

A Survey of Architectural Design Decision Models and Tools

Mojtaba Shahin1, Peng Liang2, Mohammad Reza Khayyambashi3

June, 2009
SBU-RUG-2009-SL-01

1Department of Computer Engineering and IT, Sheikh Bahaei University, Iran
2Department of Mathematics and Computing Science, University of Groningen, The Netherlands

3Faculty of Engineering, Department of Computer Engineering, University of Isfahan, Iran

Abstract

In the field of software architecture, there has been a paradigm shift from describing the outcome of architecting
process mostly described by component and connector (know-what) to documenting architectural design decisions
and their rationale (know-how) which leads to the production of an architecture. This paradigm shift results in
emergence of various models and related tools for capturing, managing and sharing architectural design decisions
and their rationale explicitly. This report intends to make a survey about the well-known existing architectural
design decision models and their related tools.

Keywords: software architecture, architectural design decision, architectural knowledge

Content

1 Introduction ...1

2 Existing Models on Architectural Design Decision...2

2.1 Tyree Decision Template ..3

2.2 Kruchten 's Ontology...3

2.3 Core Model..4

2.4 Pattern-based Model..4

2.5 Service-Oriented Architecture Decision Model ..4

2.6 Archium Model ...4

2.7 Architecture Design Decision Support System Model ...5

2.8 AREL Model ...5

2.9 DAMSAK..5

3 Tools Supporting the Existing ADD Models ...6

4.1 A Tool Supporting Kruchten' Ontology ..6

4.2 Knowledge Architect Tool Suite ...6

4.3 Architectural Decision Knowledge Wiki ..6

4.4 Archium...6

4.5 Architecture Design Decision Support System ...7

4.6 AREL ..7

4.7 PAKME...7

4 Conclusions and Future Work ...7

5 References ..8

1 Introduction

Software architecture has an important role to mange complicated interactions between stakeholders of software-
intensive systems in order to balance all kinds of constraints [1]. The architecting process can be considered as a
decision making process through which the appropriate decisions must be made at the right time [18]. Current
methods for the documentation of software architecture concentrate on components and connectors [1], which
causes problems such as expensive system evolution, and limited reusability of architecture due to the lost of design
rationale knowledge [5]. Software architecture as a set of architectural design decisions (ADD) was proposed to
address these issues [6]. The architectural design decisions, assumptions, and architectural design are integratedly
making a concept called architectural knowledge (AK) which has been one of the controversial issues in the
software architecture community recently [2,17]. Nevertheless, capturing and managing ADD through a systematic
method can definitely improve the architectural capability of organization and also promote the interaction between
stakeholders [36].

Practitioners and researchers have made great efforts to develop the models and related tools to capture, manage
and share ADD explicitly [3,4,6,7,11,13,22,31,35]. Each of the models has its own strong and weak points. These
models are similar to each other in several aspects and sometime use different terms for describing the identical
concept. This situation leads to the problem of terminological misunderstanding across organizations or among
different parts within an organization which might use different models to document their ADDs [13].

In this report we introduce and investigate nine well-known ADD models and related tools in order to express
their capabilities and weaknesses.

In the reminder of this report, we first introduce the current ADD models in section 2, and in section, we
investigate existing tools that support the ADD models analyzed in section 2. We conclude our work with future
work directions in section 5.

2 Existing Models on Architectural Design Decision

The necessity for capturing rationale behind the design decisions was brought about by Pott and Burns in the late
1980s [10]. Since then, the tendency towards the research and application on architectural design decision and
rationale, as a design product, increased gradually and many models and supporting tools are proposed and
implemented [17].

2.1 Tyree Decision Template

One of the initial models in the field of ADD was proposed by Tyree and Akerman [3] which was used to model
ADD as a text template. This template is to record the ADD by capturing design issue, assumptions and constraints
of resulting system, arguments for making decisions, its implications and its relationships with other decisions and
artifacts. This model has the self-explaining entities, e.g. design issue, assumption, and constraints etc., so it can be
employed decently to represent the ADDs in general context, such as the ADDs in service oriented architecture
(SOA) or in software product line.

2.2 Kruchten’s Ontology

Kruchten introduced an ontology of architectural design decisions for complex and software-intensive system [7].
Every design decision can be placed in one of the three categories such as existence decision, property decision and
executive decision. The design decisions have some common characteristic such as rationale, scope, state, category,
author, time-stamp and history in this ontology. Moreover, every design decision might have dependencies, such as
constraints, forbids, enable, conflicts, is bound to and so on with other decisions. Not only the design decisions are

interrelated, but they are also related with other artifacts such as requirements and a part of implemented system.
The dependencies can be ‘trace from/to’ and ‘does not comply with’ [2], which carries simple semantic information.

2.3 Core Model

The models discussed in the sections 2.1 and 2.2 use different terms to describe similar and identical concept. For
instance both of them describe the reasoning element behind the design decisions. It is called Argument and
Rationale in Tyree’s template and Kruchten’s Ontology respectively. Using different terms to express identical
concept hinder the effective management of ADDs due to the problem of terminological misunderstanding [13].
Thus, sharing and managing ADDs becomes a difficult task. The authors in [13] suggested a core model in order to
overcome such issues. The core model has two basic characteristics: minimalistic and completeness. The first
character refers that it should be impossible to express some concepts from the model in any other concepts from the
model. For instance, the concepts of Force and Architectural Driver were in the previsions version of the core
model, which are originated from Concern concept, have been removed [14]. The completeness character states that
there are no concepts from other ADD approaches that have no counterpart in the core model. If there turns out to be
such a missing concept, core model should be extended. For instance, when core model is applied in domain- or
organization-specific context, it should be extended. A typical example is that, when applying core model in specific
domain such as SOA, the core model faces new challenges for modeling ADDs [16].

2.4 Pattern-based Model

Although many models and tools have been introduced to record ADDs up to now, architects still have difficulties
to record design decisions because of the need for substantial effort to document and maintain their decisions and
even sometimes the architects do not know how to document their decisions [4]. Neil et al. have claimed that they
can reduce the effort made to record design decision by using patterns. They compared pattern with Tyree’s decision
template and noticed that a lot of characteristics of patterns match the entities of Tyree’s decision template. But
architectural patterns can not alleviate software architect from all responsibility from documenting the ADDs. For
instance, the architect should make the documentation personally for application-specific decisions.

2.5 Service-Oriented Architecture Decision Model

Zimmerman et al. work on the topic of using ADD on SOA [9]. They suggested to “position architectural
decision modeling as a prescriptive service realization technique”. They employ design decisions models as a
modeling complement for multi-purpose methodologies like Rational Unified Process (RUP) or agile methods like
eXtreme Programming (XP) [12]. The authors claim that one of the reasons that current ADD models are not
appealing to developers and architects, is the fact that the process of recording ADDs is considered as retrospective
and unwelcome documentation tasks. These tasks do not provide any benefit during the original design work. In
order to overcome this problem, the authors proposed the SOAD model [11], in which the Architectural Decision
(AD) is the central entity of this model that expresses a single and concrete design issue. This entity has
characteristics like: name, scope, phase, decision drivers, problem statement, status and dependency relationship. In
this model every design decision has one or several AD alternative entities with specification of pros and cons. In
this model the platform-independent decisions are separated from platform-specific ones for the implementation of
SOA.

2.6 Archium Model

Archium [6] is a model that was introduced by Jansen et al. Architecture in Archium is described as and
constituted by a set of decisions, (a software architecture = dd1 + dd2 + dd3 +…+ ddn, where ddx is a design

decision). This model consists of three sub-models: an architectural model, a design decision model and a
composition model. The architectural model describes the software architecture, which is correspondent with
components and connectors. The design decision model contains design decisions as first class entities. The
composition model introduces required concepts to unite the two previous sub-models. The heart of the design
decision model is the Problem concept, which describes the architecture problem together with Motivation and
Cause concepts. The Problem is the goal that the ADD wants to solve. Solution contains the solutions that have been
proposed to solve the problem. For each of the proposed solutions, Description, Design rules, Design constraints,
Consequences, Pros and Cons are stored.

2.7 Architecture Design Decision Support System Model

Capilla et al. have suggested a model for architecting and evolving ADDs [22]. This model is based on the
previous model in their prior work [21]. This model comprises three main parts: Project Model, Architecture Model
and Decision Model. Project Model comprises the information related to the software architecture project described
by one or more architectural views. The project decisions are explicitly documented as part of the “decision view”.
Architecture Model depicts the software architecture that is mostly described as a set of components and connectors.
Decision Model is the core of the ADDSS model. In Decision model, attributes of decision are categorized as
Mandatory and Optional. The mandatory attributes are those ADD attributes that are necessary to capture during the
whole life cycle of system. The composition of these attributes constitutes the Rationale behind the design decisions.
Some of these attributes are Decision name and Description, Constraints, Dependencies, Status and Rationale. It is
up to particular organizations and architects to decide which of optional attributes could be more relevant to be
stored as a part of ADD.

2.8 AREL Model

AREL (Architecture Rationale and Element Linkage) is a rationale-based architecture design model focuses on
ADD reasoning process [31]. In AREL model, there are three key elements: Design Concern, Design Decision and
Design Outcome. The inputs that cause or motivate a design decision are design concerns. Anything that influences
the design decision can be a design concern, such as non-functional requirement. A design decision captures design
issues and design rationale. AREL uses qualitative and quantitative design rationale to capture justification of
design decision. Design outcomes are the results of a design decision. A chosen design outcome can become a
design concern because it can create new design problems. AREL focuses on linking the problem space (design
concerns) to the solution space (design outcomes) through design decisions in a uniform way.

2.9 DAMSAK

Babar et al. proposed a Data Model for Software Architecture Knowledge (DAMSAK) [35]. This model identifies
and defines the architectural rationale constructs and their relationships, in order to support architecting process
activities (e.g. architecture evaluation). This data model consists of twelve ADD elements, including Architecture
Decision, Architectural Significant Requirement (ASR), Rationale, etc. DAMSAK directly relate architectural
decisions with architectural scenarios and ASRs, which can be used in architectural evaluation, for example in
ATAM. DAMSAK can also support quantitative analysis, which uses the Analysis Model to systematically reason
about the effect of different design tactics on architectural scenarios.

3 Tools Supporting the Existing ADD Models

In section 2, we have analyzed the existing ADD models and their structures were investigated. In this section we
introduce the tools, which have been implemented based on various ADD models. Meanwhile, not all of the ADD
models are supported by tools. For example, the creators of the Tyree’s template have not offered any tool to support
their model, and they use a text-based template for capturing design decisions.

3.1 Tool Supporting Kruchten’s Ontology

Lee and Kruchten implemented a tool to support the Kruchten’s Ontology introduced in section 2.2. They asserted
that “unlike many other ADD tools which acquire, list, and perform queries on decisions, our tool provides
visualization components to help with decision exploration and analysis” [19]. The tool has four main features: (1)
The decision and dependency lists. It can list a set of current design decisions and their dependencies. Users can
create, view, modify and delete the design decisions and their dependencies. (2) The decision structure visualization
view, in this view the design decisions and their dependencies are visualized as a directed graph. Every decision is
shown as a node, and the dependency from one decision to another decision is shown as a directed edge. (3) The
decision chronology view, this tool also supports a time-base view for showing the design decisions. The goal of this
view is to increase the understanding of the architecture’s nature. By this view, a user can see the evolution of
design decisions during a specified time interval. (4) The decision impact view, the goal of this view is to increase
the understanding of architecture’s dependencies on its set of design decisions. This view is valuable when radical
changes are about to be made to a system, and makes the impact of certain changes obvious [20].

3.2 Knowledge Architect Tool Suite

The Knowledge Architect (KA) is a tool suite for capturing, sharing, translating and managing architectural
knowledge [29]. This tool is one of the outcomes of the GRIFFIN project and supports the core model which was
discussed in section 2.3. The KA tool suite entails the specialized support for integrating the various process
activities and supports for collaboration between stakeholders [30]. At present, the KA tool suite comprises of 6
tools: Knowledge Repository, Document Knowledge Client, Excel Plug-in, Python Plug-in, Knowledge Explorer
and Knowledge Translator. The most important capabilities that are provided by KA tool are: (1) capture (annotate),
edit and view AK entities and their relationships; (2) search and retrieve semantically the AK entities and their
relationships in Knowledge Repository; (3) translate the AK in various AK domain models from one to other and
vice versa via Knowledge Translator; (4) share the AK entities with other users and stakeholders.

3.3 Architectural Decision Knowledge Wiki

ADkwik (Architectural Decision Knowledge Wiki) is a model-based collaboration system that implements the
SODA model introduced in section 2.5 [23]. ADkwik tool is available on IBM alphaWorks [25] and similar to other
wikis, the users only need web browser to work with the system. ADkwik supports about 50 use cases. Some
distinguished use cases are: (1) offer decision-making support by reusing appropriate decisions in the architectural
decision repository; (2) import and export of decision content; (3) search and filter design decisions by role, phase
and scope attributes; (4) decision lifecycle management for effective decision-making; (5) support collaboration
features such as comments, tags, and attachments.

3.4 Archium

Archium is a design decision tool whose aim is to establish traceability between the architectural decision and
other artifacts concepts, such as requirements, decisions and implementations [15]. All of these concepts are

expressed by Archium language. Traceability helps everyone to get a better understanding from the architectural
design. In this tool, the design decision is regarded as a “change function”. Archium can create the traceability
between the design decisions and entities of architecture (components and connectors) easily, and keep it updated
during life cycle of system. Dependencies between design decisions is shown by graph, however the type of
dependencies is not expressed explicitly and all of the attributes of decision introduced in section 2.6 are listed and
stored in a table of attributes.

3.5 Architectural Design Decisions Support System

ADDSS tool is a web-base tool to capture, maintain and document the architectural design decisions made during
the architecting process [26]. This tool establishes the traceability between requirements and architectures via the
decisions [26,27]. In this tool we can define one or many architectures for each project. Since the architectures are
made as a result of iterative processes, users can store the design decisions of each iteration and also this tool allows
the users to reuse well-known design patterns and styles placed in the tool, which is special feature provided by this
tool.

3.6 AREL

AREL is a UML-based tool that aims in creating and documenting architectural design with a focus on
architectural decisions and design rationale [32]. The most important capabilities provided by AREL tool are: (1)
trace ADD from problem to solution space: users can trace design outcomes back to design decisions, and from
design decisions back to design drivers, using the UML dependency relationship. (2) identify AK change impacts:
user can identify all the ADDs and other AK elements, that are directly or indirectly implemented when AK is
modified, based on the AREL causal model. (3) detect architectural design conflict: user can detect the design
conflicts by looking at the missing links between design concern and design outcomes using the AREL causal model.

3.7 PAKME

PAKME (Process-based Architecture Knowledge Management Environment) is a web-based tool that supports
the DAMSAK model introduced in section 2.9. The main services that are provided by this tool are: (1) knowledge
acquisition service, this service provides forms to enter new generic (general scenarios, generic design decisions,
architectural and design patterns) and project-specific (scenarios, design options, design rationale, and analysis
findings) knowledge into the repository. (2) knowledge maintenance service, this service provides functions to
update and instantiate the artifacts stored in the knowledge repository. (3) knowledge retrieval service, this service
helps architecture users to find relevant information. (4) knowledge presentation service, this service provides
architecture knowledge with templates and representation mechanisms (i.e. utility tree).

4 Conclusions and Future Work

The attention of software architecture community has changed over recent years and results in an increasing

interest in ADD as one of key elements of architecting process. The aforementioned change brings the models,
ontologies and related tools to capture, store, manage and share the AK, especially the ADD.

In this report we analyzed and compared the existing ADD models and related tools. First the models were
compared with each other and their similarities and dissimilarities were manifested. Second the tools that support
these models were compared with each other. The main results of this study are as follows:

• All of the ADD models treat the architectural design as a decision making process;

• Not all of the ADD models are supported by tools, some of them only use text-based template for capturing
ADDs.

Our ongoing and future work focuses on several aspects: (1) the application and usage comparison of the ADD
tools in practice and industrial environment (user satisfaction, cost and benefit, etc.); (2) the proposition of the
general ADD framework that will have selected key features of existing ADD models; and (3) the guidelines on how
to use the general ADD framework and related tools in the architecting process.

5 References

[1] Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 2nd edition, SEI Series in Software Engineering,
Addison-Wesley Pearson Education, 2003.
[2] Kruchten, P., Lago, P., and van Vliet, H., Building up and Reasoning about Architectural Knowledge. Proceedings of the 2nd
International Conference on the Quality of Software Architectures (QoSA), pages 39-47, 2006.
[3] Tyree, J., and Akerman, A., Architecture Decisions: Demystifying Architecture, IEEE Software, 22(2):19–27, 2005.
[4] Harrison, N.B., Avgeriou, P., and Zdun, U., Using Patterns to Capture Architectural Decisions, IEEE Software, 24(4):38-45,
2007.
[5] van der Ven, J.S., Jansen, A., Nijhuis, J., and Bosch, J., Design decisions: The Bridge between Rationale and Architecture, In
Rationale Management in Software Engineering, A.H. Dutoit, et al., eds, Springer, pages 329-346, 2006.
[6] Jansen, A., and Bosch, J., Software Architecture as a Set of Architectural Design Decisions, Proceedings of 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pages 109–120, 2005.
[7] Kruchten, P., An Ontology of Architectural Design Decisions in Software-Intensive Systems, Proceedings 2nd Groningen
Workshop on Software Variability Management, Groningen, pages 109-119, 2004.
[8] Farenhorst, R., and de Boer, R.C., Core Concepts of an Ontology of Architectural Design Decisions, Technical Report IR-
IMSE-002, Vrije Universiteit Amsterdam, 2006.
[9] Zimmermann, O., Koehler , J., and Leymann , F., The Role of Architectural Decisions in Model-Driven SOA Construction,
Proceedings of International Conference on Object-Oriented Programming, Systems, Languages, and Applications, Best
Practices and Methodologies in Service-Oriented Architectures, Portland, ACM, 2006.
[10] Potts, C. and Bruns, G., Recording the Reasons for Design Decisions, Proceedings of the 10th International Conference on
Software Engineering (ICSE), pages 418–427, 1988.
[11] Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., and Schuster, N., Reusable Architectural Decision Models for
Enterprise Application Development. Proceedings of the 3rd International Conference on Quality of Software-Architectures:
Models and Architectures (QoSA), pages 157-166, 2007
[12] Zimmermann, O., Koehler J., and Leymann F., Architectural Decision Models as Micro-Methodology for Service-Oriented
Analysis and Design. Proceedings of the Workshop on Software Engineering Methods for Service-oriented Architecture
(SEMSOA), CEUR-WS.org/Vol-244, 2007.
[13] de Boer, R.C., Farenhorst, R., Lago, P., Vliet , H. v., Clerc, V., and Jansen, A., Architectural knowledge: Getting to the Core.
In the Quality of Software-Architectures (QoSA), Boston, USA, pages 197-214, 2007.
[14] de Boer, R.C., Farenhorst, R., van der Ven, J.S., Clerc, V., Deckers, R., Lago, P., and van Vliet, H., Structuring Software
Architecture Project Memories. Proceedings of the 8th International Workshop on Learning Software Organizations (LSO),
pages 39–47, 2006.
[15] Jansen ,A., van der Ven, J.S., Avgeriou, P., and Hammer, D.K., Tool Support for Architectural Decisions. Proceedings of the
6th IEEE/IFIP Working Conference on Software Architecture (WICSA), page 44-53, 2007.
[16] Gu, Q., and Lago, P., SOA Process Decisions: New Challenges in Architectural Knowledge Modeling, Proceedings of the
3rd international workshop on Sharing and reusing Architectural Knowledge (SHARK), pages 3-10, 2008.
[17] de Boer, R.C., and Farenhorst, R., In Search of ‘Architectural Knowledge’, Proceedings of the 3rd international workshop on
Sharing and reusing Architectural Knowledge (SHARK), pages 71-78, 2008.
[18] Farenhorst, R., Lago, P., and van Vliet, H., Effective Tool Support for Architectural Knowledge Sharing, Proceedings of
First European Conference on Software Architecture (ECSA), pages 123-138, 2007.
[19] Lee, L., and Kruchten, P., A Tool to Visualize Architectural Design Decisions, Proceedings of the 4th International
Conference on Quality of Software-Architectures: Models and Architectures (QoSA), pages 359-362, 2008
[20] Lee, L., and Kruchten, P., Visualizing Software Architectural Design Decisions. Proceedings of the 2nd European
conference on Software Architecture (ECSA), pages 43-54, 2008
[21] Capilla, R., Nava, F., Pérez, S., and Dueñas , J.C., A Web-based Tool for Managing Architectural Design Decisions. ACM
SIGSOFT Software Engineering Notes, 31(5):4-11, 2006.
[22] Capilla, R., Naval, F., and Dueñas, J.C., Modeling and Documenting the Evolution of Architectural Design Decisions,
Proceedings of the 2nd Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design Intent
(SHARK/ADI), 2007.
[23] Schuster, N., ADkwik – a Collaborative System for Architectural Decision Modeling and Decision Process Support based on
Web 2.0 Technologies, Master thesis, Hochschule der Medien, 2008.
[24] Zimmermann, O., Schuster, N. and Eeles, P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM
DeveloperWorks, August 2008.

http://portal.acm.org/author_page.cfm?id=81100009845&coll=GUIDE&dl=GUIDE&CFID=26579773&CFTOKEN=47775373
http://portal.acm.org/author_page.cfm?id=81319498505&coll=GUIDE&dl=GUIDE&CFID=26579773&CFTOKEN=47775373
http://portal.acm.org/author_page.cfm?id=81319498812&coll=GUIDE&dl=GUIDE&CFID=26579773&CFTOKEN=47775373
http://portal.acm.org/author_page.cfm?id=81100393125&coll=GUIDE&dl=GUIDE&CFID=26579773&CFTOKEN=47775373
http://portal.acm.org/author_page.cfm?id=81100009845&coll=GUIDE&dl=GUIDE&trk=0&CFID=26579773&CFTOKEN=47775373
http://portal.acm.org/author_page.cfm?id=81100393125&coll=GUIDE&dl=GUIDE&CFID=26579773&CFTOKEN=47775373

[25] Schuster N., and Zimmermann O., Architectural Decision Knowledge Wiki, IBM AlphaWorks, March 2008,
http://www.alphaworks.ibm.com/tech/adkwik
[26] Architectural Design Decision Support System 2.0, http://triana.escet.urjc.es/ADDSS
[27] Naval, F., Capilla, R., and Dueñas, J.C., Processes for Creating and Exploiting Architectural Design Decisions with Tool
Support, Proceedings of the 1st European conference on Software Architecture (ECSA), pages 321–324, 2007.
[28] Liang, P., Jansen, and A., Avgeriou, P., Knowledge Architect: A Tool Suite for Managing Software Architecture Knowledge,
RUG-SEARCH-09-L01, University of Groningen, 2009
[29] Liang, P., Jansen, A., and Avgeriou, P., A Collaborative Software Architecting Approach through Knowledge Sharing,
Collaborative Software Engineering, Springer-Verlag, 2009
[30] Liang, P., Jansen, A., and Avgeriou, P., Refinement to Griffin Core Model and Model Mapping for Architectural Knowledge
Sharing, RUG-SEARCH-07-L01, University of Groningen , 2007
[31] Tang, A., Han, J., and Vasa, R., Software Architecture Design Reasoning: A Case for Improves Methodology Support, IEEE
Software, 26(2):43-49, 2009.
[32] Tang, A., Jin, Y., and Han, J., A Rationale-based Architecture Model for Design Traceability and Reasoning, Journal of
Systems and Software, 80(6):918-934, 2006.
[34] Babar, M.A., and Gorton, I., A Tool for Managing Software Architecture Knowledge, Proceedings of the Second Workshop
on SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design Intent (SHARK/ADI), pages 11-17, 2007.
[35] Babar, M.A., Gorton, I., and Kitchenham, B., A Framework for Supporting Architecture Knowledge and Rationale
Management, In Rationale Management in Software Engineering, A.H. Dutoit, et al., eds, Springer, pages 237-254, 2006.
[36] Babar, M.A., Dingsøyr, T., Lago, P., and van Vliet, H., Software Architecture Knowledge Management: Theory and Practice,
Springer-Verlag, 2009.
[37] Babar, M.A., de Boer, R.C., Dingsøyr, T., and Farenhorst, R., Architectural Knowledge Management Strategies:
Approaches in Research and Industry, Proceedings of the 2nd Workshop on SHAring and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent (SHARK/ADI), 2007.

http://www.alphaworks.ibm.com/tech/adkwik
http://triana.escet.urjc.es/ADDSS

	1 Introduction
	2 Existing Models on Architectural Design Decision
	3 Tools Supporting the Existing ADD Models

