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in particular the distribution of the evaluation of pseudo-random functions, wasneglected (an exception is the work of [31]). Threshold evaluation of random-like functions is required for seemingly unrelated applications, for example forsecure and e�cient metering of web usage [32], for threshold evaluation of theCramer-Shoup cryptosystem [13], and for the applications we discuss in thispaper (in particular, distributed KDCs and long-term repository for encrypteddata). These applications require that the protocol for the collective functionevaluation does not invovle communication between the parties which evaluatethe function. This requirement is not satis�ed by most threshold constructionsfor public key cryptography.This work describes schemes for distributing between n servers the evaluationof a function f which is an approximation to a random function, such that onlyauthorized subsets of servers are able to compute the function. A user whowants to compute f(x) should send x to the members of an authorized subsetand receive information which enables him to compute f(x). We require thatsuch a scheme is consistent, i.e. that given an input x all authorized subsetscompute the same value f(x).Distributed and consistent evaluation of pseudo-random functions is usefulfor many applications. The consistency property is especially useful for the fol-lowing three types of applications:(i) A distributed KDC system (DKDC), in particular for multicast commu-nication. We describe this application in detail in Section 1.2.(ii) Long-tem encryption of information, where a user might want to encryptpersonal information and keep the decryption keys safely distributed betweenmany servers (see Section 1.3).(iii) A realization of a Random Oracle or of a beacon [41] that generates ran-domness which should be shared by remote parties and used in a cryptographicprotocol.We introduce the notion of a Distributed Pseudo-Random Function (DPRF).We describe several constructions of approximations to random functions whichare useful for many of the applications of a DPRF. A threshold DPRF (depictedin Figure 1) is a system of n servers such that any k of them can compute thefunction f , but breaking into any k � 1 servers does not give any informationabout f (for instance think of a system with n = 20 servers and a threshold of k =3). The servers could be distributed across the network, and a party can contactany k of them in order to compute f . If several parties need to compute f for thesame input they are not required to contact the same k servers but rather eachparty can contact a di�erent set of k servers (e.g. those to which it has the bestcommunication channels). Furthermore, to reduce the latency of the computationa party can contact the k servers in parallel. We also support DPRFs based ongeneral monotone access structures [7, 28, 3] rather than on threshold ones.There are several scenarios where general access structures might be preferableto threshold access structures (e.g. to allow e�cient implementations of quorumsystems [38] which enable fast revocation).Our constructions can be further amended to be robust against servers which
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Fig. 1. A Distributed Pseudo-Random Function System.send incorrect data to users who approach them, (the robustness is based eitheron error-correcting mechanisms or on proof techniques). The constrcutions canalso be further improved to ensure proactive security (see [11] and referencestherein for a general discussion of proactive security), which provides automaticrecovery from break-ins: The servers perform some periodic refreshment of theirsecrets (e.g. once a day), and as a result only an adversary which breaks into kservers in the same period can break the security of the system.1.1 Our Solutions for a Threshold Access StructureIt is unknown how to perform a threshold evaluation of a pseudo-random func-tion without requiring heavy communication between the servers for each giveninput. Lacking a general construction we describe three di�erent approximationsof DPRFs with a threshold access structure.The �rst construction generates f as an `-wise independent function. It pro-vides information theoretic security as long as an adversary does not obtain `di�erent values. The scheme is very e�cient and requires only multiplicationsin a small �nite �eld (which essentially should only be large enough so that arandom element in it can be used as a key for a private-key encryption scheme).The parameter ` can therefore be set to be rather large (even several millions).The second construction is based on a computational assumption: the de-cisional Di�e-Hellman assumption (see [9]). However the resulting function isonly weakly pseudo-random, i.e. it is pseudo-random as long as the inputs onwhich it is evaluated are pseudo-random. The construction requires a user tocompute O(k) exponentiations in order to compute the function's output, anda server should compute only a single exponentiation in order to serve a user.The �rst two constructions can be easily amended to provide proactive security.The third construction is based on a monotone CNF formula realizing thethreshold k-out-of-n function. This construction computes a full-edged pseudo-random function and its security depends only on the existence of pseudo-randomfunctions. It can also be adapted to any access structure. Its drawback is thatit is only e�cient for moderate values of n and small values of k, and we do notknow how to enhance it to obtain proactive security.



The constructions and their properties are summarized in Table 1.E�ciency Pseudo Number of Proactive Robust. Generalrandomness evaluations security access`-wise ind. e�cient poly strong limited yes yes yesDDH expensive poly weak unlimited yes yes yesCNF exponential strong unlimited no yes yesTable 1. A comparison of the threshold schemes.DPRFs for general access structures: We present constructions of DPRFsbased on any monotone access structure. For example, an access structure basedon a quorum system allows for fast user revocation by accessing the serverswhich are members of a single quorum. Our constructions are based either onmonotone symmetric branching programs (contact schemes), or on monotonespan programs.1.2 Application to Key Distribution { DKDCsA Key Distribution Center (KDC): A popular approach for generatingcommon keys between two parties without using public key cryptography is byusing a three-party trust model which includes a trusted key distribution center(KDC). In networks which use a KDC there is a dedicated key between theKDC and each of the members of the network. Denote by ku the key betweenthe KDC and party u. This is the only key that u has to store. Very informally,when two parties (e.g. u and v) wish to communicate, one of them approachesthe KDC which then provides a random key, ku;v , and sends it to each of the twoparties, encrypted with their respective secret keys (i.e. Eku(ku;v) (the encryptionof ku;v with the key ku) is sent to party u, and Ekv (ku;v) is sent to v). Theparties can now communicate using the key ku;v. This approach was initiated byNeedham and Schroeder in 1978 [40] and is widely implemented, most notably inthe Kerberos system (see e.g. [27]). Bellare and Rogaway [4] give a complexity-theoretic treatment of this model, and present a provably secure protocol forsession key distribution based on the existence of pseudo-random functions.The approach of using a KDC is appealing since each party should only storea single key and when a new party is introduced there is no need to send keysto other parties. However there are various problems in using KDCs, which aredue to the fact that a KDC is a single point of failure:{ Security: The KDC knows all the keys that are used in the system, and ifit is broken into the security of the entire network is compromised.{ Availability: (i) The KDC is a performance bottleneck, every party hasto communicate with it each time it wishes to retrieve a key. (ii) Whenthe KDC is down or unreachable no party can obtain new keys for starting



conversations on the network. (iii) The availability problem is ampli�ed whentrying to use a KDC to generate keys for multicast communication (i.e. tobe shared by more than two parties), since all the relevant parties have tocontact a single KDC.In order to address these problems the common practice is to use multipleKDCs. However, the known solutions are far from being perfect: (i) The secu-rity problem is addressed by dividing the network into di�erent domains anddedicating a di�erent KDC to each domain. When a KDC is broken into onlythe domain to which it belongs is compromised. However, the management ofinter-domain connections is complicated and a KDC still holds all the secrets ofits domain. (ii) The availability problem is reduced by replicating the KDC andinstalling several servers each containing all the information that was previouslystored in the KDC. This improves the availability but decreases security: thereare multiple sensitive locations and breaking into any of these replicated KDCscompromises the security of the network. There is also an additional problem ofreliably synchronizing the information that is stored in the di�erent copies.Multicast communication: The availability problem is relevant to unicast com-munication between two parties but is even more severe for multicast communi-cation. Multicast communication is sent to a (potentially large) number of par-ties. Typical applications are the transmission of streams of data (such as videostreams) to large groups of recipients, or an interactive multiparty conference.The large (exponential) number of groups in which a party might participateprevents it from storing a key for each potential group. On the other hand, thelarge number of parties which might require the service of the KDC worsen theavailability problem. For example, imagine a source which transmits many videochannels over the Internet, with hundreds of thousands of receivers all over theworld. A single KDC cannot handle requests from all these receivers. Alterna-tively, consider a multinational company which uses a single KDC for providingkeys for virtual meetings of its employees. If some o�ces are disconnected fromthe KDC then users in these o�ces cannot even obtain keys for virtual meetingsbetween themselves.A Distributed KDC { DKDC: A DPRF can be used to construct a Dis-tributed KDC (DKDC). A DKDC consists of n servers and a user should kof them in order to obtain a key. The servers are responsible for a consistentmapping between key names and key values4. Each KDC server should operateas a server in the distributed evaluation of the pseudo-random function f . Thekey for a certain subset S of users is de�ned as kS = f(S). This approach isespecially useful for generating keys for multicast groups with many members.Each member might approach a di�erent authorized subset of the KDCs andit is guaranteed that every user obtains the same key. It is also useful to use4 Of course, consistency does not prevent groups of users from using di�erent keys atdi�erent times (session keys), if this is desired.



this construction to generate keys for unicast communication if each of the twoparties prefers to access a di�erent subset of KDCs.Key granting policy:When a user requests a key from a KDC the KDC shoulddecide whether the user is entitled to receive this key. The question of how thisdecision is made is independent of this work.One appealing approach is when a group name is derived from the identitiesof its members and then servers can easily verify whether a user that asks fora key is part of the group of users that use the key. This method is good for\mid-sized" groups. For larger groups the group name can be generated by amethod based on hash trees, and then a user can e�ciently prove to a serverthat it is part of a group.Another appraoch introduces an interesting billing mechanism for multicasttransmissions with k-out-of-n DKDCs: the user is required to pay each server1=k of the payment needed for accessing the transmission, and to receive inreturn the information the server can contribute towards the reconstruction ofthe decryption key.1.3 Long-term Encryption of InformationSuppose one wishes to store encrypted information so that it remains safe formany years. A problem that immediately arises is where to store the keys used forthe encryption so that they would not be leaked or lost. Note that the questionof storing keys safely arises in many other scenarios, e.g. [8]. One possibility isto use a DPRF as a long term key repository. We add to the system a collectionof n servers that act as the servers of the DPRF. These servers are trusted inthe sense that no more than k of them become faulty5. We should also havesome way to specify the policy determining who is allowed to decrypt the �le,as the system is likely to be used by many users. We assume that the DPRFhas ways to check whether a user is allowed to obtain information with a givenpolicy (this is orthogonal to the issue at hand).In order for a user to encrypt a �le X and decryption policy speci�ed bywho, it does the following{ Choose an encryption key r for a conventional encryption scheme G andencrypt the �le with key r. Let Y = Gr(X).{ Compute h = H(Y ) where H is a collision intractable hash function.{ Apply to the DPRF to obtain s = f(h �who){ Put Y in the long term storage together with who and s� r.To decrypt an encrypted �le Y with policy who and encrypted key s0:{ Compute h = H(Y ).{ Apply the DPRF to obtain s = f(h �who){ Decrypt Y with key s� s0 to G.5 In this case the desirability of proactive security is evident since the assumption isthat no more than k are broken into at any given period.



Note that we do not require the servers of the DPRF to store anything inaddition to their keys. All information related to the �le can be stored at thesame place. Also note that in order combat changes to the stored informationone should use parts of s as an authentication key to Y and r.1.4 Related WorkDPRF systems perform multi-party computations. The generic solutions of [25,6, 14] for multiparty computations are ine�cient for this application (even whenapplied to the relatively simple pseudo-random functions of [36], see discussionthere). In particular, they require communication between the servers which areinvolved in the evaluation of the function. Their security is also only guaranteed ifless than one third (or one half in the passive model) of the servers are corrupted.There has been a lot of work on designing and implementing KDCs. A goodoverview of this work can be found in [27] and a formal treatment of the problemis given in [4]. Most of this work was for a trusted party which generates a key\on-the-y", i.e. where consistency of the key is not required. While this modelmay be more relevant to unicast it is less applicable when more than two partiesare involved.Naor and Wool [39] considered a di�erent scenario for protecting databases,and when adapted to our scenario their solution is one where the servers aretrusted never to reveal their secret keys, but some of them might not have re-ceived updates regarding the permissions of users (which is a weaker assumptionthan regarded in this paper).Our �rst two constructions are similar in nature to the constructions of Naorand Pinkas for metering schemes [32]. The problem they considered was to en-able a server to prove that it served a certain number of clients (a representingapplication might be to meter the popularity of web sites in order to decide onadvertisement fees). In general, not every solution for the metering problem isrelevant to the construction of a DPRF (for example, the output of the meteringcomputation should be unpredictable whereas the output of a DPRF should bepseudo-random). The metering constructions achieve better robustness againsttransmission of corrupt proof components than the robustness of our DPRFschemes against corrupt key components. On the other hand the metering con-structions do not provide proactive security (due to the lack of communicationchannels between clients in that model) whereas we present very e�cient proac-tive enhancements to the DPRF schemes.Micali and Sidney [31] showed how to perform a shared evaluation of apseudo-random function with a non-tight threshold. They provided a lowerbound and a non-optimal probabilistic construction which is relevant only forsmall values of k and n. We describe an deterministic construction for the sharpthreshold case which matches their lower bound.Gong [26] considered a problem related to the DKDC application: a pair ofusers A and B each have private channels to n servers, and would like to usethem to send a secret and authentciated message from A to B (e.g. a key whichthey will later use). Some of the servers might be corrupt and might change the



messages they are asked to deliver (this problem is similar to that consideredby Dolev et al [19] since each server is essentially a faulty communication link).Gong's scheme requires A to send through each server a message of length O(n)2 De�nitions2.1 The ModelThe following model is used throughout this work.Setting: We consider a network of many users (clients), which also contains nservers S1: : : : ; Sn. Each user u has a private connection with each of at least kservers (in all but the proactive solutions these channels can be realized usingsymmetric encryption. A future work [34] describes how to e�ciently maintainthese channels in the proactive model).Initialization: At the initialization stage each server Si receives some secretpersonal key �i which it would use in its subsequent operation. It is possiblethat the values f�igni=1 were generated by a central authority from a systemkey �. If this is the case then � is erased at the end of the initialization stage.Preferably, the servers perform a short joint computation which generates thevalues f�igni=1, such that no coalition C of k � 1 servers can use its values tolearn anything about �u if u 62 C. This prevents even a temporary concentrationof the system's secrets at a single location.Regular operation: A party u that wants to compute f(x), operates as follows:{ It contacts k servers, Si1 ; : : : ; Sik , and sends to each of them a message hu; xi.{ Each server Si veri�es that u is entitled to compute f(x). If so, it computesa function F (�i; x), and sends the result to u through their private channel.{ u computes f(x) from the answers it received using a function G, namely itcomputes f(x) = G(h; F (�i1 ; x); : : : ; F (�ik ; x)):2.2 RequirementsThere are two approaches to approximating random functions: pseudo-randomnessand `-wise independence. We present approximations to DPRFs which followboth these directions.Loosely speaking, pseudo-random distributions cannot be e�ciently distin-guished from uniform distributions. However, pseudo-random distributions havesubstantially smaller entropy than uniform distributions and are e�ciently sam-pleable. Pseudo-random function ensembles, which were introduced in [24], aredistributions of functions. These distributions are indistinguishable from the uni-form distribution under all (polynomially-bounded) black-box attacks (i.e. thedistinguisher can only access the function by adaptively specifying inputs andgetting the value of the function on these inputs). Goldreich, Goldwasser, andMicali provided a construction of such functions based on the existence of pseudo-random generators. See [23, 29] for further discussions and exact de�nitions ofpseudo-random functions.



We also use `-wise independent functions. Their di�erence from a pseudo-random function is that more than ` values of an `-wise independent functionare not \random looking" (however, a set of at most ` values is completelyrandom rather than pseudo-random).In a DPRF the ability to evaluate the function is distributed among theservers. The process that is performed by the servers can be de�ned as k-out-of-n threshold function evaluation.De�nition 1 k-out-of-n threshold evaluation of a pseudo-random func.Let Fm = ff�g be a family of pseudo-random functions with security parameterm, keyed by �. A k-out-of-n computation of Fm is a triple of polynomial timefunctions hS; F;Gi (the key sharing, share computation and construction func-tions), such that{ For every f� 2 Fm, S(�) = h�1; : : : ; �ni, such that{ For every 1 � i1 < � � � < ik � n, G(hi1; F (�i1 ; x)i; : : : ; hik; F (�ik ; x)i) =f�(x). And,{ For every 1 � i1 < � � � < ik�1 � n, given f�ijgk�1j=1 , and given a set Y ofpolynomially many values (where the inputs in Y were chosen adaptively,possibly depending on f�ijgk�1j=1 ), and the values hf�(y); fF (�i; y)gni=1i forevery y 2 Y , the restriction of the function f� to inputs which are not in Yis pseudo-random.The de�nition of k-out-of-n threshold evaluation of an `-wise independent func-tion is similar, except that Fm is a family of `-wise independent functions, andit is required that given the computation process of any ` � 1 function values,any remaining value is uniformly distributed.The most important requirement of k-out-of-n threshold function evaluationis that the output of f be consistent. The protocol might be considered as a spe-cial case of multi-party computations [25, 6, 14]. However although it might notbe obvious from �rst reading, our de�nition includes several e�ciency restric-tions which do not exist in the de�nition of multi-party computations and whichare actually not satis�ed by the constructions of [25, 6, 14] (their constructionsare also for a joint computation by n parties, and are secure only against coali-tions of less than n=2 or n=3 parties. Our requirement is for a joint computationby k parties and security against k�1 servers, where k might be any number upto n). The e�ciency requirements, which we explicitly state below, are needed tominimize the communication overhead which is often the most important factorof the system's overhead. The e�ciency requirements are:Communication pattern: In the process of computing f(x) there is no com-munication between the servers. The only communication is between the serversand the party that computes f(x).Single round: There is only a single round of communication between theservers and the user. The user can send queries to the servers in parallel, i.e.there is no need to wait for the answer from one server before sending a queryto another server.



Obliviousness: The query to one server does not depend on the identities ofthe other servers which the user queries. This requirement is important if theuser might �nd (while in the middle of the process of querying the servers) thatsome of the servers to which it applied are malfunctioning.Additional requirements can be considered as security optimizations to theoriginal de�nition. They are not obligatory, but improve the quality of a DPRFconstruction:Robustness: If a server is controlled by an adversary it might send to the usercorrupt information which prevents the user from computing the correct value.It is preferable if the user can identify when such an event happens.Proactive security (or, Resilience to prolonged attacks): Proactive securityenables a system to maintain its overall security even if its components arerepeatedly broken into. Systems with proactive security typically use a securityparameter k and are secure as long as less than k system components are brokeninto in the same time period (see [11] for a discussion of proactive security).3 The Threshold Constructions3.1 `-wise Independence based on Bivariate PolynomialsThe �rst construction is based on a generalization of the secret sharing scheme ofShamir [44] to bivariate polynomials. It is a threshold construction of an `-wiseindependent function. The scheme can be used to generate more than ` valuesas long as it is guaranteed that no adversary will get hold of ` values. It is notnecessarily decided in advance which values will be generated by the scheme.Setting: The family F is the collection of all bivariate polynomials P (x; y)over a �nite �eld H, in which the degree of x is k � 1 and the degree of y is`� 1. The key � de�nes an element f� 2 F (� consists of the k` coe�cients ofthe polynomial). The output of the function is an element in the �eld H. All thearithmetic operations performed by the scheme are over H.Initialization: (we describe here an initialization by a central authority, laterwe also describe how the servers can perform a distributed initialization). Theinitializer of the system chooses a random key � which de�nes a random poly-nomial P (x; y) from F . Each server Si receives the key �i = Qi(y) = P (i; �),which is an `� 1 degree polynomial in y.Operation: The value f(h) is de�ned as f(h) = P (0; h). Consider a user thatwishes to compute this value. Say the user approaches server Si, then it shouldsend him the information �i;h = F (�i; h) = Qi(h) = P (i; h). After receivinginformation from k servers Si1 ; : : : ; Sik the user can perform a polynomial inter-polation through the points fhij ; �ij ;higkj=1 and compute the free coe�cient ofthe polynomial Qh(x) = P (�; h), namely the value f(h) = P (0; h).The following points can be easily veri�ed: (i) The scheme implements thede�nition of k-out-of-n evaluation of an `-wise independent function. (ii) In aDKDC application the size of an element in the �eld H should be the length ofthe required key and can therefore be rather small (e.g. 128 bits). The schemecan be therefore used to produce a large number of keys (e.g. ` = 106).



Several modi�cations can enhance the above scheme: (i) Proactive securitycan be easily obtained, see Section 5. (ii) In order to reduce the complexity ofthe polynomial interpolation it is possible to use several polynomials of smallerdegree and map keys to polynomials at random. (iii) It is possible to perform adistributed initialization of the polynomial P , and then the system's secrets arenever held by a single party. The initialization is performed by several serverswhich each de�ne a bivariate polynomial, and the polynomial used by the systemis the sum of these polynomials. Only a coalition of all these servers knows sharesof other servers. The initialization uses a new veri�cation protocol we discuss inSection 5.Robustness: A simple and straightforward procedure to verify that a user isreceiving correct information from servers, it to require the user to get sharesfrom k0 > k servers and use the error-correction properties of Reed-Solomoncodes to construct the correct share (see e.g. [30]).3.2 Distributed Weak PRFs Based on the DDH AssumptionIn this section we describe a di�erent kind of approximation for a DPRF: weshow a way to distribute a weak pseudo-random function [35, 37]. A functionf is a weak PRF if it is indistinguishable from a truly random function to a(polynomial-time) observer who gets to see the value of the function on any poly-nomial number of uniformly chosen inputs (instead of any inputs of its choice).The de�nition of k-out-of-n threshold evaluation of a weak pseudo-random functionf is similar to De�nition 1. The only di�erence is that we require that given thecomputation process of f on any polynomial number of uniformly chosen inputs,the value of f on any additional uniformly chosen input is indistinguishable fromrandom (this implies that f remains a weak pseudo-random function).The main advantage of a distributed weak PRF compared with distributed`-wise independent function is that the former is secure even when the adver-sary gets hold of any polynomial number of values. However, constructing adistributed weak PRF requires some computational intractability assumption(in particular, the existence of one-way functions). The speci�c construction de-scribed here relies on the decisional version of the Di�e-Hellman assumption(which we denote as the DDH assumption). This construction is rather attrac-tive given its simplicity.The applicability of weak pseudo-random function: Any distributed weakpseudo-random function f can be transformed to a DPRF by de�ning f 0(x) =f(RO(x)), where RO is a random oracle (i.e., a random function that is publiclyaccessible to all parties as a black-box; see [4]). Therefore, if one postulates theexistence of random oracles then the construction we present below can be usedfor all the applications of DPRFs. However this construction may be applicableeven without the use of random oracles. Consider for example the application ofDKDCs for multicast communication. Here there may be several scenarios wherea distributed weak pseudo-random function is su�cient. One such scenario iswhen there exists a public mapping H that assigns random names to groups of



users. The key of a group can be the value of the distributed function appliedto the group's name. It is conceivable that group names are chosen by sometrusted party (or by a distributed protocol between several parties), and kept insome (possibly duplicated) publicly available server. In fact, using the speci�cfunctions described below is secure as long as some member of the group choosesthe group name as gr and proves that it knows r.In the scheme we describe below, the user who computes the function fshould perform k exponentiations. This overhead is larger than that of a Di�e-Hellman key exchange. However, the overhead is justi�ed even for the DKDCapplication, since the Di�e-Hellman key exchange protocol cannot be used tosolve the availability and the security requirements that underline our solutionof a consistent distribution of a KDC (and are especially important for multicastcommunication).Related distributed solutions were previously suggested for discrete-log basedsignatures (e.g. [22]). The novelty in our work is the fact that we prove thepseudo-randomness of the evaluated function.Setting and Assumptions: The scheme is de�ned for two large primes Pand Q such that Q divides P � 1, and an element g of order Q in Z�P . Thevalues P;Q and g are public and may either be sampled during the initializationor �xed beforehand. We assume that for these values, the decisional versionof the Di�e-Hellman assumption (DDH-Assumption) holds. I.e., that given auniformly distributed pair hga; gbi, it is infeasible to distinguish between ga�b anda uniformly distributed value gc with non-negligible advantage. For a survey onthe application of the DDH-Assumption and a study of its security see [9].The functions and their initialization:The family F is keyed by a uniformlydistributed value � 2 Z�Q. For simplicity, we de�ne the function f� over hgi(where hgi denotes the subgroup of Z�P generated by g)6. The function f� isde�ned by 8x 2 hgi; f�(x) def= x� mod P .The value � is shared between the servers using the secret sharing schemeof Shamir [44]: The initializer of the system chooses a random polynomial P (�)over Z�Q of degree k � 1 such that P (0) = �. Each server Si receives the key�i = P (i). To facilitate robustness, the initializer also makes the values g�and fg�igni=1 public. It is also possible to let the servers perform a distributedinitialization of f .Operation: Consider a user that wishes to compute f�(h) and approaches aset of k servers fSigi2J . Each such server Si sends to the user the information�i;h = F (�i; h) = f�i(h) = h�i . After receiving information from the k serversthe user can perform a polynomial interpolation through the points f�igi2J in6 In fact, one can de�ne f 0� over Z�P by setting f 0�(x) = f�(x0) where x0 =x(P�1)=Q mod P . If f� is a weak PRF then so is f 0� since: (1) If x is uniform inZ�P then x0 is uniform in hgi. (2) For any x0 2 hgi one can e�ciently compute auniformly chosen ((P � 1)=Q)-th root of x0. Computing such roots is possible by ageneralization of Tonelli's algorithm presented by Adleman, Manders and Miller (see[2] for a survey on this subject).



the exponent of h. I.e he can computef�(h) = h� = hPi2J �i;J ��i =Yi2J h�i;J ��i =Yi2J f�i(h)�i;Jwhere all exponentiations are in Z�P and the values f�i;Jg are the appropriateLagrange coe�cients.It is easy to verify that querying any k servers for the value f�i(h) results inthe same �nal value f�(h). Memory requirements from each server are minimal(i.e. storing a single value in Z�Q). In order to serve a user each server shouldperform a single modular exponentiation in Z�P . A user is required to perform kmodular exponentiation in Z�P .The security of the scheme is proved by the following theorem.Theorem2. If the DDH-Assumption holds then the above scheme is a k-out-of-n threshold evaluation of a weak pseudo-random function.Proof Sketch: For clarity, we ignore at �rst the issue of corrupted servers andjust prove that if the DDH-Assumption holds then F = ff�g is a family of weakpseudo-random functions. Let D be an e�cient algorithm that gets the value off� on q � 1 uniformly chosen inputs x1; : : : xq�1 and distinguishes f�(xq) fromrandom with advantage � (where xq is also uniformly distributed). We constructan algorithm A that breaks the DDH-Assumption:On input hg�; g�; zi, the algorithm A �rst samples random values frigq�1i=0 (inf1; : : :Qg). ThenA invokesD and returns its output on the input fhqi; f�(qi)igq�1i=0and the additional pair of values hxq = g�; zi. Where for each i, qi = gri (andtherefore f�(qi) = g��ri can be evaluated by A). It is easy to verify that theadvantage A has in distinguishing between the case that z is uniform in hgi andthe case the z = g��� is at least �.We now need to show that no coalition of k�1 corrupt servers Si1 ; : : : ; Sik�1can break the threshold scheme. The reason this holds is that such k� 1 serverscan be simulated by the algorithm D described above. To do so, D samples thesecret values of the k�1 servers (i.e., �i1 ; : : : ; �ik�1 ) by itself. Let P be the degreek� 1 polynomial that interpolates these values and �. De�ne �j = P (j). D canevaluate every g�j using interpolation in the exponent of g and can thereforeevaluate all the values f�j (qi). 2Robustness: Since the values fg�igni=1 are public each server can prove the cor-rectness of any answer f�i(x) = x�i . This can either be done by a zero-knowledgevariant of Schnorr's proof for the value of the Di�e-Hellman function [43, 15] orby the non-interactive version that uses random-oracles.It is possible to perform a distributed initialization of the scheme, secureagainst corrupt servers (even if their only goal is to disrupt the operation of thesystem rather than to learn keys), and to achieve to achieve proactive securityfor the scheme.



3.3 DPRFs based on Any Pseudo-Random FunctionThe following scheme can use any family of pseudo-random functions, but sinceits overhead for the k-out-of-n access structure is O(nk�1) it is useful only if thetotal number of servers n is moderate and the threshold k is small.Setting: De�ne d = � nk�1�, and de�ne the d subsets fGjgdj=1 as all the subsetsof n� k + 1 of the n servers.Let Fm be a collection of pseudo-random functions with security parameterm. The key � is a d-tuple ha1; : : : ; adi of elements from f1; : : : ; jFmjg, and de�nesa d-tuple hfa1 ; : : : ; fadi of elements from Fm. The function f� is de�ned asf�(x) = �dj=1faj (x).Initialization: A random key � is chosen. We would like that for every 1 �j � d, all the servers in subset Gj would receive the key to the function faj .Therefore for every server Si, �i = faj ji 2 Sjg. Note that the union of the keysof any k servers covers � and is therefore su�cient to compute f�.Operation: The DPRF system would provide the value f�(h) = �dj=1faj (h).When a user approaches a server Si, and the server approves of the user com-puting f(h), it should send to the user the information ffaj (h)jaj 2 �ig. I.e., theserver should provide to the user the output of all its functions on the input h.After approaching k servers, the user has enough information to compute f�(h).For any coalition of k� 1 serves there is a subset Gj which does not containany member of the coalition and thus the coalition members cannot computefaj . Therefore it is straightforward to prove that the construction is a k-out-of-nevaluation of a pseudo-random function. The number of functions which eachserver should be able to compute is �n�1k�1�, and the total number of functionsis d = � nk�1�. Therefore the scheme cannot be used for systems with a largethreshold. However, for a moderate n and a small k the overhead is reasonable(e.g. for n = 50 and k = 4, d = 19; 600 and a server should compute 4; 606functions).Note that the user receives the value of functions faj from more than a singleserver. Therefore if the user sends to servers the identities of the other serverswhich it approaches, the communication overhead is reduced if a a simple map-ping is used to ensure that the output of each function is sent once. Alternativelythe data redundancy can be used to provide robustness against corrupt serversthat send incorrect data to users.Generalization: The scheme can be generalized to any access structure. Theconstruction we used corresponds to a monotone CNF formula which containsall clauses of n � (k � 1) out of n elements. A similar formula can be used torealize any access structure. The total number of pseudo-random functions usedis the number of clauses in the monotone CNF formula.Comparison to previous work: Micali and Sidney [31] considered more gen-eral access structures: they de�ned an (n; t; u)-resilient collection (with t < u <n) which enables any subset of u (out of n) parties to perform the computation,while no subset of t parties has this ability. We are interested in a sharp thresh-old, which provides the best security, and therefore require that k = u = t+ 1.



Micali and Sidney proved a lower bound of n!(u�t�1)!(n�t)!(u�1)! for the number offunctions in an (n; t; u)-resilient collection, and used the probabilistic method toshow the existence of a construction which is ln �nt� times larger than the lowerbound. Our deterministic construction (for the sharp threshold case) matchestheir lower bound, and is therefore optimal.4 DPRFs with General Access Structures4.1 Using Monotone Symmetric Branching ProgramsWe present here generalizations of the threshold schemes to access structuresbased on monotone symmetric branching programs. In Section 4.2 we describeconstructions for access structures based on monotone span programs. This is afurther generalization in that any linear secret sharing scheme can be simulatedby a monotone span program of the same size (the converse is also true, i.e.any monotone span program can be simulated by a linear secret sharing schemeof the same size, see [3]). However, the constructions of this section are moree�cient (especially for the DH based constructions), as described below.The application of monotone symmetric branching programs (also calledmonotone undirected contact schemes, and switching networks) to secret sharingwas suggested by Benaloh and Rudich [7, 28, 3] and enables to construct a secretsharing scheme for any monotone access structure (the question is the size ofthe shares). We �rst present the computational model of monotone symmetricbranching programs and then a corresponding DPRF construction.Monotone symmetric branching programs: Let G = (V;E) be an undi-rected graph,  : E 7! f1; : : : ; ng be a labeling of the edges, and s; t be two specialvertices in V . A monotone symmetric branching program is de�ned as a tuplehG; ; s; ti and has boolean output. Given an input x = fx1; : : : ; xng 2 f0; 1gn,de�ne Gx as the graph Gx = (V;Ex), where Ex = fe j e 2 E; x (e) = 1g. Theoutput of the program is 1 if and only if Gx contains a path from s to t.A DPRF construction: It is possible to construct DPRFs which are either`-wise independent or weakly pseudo-random, based on monotone symmetricbranching programs. A user would have to receive information from a subset ofthe servers whose characteristic vector corresponds to a \1" output of the mono-tone symmetric branching program in order to obtain the required value. Wepresent here the `-wise independent construction. Note that the correspondingDH construction is more e�cient than with monotone span programs since itrequires only multiplications and not exponentiations.Initialization: A monotone symmetric branching program which realizes the re-quired access structure is constructed. A random polynomial Ps of degree `� 1is associated with the node s. The values distributed by the system are de�nedas f(h) = Ps(h). A random polynomial Pv of degree ` � 1 is associated withany other vertex v, except for the vertex t to which the polynomial Pt � 0 isassigned. Every edge e = (u; v) is associated with the polynomial Pe = Pu �Pv .Server Si is given the all the polynomials associated with the edges which aremapped to i (edges e for which  (e) = 1).



Reconstruction: A user which wants to obtain value f(h) should contact a priv-ileged subset of the servers. Each server Si which is approached by the user andapproves of him evaluating f(h) should provide it with the values fPe(h) j (e) =ig. If the user receives information from a privileged subset it can sum the valuesthat correspond to a path from s to t and get Ps(h).Quorum systems: A Quorum system is a collection of sets (quorums), everytwo of which intersect (see [38] for a discussion and some novel constructionsof quorum systems with optimal load and high availability). A DPRF with anaccess structure in which every privileged set must contain a quorum has severaladvantages regarding its maintenance: for example, if a user should not be al-lowed to compute f it is only required to inform all the servers in a single quorumof this restriction, and then every privileged set of servers contains at least oneserver which will refuse to serve that user. DPRFs with access structures basedon the paths quorum system [38] can be e�ciently realized by the constructionswe presented in this section.E�ciency: The reconstruction of the secret in the Di�e-Hellman variant wepresented here requires the user to perform multiplications. It is more e�cientthan the reconstruction for the monotone span programs based Di�e-Hellmanscheme we present in Section 4.2, which requires the user to perform exponenti-ations.General prf: Note that a direct use of pseudo-random functions instead of thepolynomials or of the Di�e-Hellman construction is insecure. The reason is thatan edge (u; v) is associated with a function fu� fv and since there is no conciserepresentation for this function which hides fu and fv the server which is mappedto the edge should get both functions fu and fv. Subsequently, the server cancompute fu(x) or fv(x) and not just fu(x) � fv(x). Therefore a server whichis mapped to an edge which touches s has the ability to compute by itself thevalue of the shared function.4.2 Using Monotone Span ProgramsIt is possible to construct DPRFs with access structures which are realized bymonotone span programs. Monotone span programs (MSPs) were introduced byKarchmer and Wigderson [28] and their corresponding secret sharing schemesare equivalent to linear secret sharing schemes in the sense that any secretsharing scheme in one of these classes can be realized by a scheme of the samesize in the other class, see [3] for details. Recently MSPs were used by Cramer,Damgard, and Maurer [16] to construct multi-party computation protocols forgeneral monotone sets of subsets of players, any one of which may consist ofcheaters. We �rst present the computational model of monotone span programsand then a DPRF construction.Monotone span programs: A monotone span program is de�ned by a triplehK;M; i as follows. Let K be a �nite �eld and let M be a matrix with d rowsand e columns, and entries in K. The rows of M are labeled by a mapping toserver identities,  : f1; : : : ; dg 7! f1; : : : ; ng. For a subset A � f1; : : : ; ng, de�ne



MA as the matrix consisting of the rows of M which are labeled with i 2 A, andlet dA be the number of rows in this matrix.Let � = (1; 0; : : : ; 0) 2 Ke be the target vector (� can be replaced by any non-zero vector in Ke). An MSP computes a boolean function f : f0; : : : 1gn 7! f0; 1gde�ned by \f(x1; : : : ; xn) = 1 if and only if � is in the Image of M tA, whereA = fijxi = 1g". That is, if there is a linear combination of the dA rows labeledwith an i for which xi = 1, that equals the target vector �. It is known that anymonotone boolean function can be computed by an MSP (and the question iswhat size).A DPRF construction: The construction is based on the MSP secret sharingscheme. We can achieve either `-wise independence or weak pseudo-randomness.A user would have to receive information from a subset of the servers whichcorresponds to a \1" output of the MSP in order to obtain the required value.Following we present the DH based construction.Initialization: AnMSP which realizes the required access structure is constructed.All operations are performed over an appropriate �eld. A vector of random values�� = f�1; : : : ; �eg is associated with the columns of M . The function computedby the system is de�ned as f(h) = h�1 .Server Si is given the share �si =Mfig ��, which is a vector of length dfig, thenumber of rows in Mfig.Reconstruction: A user which wants to compute f(h) should contact a privilegedsubset of the servers. Each server Si which is approached by the user and ap-proves of computing f(h) should provide him with the values fh�j� 2 �sig (i.e.h raised to the power of each of the coordinates of �si). . If the user receivesinformation from a privileged subset then there is a linear combination in theexponents which obtains f(h) = h�1 . The user can perform exponentiations andmultiplications to compute this combination.5 Proactive SecurityProactive security enables a system of servers to automatically recover fromrepeated break-ins while preserving its security. The servers perform a periodicalmutual refreshment of their secrets, and security is preserved as long as not toomany servers are broken into between two refreshments (see [11] for a surveyof proactive security). We can amend our schemes with proactive security whilepreserving consistency. The value of f(x) computed in two di�erent requestswould still be the same, even if several refreshment phases pass between the tworequests.The periodic refreshment requires communication between the servers, whichis a new requirement for DPRFs. Alternatively, the refreshment can be controlledby a single secure server which is the only party sending refreshment informationto servers. The system is kept secure as long as there is no break-in to this server,but since this server can be highly guarded (e.g. kept o�-line at all times exceptfor refreshment phases) this scenario seems reasonable.



We describe very briey how proactive security is obtained. The periodicrefreshment phases employ techniques which are common in proactive refresh-ments, and a novel method for verifying that the refreshment values sent byeach server are indeed correct. In the refreshment of the `-wise independentconstruction, k servers S1; : : : ; Sk should each generate a random bivariate poly-nomial P ti (x; y), subject to the constraint P ti (0; �) = 0. Server Si sends to eachother server Sj the restriction of its polynomial to x = Sj , i.e. P ti (Sj ; �). Thenew polynomial of each server is the sum of its old polynomial with all the newpolynomials it receives.The servers should run a veri�cation protocol for the values they receive inthe refreshment phase, in order to verify that S1; : : : ; Sk send shares of polyno-mials of the right degrees which are 0 for x = 0. This is essentially a veri�ablesecret sharing (VSS) protocol. It is possible to use a VSS protocol which is verye�cient in both its computation and communication requirements. Very briey,the veri�cation is done by choosing a random point c, and requiring each Si tobroadcast P ti (�; c). Each server should verify that P ti (0; c) = 0 and that the shareit received agrees with this broadcast. Note that unlike the veri�cation proto-cols of [6, 20] this protocol does not require communication between each pairof servers. The random point c can be chosen in a very natural way, it can bede�ned as a value of the previous polynomial at a point which is only evaluatedafter the servers send the refreshment values.Application to distributed initialization: The initialization of the sys-tem can be performed in a distributed manner. It is then required to verify thatservers that participate in this process do not send incorrect data which woulddisrupt the operation of the system, i.e. that they send shares of polynomials ofthe right degrees. This veri�cation can be performed very e�ciently using theabove protocol and a broadcast channel (note that it is not required to verifythat the value of the polynomial is 0 for x = 0). The choice of the random pointshould be done by a distributed protocol which generates several values, whereat least one of the values is guaranteed to be random.Future WorkThe most obvious open problem is coming with a construction which has allthe properties of a DPRF, i.e. of a function which is strongly pseudo-randomand can be evaluated a polynomial number of times. Another interesting line ofresearch is the design of oblivious DPRFs, in which the servers do not learn whatis the input x for which the user wants to compute f(x). Note that the obliviouspolynomial evaluation protocols of [33] are probably too expensive since thenumber of 1-out-of-2 oblivious transfers is linear in the degree of the polynomial.AcknowledgmentsWe thank the anonymous referees for their helpful comments.
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