant frequency modulation. 
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4.2 Artificial touch 

Figure 6 shows the output signal from a channel of the tactile array over six runs recorded under the 

same experimental conditions, in order to assess high repeatability of data. Cursory analysis of Figure 6 

confirms high similarity among the plots. As a further quantitative assessment, Table I presents the 

correlation indexes calculated over all the pairs of the runs plotted in Figure 6. All the correlation values 

reported in Table I are close to 1, confirming high repeatability. Similar repeatable results were obtained 

from the other channels of the array, for both the fingerprint designs and for all the experimental 

combinations (θ and Δp values). High repeatability allowed to perform the averaging operation for all 

the following experimental results, as detailed in Section 3.2, in order to provide significant information 

by means of data recorded under multiple runs. 

 

Figure 6. Outputs from P4S2 of the fingertip b with curved fingerprints, over six runs under the same 

experimental conditions (Δp=440µm and θ=0°), showing high repeatability of experimental data. 

 

 

Table 1. Correlation indexes for all the pairs of experimental runs shown in Figure 6. 

 
RUNS 

1 2 3 4 5 6 

R
U

N
S

 

1 1.00 0.94 0.92 0.95 0.94 0.93 

2 0.94 1.00 0.95 0.95 0.95 0.94 

3 0.92 0.95 1.00 0.94 0.94 0.94 

4 0.95 0.95 0.94 1.00 0.96 0.94 

5 0.94 0.95 0.94 0.96 1.00 0.94 

6 0.93 0.94 0.94 0.94 0.94 1.00 
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In Figures 7 and 8 time domain data from single channels (Piezoresistor 2 of Sensor 1 and 

Piezoresistor 4 of Sensor 4, respectively) of the experimented biomimetic fingertip designs is plotted 

above the related STFT. The insets on the right of the STFT plots show the spectra obtained by 

applying a FFT to the single channel data highlighted in red in the time domain plots. 

Particularly, Figure 7A-B shows time domain traces from Piezoresistor 2 of Sensor 1 in fingertip b 

(see Figure 1 for the labeling of sensors of the tactile array) during stimulation with 360 µm and 440 µm 

regular gratings rotated at an angle θ = 10°. The periodic patterns at 27.8 Hz (360 µm grating) and at 

22.7 Hz (440 µm grating) associated to the spatial periodicity of tactile stimuli are clearly visible either 

in time (vibrational component), in frequency (dominant peak in the FFT, marked with a dotted line) 

and in time-frequency (red region, marked with a dotted line in the STFT) domains. Since the sliding 

velocity remains constant in the performed experiments, the dominant frequency of the vibrations 

elicited by the tactile stimulus is proportional to the inverse of the spatial period of the grating 

(Equation 1), while the intensity of the vibrations increases with the spatial period. Both these effects 

appear to be coherent with [13], where the mechanical vibrations recorded in the fingertip of human 

subjects are shown to scale down in peak frequency and to increase in peak-to-peak amplitude while 

increasing the spatial period. 

The relevance of the dynamic stimulation phase (i.e. the dataset corresponding to surface-fingertip 

tangential relative motion) to extract vibrational patterns which are correlated to the stimulus surface 

features is confirmed by the STFT spectrograms depicted below the time domain plots, which show a 

sudden frequency step at the onset of the stimulus sliding motion. The spectral pattern remains stable 

while the periodic grating is stroked at constant velocity. More importantly, as confirmed by the FFT 

spectra, the frequency peak corresponds to the expected value depending on the applied stimulus 

according to Equation 1, i.e. 27.8 Hz for the 360 μm surface and 22.7 Hz for the 440 μm one. 

Significantly, this artificial vibrational roughness encoding is coherent with the microneurography results 

in humans, according to the findings reported in Section 3.1 and to previous studies with monkeys [38]. 

A comparison between the A-D and the E-H panels in Figure 8 shows the effect of the curvature of 

fingerprints in the encoding of stimulus spatial features in relation to the rotation of the biomimetic 

fingertip. The four rows show results for θ = 10°, θ = 20°, θ = 40° and θ = 90°. There is higher isotropy 

with the curved fingerprints than with the straight ones, which have a strongly preferred direction when 

the sliding is closer to the direction along the distal phalanx (i.e. across the fingerprints). As shown in 

Figure 8A, with straight fingerprints the vibratory patterns are noticeable either in time and frequency 

domains for θ = 10°, while those patterns are considerably reduced and masked by the other spectral 

components when the fingertip is rotated (Figure 8B-D) so to have a sliding oriented closer to the 

direction across the distal phalanx (i.e. along the fingerprints). 
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Figure 7. Encoding of stimulus spatial period Δps in either time, frequency and time-frequency domains. 

Data belongs to Piezoresistor 2 of Sensor 1 of the biomimetic fingertip and was acquired while sliding 

at 10mm/s (200mN indentation force) the 440 μm (Panel A) and 360 μm (Panel B) periodic stimuli 

over the biomimetic fingertip with curved fingerprints (shown in Figure 1B). According to Equation 1, 

the expected principal frequency was 22.7 Hz (A) or 27.8 Hz (B). The rotation of the fingertip was 10° 

with respect to the stimulus sliding direction (reference frame shown in Figure 1C). 
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Figure 8. Encoding of stimulus spatial period Δps as a function of biomimetic fingertip rotation θ for 

both the prototypes with straight and curved fingerprints. Data belongs to Piezoresistor 4 of Sensor 4 of 

the biomimetic finger and was acquired while sliding at 10 mm/s (200 mN indentation force) the 440 μm 

periodic stimulus over the biomimetic finger with straight fingerprints (Panels A to D) and with curved 

fingerprints (Panels E to H). According to Equation 1, the expected principal frequency was 22.7 Hz. 

A description of each row of the subplots is provided within Figure 7. The plotted results are obtained 

by rotating the finger of an angle θ set to 10° (A, E), 20° (B, F), 40° (C, G) and 90° (D, H) with 

respect to the stimulus sliding direction. 

 

 

Extended analysis of the spectrum of readings from both the biomimetic finger designs as a function 

of the rotation angle θ brings evidence of the higher anisotropy anticipated above for straight 

fingerprints (Figure 9A compared to Figure 9B and Figure 10A compared to Figure 10B). Within the 

plots shown in Figures 9 and 10, the expected (Equation 1) principal frequency is represented by a 

straight red line, while the peak arising in the frequency domain for output PiSj (i
th
 piezoresistor of j

th
 

sensor, according to Figure 1) is detected by applying Equation 2 and the correctly identified ones are 

marked with red circles in the figures. 

It is significant to point out that, differing from Figure 9A (straight fingerprints), in Figure 9B 

(curved fingerprints) the peak is not at θ=0° but at θ=10°. This is a consequence of the curvature of 

fingerprints, which affects the sensitivity of the packaged system in tradeoff with the preferred direction 

of Piezoresistor P4, hence widening the region of effective roughness encoding as a function of the 

finger rotation angle θ: the tangent to the curved fingerprints at the location of Sensor S4 is orthogonal 

to the x axis sliding motion direction (and contemporarily parallel to ridges of the grating) when 

θ=17.4° (i.e., >10°), while piezoresistor P4 shows its maximum sensitivity [23,39] to tangential loads 
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(reaching the sensor through the packaging material) being oriented along the direction of its tether, 

which is aligned with the x axis when θ=0° (i.e., <10°). 

Considerations similar to those reported above for Figure 9 apply to Figure 10 as well, which depicts 

spectral data from P2S1 as a function of the rotation angle θ. The tangent to the curved fingerprints at 

the location of Sensor S1 is orthogonal to the x axis sliding motion direction (and contemporarily 

parallel to ridges of the grating) when θ=10.9°, which is lower than the related value for S4; as a 

consequence, in Figure 10B the peak at θ=10° appear to be more marked than the one at θ=20°, if 

compared with the same pair of peaks in Figure 9B. 

 

For all the channels of the tactile array, the design with straight fingerprints guaranteed an absolute 

error Δf = |fprinc − fpeak| in principal frequency estimation (via Equation 2) lower than 0.15Hz for 75% of 

all the experimental combinations, while the percentage raised to 82.5% for the design with curved 

fingerprints. 

 

Figure 9. Single-sided normalized amplitude spectra as a function of the rotation of the biomimetic 

fingertip with straight (Panel A) and curved (Panel B) fingerprints. Data is related to 4.096s subsets 

gathered from Piezoresistor 4 of Sensor 4 (P4S4) while the stimulus was indented and rubbed 

tangentially to the finger. Normal stimulus-fingertip contact force was set to 200mN, while the sliding 

velocity was 10mm/s. According to Equation 1, the expected principal frequency (marked with a red 

straight line) was 22.7 Hz. The red circles highlight the correctly identified (by applying Equation 2) 

peak frequency per each stimulation combination. Higher isotropy as a function of the rotation angle is 

appreciated with the fingertip having curved fingerprints. 
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Figure 10. Single-sided normalized amplitude spectra as a function of the rotation of the biomimetic 

fingertip with straight (Panel A) and curved (Panel B) fingerprints. Data is related to 4.096s subsets 

gathered from Piezoresistor 2 of Sensor 1 (P4S4) while the stimulus was indented and rubbed 

tangentially to the finger. 

 

5. Conclusions and Future Work 

The presented results provide evidence that the stimulus spatial features are encoded in the spectral 

content (i.e. the principal frequency for a periodic grating) of the firing pattern in human 

mechanoreceptors and of the outputs of the developed biomimetic artificial fingertip. It is notable that in 

human touch this was observed for all the tested gratings in a large proportion of recorded RA human 

mechanoreceptor afferents and that in artificial touch the same roughness encoding mechanism, based 

on Equation 1, was fully demonstrated. In this work, the observed peak frequency values were at the 

expected values depending on the tested stimulus spatial period and constant sliding velocity tangential 

to the fingerpad, while the shape of the fingerprints was shown to have an effect on the possibility to 

promote and sense such vibrations, not in shifting the peak values on the frequency axis. The results 

presented here with simple gratings appear to go in the direction of those with more complex surfaces 

presented in [9] (e.g., see Figure 4 of [9]), since in such work the mechanical vibrations were found to 

have spectra repeatably related to the surfaces which were experimented with different subjects 

(therefore, having different fingerprints one to the other) at constant finger-stimulus relative velocity. 

The experimental analysis of the artificial fingertip suggests that the structural anisotropy of 

fingerprints, due to their shape, has a major role in determining the level of anisotropy in the encoding 

of tactile stimuli spatial features. The sensory systems with straight fingerprints embedded in the skin-

like packaging had noticeably higher directional preference, while higher isotropy was observed with 

curved ones. The obtained results provide inputs for the design of artificial sensory systems to best 
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encode textural features in case that the target application has or has not a preferred direction for the 

finger-stimulus relative motion. 

Bensmaïa and colleagues raised the open question whether the anisotropy observed in humans is 

related to the structural anisotropy of the skin or to afferent branching at neural level [40]. In this work 

the experimented biomimetic artificial fingertips differed in the packaging skin-like layer design only; 

moreover, the anisotropy was observed on a channel by channel basis, not only as an aggregated effect 

among different outputs of the array. Therefore, from a robotic point of view the presented results agree 

with the hypothesis according to which the directional anisotropy is affected by the structure of 

fingerprints. Starting from these initial results, investigations on a potential concurrent role of afferent 

branching at neural level may be addressed in future by performing artificial touch experiments in 

accordance with human touch protocols, while also recording from afferent units by means of the 

microneurography technique and analyzing the firing modulation as a function of the stimulus sliding 

direction. 

Finally, moving from the observation that humans appear to be able to discriminate tactile stimuli in a 

wide velocity range (from a few mm/s up to more than a hundred of mm/s) without any significant 

velocity induced effect on perceived roughness [35,41], future research via parallel artificial and human 

touch experiments will investigate a possible mechanism for removing the effect of velocity from 

Equation 1. This work has not addressed the real time discrimination of surfaces neither considered a 

time-varying velocity during the sliding motion of the tactile stimuli. Constant velocity was used to 

obtain stationary spectra in the frequency domain, which were analyzed to evaluate the role of the 

curvature of fingerprints in modulating the strength in the encoding of spatial wavelengths of tactile 

stimuli. To go towards real time discrimination feasibility under unconstrained non-constant sliding 

velocities, we will investigate the possibility for our artificial tactile system to implement the 

hypothetical human model based on coincidence detection of neural spikes, which was discussed in 

[42,43]. As a matter of fact, we believe that such model is promising in artificial touch as well, since a 

suitable approach should consider phase relationships between outputs from adjacent sensors of the 

array (as briefly anticipated in [36]), so to establish a spatio-temporal surface discrimination method, 

rather than spatial (i.e. taking into account static stimulus representation by distributed sensor units) or 

temporal (i.e. taking into account the vibrational stimulus representation by single sensor units) only. 
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Roughness Encoding for Discrimination of Surfaces
in Artificial Active-Touch
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Abstract—A 2 × 2 array of four microelectromechanical system
(MEMS) tactile microsensors is integrated with readout electronics
in the distal phalanx of an anthropomorphic robotic finger. A total
of 16 sensing elements are available in a 22.3-mm2 area (i.e., 72
units/cm2 ) of the artificial finger, thus achieving a density compa-
rable with human Merkel mechanoreceptors. The MEMS array is
covered by a polymeric packaging with biomimetic fingerprints en-
hancing the sensitivity in roughness encoding. This paper shows the
ability of the sensor array to encode roughness for discrimination
of surfaces, without requiring dedicated proprioceptive sensors
for end-effector velocity. Three fine surfaces with 400-, 440-, and
480- μm spatial periods are quantitatively evaluated. Core experi-
ments consisted in active-touch exploration of surfaces by the finger
executing a stereotyped human-like movement. A time–frequency
analysis on pairs of tactile array outputs shows a clustering of the
fundamental frequency, thus yielding 97.6% worst-case discrimi-
nation accuracy with a k-nearest-neighbor (k-NN) classifier. Hence,
surfaces differing down to 40 μm are identified in active-touch by
both hardware and processing methods based on exteroceptive
tactile information. Finally, active-touch results with five textiles
(which differ in texture or orientation) are shown as a prelimi-
nary qualitative assessment of discrimination in a more realistic
tactile-stimulation scenario.

Index Terms—Artificial touch, force and tactile sensing, micro-
electromechanical system (MEMS) sensors array, robotic finger,
roughness encoding.

I. INTRODUCTION

THE development of a tactile sensory system, which is able
to mimic the human sense of touch in the encoding of

textures and is compact enough to be integrated into articulated
artificial fingers, would significantly improve dexterous manipu-
lation (e.g., exploited in industrial, service, or assistive robotics)
and upper limb prosthetics [1]–[3]. Within prosthetics, one of
the main drawbacks of current commercial systems is the lack
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of sensory feedback [4]. As a consequence, the user is unable
to feel an item held by the hand.

Among the various properties that an artificial tactile system
should be able to sense, texture is one of the most challeng-
ing and less established. Considering the role that has been
hypothesized in humans for high-density surface-located type-I
mechanoreceptors [5], [6], gathering information on texture of
a surface could take benefit from the implementation of artifi-
cial tactile systems that can encode dynamic events with a low
threshold in sensitivity and a human-like spatial resolution of
taxels [7]. In humans, texture has two major independent di-
mensions: roughness and softness [8]. Other surface qualities,
such as stickiness, warmness, bumpyness, and harshness, were
identified. However, these are not independent from the two
major dimensions, and there is a consolidated agreement for a
primacy of the smooth–rough dimension as a descriptor, even
if not unique, of surface textures [8]–[10]. Therefore, taking
inspiration from the human sense of touch, in this study, we
focus on roughness, which is associated with the spatial mod-
ulation of the surface (i.e., spatial coarseness, at both macro-
and microscales) [9], and in humans it is mediated by neural
mechanisms which are also involved in tactile guidance during
dexterous manipulation [5], [11].

The objective of this study is to develop an exploratory artifi-
cial finger equipped with tactile microsensors at its fingertip and
a method for robust discrimination of surfaces based on rough-
ness encoding during stereotyped movements. Such a system
has not been presented so far and may be exploited in future
next-generation hand-prostheses [12], [13], with the aim of pro-
viding noninvasive or invasive afferent sensory feedback.

To our knowledge, previous works for roughness encoding
showed experimental results under passive-touch protocols only,
i.e., surfaces were presented to a still sensorized fingertip that
was not integrated into an actuated finger, or without relative
movements of finger linkages in case of integration. Hosoda
et al. developed a soft fingertip with a smooth surface em-
bedding strain gauges and PVDF films in a random manner at
different depths of the rubber layers, allowing for discrimination
of five different types of materials [14]. Wettels et al. developed
a tactile sensor array consisting of a rigid core surrounded by a
weakly conductive fluid contained within an elastomeric skin.
The sensor uses the deformable properties of the fingerpad, and
tactile information relative to the contact force is retrieved from
impedance measurements via embedded electrodes [15], [16].
Dynamic roughness encoding was shown via time–frequency
inspection in [17], while manually moving the artificial finger
over specimens, by means of a pressure sensor located away

1552-3098/$26.00 © 2011 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

from the skin and functioning as a hydrophone in a fluid. A
fingertip-shape tactile sensor integrating a microphone has also
been investigated to quantify textural features [18] presented by
medium-coarse stimuli producing a square wave that is 1 mm in
height, with wavelength varying from 1 to 4 mm with 0.5-mm
increments. A fingertip, which is three times larger than the
human finger, was developed to provide information on rough-
ness, stiffness, and friction of the object with which it comes into
contact [19], [20]. Some other works presented the integration
of tactile sensing in actuated robotic fingers, but the focus has
mainly been on grasp stabilization rather than on the encoding
of spatial coarseness. Examples include the Gifu III Robotic
Hand [21] and the DLR Hand II [22] with embedded six-axis
force sensors.

We previously presented a bioinspired fingertip with tactile
sensors embedded in a viscoelastic packaging with medium-
coarse fingerprints, which was suitable for the encoding of
surface roughness in the frequency domain under controlled
stimuli [23]. To provide the controlled stimuli, we [23] used a
2-degree-of-freedom (DoF) platform presenting tactile speci-
mens to the sensor in a precise and repeatable manner; the
fingertip was still, while surfaces were indented with controlled
normal contact force and then stroked at known constant veloc-
ity tangentially to the fingerpad. Periodic ridged tactile stimuli
(i.e., gratings), which can be considered as the kernel of every-
day life surfaces, were selected as a class of standardized test
surfaces. Gratings are widely used to investigate roughness en-
coding in neurophysiological studies [6], [24]. We demonstrated
that they could be identified by means of spectral analysis on
the outputs of the sensor array, since the constant-speed slid-
ing motion of the grating resulted into a stationary fundamental
frequency equal to the ratio between the tangential velocity and
the spatial period of the scanned stimuli [23].

In this study, we use the same class of tactile stimuli, and we
extend the passive grating-recognition method to the application
with an active underactuated [25], [26] robotic finger (see Fig. 1)
to emulate the possible behavior of a robotic or prosthetic hand
in exploring objects. We integrate a 2 × 2 array of four tactile
sensors (resulting in 16 channels in an area of 22.3 mm2 , i.e., 72
units/cm2) and biomimetic fingerprints in the distal phalanx of a
robotic finger [see Fig. 1(a)] being appropriate for the integration
within a hand prosthesis [27].

As a control condition, we present the fundamental-frequency
modulation under a passive-touch protocol with controlled stim-
ulus scanning velocity. Next, as an experimental condition, the
robotic finger actively explores the samples in a preprogrammed
trajectory. Three gratings having very close spatial periods (i.e.,
400, 440, and 480 μm) are evaluated to demonstrate the work-
ing principle and accuracy of the sensor array and its perfor-
mance. Results demonstrate a surface-identification approach
based on 1) the implementation of a stereotyped feedforward
exploratory trajectory, 2) time-frequency analysis via wavelet
transform (WT) and cross-wavelet transform (XWT) on the
outputs of the tactile sensors, and 3) k-nearest-neighbor (k-NN)
discrimination based on extracted fundamental frequency; this
is bioinspired to sensorimotor control models [28], since it is
based on planned-motion trajectory rather than continuous feed-
back from proprioceptive sensors.

Fig. 1 (a) Distal phalanx of the robotic finger, in comparison with human
hand, integrating the 2 × 2 sensor array (S1–S4), electronics, and polymeric
packaging with fingerprints; the square with white borders highlights the 22.3-
mm2 area of the array, where a density of 72 units/cm2 is reached. (b) (Close-up
view) Sensor S4 of the array. The four outputs of the sensor are marked at the
roots of the tethers of the cross-shape structure. For all the sensors of the array,
P1 and P3 are on tethers that are oriented across the finger, while P2 and P4
are on tethers oriented along the finger. (c) Design of the sensor array showing
the fingerprints, having a 400-μm ridge-to-ridge distance; the curvature radius
of the fingerprint highlighted in red is 4.8 mm. (d) Setup, reference frame, and
phases of the protocol for the passive-touch (1, 2, and 3a) and active-touch
(1, 2, and 3b) experiments. The 2 degrees of actuation (DoA) are obtained via
independent control of MCP joint and underactuated coupling between the PIP
and DIP joints.

This paper is organized as follows. Section II describes the
developed finger. Section III details the roughness-encoding
approach, the experimental protocol, and the wavelet-analysis
technique. Section IV shows 1) passive-touch results, which
demonstrate correct operation of the finger in a precisely con-
trolled experiment, and 2) outcomes in an active-touch ex-
ploratory task. Finally, insights on future work 1) present the
possibility to include phase differences from adjacent sensor
outputs as a further discrimination feature and 2) shows pre-
liminary active-touch experimental results with textiles (which
differ in texture or orientation) as a proof of discrimination fea-
sibility with everyday life surfaces.

II. MATERIALS

A. Underactuated Finger

The robotic finger [see Fig. 1(d)] was human-sized [29],
tendon-driven (as given in [12], [13], and [27]), and underactu-
ated, i.e., with more DoFs than actuators. Such property reduces
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design complexity and allows self-adaptation and anthropomor-
phic movements similar to human exploratory tasks [12]. The
finger had 3 DoFs (as flexion/extension DoFs of the human fin-
ger) and two dc-motor actuators (i.e., model 1727, Faulhaber
Minimotor; ratio 14:1) under position control. One motor ac-
tuated the flexion/extension of the metacarpophalangeal (MCP)
joint, and the other was for the underactuated flexion/extension
of the proximal interphalangeal (PIP) and distal interphalangeal
(DIP) coupled joints (as Hirose’s soft finger [30]).

B. Tactile Array

A 2 × 2, with 2.36-mm pitch, array of four microelectrome-
chanical system (MEMS) sensors was connected to a rigid-flex
board integrated in the distal phalanx of the robotic finger [see
Fig. 1(a)]. The core microsensor [see Fig. 1(b)] is a 3-D high as-
pect ratio, ∼1.4 mm3 , MEMS resulting from silicon microstruc-
turing technologies [31]. Each sensor integrated four piezoresis-
tors at the roots of a cross-shape structure equipped with a mesa.
This turned out into a 16-channel sensory system for transducing
the mechanical interaction with external tactile stimuli in a 22.3-
mm2 area of the fingerpad [see Fig. 1(a)]. Therefore, a density of
72 units/cm2 (i.e., 16 channels/22.3 mm2) was reached, which
is similar to the 70 units/cm2 of human Merkel mechanorecep-
tors [32] which have been shown to encode roughness in studies
with monkeys [5].

The sensors of the array are labeled as S1, S2, S3, and S4
according to Fig. 1(a), while the outputs of each sensor are
labeled as P1, P2, P3, and P4, as shown in Fig. 1(b). P1 and
P3 are related to piezoresistors implanted on the cross-shape
structure on tethers oriented across the finger axis, while P2
and P4 are on tethers oriented along the finger axis. The output
signals were acquired at fs = 300 Hz without preamplification
by means of a 16-channel 24-bit analog-to-digital converter
(ADS1258, Texas Instruments) lodged in the distal phalanx.

The packaging of the MEMS tactile array mechanically filters
the physical stimulation applied to the fingertip and is crucial
to its bioinspired response. It is known from previous studies
that fingerprints enhance tactile sensitivity [33]–[35]. Therefore,
the outer packaging layer of the fingertip, which is made of
synthetic compliant material (DragonSkin, Smooth-On), had a
surface with fingerprints [see Fig. 1(c)] mimicking the human
fingerpad. To achieve biomimetism [36], the fingerprints had
400 μm between-ridge distance; their curvature radius was set
to 4.8 mm in the center of the sensor array [see the red ridge
in Fig. 1(c)], while the artificial epidermal ridge had a height
of 170 μm, and the total packaging thickness from the mesa
structure of the silicon microsensor was 770 μm.

C. Experimental Setup

The experimental setup consisted of two main subsystems,
as shown in Fig. 1(d): the sensorized robotic finger and a
platform under horizontal [see the y-axis in Fig. 1(d)] posi-
tion/velocity control, which was a simplified version of a 2-DoF
platform [37] used in previous studies [23], [38]. Changeable
gratings were housed in a carrier of the platform. A load cell
(Nano43, ATI, NC) was integrated under the carrier to verify

TABLE I
TESTED PERIODIC STIMULI IN BOTH PASSIVE- AND ACTIVE-TOUCH SESSIONS

AND EXPECTED FUNDAMENTAL FREQUENCY IN SENSOR OUTPUTS AS A

FUNCTION OF THE STIMULUS SPATIAL PERIOD AND SLIDING

VELOCITY IN PASSIVE-TOUCH

that finger–stimulus contact forces were in the range of hun-
dreds of milliNewtons, such as that occurring in typical human
tactile exploratory tasks [24].

III. METHODS

A. Fundamental Frequency

When a relative motion at speed v(t) occurs between a finger
and a grating having spatial period Δp along the motion direc-
tion, a correct roughness encoding by the tactile sensor array
should reveal a fundamental tone at frequency fprinc(t) [37]

fprinc(t) =
v(t)
Δp

. (1)

B. Experimental Protocol

The coherence between the theoretical [see (1)] and the ex-
perimental fundamental frequency is demonstrated at first in
passive-touch; stimuli were stroked at controlled known veloc-
ity in order to show and evaluate the encoding principle [see
(1)] under a protocol allowing to directly decouple the contri-
bution of velocity v(t) from stimulus spatial coarseness Δp. In a
second set of experiments, the approach was evaluated under an
active-touch protocol with the robotic finger mimicking the nat-
ural exploratory movement by the hand and without measuring
the instant sliding velocity. In order to evaluate their discrimina-
tion by the artificial finger, three gratings (see Table I) with 400-,
440-, and 480-μm spatial periods Δp were used eight times each
with both the protocols, for a total of 48 experiments (runs). The
tested spatial periods are in the range of studies on roughness
discrimination in humans [38]. Preliminary active-touch exper-
iments were performed with textiles as well and are presented
as insights on future work in Section V-B.

1) Passive-Touch Experiments With Gratings: The finger
was flexed and the fingertip brought into contact with the tac-
tile stimulus [see phases 1 and 2 of Fig. 1(d)]. To show the
fundamental frequency dynamically modulating as a function
of velocity, a double-ramp sliding motion was then applied to
the grating along the positive y-axis [see phase 3a of Fig. 1(d)]
via the platform under position/velocity control: a 10-mm ramp
for 1500 ms (v1 = 6.7 mm/s) was followed by a 10-mm one
in 1000 ms (v2 = 10.0 mm/s). This protocol is named passive-
touch since the robotic finger is still during the stimulus-sliding
motion. Based on (1), Table I shows the theoretical fundamental
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frequencies, ranging from 13.9 to 25.0 Hz, in the passive-touch
protocol depending on the combination of sliding velocity and
tactile stimulus.

2) Active-Touch Experiments With Gratings: Active-touch
experiments were implemented by controlling the MCP joint to
contact the tactile stimulus [see phases 1 and 2 of Fig. 1(d)];
subsequently, the PIP and DIP joints were flexed [see phase 3b
of Fig. 1(d)] to scan, along the negative y-axis, the same spatial
portion of stimulus presented with the passive-touch experi-
ments. The finger was actuated to perform a smooth human-like
exploratory task lasting for 2 s. The same pattern was provided
to the finger for all the active-touch runs, thus implementing a
stereotyped [14] exploratory movement.

C. Data Analysis

1) Wavelet and Cross-Wavelet Transforms: The elaboration
method should take into account that in the active-touch ex-
periments the end-effector velocity could be time variant. As
a consequence, the fundamental frequency would dynamically
modulate within each exploratory session, while rubbing the sur-
face. To allow retrieving such dynamic frequency-modulation,
the continuous WT is used, thus expanding the output signals
from the sensor array into a time–frequency space. Data analysis
is performed via the MATLAB wavelet-coherence package (for
underlying theory and an application example, see [39]); the
default Morlet wavelet function and 100 scales per octave were
selected. More reliably than the single-channel WT, the cross
WT (XWT) is applied to identify time–frequency regions with
high common power between outputs from different sensors of
the array, hence establishing a robust elaboration method based
on combined processing of pairs of sensor outputs.

Each sensing-element (i.e., piezoresistor) response depends
on its orientation with respect to the applied stimulus [31]. Al-
though the MEMS sensor is suitable (both bare [31], [40], or
packaged [41]) to solve the contact force, in this study, the
raw voltage readings were used. This represents an added value
of the system, not only because the contact force is not ad-
dressed in this study, but mainly because this turns out into a
technique being more robust and less time-consuming for the
operator (thereby avoiding periodic recalibration operations).
The 16 sensing elements of the array are either aligned in the
direction across the finger or along the finger. The analysis via
XWT is operated by processing outputs of piezoresistors that are
oriented along the same direction. Specifically, of the 16 avail-
able channels, three are shown in the following to point out the
meaningful information available by processing in combination
a pair of outputs belonging to sensors in line across the finger
axis [i.e., P1 outputs from sensors S1 and S2, according to the
labeling of Fig. 1(b) and (c)] and a pair of outputs from sensors
aligned along the finger axis (i.e., P1 outputs from sensors S4
and S1).

The application of the WT and the XWT is graphically rep-
resented with colors mapping the normalized power in time–
frequency space, where the 5% significance level is highlighted
as a thick contour. In addition, the XWT provides information
about the local relative phase differences between sensor out-

puts. Phase information obtained via XWT (O1 , O2) is graphi-
cally represented by arrows pointing right or left if the signals
are in-phase or in anti-phase, pointing down if sensor output O1
leads O2 of π/ 2, and pointing up if O2 leads O1 .

2) Passive-Touch Roughness Encoding Via Vibratory Cues:
To discriminate the gratings via vibratory cues [from (1)], the
frequency fMP carrying the maximum power was identified,
as a function of time tk , from the XWT applied to pairs of
array outputs (which are labeled as O1 and O2 for the sake of
generalization)

fMP (O1 , O2) (tk ) = arg max
f

|XWT (O1 , O2) (tk , f)| . (2)

In passive-touch, the vibrational encoding was expected to last
for the entire stimulus sliding. Hence, the frequency fMP should
encode the spatial coarseness of the stimuli whatever be the
time instant tk , provided that it belonged to the sliding motion
at controlled constant velocity.

The mean value fMP(O1 , O2) of the frequency fMP carrying
the maximum power was calculated on two pairs of array chan-
nels (i.e., P1S1–P1S2 and P1S4–P1S1). This was calculated
from significant signal slices on each run; in particular, 200
sample windows (with 667-ms duration) were extracted from
the 6.7 and 10.0 mm/s sliding motion in order to consider sub-
sets of data belonging to constant-speed phases of the passive-
touch protocol. Due to the constant sliding velocity of surfaces, a
clustering of fMP data is expected subject to spatial-coarseness
encoding being suitable for discrimination of surfaces. Statis-
tical indices on frequency fMP were calculated across repeated

runs (with same grating): double mean fMP(O1 , O2) and stan-
dard deviation ΔfMP(O1 , O2) aggregating the eight windows of
fMP across the repeated runs (per grating and velocity), mean-
max MfMP(O1 , O2), and mean-min mfMP(O1 , O2) (i.e., the
mean across the repeated runs of the maximum/minimum fMP
registered within each window). In passive-touch, the grating
was identified by selecting the one yielding in minimum error
between theoretical (see Table I) and experimental fundamental
frequency.

3) Active-Touch Roughness Encoding Via Vibratory Cues:
While in passive-touch the vibrational roughness encoding is
expected to last for all the sliding of the stimulus, in active-touch,
it is expected that each unit of the array best encodes the tactile
stimulus in a subset only of the finger exploratory task. In fact,
the varying inclination of the fingertip in active-touch generally
results in a shift of the center of pressure on the fingerpad.
Therefore, it is crucial to identify significant regions in time–
frequency space. To this aim, the instant tMP corresponding to
the maximum cross-power between adjacent units is identified
run by run from fMP [as defined in (2)] as a starting point for
active-touch data analysis

tMP (O1 , O2) =

arg max
tk

|XWT (O1 , O2) (tk , fMP (O1 , O2) (tk ))| . (3)

The mean value fMP(O1 , O2) of the maximum power fre-
quency fMP was calculated run by run on two pairs of
array channels (i.e., P1S1–P1S2 and P1S4–P1S1) from a
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Fig. 2. Time-domain plots under a passive-touch run with 480-μm grating (P1S1, P1S2, and P1S4, according to the labeling of Fig. 1(b) and (c), are shown).
The stimulus sliding-motion starts at t1 = 0.5 s with a 6.7 mm/s velocity up to t2 = 2.0 s, when the velocity is raised to 10 mm/s. The sliding motion stops at
t3 = 3.0 s. Vibrational encoding of stimulus spatial period is appreciated between t1 = 0.5 s and t3 = 3.0 s. The plots on the right show a zoom of the encoding
of stimulus-controlled velocity step at t2 = 2 s. Sensors S1 and S2 are on the distal part of the fingerpad in symmetrical positions with respect to the axis of the
finger, and thus, the related P1S1 and P1S2 signals are in-phase during the stimulus sliding-motion. Sensor S4 is more proximal on the fingerpad, and therefore,
P1S4 shows a phase difference with respect to P1S1 and P1S2. The phase difference between S4 and S1/S2 outputs is not affected by the varying velocity [see (4)].

20-sample window (67 ms of data) around the instant tMP (from
six samples before to 13 samples after tMP ). This particular
condition was imposed by the short duration of the active-rub
(where significant information is found) roughness encoding, as
presented below. Statistical indices were calculated across runs.
Even in the condition of nonconstant end-effector velocity while
actively exploring surfaces, due to the execution of movements
being stereotyped across the runs, a clustering of fMP data
is expected in the event of spatial-coarseness encoding being
applicable to machine-learning classifiers for discrimination of
surfaces. The same statistical indices defined for passive-touch
in Section III-C2) were calculated across active-touch runs. In
active-touch, a k-NN technique was used for discrimination of
gratings by using fMP values from two output pairs as a classi-
fication feature. The training and test operation was performed
10 000 times, by using a leave-M-out validation for evaluation
of discrimination performance: M experimental runs out of the
24 active-touch ones were randomly selected as a test set, while
the others were used to train the NN classifier, provided that
each of the three stimuli appeared with the same number of
occurrences, i.e., (24–M)/3, in every training set. Therefore, for
each train and test operation, M = 3 results in a classifier being
trained over seven random runs out of the eight repeated ones
per stimulus, down to a single random training run per stimulus
with M = 21. The latter condition is a worst-case evaluation be-
cause a training set based on a single experimental observation
would be more sensitive to the potential occurrence of outliers.

IV. RESULTS AND DISCUSSION

In the following, the results in the control passive- and exper-
imental active-touch conditions are shown. The contact forces
at finger–stimulus interface, as recorded by a load cell, are com-
prised within 100 and 300 mN (not shown in the plots for the
sake of graphical clearness) and, thus, belong to the range used
in human exploratory tasks [24].

A. Passive-Touch Experiments With Gratings

Fig. 2 shows in time domain the vibrational encoding of the
480-μm periodic ridged profile of the grating by three sensor
outputs (i.e., output P1 of sensors S1, S2, and S4) during the
whole stimulus sliding in the time interval t1 = 0.5 s to t3 =

3.0 s. The right inset of Fig. 2 focuses on the velocity step at t2 =
2.0 s from v1 (6.7 mm/s) to v2 (10.0 mm/s), showing excellent
dynamic modulation by the tactile sensor array in encoding
vibratory cues according to (1). To point out precise coherence
in dynamic frequency encoding, such velocity transient at t2 =
2.0 s is inspected via WT and XWT in Fig. 3, which shows
that the frequency carrying the highest power (i.e., colored in
red) modulates from 13.9 to 20.8 Hz, according to the expected
values (see Table I).

Table II presents statistical indices across all runs, thereby
demonstrating stable conditions in passive-touch: the roughness
encoding by the sensory system lasted steadily for the whole du-
ration of the sliding stimulus. As an example confirming very
low variability, the standard deviation of fMP was at most 1.6%
of its mean value (0.4 Hz/25.0 Hz) and the difference between
MfMP and mfMP indices was reduced. Importantly, the exper-
imental fundamental frequencies fMP were in strict accordance
with the expected ones (see Table I). A lookup table, based on
theoretical fundamental frequencies (see Table I) and thresh-
olds, guarantees 100% success in classifying the gratings down
to the tested 40 μm difference in spatial coarseness.

B. Active-Touch Experiments With Gratings

The active stereotyped exploratory task presented a subset
lasting about 150 ms, during which the spatial coarseness of the
tactile stimuli was encoded with vibrational features by, at least,
one unit of the array (cf., Fig. 4). An overlap of about 80 ms
was observed [see Fig. 4 (right)] for the combined vibrational
activation of distal sensor units (i.e., S1 and S2) and proximal
sensor ones (i.e., S3 and S4, with the former not shown for the
sake of graphical clearness). Fig. 5 shows WT and XWT applied
to P1S4, P1S1, and P1S2, and tMP resulting from the analysis
of signals gathered by pairs of sensor outputs. The shifting of
the high-power red zone toward higher frequencies reveals that
the end-effector velocity varied (increasing) with time, while
rubbing the sample. Variation of end-effector velocity within
each active-touch rub is also confirmed by the higher values of
the standard deviation of fMP , which was at most 8.3% of its
mean value (5.5 Hz/65.9 Hz; see Table III), and higher differ-
ence between MfMP and mfMP indices, in comparison with the
constant-velocity passive-touch tests (see Table II).
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Fig. 3. WT on single channels (i.e., P1S4, P1S1, and P1S2) of the array and XWT on channel pairs P1S4–P1S1 and P1S1–P1S2. The plots focus on the velocity
step during the passive-touch presentation of the 480-μm stimulus to the robotic finger, showing the frequency shift from 13.9 to 20.8 Hz according to (1).
High-power regions in time–frequency space are colored in red. The thick contour surrounding the red region identifies the 5% significant level. The arrows in the
XWT plots are a graphical representation of the phase difference between the pairs of channels (pointing right: in-phase; left: antiphase; down: series 1 leading
series 2 by 90◦).

TABLE II
STATISTICAL INDICES IN PASSIVE-TOUCH EXPERIMENTS

Fig. 7 shows a plot of the 20 samples subset per run of
fMP (P1S4, P1S1) and fMP (P1S1, P1S2) around tMP (P1S4,
P1S1) and tMP (P1S1,P1S2), as defined in (2) and (3). The fun-
damental frequency fMP , as shown in Fig. 7, is monotonically
modulated from a lower value to a higher one, due to the in-
creasing nonconstant speed, within each run in the considered
20 samples. Despite of overlap of instant fundamental frequen-
cies fMP arising in active-touch with different gratings, Fig. 7
reveals a clear separation among the three tactile stimuli, as in-
dicated by the black dots representing the mean fundamental
frequency fMP run by run per couple of sensor outputs. This is
more evident in the scatter plot of fMP values resulting from the
two considered channel pairs (cf., Fig. 8), which reveals a clear
clustering of the grating spatial period Δp and reduced vari-
ance ΔfMP (across the repeated runs) of the mean fundamental
frequency, as confirmed by the depicted ellipses in Fig. 8. It is
significant to point out that, coherently with the physical model
underlying (1), finer grating spatial periods Δp resulted in higher
frequencies in both the axes of Fig. 8. Due to high repeatabil-
ity, a k-NN classification applied to data of Fig. 8 guaranteed
excellent discrimination performance (see Table IV). A 97.6%
identification accuracy was obtained in the worst-case training
based on a single run per stimulus and the other runs used as
validation set (i.e., leave-21-out). The accuracy raised to 100%
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Fig. 4. Time-domain plots under an active-touch experiment with the ridged tactile stimulus having spatial period Δp = 480 μm [P1S1, P1S2, and P1S4,
according to the labeling of Fig. 1(b) and (c)]. The graphs show experimental data comprising the load, rubbing, and unload phases of the active-touch exploratory
task. The plot on the right focuses on the active rubbing of the ridged stimulus, which shows vibrational encoding of roughness. Similarly to the passive-touch
experiment shown in Fig. 2, the signal from P1S1 is in-phase with P1S2 and shows a phase difference with P1S4, as expected from (4).

Fig. 5. WT on single channels (i.e., P1S4, P1S1, and P1S2) of the array and XWT on channel pairs P1S4–P1S1 and P1S1–P1S2. The plots focus on the
active-touch exploration of the 480-μm stimulus by the robotic finger, showing the frequency encoding during the rubbing phase, which is a function of the
stimulus spatial period and the time-variant velocity according to (1). High-power regions in time–frequency space are colored in red and tM P are indicated for
both the channel pairs. The thick contour surrounding the red region identifies the 5% significant level. The arrows in the XWT plots are a graphical representation
of the phase difference between the pairs of channels (pointing right: in-phase; left: antiphase; down: series1 leading series 2 by 90◦).

with all the gratings by using at least four runs per stimulus as
a training set (i.e., leave-12-out).

Velocity was constant and known (either 6.7 or 10.0 mm/s
was tested) in passive-touch experiments, while in active-touch,
it was not directly measured. However, as a final evaluation
of tested velocity range in comparison with typical human ex-
ploratory tasks, we can reconstruct this information by inverting
(1) via the knowledge of tested stimuli and measured MfMP and
mfMP indices (see Table III), thereby resulting in active-touch

velocities monotonically increasing approximately from 22 to
31 mm/s within the significant portion (which is around tMP ) of
each run. Thus, the tested velocities belong to the wide range
(from a few millimeters per second up to more than a hundred of
millimeters per second) used, with no significant related effect
on perceived roughness, by humans during active exploratory
tasks [42].

A compared inspection of the three time-domain plots aligned
vertically in Fig. 6 confirms that a change in the grating spatial
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TABLE III
STATISTICAL INDICES IN ACTIVE-TOUCH EXPERIMENTS

Fig. 6. Active-touch vibrational frequency encoding in time domain of the
grating spatial period Δp by sensor outputs P1S1, P1S2, and P1S4. Moreover,
P1S1 and P1S2 are always in-phase, while the phase difference with P1S4
varies, depending on the surface (as confirmed by the horizontal shift of the
blue trace with respect to the red and green ones, while comparing the plots for
the three values of the grating spatial period Δp), coherently with (4).

period Δp causes a modulation of the vibrational cues in active-
touch.

V. INSIGHTS ON FUTURE WORK

A. Toward Surface Classification With Nonstereotyped Ex-
ploratory Movements: Phase Locking

Phase information was taken into account as a further feature
in addition to the fundamental frequency useful for discriminat-
ing among surfaces. A qualitative discussion of related results is
presented here as a preliminary study for future works address-
ing passive-touch experiments without the limiting condition on

Fig. 7. Maximum-power frequencies fM P (P1S4,P1S1) and fM P (P1S1,P1S2)
are depicted with colored dots under the active-touch protocol (red: Δp =
400 μm; green: Δp = 440 μm; blue: Δp = 480 μm). A total of 20 samples
of fM P around tM P are shown per experimental run. A separation between
the fundamental-frequency values gathered with the three tactile stimuli can
be appreciated. (Black dots) Mean frequency fM P resulting from a run-by-
run averaging operation. The wide distribution around the black dots is due to
the varying velocity within each active rub session, as confirmed by standard
deviation given in Table III.

Fig. 8. Scatter plot of the run-by-run mean values of the fundamental frequen-
cies, i.e., fM P (P1S1, P1S2) and fM P (P1S4, P1S1), identified by two pairs
of sensor outputs under the active-touch protocol. A clear clustering is shown,
depending on the explored surface, and coherent frequency-increase while de-
creasing the spatial period Δp of the grating. The ellipses depict low dispersion
of data, as a result of significant repeatability. These are centered on the centroid
of each cluster and have axes lengths set to twice the standard deviation of fM P
values belonging to each cluster.

constant (or known) stimulus-velocity or active exploration of
surfaces under general nonstereotyped trajectories.

Considering piezoresistors belonging to sensor tethers that
are oriented along the same direction, we expect the gathered
output signals to show vibrational components having a phase
difference Δϕi,j being independent on the stimulus sliding-
velocity

Δϕi,j = 2π
Δyj,i

Δp
(4)

where Δyj,i = yi– yj is the difference of the y-coordinates
of sensor Si and sensor Sj (while considering sensors aligned
along the finger axis, i.e., S1–S4 and S2–S3, Δyj,i corresponds
to the 2.36 mm pitch of the array in case that the plane of the
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TABLE IV
PERCENT DISCRIMINATION ACCURACY WITH GRATINGS AS TACTILE STIMULI,

VIA k-NN CLASSIFICATION AND LEAVE-M-OUT VALIDATION

(SEE SECTION III-C3)

sensors is parallel to the stimulus), according to the labeling
introduced in Fig. 1(a). This results in signals always in-phase
if considering the couple S1–S2 or the couple S3–S4 and with
phase differences depending on the tactile stimulus for the other
combinations.

In passive-touch, during finger–stimulus contact, sensors S1
and S2 of the array on the distal part of the phalanx were simul-
taneously aligned under the same ridge of each grating [same
y-coordinate, i.e., Δy1,2 = 0, according to the reference frame
in Fig. 1(d)]. Therefore, coherently with (4), the outputs from
piezoresistors belonging to sensor tethers which are oriented
along the same direction (e.g., P1S1 and P1S2), were in-phase
for all the runs, regardless of the grating spatial period. This
is also confirmed in time domain in Fig. 2 (in-phase P1S1
and P1S2 signals) and depicted by the horizontal arrows in
time–frequency space of the XWT(P1S1,P1S2) plots in Fig. 3.
Conversely, a phase difference was observed from sensor units
lodged at different positions along the axis of the finger (e.g.,
P1S1 and P1S4, which are represented with red and blue traces
in Fig. 2 and with arrows in the second subplot of Fig. 3). Ve-
locity had no effect on the phase relationships, as shown by
the arrows before and after the velocity variation at t2 = 2.0 s
in Fig. 3. This property of phase locking is coherent with (4)
(since no velocity appears in the equation) and can be applied
to remove the velocity dependence of (1). However, a problem
occurs with respect to (4): Phase differences can be experimen-
tally measured only in a 2π range, thus introducing limiting
conditions to invert (4) (i.e., Δp > 2Δypitch = 4.72 mm or
Δp > Δypitch = 2.36 mm, depending on the knowledge of the
sign of the relative finger–stimulus velocity). This means that,
by just considering two spatially located sensors of a regular
array, phase differences can be analytically reconstructed only
in case that two sensors are encountered along the rubbing di-
rection within a half- or full-spatial wavelength of the tactile
stimulus. Such limiting conditions for spatially distributed sam-

Fig. 9. (Left plots) XWT on channel pair P1S1–P1S2 during active rubbing
of five textiles (see Section V-B). The textured structure of each specimen is
shown on the right by means of optical microscopy (Hirox KH-7700 digital
microscope). The relative positioning of sensors S1 and S2 is marked on the
right images, together with an arrow representing the active rubbing direction.

pling are equivalent to the Nyquist theorem for time-domain
sampling.

Gratings with different spatial period Δp caused a modulation
in the relative phase between units lodged along the direction of
the finger axis (e.g., S4 with respect to S1 and S2) in active-touch
as well. Consistently with (4), the phase difference between units
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aligned across the finger axis (e.g., S1–S2, with Δy1,2 = 0 mm)
did not modulate. As an example from two couples of outputs
from the array in both time (i.e., inspecting the relative timing
between vibratory peaks in Fig. 4) and time–frequency (i.e.,
inspecting the arrows in Fig. 5) domains, the signals from P1S1
and P1S2 were in-phase, while a phase difference was observed
between P1S4 and P1S1. The same behavior is shown in Fig. 6
for all the three used gratings (varying in Δp), as confirmed by
the horizontal shift of the blue trace with respect to the red and
green ones. It is relevant to point out that the phase relationships
around the red high-power time–frequency regions (i.e., around
tMP ), as depicted for active-touch in Fig. 5, were consistent
with the passive-touch ones (cf., Fig. 3). This is observable
by comparing the arrows (equal down-right pointing) in the
significant regions of the two figures. Further related results and
considerations are left to future works.

B. Active-Touch Experiments With Textiles

Five textiles were tested in active-touch to preliminarily
evaluate discrimination suitability in a more realistic tactile-
stimulation scenario with respect to gratings. The five surfaces
were a fine-denim cut along two different orientations [see
Fig. 9(a) and (b)], a coarse-denim cut along two different orien-
tations [see Fig. 9(c) and (d)], and a nap textile [see Fig. 9(e)].
The active-touch protocol detailed in Section III-B2 was used.
For all the runs and textiles, the XWT was calculated on chan-
nel pairs to inspect data. Fig. 9 depicts one XWT(P1S1,P1S2)
example for each textile. Each surface showed a repeatable
specific pattern in time–frequency space in all the eight runs.
Such repeatability was confirmed calculating the correlation in-
dices for each time-domain raw single-sensor output over all
the combinations of pairs of repeated runs with the same tex-
tile. As an example, average correlation coefficients for channel
P1S1 over repeated runs are 0.96 ±0.01 for textiles A and E,
0.97 ±0.01 for textiles B and C and 0.98 ±0.01 for textile
D. All the coefficients are very close to one with a significant
confidence interval, thereby demonstrating high repeatability
and, thus, confirming the suitability for the discrimination of re-
alistic surfaces. Moreover, average correlation coefficients lower
in a range between 0.78 and 0.90, with significant confidence as
well, while considering combinations of runs related to pairs of
different stimuli.

Textiles present a surface structure being more complex and
realistic with respect to gratings. Therefore, a number of spectral
components rather than a single fundamental frequency should
be taken into account in order to yield high classification perfor-
mance (up to the full time-varying spectrum to succeed in the
discrimination of unspecified tactile stimuli having a very com-
plex surface structure). The extension and generalization of the
discrimination technique presented for gratings in Section IV-B
will be investigated in future works. Sandpaper tactile stimuli
will be experimented as well: despite the fact that sandpaper
is not usual in everyday-life tactile experience in comparison
with textiles, it represents a significant testbed (as is confirmed
by related psychophysical studies [24]) due to its aperiodic, but
still standardized (grit size), surface structure.

VI. CONCLUSION

The vibratory patterns recorded by the sensor array during
the sliding motion of gratings at known constant velocity co-
herently modulated at the expected frequency in passive-touch.
The significant results shown under the passive-touch protocol
constituted the foundations for the subsequent active-touch in-
vestigation. The XWT on outputs from adjacent sensors of the
array revealed a fundamental spectral component being a func-
tion of time when the robotic finger actively explored the tactile
stimuli. Despite of the nonconstant scanning velocity, the finger
stereotyped exploratory-movement allowed to encode the spa-
tial coarseness of gratings by identifying, in a 67-ms window
(i.e., 20 samples at 300 Hz) of time–frequency space, the set of
spectral components conveying the highest cross power between
adjacent sensors.

This study showed the capability to discriminate among sur-
faces having spatial periods differing down to 40 μm, both
under passive-touch and under human-like active-touch tasks.
Performance in the active-touch discrimination of gratings was
excellent, with worst-case accuracy (97.6%; see Table IV) being
much higher than the one-third performance in case of random
choice. Therefore, the 40-μm threshold underestimates the po-
tential performance, and the developed technology could ensure
better results while being tested with finer stimuli.

The evaluation of the robotic finger was operated with contact
forces and velocities in the range used by humans during tactile
exploratory tasks. In active-touch experiments with gratings,
exteroceptive information (i.e., tactile cues) was enough for the
successful coarseness encoding (see Figs. 4–8) and discrimina-
tion of surfaces (see Table IV), without the need to consider
proprioceptive data (such as end-effector velocity). This could
open various possibilities, while pursuing the integration of the
developed artificial touch technology into an upper limb pros-
thesis via noninvasive (e.g., vibrating tactors [43]) or invasive
(e.g., direct peripheral neural feedback [44], [45]) interfaces.

The proposed method is neither temporal nor spatial; rather,
it is spatiotemporal because it is based on the temporal (i.e., vi-
brational) roughness encoding by each single sensor and on the
combined observation by spatially adjacent units of the array to
identify the data subset to focus on for analysis. Phase informa-
tion (see Section V-A) via neighboring observers distributed on
the surface of the fingerpad is associated with spatiotemporal
variation as well.

Preliminary experimental results presented in Section V-B
with textiles are promising, and future experiments will be ori-
ented toward a quantitative analysis of discrimination accuracy
with a wide set of everyday-life surfaces.

In future works, we will investigate more on how to im-
plement classification techniques based on the phase locking
between signals gathered by adjacent sensors of the array; to
this aim, a smartly distributed sensor array and phase locking
could be applied to emulate the hypothetical human model for
coincidence detection shown in [11]. Attention will be paid to
smart irregular physical positioning of sensor units, by getting
design inputs from the biological model. This would allow to
obtain a system of multiple phase relationships to solve, under
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general unconstrained exploratory motions, spatial features be-
ing finer than the NN spacing of tactile units, as it happens in
humans [5]. Therefore, following our aim while moving from
passive to stereotyped active-touch protocols, phase relation-
ships could be introduced as a further classification feature to
go toward less-structured experimental conditions without re-
quiring the exploratory movement to be stereotyped.
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