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Abstract

Although Bayesian analysis has been in use since Laplace,

the Bayesian method of model{comparison has only recently

been developed in depth.

In this paper, the Bayesian approach to regularisation and

model{comparison is demonstrated by studying the inference

problem of interpolating noisy data. The concepts and meth-

ods described are quite general and can be applied to many

other problems.

Regularising constants are set by examining their poste-

rior probability distribution. Alternative regularisers (priors)

and alternative basis sets are objectively compared by evalu-

ating the evidence for them. `Occam's razor' is automatically

embodied by this framework.

The way in which Bayes infers the values of regularising

constants and noise levels has an elegant interpretation in

terms of the e�ective number of parameters determined by

the data set. This framework is due to Gull and Skilling.

1 Data modelling and Occam's ra-

zor

In science, a central task is to develop and compare mod-

els to account for the data that are gathered. In particular

this is true in the problems of learning, pattern classi�ca-

tion, interpolation and clustering. Two levels of inference

are involved in the task of data modelling (�gure 1). At the

�rst level of inference, we assume that one of the models

that we invented is true, and we �t that model to the data.

Typically a model includes some free parameters; �tting the

model to the data involves inferring what values those pa-

rameters should probably take, given the data. The results

of this inference are often summarised by the most probable

parameter values and error bars on those parameters. This is

repeated for each model. The second level of inference is the

task of model comparison. We wish to compare the models

in the light of the data, and assign some sort of preference

or ranking to the alternatives.

For example, consider the task of interpolating a noisy

data set. The data set could be interpolated using a splines

model, using radial basis functions, using polynomials, or

using feedforward neural networks. At the �rst level of infer-

ence, we take each model individually and �nd the best �t

interpolant for that model. At the second level of inference

we want to rank the alternative models and state for our par-

ticular data set that, for example, splines are probably the

best interpolation model, or if the interpolant is modelled as

a polynomial, it should probably be a cubic.

Bayesian methods are able consistently and quantitatively

to solve both these inference tasks. There is a popular myth

that states that Bayesian methods only di�er from orthodox

statistical methods by the inclusion of subjective priors which

are arbitrary and di�cult to assign, and usually don't make

much di�erence to the conclusions. It is true that at the

�rst level of inference, a Bayesian's results will often di�er

little from the outcome of an orthodox attack. What is not

widely appreciated is how Bayes performs the second level

of inference. It is here that Bayesian methods are totally

di�erent from orthodox methods. Indeed, model comparison

is a task virtually ignored in most statistics texts, and no

general orthodox method exists for solving this problem.

Model comparison is a di�cult task because it is not possi-

ble simply to choose the model that �ts the data best: more

complex models can always �t the data better, so the maxi-

mum likelihood model choice would lead us inevitably to im-

plausible over{parameterised models. `Occam's razor' is the

principle that unnecessarily complex models should not be

preferred to simpler ones. Bayesian methods automatically

and quantitatively embody Occam's razor [5], without the

introduction of ad hoc penalty terms. Complex hypotheses

are automatically self{penalising under Bayes' rule. Figure

2 gives the basic intuition for why this should be expected.

Bayesian methods were �rst laid out in depth by Je�reys

[11]. For a general review of Bayesian philosophy see the

excellent papers by Loredo and Jaynes [10, 12]. Since Jef-

freys the emphasis of most Bayesian probability theory has

been `to formally utilize prior information' [1], i.e. to perform

inference in a way that makes explicit the prior knowledge

and ignorance that we have, which orthodox methods omit.

However, Je�reys' work also laid the foundation for Bayesian

model comparison, which does not involve an emphasis on

prior information. Only recently has this aspect of Bayesian
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Figure 1: Where Bayesian inference �ts into science,

in particular pattern classi�cation, learning, interpo-

lation, etc.

This �gure illustrates an abstraction of a central part of the sci-

enti�c process, and many other processes involving the collecting

and modelling of data. The two double{framed boxes denote the

two steps which involve inference. It is only in those two steps

that Bayes can be used. Bayes does not tell you how to invent

hypotheses, for example.

The �rst box, `�tting each model to the data', is the task of in-

ferring what the model parameters might be given the model and

the data. Bayes may be used to �nd the most probable parameter

values, and error bars on those parameters. The result of apply-

ing Bayes to this problem is often little di�erent from the result

of using orthodox statistics.

The second inference task, model comparison in the light of the

data, is where Bayes is in a class of its own. This second infer-

ence problem requires a quantitative Occam's razor to penalise

over{complex models. Bayes can assign objective preferences to

the alternative hypotheses in a way that automatically embodies

Occam's razor.
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Figure 2: Why Bayes embodies Occam's razor

This �gure gives the basic intuition for why complex hypotheses

are penalised. The horizontal axis represents the space of possible

data sets D. Bayes rule rewards hypotheses in proportion to how

much they predicted the data that occurred. These predictions

are quanti�ed by a normalised probability distribution on D. In

this paper, this probability of the data given model H

i

is called

the evidence, P (DjH

i

).

A simple hypothesis H

1

makes only a limited range of predictions,

shown by P (DjH

1

); a more powerful hypothesis H

2

, that has,

for example, more free parameters than H

1

, is able to predict a

greater variety of data sets. This means however that H

2

does not

predict the data sets in region C

1

as strongly as H

1

. Assume that

equal prior probabilities have been assigned to the two hypotheses.

Then if the data set falls in region C

1

, the less powerful model H

1

will be the more probable hypothesis.

analysis been developed and applied to real world problems.

This paper will review Bayesian model comparison, `reg-

ularisation,' and noise estimation, by studying the prob-

lem of interpolating noisy data. The Bayesian framework

I will describe for these tasks is due to Gull and Skilling

[5, 6, 8, 17, 18], who have used Bayesian methods to achieve

the state of the art in image reconstruction. The same ap-

proach to regularisation has also been developed in part by

Szeliski [22]. Bayesian model comparison is also discussed by

Bretthorst [2], who has used Bayesian methods to push back

the limits of NMR signal detection.

As the quantities of data collected throughout science

and engineering continue to increase, and the computational

power and techniques available to model that data also mul-

tiply, I believe Bayesian methods will prove an ever more

important tool for re�ning our modelling abilities. I hope

that this review will help to introduce these techniques to the

`neural' modelling community. A companion paper [13] will

demonstrate how these techniques can be applied to back-

propagation neural networks.

2 The evidence and the Occam fac-

tor

Let us write down Bayes' rule for the two levels of inference

described above, so as to see explicitly how Bayesian model

comparison works.

1. Model �tting. Assuming that one modelH

i

is true, we

infer what the model's parameters w might be given the
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data D. Using Bayes' rule, the posterior probability

of the parameters w is:

P (wjD;H

i

) =

P (Djw;H

i

)P (wjH

i

)

P (DjH

i

)

(1)

In words:

Posterior =

Likelihood� Prior

Evidence

The normalising constant P (DjH

i

) is commonly ig-

nored, since it is irrelevant to the �rst level of infer-

ence, i.e. the choice of w; but it will be important in

the second level of inference, and we name it the evi-

dence for H

i

. It is common to use gradient methods

to �nd the maximum of the posterior, which de�nes

the most probable value for the parameters, w

MP

; er-

ror bars on these best �t parameters can be obtained

from the curvature of the posterior. Writing the Hes-

sian A = �rr logP (wjD;H

i

) and Taylor{expanding

the log posterior with �w = w �w

MP

,

P(wjD;H

i

) ' P (w

MP

jD;H

i

) exp

�

�

1

2

�w

T

A�w

�

(2)

we see that the posterior may be locally approximated as

a gaussian with covariance matrix (error bars)A

�1

. For

the interpolation models discussed in this paper, there is

only a single maximum in the posterior distribution, and

the gaussian approximation is exact; but this is of course

not the case for a general problem. Multiple maxima

complicate the analysis, but Bayesian methods can still

successfully be applied [13, 14].

2. Model comparison. At the second level of inference,

we wish to infer which model is most plausible given the

data. The posterior probability of each model is:

P (H

i

jD) / P (DjH

i

)P (H

i

) (3)

Notice that the data{dependent term P (DjH

i

) is the ev-

idence for H

i

, which appeared as the normalising con-

stant in (1). Assuming that we have no reason to as-

sign strongly di�ering priors P (H

i

) to the alternative

hypotheses, hypotheses H

i

are ranked by evaluat-

ing the evidence. Equation (3) has not been nor-

malised because in the scienti�c process we may de-

velop new models after the data have arrived (�gure

1), when a failure of the �rst models occurs, for exam-

ple. So we do not start with a completely de�ned space

of hypotheses. Inference is open{ended: we continually

seek more probable models to account for the data we

gather. New models are compared with previous mod-

els by evaluating the evidence for them. The evidence

is the Bayesian's transportable quantity for comparing

alternative hypotheses.

The key concept of this paper is this: to assign a preference

to alternative models H

i

, a Bayesian evaluates the evidence

P (DjH

i

).

Of course, the evidence is not the whole story if we have

good reason to assign unequal priors to the alternative hy-

potheses H. (To only use the evidence for model comparison

is equivalent to using maximum likelihood for parameter esti-

mation.) The classic example is the `Sure Thing' hypothesis,

c

 E.T Jaynes, which is the hypothesis that the data set will

beD, the precise data set that actually occured; the evidence

for the Sure Thing hypothesis is huge. But Sure Thing be-

longs to an immense class of similar hypotheses which should

all be assigned correspondingly tiny prior probabilities; so the

posterior probability for Sure Thing is negligible alongside

any sensible model. Clearly if models such as this one are

developed then we will need to think about precisely what

priors are appropriate. However models like Sure Thing are

rarely seriously proposed in real life.

A modern Bayesian approach to priors

It should be pointed out that the emphasis of this modern

Bayesian approach is not on the inclusion of priors into in-

ference, as is widely held. There is not one signi�cant `sub-

jective prior' in this entire paper. (If you are interested to

see problems where subjective priors do arise see [7, 20].)

The emphasis is that degrees of preference for alternative hy-

potheses are represented by probabilities, and relative prefer-

ences for hypotheses are assigned by evaluating those proba-

bilities. Historically Bayesian analysis has been accompanied

by methods to work out the `right' prior for a problem. The

modern Bayesian does not take a fundamentalist attitude

to assigning the `right' priors | many di�erent priors can

be tried; any particular prior corresponds to a hypothesis

about the way the world is. We can compare these alter-

native hypotheses in the light of the data by evaluating the

evidence. This is the way in which alternative regularisers

are compared, for example. If we try one hypothesis and ob-

tain awful predictions, we have learnt something. A failure

of Bayesian prediction is an opportunity to learn, and we are

able to come back to the same data set with new hypotheses,

using new priors for example.

Evaluating the evidence

Let us now explicitly study the evidence to gain insight into

how the Bayesian Occam's razor works. The evidence is the

normalising constant for equation (1):

P (D jH

i

) =

Z

P (Djw;H

i

)P (wjH

i

)dw (4)

For many problems, including interpolation, it is common

for the posterior P (wjD;H

i

) / P (Djw;H

i

)P (wjH

i

) to have

a strong peak at the most probable parameters w

MP

(�gure

3). Then the evidence can be approximated by the height

of the peak of the integrand P (Djw;H

i

)P (wjH

i

) times its

width, �w:

P (D jH

i

) ' P (D jw

MP

;H

i

)

| {z }

P (w

MP

jH

i

)�w

| {z }

Evidence ' Best �t likelihood Occam factor

(5)
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Figure 3: The Occam factor

This �gure shows the quantities that determine the Occam fac-

tor for a hypothesis H

i

having a single parameter w. The prior

distribution (dotted line) for the parameter has width �

0

w. The

posterior distribution (solid line) has a single peak at w

MP

with

characteristic width �w. The Occam factor is

�w

�

0

w

.

Thus the evidence is found by taking the best �t likelihood

that the model can achieve and multiplying it by an `Occam

factor' [5], which is a term with magnitude less than one that

penalises H

i

for having the parameter w.

Interpretation of the Occam factor

�w is the posterior uncertainty in w. Imagine for simplicity

that the prior P (wjH

i

) is uniform on some large interval

�

0

w, representing the range of values of w that H

i

thought

possible before the data arrived. Then P (w

MP

jH

i

) =

1

�

0

w

,

and

Occam factor =

�w

�

0

w

;

i.e. the ratio of the posterior accessible volume of

H

i

's parameter space to the prior accessible volume,

or the factor by which H

i

's hypothesis space collapses when

the data arrives [5, 11]. The log of the Occam factor can be

interpreted as the amount of information we gain about the

model H when the data arrives.

In summary, a complex model with many parameters each

of which is free to vary over a large range �

0

w will be pe-

nalised with a larger Occam factor than a simpler model.

Which model achieves the greatest evidence is determined

by a trade{o� between minimising this natural complexity

measure and minimising the data mis�t.

Occam factor for several parameters

If w is k-dimensional, and if the posterior is well approxi-

mated by a gaussian, the Occam factor is given by the de-

terminant of the gaussian's covariance matrix:

P (D jH

i

) ' P (D jw

MP

; H

i

)

| {z }

P (w

MP

jH

i

) (2�)

k=2

det

�

1

2

A

| {z }

Evidence ' Best �t likelihood Occam factor

(6)

where A = �rr logP (wjD;H

i

), the Hessian which we al-

ready evaluated when we calculated the error bars on w

MP

.

Comments

� Bayesian model selection is a simple extension of maxi-

mum likelihood model selection: the evidence is ob-

tained by multiplying the best �t likelihood by

the Occam factor.

To evaluate the Occam factor all we need is the hessian

A. Thus the Bayesian method of model comparison

by evaluating the evidence is computationally no more

demanding than the task of �nding for each model the

best �t parameters and their error bars.

� It is common for there to be degeneracies in models

with many parameters, i.e. several equivalent parame-

ters could be relabeled without a�ecting the likelihood.

In these cases, the right hand side of equation (6) should

be multiplied by the degeneracy of w

MP

to give the cor-

rect estimate of the evidence.

� `Minimum description length' (MDL) methods are

closely related to this Bayesian framework. The log ev-

idence log

2

P (DjH

i

) is the number of bits in the ideal

shortest message that encodes the data D using model

H

i

. Akaike's criteria are an approximation to MDL

[16, 24, 25]. Any implementation of MDL necessitates

approximations in evaluating the length of the ideal

shortest message. I can see no advantage in MDL, and

recommend that the evidence should be approximated

directly.

3 The noisy interpolation problem

Bayesian interpolation through noise{free data has been

studied by Skilling and Sibisi [17]. In this paper I study

the case where the dependent variables are assumed to be

noisy. I am not however examining the case where the in-

dependent variables are noisy too. This di�erent and more

di�cult problem has been studied for the case of straight

line{�tting by Gull [7].

Let us assume that the data set to be interpolated is a set

of pairs D = fx

m

; t

m

g, where m = 1 : : : N is a label run-

ning over the pairs. For simplicity I will treat x and t as

scalars, but the method generalises to the multidimensional

case. To de�ne an interpolation model, a set of k �xed ba-

sis functions

1

A = f�

h

(x)g is chosen, and the interpolated

function is assumed to have the form:

y(x) =

k

X

h=1

w

h

�

h

(x) (7)

where the parameters w

h

are to be inferred from the data.

The data set is modelled as deviating from this mapping

under some additive noise process:

t

m

= y(x

m

) + �

m

(8)

1

the case of adaptive basis functions, also known as feedforward neu-

ral networks, is examined in a companion paper.
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If � is modelled as zero{mean gaussian noise with standard

deviation �

�

, then the probability of the data

2

given the

parameters w is:

P (D jw; �;A) =

exp��E

D

(Djw;A)

Z

D

(�)

(9)

where � = 1=�

2

�

, E

D

=

P

m

(y(x

m

) � t

m

)

2

, and Z

D

=

(2�=�)

N=2

. P (D jw; �;A) is called the likelihood. It is well

known that �nding the maximum likelihood parametersw

ML

may be an `ill{posed' problem. That is, the w that minimises

E

D

is underdetermined and/or depends sensitively on the

details of the noise in the data; the maximum likelihood in-

terpolant in such cases oscillates wildly so as to �t the noise.

To complete the interpolation model we need a prior R that

expresses the sort of smoothness we expect the interpolant

y(x) to have. We may have a prior of the form

P (yjR; �) =

exp��E

y

(yjR)

Z

y

(�)

(10)

where E

y

might be for example the functional E

y

=

R

y

00

(x)

2

dx (which is the regulariser for cubic spline

interpolation

3

). The parameter � is a measure of how smooth

f(x) is expected to be. Such a prior can also be written as a

prior on the parameters w:

P (wjA;R; �) =

exp��E

W

(wjA;R)

Z

W

(�)

(11)

where Z

W

=

R

d

k

w exp��E

W

. E

W

(or E

y

) is commonly

referred to as a regularising function.

The interpolation model is now complete, consisting of a

choice of basis functions A, a noise model with parameter �,

and a prior (regulariser) R, with regularising constant �.

The �rst level of inference

If � and � are known, then the posterior probability of the

parameters w is:

4

P (wjD;�; �;A;R) =

P (Djw; �;A)P (wj�;A;R)

P (Dj�; �;A;R)

(12)

Writing

5

M(w) = �E

W

+ �E

D

; (13)

the posterior is

P (wjD;�; �;A;R) =

exp�M (w)

Z

M

(�; �)

(14)

2

Strictly, this probability should be written P (ft

m

gjfx

m

g;w; �;A),

since these interpolation models do not predict the distribution of input

variables fx

m

g; this liberty of notation will be taken throughout this

paper and its companion.

3

Strictly, this particular prior may be improper because an f of the

form w

1

x+ w

0

is not constrained by this prior.

4

The regulariser R has been omitted from the conditioning variables

in the likelihood because the data distribution does not depend on the

prior once w is known. Similarly the prior does not depend on �.

5

The name M stands for `mis�t'; it will be demonstrated later that

M is the natural measure of mis�t, rather than �

2

D

= 2�E

D

.

where Z

M

(�; �) =

R

d

k

w exp�M . We see that minimising

the combined objective function M corresponds to �nding

the most probable interpolant, w

MP

. Error bars on the best

�t interpolant can be obtained from the hessian of M , A =

rrM , evaluated at w

MP

.

This is the well known Bayesian view of regularisation [15,

23].

Bayes can do a lot more than just provide an interpretation

for regularisation. What we have described so far is just the

�rst of three levels of inference. (The second level of model

comparison described in sections 1 and 2 splits into a second

and a third level for this problem, because each interpolation

model is made up of a continuum of sub{models with di�er-

ent values of � and �.) At the second level, Bayes allows

us to objectively assign values to � and �, which are com-

monly unknown a priori. At the third, Bayes enables us to

quantitatively rank alternative basis sets A, and regularisers

(priors) R (and, in principle, alternative noise models). Fur-

thermore, we can quantitatively compare interpolation under

any model A;R with other interpolation and learning mod-

els such as neural networks, if a similar Bayesian approach

is applied to them. Neither the second nor the third level of

inference can be succesfully executed without Occam's razor.

The Bayesian theory of the second and third levels of in-

ference has only recently been worked out, and this paper's

goal is to review that framework. Section 4 will describe the

Bayesian method of choosing � and �; section 5 will describe

Bayesian model comparison for the interpolation problem.

Both these inference problems are solved by evaluating the

appropriate evidence.

4 Selection of parameters � and �

Typically, � is not known a priori, and often � is also un-

known. As � is varied, the properties of the best �t (most

probable) interpolant vary. Assume that we are using a prior

like the splines prior de�ned earlier, and imagine that we in-

terpolate at a very large value of �; then this will constrain

the interpolant to be very smooth and 
at, and it will not

�t the data at all well (�gure 4a). As � is decreased, the

interpolant starts to �t the data better (�gure 4b). If � is

made even smaller, the interpolant oscillates wildly so as to

over�t the noise in the data (�gure 4c). The choice of the

`best' value of � is our �rst `Occam's razor' problem: large

values of � correspond to simple hypotheses which make con-

strained and precise predictions, saying `the interpolant is

expected to not have extreme curvature anywhere;' a tiny

value of � corresponds to the more powerful and 
exible hy-

pothesis that says `the interpolant could be anything at all,

our prior belief in smoothness is very weak.' The task is to

�nd a value of � which is small enough that the data are

�tted but not so small that they are over�tted. For more

severely ill{posed problems such as deconvolution, the pre-

cise value of the regularising parameter is increasingly impor-

tant. Orthodox statistics has ways of assigning values to such

parameters, based for example on mis�t criteria and cross{

validation. Gull has demonstrated why the popular use of

mis�t criteria is incorrect and how Bayes sets these param-
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Figure 4: How the best interpolant depends on �

These �gures introduce a data set, `X,' which is interpolated with

a variety of models in this paper. Notice that the density of data

points is not uniform on the x{axis. In the three �gures the data

set is interpolated using a radial basis function model with a basis

of 60 equally spaced Cauchy functions, all with radius 0.2975. The

regulariser is E

W

=

1

2

P

w

2

, where w are the coe�cients of the

basis functions. Each �gure shows the most probable interpolant

for a di�erent value of �: a) 6000; b) 2.5; c) 10

�7

. Note at the

extreme values how the data is oversmoothed and over�tted re-

spectively. � = 2:5 is themost probable value of �. In b), the most

probable interpolant is displayed with its 1� error bars, which rep-

resent how uncertain we are about the interpolant at each point,

under the assumption that the interpolation model and the value

of � are correct. Notice how the error bars increase in magnitude

where the data is sparse. The error bars do not include the data-

point close to (1,0), because the radial basis function model does

not expect sharp discontinuities, so that point is interpreted as

an improbable outlier.

eters [6]. Cross{validation may be an unreliable technique

unless large quantities of data are available. See section 6

and [13] however for further discussion of cross{validation.

I will explain the Bayesian method of setting � and � after

�rst reviewing some statistics of mis�t.

Mis�t, �

2

, and the e�ect of parameter mea-

surements

ForN gaussian variables with mean � and standard deviation

�, the statistic �

2

=

P

(x� �)

2

=�

2

is a measure of mis�t. If

� is known a priori, �

2

has expectation N �

p

N . However,

if � is �tted from the data by setting � = �x, we `use up

a degree of freedom', and �

2

has expectation N � 1. In

the second case � is a `well{measured parameter' (measured

by the data). When a parameter is determined from the

data in this way it is unavoidable that the parameter �ts

some of the noise as well. That is why the expectation of

�

2

is reduced by one. This is the basis of the distinction

between the �

N

and �

N�1

buttons on your calculator. It

is common for this distinction to be ignored, but in cases

such as interpolation where the number of free parameters is

similar to the number of data points, it is essential to �nd

and make the analogous distinction. It will be demonstrated

that the Bayesian choice of both � and � are most simply

expressed in terms of the e�ective number of well{measured

parameters, 
, to be derived below.

Mis�t criteria are `principles' which set parameters like �

and � by requiring that �

2

should have a particular value.

The discrepancy principle requires �

2

= N . Another prin-

ciple requires �

2

= N � k, where k is the number of free

parameters. We will �nd that an intuitive mis�t criterion

arises for the optimal value of �; on the other hand, the

Bayesian choice of � is unrelated to the mis�t.

Bayesian choice of � and �

To infer from the data what value � and � should have,

6

Bayesians evaluate the posterior probability distribution:

P (�; �jD;A;R) =

P (Dj�; �;A;R)P (�; �)

P (DjA;R)

(15)

The data dependent term P (Dj�; �;A;R) has already ap-

peared earlier as the normalising constant in equation (12),

and it is called the evidence for � and �. Similarly the nor-

malising constant of (15) is called the evidence for A;R, and

it will turn up later when we compare alternative models

A;R in the light of the data.

If P (�; �) is a 
at prior, the evidence is the function that

we use to assign a preference to alternative values of � and

6

Note that it is not satisfactory to simply maximise the likelihood

overw, � and �; the likelihood has a skew peak such that the maximum

likelihood value for the parameters is not in the same place as most

of the posterior probability. To get a feeling for this here is a more

familiar problem: examine the posterior probability for the parameters

of a gaussian (�; �) given N samples: the maximum likelihood value for

� is �

N

, but the most probable value for � is �

N�1

.

6



�. It is given by

P (Dj�; �;A;R) =

Z

M

(�; �)

Z

W

(�)Z

D

(�)

(16)

where the Z's have been de�ned earlier. Occam's razor is

implicit in this formula: if � is small, the large freedom in

the range of possible values of w is automatically penalised

by the consequent large value of Z

W

; models that �t the data

well achieve a large value of Z

M

; a model that has to be very

�nely tuned for it to �t the data is penalised by a smaller

value of Z

M

. The optimum value of � achieves a compromise

between �tting the data well and being too powerful a model.

Now to assign a preference to (�; �), our computational

task is to evaluate the three integrals Z

M

, Z

W

and Z

D

. We

will come back to this task in a moment.

But that sounds like determining your prior after the

data have arrived!

This is an aside which can be omitted on a �rst reading.

When I �rst heard the preceding explanation of Bayesian

regularisation I was discontent because it seemed that the

prior is being chosen from an ensemble of possible priors

after the data have arrived. To be precise, as described

above, the most probable prior (most probable value of �)

is selected; then that prior alone is used to infer what the

interpolant might be. This is not how Bayes would have us

infer what the interpolant is. It is the combined ensemble

of priors that de�ne our prior, and we should integrate over

this ensemble when we do inference. Let us work out what

happens if we follow this proper approach. The preceding

method of using only the most probable prior will emerge as

a good approximation.

Let us examine the true posterior P (wjD;A;R), obtained

by integrating over � and �:

P (wjD;A;R)=

Z

P (wjD;�;�;A;R)P (�; �jD;A;R) d� d�

(17)

In words, the posterior probability over w can be written

as a linear combination of the posteriors for all values of

�;�. Each posterior density is weighted by the probabil-

ity of �; � given the data, which appeared in (15). This

means that if P (�; �jD;A;R) has a single peak at �̂;

^

�, then

the true posterior P (wjD;A;R) will be dominated by the

density P (wjD; �̂;

^

�;A;R). As long as the properties of the

posterior P (wjD;�; �;A;R) do not change rapidly with �; �

near �̂;

^

� and the peak in P (�; �jD;A;R) is strong, we are

justi�ed in using the approximation:

P (wjD;A;R) ' P (wjD; �̂;

^

�;A;R) (18)

Evaluating the evidence

Let us return to our train of thought at equation (16). To

evaluate the evidence for �; �, we want to �nd the integrals

Z

M

, Z

W

and Z

D

. Typically the most di�cult integral to

evaluate is Z

M

.

Z

M

(�; �) =

Z

d

k

w exp�M(w; �; �)

If the regulariser R is a quadratic functional (and the

favourites are), then E

D

and E

W

are quadratic functions

of w, and we can evaluate Z

M

exactly. Letting rrE

W

= C

and rrE

D

= B then using A = �C+ �B, we have:

M =M (w

MP

) +

1

2

(w �w

MP

)

T

A(w �w

MP

)

where w

MP

= A

�1

Bw

ML

. This means that Z

M

is the gaus-

sian integral:

Z

M

= e

�M

MP

(2�)

k=2

det

�

1

2

A (19)

In many cases where the regulariser is not quadratic (for

example, entropy{based), this gaussian approximation is still

servicable [6]. Thus we can write the log evidence for � and

� as:

logP (Dj�; �;A;R) = ��E

MP

W

� �E

MP

D

�

1

2

log detA�

logZ

W

(�)� logZ

D

(�) +

k

2

log 2� (20)

The term �E

MP

D

represents the mis�t of the interpolant to

the data. The three terms ��E

MP

W

�

1

2

log detA�logZ

W

(�)

constitute the `Occam factor' penalising over{powerful val-

ues of �: the ratio (2�)

k=2

det

�

1

2

A=Z

W

(�) is the ratio of

the posterior accessible volume in parameter space to the

prior accessible volume. Figure 5a illustrates the behaviour

of these various terms as a function of � for the same radial

basis function model as illustrated in �gure 4.

Now we could just proceed to evaluate the evidence nu-

merically as a function of � and �, but a more deep and

fruitful understanding of this problem is possible.

Properties of the evidence maximum

The maximum over �; � of P (Dj�; �;A;R) =

Z

M

(�;�)

Z

W

(�)Z

D

(�)

has some remarkable properties which give deeper insight

into this Bayesian approach. The results of this section are

useful both numerically and intuitively.

Following Gull [6], we transform to the basis in which the

Hessian of E

W

is the identity, rrE

W

= I. This transfor-

mation is simple in the case of quadratic E

W

: rotate into

the eigenvector basis of C and stretch the axes so that the

quadratic form E

W

becomes homogeneous. This is the nat-

ural basis for the prior. I will continue to refer to the pa-

rameter vector in this basis as w. Using rrM = A and

rrE

D

= B as above, we di�erentiate the log evidence with

respect to � and � so as to �nd the condition that is satis�ed

at the maximum. The log evidence, from (20), is:

logP (Dj�; �;A;R) = ��E

MP

W

� �E

MP

D

�

1

2

log detA+

N

2

log� +

k

2

log�+

k

2

log 2� (21)

First, di�erentiating with respect to �, we need to evaluate

d

d�

log detA. Using A = �I + �B,

d

d�

log detA = Trace

�

A

�1

dA

d�

�

= TraceA

�1

I = TraceA

�1
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Figure 5: Choosing �

a) The evidence as a function of �: Using the same radial

basis function model as in �gure 4, this graph shows the log ev-

idence as a function of �, and shows the functions which make

up the log evidence, namely the data mis�t �

2

D

= 2�E

D

, the

weight penalty term �

2

W

= 2�E

W

, and the log of the Occam

factor (2�)

k=2

det

�

1

2

A=Z

W

(�).

b)Criteria for optimising �: This graph shows the log evidence

as a function of �, and the functions whose intersection locates the

evidence maximum: the number of good parameter measurements


, and �

2

W

. Also shown is the test error (rescaled) on two test

sets; �nding the test error minimum is an alternative criterion for

setting �. Both test sets were more than twice as large in size as

the interpolated data set. Note how the point at which �

2

W

= 


is clear and unambiguous, which cannot be said for the minima

of the test energies. The evidence gives � a con�dence interval

of [1:3; 5:0]. The test error minima are more widely distributed

because of �nite sample noise.
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Figure 6: Good and bad parameter measurements

w

1

and w

2

are the components in parameter space in two direc-

tions parallel to eigenvectors of the data matrix B. The circle

represents the characteristic prior distribution for w. The ellipse

represents a characteristic contour of the likelihood, centred on

the maximum likelihood solution w

ML

. w

MP

represents the most

probable parameter vector. w

1

is a direction in which �

1

is small

compared to �, i.e. the data have no strong preference about the

value of w

1

; w

1

is a poorly measured parameter, and the term

�

1

�

1

+�

is close to zero. w

2

is a direction in which �

1

is large; w

2

is

well determined by the data, and the term

�

2

�

2

+�

is close to one.

This result is exact if E

W

and E

D

are quadratic. Otherwise

this result is an approximation, omitting terms in @B=@�.

Now, di�erentiating (21) and setting the derivative to zero,

we obtain the following condition for the most probable value

of �:

2�E

MP

W

= k � �TraceA

�1

(22)

The quantity on the left is the dimensionless measure of the

amount of structure introduced into the parameters by the

data, i.e. how much the �tted parameters di�er from their

null value. It can be interpreted as the �

2

of the parameters,

since it is equal to �

2

W

=

P

w

2

i

=�

2

W

, with � = 1=�

2

W

.

The quantity on the right of (22) is called the number of

good parameter measurements, 
, and has value between 0

and k. It can be written in terms of the eigenvalues of �B,

�

a

. The eigenvalues of A are �

a

+ �, so we have:


 = k � �TraceA

�1

= k �

k

X

a=1

�

�

a

+ �

=

k

X

a=1

�

a

�

a

+ �

(23)

Each eigenvalue �

a

measures how strongly one parameter

is determined by the data. � measures how strongly the

parameters are determined by the prior. The term �

a

=(�

a

+

�) is a number between 0 and 1 which measures the strength

of the data relative to the prior (�gure 6). A direction in

parameter space for which �

a

is small compared to � does not

contribute to the number of good parameter measurements.


 is thus a measure of the e�ective number of parameters

which are well determined by the data. As �=� ! 0; 


increases from 0 to k.

This concept is not only important for locating the opti-

mum value of �: it is only the 
 good parameter measure-

ments which are expected to contribute to the reduction of

the data mis�t that occurs when a model is �tted to noisy

data. In the process of �tting w to the data, it is unavoidable

that some �tting of the model to noise will occur, because

some components of the noise are indistinguishable from real

data. Typically, one unit (�

2

) of noise will be �tted for every

8



well{determined parameter. Poorly determined parameters

are determined by the regulariser only, so they do not reduce

�

2

D

in this way. We will now examine how this concept enters

into the Bayesian choice of �.

Recall that the expectation of the �

2

mis�t between the

true interpolant and the data is N . We do not know the true

interpolant, and the only mis�t measure we have access to

is the �

2

of the data, �

2

D

= 2�E

D

. The `discrepancy princi-

ple' of orthodox statistics states that the model parameters

should be adjusted so as to make �

2

D

= N . Other orthodox

approaches would suggest that we should estimate the noise

level so as to set �

2

D

= N � k, where k is the number of free

parameters. Let us �nd out the opinion of Bayes' rule on

this matter.

We di�erentiate the log evidence (21) with respect to �

and obtain:

2�E

D

= N � 
 (24)

Thus the most probable noise estimate,

^

�, does not satisfy

�

2

D

= N or �

2

D

= N � k; rather, �

2

D

= N � 
. Thus the

Bayesian estimate of noise level naturally takes into account

the fact that the parameters which have been determined by

the data inevitably suppress some of the noise in the data,

while the poorly determined parameters do not. Note that

the value of �

2

D

only enters into the determination of �: mis�t

criteria have no role in the Bayesian choice of � [6].

In summary, at the optimum value of � and �, �

2

W

= 
,

�

2

D

= N � 
. Notice that this implies that the total mis�t

M = �E

W

+ �E

D

satis�es the simple equation 2M = N .

The Bayesian choice of � is illustrated by �gure 4b. Fig-

ure 5b illustrates the functions involved with the Bayesian

choice of �, and compares them with the `test error' ap-

proach. Demonstration of the Bayesian choice of � is omit-

ted, since it is straightforward; � is �xed to its true value for

the demonstrations in this paper.

These results generalise to the case where there are two

or more separate regularisers with independent regularising

constants �

1

; �

2

: : : [6]. In this case, each regulariser has a

number of well{measured parameters 


i

associated with it.

Multiple regularisers will be used in the companion paper on

neural networks.

Finding the evidence maximum with a head on approach

would involve evaluating detA while searching over �; �; the

above results (22,24) enable us to speed up this search (for ex-

ample by the use of re{estimation formulae like � := 
=2E

W

)

and replace the evaluation of detA by the evaluation of

TraceA

�1

. For large dimensional problems where this task

is demanding, Skilling has developed methods for estimating

TraceA

�1

statistically [21].

5 Bayesian model comparison

To rank alternative basis setsA and regularisers (priors)R in

the light of the data, we examine the posterior probabilities:

P (A;RjD) / P (DjA;R)P (A;R) (25)

The data{dependent term, the evidence for A;R, appeared

earlier as the normalising constant in (15), and it is evaluated

by integrating the evidence for (�; �):

P (DjA;R) =

Z

P (DjA;R; �; �)P (�; �) d� d� (26)

Assuming that we have no reason to assign strongly di�er-

ing priors P (A;R), alternative A;R are ranked just by ex-

amining the evidence. The evidence can also be compared

with the evidence found by an equivalent Bayesian analysis

of other learning and interpolation models so as to allow the

data to assign a preference to the alternative models. Notice

as pointed out earlier that this modern Bayesian framework

includes no emphasis on de�ning the `right' prior R with

which we ought to interpolate. Rather, we invent as many

priors (regularisers) as we want, and allow the data to tell us

which prior is most probable.

Evaluating the evidence for A;R

As � and � vary, a single evidence maximum is obtained, at

�̂;

^

� (at least for quadratic E

D

and E

W

). The evidence max-

imum is usually well approximated

7

by a separable gaussian,

and di�erentiating (21) twice we obtain gaussian error bars

for log� and log�:

(� log�)

2

' 2=


(� log �)

2

' 2=(N � 
)

Putting these error bars into (26), we obtain the evidence.

8

P (DjA;R) ' P (Dj�̂;

^

�;A;R)P (�̂;

^

�) 2��log��log�

(27)

How is the prior P (�̂;

^

�) assigned? This is the �rst time in

this paper that we have met one of the infamous `subjec-

tive priors', which are supposed to plague Bayesian meth-

ods. Here are some answers to this question. (a) Any other

method of assigning a preference to alternatives must im-

plicitly assign such priors. Bayesians adopt the healthy atti-

tude of not sweeping them under the carpet. (b) With some

thought, reasonable values can usually be assigned to sub-

jective priors, and the degree of reasonable subjectivity in

these assignments can be quanti�ed. For example, a reason-

able prior on an unknown standard deviation states that �

is unknown over a range of (3�2) orders of magnitude. This

prior contributes a subjectivity of about � a factor of 2 to

the value of the evidence. This degree of subjectivity is often

negligible compared to the evidence di�erences. (c) In the

noisy interpolation example, all models considered include

the free parameters � and �. So in this paper I do not need

to assign a value to P (�̂;

^

�); I assume that it is a 
at prior

which cancels out when we compare alternative interpolation

models.

7

Condition for this approximation: in the spectrum of eigenvalues

of �B, the number of eigenvalues within e{fold of � must be O(1).

8

There are analytic methods for performing such integrals over � [2].
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Figure 7: The Evidence for data set X

a) Log Evidence for Hermite polynomials and functions. Notice the evidence maximum. The gentle slope to the right is

due to the `Occam factors' which penalise the increasing complexity of the model. b) Log Evidence for radial basis function

models. Notice that there is no Occam penalty for the additional coe�cients in these models, because increased density of radial

basis functions does not make the model more powerful. The oscillations in the evidence are due to the details of the pixellation of

the basis functions relative to the data points. c) Log Evidence for splines. The evidence is shown for the alternative splines

regularisers p = 0 : : : 6 (see text). In the representation used, each spline model is obtained in the limit of an in�nite number of

coe�cients. For example, p = 4 yields the cubic splines model. d) Test error for splines. The number of data points in the

test set was 90, c.f. number of data points in training set = 37. The y axis shows E

D

; the value of E

D

for the true interpolant has

expectation 0.225 � 0.02.
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6 A Demonstration

These demonstrations will use two one{dimensional data

sets, in imitation of [17]. The �rst data set, `X,' has disconti-

nuities in derivative (�gure 4), and the second is a smoother

data set, `Y' (�gure 8). In all the demonstrations, � was

not left as a free parameter, but was �xed to its known true

value.

The Bayesianmethod of setting �, assuming a single model

is correct, has already been demonstrated, and quanti�ed

error bars have been placed on the most probable interpolant

(�gure 4). The method of evaluating the error bars is to

use the posterior covariance matrix of the parameters w

h

,

A

�1

, to get the variance on y(x), which for any x is a linear

function of the parameters, y(x) =

P

h

�

h

(x)w

h

. The error

bars at a single point x are given by vary(x) = �

T

A

�1

�.

However we have access to the full covariance information for

the entire interpolant, not just the pointwise error bars. It

is possible to visualise the joint error bars on the interpolant

by making typical samples from the posterior distribution,

performing a random walk around the posterior `bubble' in

parameter space [18]. It is simple to program such a random

walk for interpolation problems such as are examined in this

paper; however for lack of dynamic paper I will have to leave

a demonstration of this to your imagination.

In this section objective comparison of alternative models

will be demonstrated; this will be illustrated �rst with models

di�ering only in the number of free parameters (for example

polynomials of di�erent degrees), then with comparisons be-

tween models as disparate as splines, radial basis functions

and feedforward neural networks. For each individual model,

the value of � is optimised, and the evidence is evaluated by

integrating over � using the gaussian approximation. All

logarithms are to base e.

Hermite polynomials and Hermite functions: Oc-

cam's razor for the number of basis functions

Figure 7a shows the evidence for Hermite polynomials of dif-

ferent degrees for data set X. This �gure also shows the

evidence for Hermite functions, by which I mean Hermite

polynomials multiplied by e

�x

2

=2

. A regulariser of the form

E

W

=

P

1

2

2

2h

w

2

h

was used in both cases because the leading

polynomial coe�cient of Hermite polynomials is 2

h

, and it

was found that the evidence for the 
at regulariser

P

1

2

w

2

h

was much smaller.

Notice that an evidence maximum is obtained: beyond

a certain number of terms, the evidence starts to decrease.

This is the Bayesian Occam's razor at work. The additional

terms make the model more powerful, able to make more

predictions. This power is automatically penalised. Notice

the characteristic shape of the `Occam hill.' On the left, the

hill is very steep as the over{simple models fail to �t the data;

the penalty for mis�tting the data scales as N , the number

of data measurements. The other side of the hill is much less

steep; the `Occam factors' here only scale as k logN , where

k is the number of parameters. We note in table 1 the values

of the maximum evidence achieved by these two models, and

move on to alternative models.

Fixed radial basis functions

The basis functions are �

h

(x) = g((x � x

h

)=r), with x

h

equally spaced over the range of interest. I will examine two

choices of g: a gaussian and a Cauchy function, 1=1+x

2

. We

can quantitatively compare these alternative models of spa-

tial correlation for any data set by evaluating the evidence.

The regulariser is E

W

=

P

1

2

w

2

h

. Note that this model in-

cludes one new free parameter, r; in these demonstrations

this parameter has been set to its most probable value (i.e.

the value which maximises the evidence). To penalise this

free parameter an Occam factor is included,

p

2��rP (r),

where �r = posterior uncertainty in r, and P (r) is the prior

on r, which is usually subjective to a small degree. This

radial basis function model is identical to the `intrinsic cor-

relation' model of Gull, Skilling and Sibisi [6, 17].

Figure 7b shows the evidence as a function of the number

of basis functions, k. Note that for these models there is

not an Occam penalty for large numbers of parameters. The

reason for this is that these extra parameters do not make the

model any more powerful (for �xed � and r). The increased

density of basis functions does not enable the model to make

any signi�cant new predictions because the kernel g band{

limits the possible interpolants.

Splines: Occam's razor for the choice of regulariser

I implement the splines model as follows: let the basis func-

tions be a fourier set coshx; sinhx, h = 0; 1; 2; : : :. Use the

regulariser E

W

=

P

1

2

h

p

w

2

h(cos)

+

P

1

2

h

p

w

2

h(sin)

. If p = 4

then in the limit k ! 1 we have the cubic splines reg-

ulariser E

(4)

y

=

R

y

00

(x)

2

dx; if p = 2 we have the regu-

lariser E

(2)

y

=

R

y

0

(x)

2

dx, etc. Figure 7c shows the evidence

for data set X as a function of the number of terms, for

p = 0; 1; 2; 3; 4; 6. Notice that in terms of Occam's razor,

both cases discussed above occur: for p = 0; 1, as k in-

creases, the model becomes more powerful and there is an

Occam penalty. For p = 3; 4; 6, increasing k gives rise to no

penalty. The case p = 2 seems to be on the fence between

the two.

As p increases, the regulariser becomes more opposed to

strong curvature. Once we reach p = 6, the model becomes

improbable because the data does in fact have sharp discon-

tinuities. The evidence can choose the order of our splines

regulariser for us. For this data set, it turns out that p = 3

is the most probable value of p by a few multiples of e.

Results for a smoother data set

Figure 8 shows data set Y, which comes from a much

smoother interpolant than data set X. Table 1 summarises

the evidence for the alternative models. Note the di�erences

from data set X: in the splines family, the most probable

value of p has shifted upwards to the models which pe-

nalise curvature more strongly, as we would intuitively ex-

pect; among the two radial basis function models, the gaus-

sian correlation model now has a slight edge; Hermite func-

tions, which were a poor model for data set X, are now in

�rst place, for a reason which will become clear shortly.
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Figure 8: Data set `Y', interpolated with splines, p = 5.

Why Bayes can't systematically reject the

truth

Let us ask a frequentist question: if one of the hypotheses we

o�er to Bayes is actually true, i.e. it is the model from which

the data were generated, then is it possible for Bayes to sys-

tematically (over the ensemble of possible data sets) prefer

a false hypothesis? Clearly under a worst case analysis, a

Bayesian's posterior may favour a false hypothesis. Further-

more, Skilling demonstrated that with some data sets a free

form (maximum entropy) hypothesis can have greater evi-

dence than the truth [20], but is it possible for this to happen

in the typical case, as Skilling seems to claim? I will show

that the answer is no, the e�ect that Skilling demonstrated

cannot be systematic. To be precise, the expectation over

possible data sets of the log evidence for the true hypothesis

is greater than the expectation of the log evidence for any

other �xed hypothesis. What then was the cause of Skilling's

result? Presumably the particular parameter values of the

true model that generated the data were not typical of the

prior used when evaluating the evidence for the true model.

Proof. Suppose that the truth is actually H

1

. A single data

set arrives and we compare the evidences for H

1

and H

2

,

a di�erent �xed hypothesis. Both hypotheses may have free

parameters, but this will be irrelevant to the argument. Intu-

itively we expect that the evidence for H

1

, P (DjH

1

), should

usually be greatest. Examine the di�erence in log evidence

betweenH

1

andH

2

. The expectation of this di�erence, given

that H

1

is true, is

�

log

P (DjH

1

)

P (DjH

2

)

�

=

Z

d

N

DP (DjH

1

) log

P (DjH

1

)

P (DjH

2

)

:

(Note that this integral implicitly integrates over all H

1

's

parameters according to their prior distribution under H

1

.)

Now it is well known that for normalised p and q,

R

p log

p

q

has a minimum value over q of 0, which is only achieved by

setting q = p. Therefore a distinct hypothesis H

2

is never ex-

pected to systematically defeat the true hypothesis, for just

the same reason that it is not wise to bet di�erently from the

true odds. �

This has two important implications. First, it gives us fre-

quentist con�dence in the ability of Bayesian methods on the

average to identify the true hypothesis. Secondly, it provides

a severe test of any numerical implementation of a Bayesian

inference framework: imagine that we have written a pro-

gram that evaluates the evidence for hypotheses H

1

and H

2

;

then we can generate mock data from sources simulating H

1

and H

2

and evaluate the evidences; if there is any systematic

bias, averaged over several mock data sets, for the estimated

evidence to favour the false hypothesis, then we can be sure

that our numerical implementation is not evaluating the ev-

idence correctly.

This issue is illustrated using data set Y. The `truth' is

that this data set was actually generated from a quadratic

Hermite function, 1:1(1�x+2x

2

)e

�x

2

=2

. By the above argu-

ment the evidence ought probably to favour the hypothesis

`the interpolant is a 3{coe�cient Hermite function' over our

other hypotheses. Let us evaluate the evidence for a variety

of hypotheses and con�rm that none of them has greater ev-

idence than the true hypothesis. Table 1 shows the evidence

for the true Hermite function model, and for other models.

Notice that the truth is indeed considerably more probable

than the alternatives.

Having demonstrated that Bayes cannot systematically fail

when one of the hypotheses is true, we now examine the way

in which this framework can fail, if none of the hypotheses

o�ered to Bayes is any good.

Comparison with `generalisation error'

It is a popular and intuitive criterion for choosing between

alternative interpolants to compare their errors on a test

set that was not used to derive the interpolant. `Cross{

validation' is a more re�ned version of this same idea. How

does this method relate to the evaluation of the evidence

described in this paper?

Figure 7c displayed the evidence for the family of spline

interpolants. Figure 7d shows the corresponding test error,

measured on a test set with size over twice as big (90) as the

`training' data set (37) used to determine the interpolant.

A similar comparison was made in �gure 5b. Note that the

overall trends shown by the evidence are matched by trends

in the test error (if you 
ip one graph upside down). Also,

for this particular problem, the ranks of the alternative spline

models under the evidence are similar to their ranks under

the test error. And in �gure 5b, the evidence maximum was

surrounded by the test error minima. Thus this suggests that

the evidence might be a reliable predictor of generalisation

ability. However, this is not necessarily the case. There are

�ve reasons why the evidence and the test error might not

be correlated.

First, the test error is a noisy quantity. It is necessary

to devote large quantities of data to the test set to obtain

a reasonable signal to noise ratio. In �gure 5b more than

twice as much data is in each test set but the di�erence in
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Table 1: Evidence for data sets X and Y

Data Set X Data Set Y

Model Best

parameter

values

Log

evidence

Best

parameter

values

Log

evidence

Hermite polynomials k = 22 -126 k = 9 1.1

Hermite functions k = 18 -66 k = 3 42.2

Gaussian radial

basis functions

k > 40,

r = :25 -28:8 � 1:0

k > 50,

r = :77 27:1� 1:0

Cauchy radial

basis functions

k > 50,

r = :27 -18:9 � 1:0

k > 50,

r = 1:1 25:7� 1:0

Splines, p = 2 k > 80 -9.5 k > 50 8.2

Splines, p = 3 k > 80 -5.6 k > 50 19.8

Splines, p = 4 k > 80 -13.2 k > 50 22.1

Splines, p = 5 k > 80 k > 50 21.8

Splines, p = 6 k > 80 -35.8 k > 50 20.4

Neural networks 8 neurons,

k = 25

-12.6 6 neurons,

k = 19

25.7

� between the two test error minima exceeds the size of the

Bayesian con�dence interval for �.

Second, the model with greatest evidence is not expected

to be the best model all the time | Bayesian inferences are

uncertain. The whole point of Bayes is that it quanti�es pre-

cisely those uncertainties: the relative values of the evidence

for alternative models express the plausibility of the models,

given the data and the underlying assumptions.

Third, there is more to the evidence than there is to the

generalisation error. For example, imagine that for two mod-

els, the most probable interpolants happen to be identical.

In this case, the generalisation error for the two solutions

must be the same. But the evidence will not in general be

the same: typically, the model that was a priori more com-

plex will su�er a larger Occam factor and will have a smaller

evidence.

Fourth, the test error is a measure of performance only of

the single most probable interpolant: the evidence is a mea-

sure of plausibility of the entire posterior ensemble around

the best �t interpolant. A stronger correlation between the

evidence and the test statistic would be obtained if the test

statistic used were the average of the test error over the pos-

terior ensemble of solutions. This ensemble test error is not

so easy to compute.

The �fth and most interesting reason why the evidence

might not be correlated with the generalisation error is that

there might be a 
aw in the underlying assumptions such

that the hypotheses being compared might all be poor hy-

potheses. If a poor regulariser is used, for example, one that

is ill{matched to the statistics of the world, then the Bayesian

choice of � will often not be the best in terms of generalisa-

tion error [3, 6, 9]. Such a failure occurs in the companion

paper on neural networks. What is our attitude to such a fail-

ure of Bayesian prediction? The failure of the evidence does

not mean that we should discard the evidence and use the

generalisation error as our criterion for choosing �. A failure

is an opportunity to learn; a healthy scientist searches for

such failures, because they yield insights into the defects of

the current model. The detection of such a failure (by eval-

uating the generalisation error for example) motivates the

search for new hypotheses which do not fail in this way; for

example alternative regularisers can be tried until a hypoth-

esis is found that makes the data more probable.

If one only uses the generalisation error as a criterion for

model comparison, one is denied this mechanism for learn-

ing. The development of image deconvolution was held up for

decades because no{one used the Bayesian choice of �; once

the Bayesian choice of � was used [6], the results obtained

were most dissatisfactory, making clear what a poor regu-

lariser was being used; this motivated an immediate search

for alternative priors; the new priors discovered by this search

are now at the heart of the state of the art in image decon-

volution.

Admitting neural networks into the canon of

Bayesian interpolation models

A second paper will discuss how to apply this Bayesian

framework to the task of evaluating the evidence for feed-

forward neural networks. Preliminary results using these

methods are included in table 1. Assuming that the approx-

imations used were valid, it is interesting that the evidence

for neural nets is actually good for both the spiky and the

smooth data sets. Furthermore, neural nets, in spite of their

arbitrariness, yield a relatively compact model, with fewer

parameters needed than to specify the splines and radial ba-

sis function solutions.
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7 Conclusions

The recently developed methods of Bayesian model com-

parison and regularisation have been presented. Mod-

els are ranked by evaluating the evidence, a solely data{

dependent measure which intuitively and consistently com-

bines a model's ability to �t the data with its complexity.

Regularising constants are set by maximising the evidence.

For many regularisation problems, the theory of the number

of well determined parameters makes it possible to perform

this optimisation on{line.

In the interpolation examples discussed, the evidence was

used to set the number of basis functions k in a polynomial

model; to set the characteristic size r in a radial basis func-

tion model; to choose the order p of the regulariser for a

spline model; and to rank all these di�erent models in the

light of the data.

Further work is needed to formalise the relationship of this

framework to the pragmatic model comparison technique of

cross{validation. By using the two techniques in parallel

it is possible to detect 
aws in the underlying assumptions

implicit in the data models being used. Such failures direct us

in our search for superior models, providing a powerful tool

for human learning. There are thousands of data modelling

tasks waiting for the evidence to be evaluated for them. It

will be exciting to see how much we can learn when this is

done.
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