
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

SafeStack: Automatically Patching
Stack-based Buffer Overflow Vulnerabilities

Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Zhenkai Liang, Weide Zheng and Xuanhua Shi

Abstract—Buffer overflow attacks still pose a significant threat to the security and availability of today’s computer systems.

Although there are a number of solutions proposed to provide adequate protection against buffer overflow attacks, most of existing

solutions terminate the vulnerable program when the buffer overflow occurs, effectively rendering the program unavailable. The

impact on availability is a serious problem on service-oriented platforms. This paper presents SafeStack, a system that can

automatically diagnose and patch stack-based buffer overflow vulnerabilities. The key technique of our solution is to virtualize

memory accesses and move the vulnerable buffer into protected memory regions, which provides a fundamental and effective

protection against recurrence of the same attack without stopping normal system execution. We developed a prototype on a

Linux system, and conducted extensive experiments to evaluate the effectiveness and performance of the system using a range

of applications. Our experimental results showed that SafeStack can quickly generate runtime patches to successfully handle

the attack’s recurrence. Furthermore, SafeStack only incurs acceptable overhead for the patched applications.

Index Terms—Software Reliability, Buffer Overflow Vulnerability Diagnosis, Attack Prevention

�

1 INTRODUCTION

With the fast development of service-oriented com-
puting paradigm, the demand for high availability
of services grows significantly. Unfortunately, system
security and availability is still severely hindered by
memory vulnerabilities. Programs written in unsafe
languages like C and C++ are particularly vulnera-
ble, where attackers can exploit memory vulnerabili-
ties to control vulnerable programs. Among memory
vulnerabilities, buffer overflow vulnerabilities have
posed a major threat to the security of computer sys-
tems. According to the US-CERT Vulnerability Notes
Database, there are 11 buffer overflow attacks in 20
vulnerabilities with the highest severity metric [1].
However, the response to such attacks is slow: pre-
vious study shows that it takes 28 days on average
to diagnose vulnerabilities and generate patches [2].
During this long vulnerable time window, users have
to either tolerate the costly downtime, or experience
problems such as intermittent crashes and potential
attack’s recurrence if they continue to use the software
— neither of the temporary mitigation is desirable.
Therefore it is very important to provide a practical
and efficient solution to survive and prevent the
buffer overflow attacks.

In a buffer overflow attack, the attacker aims to

Gang Chen, Hai Jin, Deqing Zou, Weide Zheng and Xuanhua Shi are with
the Cluster and Grid Computing Lab, Services Computing Technology and
System Lab, Huazhong University of Science and Technology, Wuhan,
430074, China. E-mail: deqingzou@hust.edu.cn.
Bing Bing Zhou is with the Centre for Distributed and High Performance
Computing, School of Information Technologies, University of Sydney,
NSW 2006, Australia. E-mail: bbz@it.usyd.edu.au.
Zhenkai Liang is with the Department of Computer Science,
School of Computing, National University of Singapore. E-mail:
liangzk@comp.nus.edu.sg.

change the control flow of the vulnerable program
to gain access to a system. There are various ways
to exploit buffer overflow vulnerabilities. The most
widely used one is to overflow buffers on the stack to
modify the return address or the saved frame pointer.
Although this type of attack is no longer directly
exploitable with the advancement of buffer overflow
defense technology, it is still the basis for denial-of-
service attacks or advanced memory exploits, such
as attacks exploiting the Windows Structured Excep-
tion Handler (SEH) mechanism [3]. There are other
complex exploit forms of stack-based buffer overflow
attacks, for instance, overrunning a local buffer to
corrupt some other code pointers, such as function
pointers, longjmp buffers and Global Offset Table
(GOT) entries.

A number of solutions have been proposed to
protect applications against the buffer overflow vul-
nerabilities. They are based on techniques including
return address defense on the stack [4], [5], [6], [7],
array bounds checking [8], pointers protection via
encryption [9], and address space layout randomiza-
tion [10], [11], [12]. Although these solutions prevent
buffer overflow exploits, they drop the availability
of the applications because they usually terminate
the applications when buffer overflow attacks are
detected. Terminating an application is often unac-
ceptable due to high availability requirements from
service-oriented platforms.

Since memory error exploits are caused by vulner-
abilities, patching the vulnerabilities is the ultimate
solution. Keromytis [18] proposes the “patch on de-
mand” concept, integrating the vulnerability discov-
ery, patch generation, and patch application cycles
into a system. Solutions such as PASAN [20] have

Digital Object Indentifier 10.1109/TDSC.2013.25 1545-5971/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

been developed to automatically generate patches
of memory errors, but they mainly focus on patch
generation, which still needs service restart to apply
the patches. To help programs survive vulnerabilities
and thus improve their availability, a great number
of solutions have been proposed to tolerate attacks,
such as attack signature diagnosis [17], [19], and self-
healing approaches [34], [15], [16]. However, they do
not solve the problem satisfactorily due to the lack of
compatibility or accuracy. Therefore, there is a strong
need of an end-to-end system that both generates and
applies patches with production-grade performance and
safety maintenance. First-Aid [21] is such a system.
However, this approach is designed only to protect
heap buffers. It is not effective for other type of
buffers, especially for stack-based buffers. Stack-based
buffers are tightly coupled with binaries, and thus are
harder to relocate while the program is running.

In this paper, we propose a novel system called
SafeStack, which can quickly and automatically gen-
erate patches to stack-based buffer overflow vulnera-
bilities and apply the patches without stopping the
vulnerable service. The key technique of SafeStack
is memory access virtualization, which relocates mem-
ory objects to selected locations. Once an attack is
detected, SafeStack identifies the stack objects that
trigger the stack buffer overflow, generates runtime
patches which consist of vulnerability signatures, bug-
triggering buffers and vulnerability treatments, and
applies them to move these stack objects into pro-
tected memory areas. SafeStack is designed to learn
from attacks. Although the application still suffers the
first attack, SafeStack can diagnose the vulnerability
origin from this attack and generate patches to “fix”
the stack-based buffer overflow vulnerability. As a
result, the automatically generated SafeStack patches
enable the application to survive exploits and con-
tinue to process subsequent requests.

Compared with previous approaches, SafeStack has
the following advantages:

• Efficiency. SafeStack consists of an online produc-
tion system and an offline triage system to lever-
age failure diagnosis and availability. Specifically,
the online system is used to detect faults and
apply patches while the offline system is used
to identify the bug-triggering buffers and then to
generate patches. Therefore, the failure diagnosis
doesn’t influence the work of applications. In our
experiments, for each of nine stack-based buffer
overflow bugs in eight applications, SafeStack
can automatically generate patches just in a few
seconds and enable the applications to survive
subsequent attacks.

• Safety. Most buffer overflow defense tools try to
improve the security of the applications without
considering the availability, while most software
fault tolerance tools tend to ignore buffer over-
flow bugs or reduce the security to improve

the availability. These approaches are not de-
sirable for stack-based buffer overflow bugs in
applications with high availability requirements.
SafeStack moves the bug triggering stack objects
out of the stack, which prevents attackers to cor-
rupt the return address, the saved frame pointers
and some other code pointers. Furthermore, as
the “faulty” stack objects are moved into and
randomly located in the protected memory areas,
the system does not introduce uncertainty or
misbehavior into the application’s execution.

• Scalability. SafeStack is not tied to any specific
memory protection tools. In the current imple-
mentation, SafeStack adopts a method similar to
that introduced in DieHard [22] which can pro-
vide high probabilistic memory safety. SafeStack
can easily be combined with other useful tools
to collaboratively protect the application against
memory bugs.

We have implemented a Linux prototype and eval-
uated it using eight applications which have stack-
based buffer overflow vulnerabilities, including four
web servers, an FTP server, a streaming audio server,
and two desktop applications. Additionally, we evalu-
ated SafeStack’s performance with the SPEC INT2000
benchmarks. Our experimental results showed that
SafeStack can quickly generate runtime patches and
successfully handle the attack’s recurrence after ap-
plying the patches. Furthermore, the patches gener-
ated by SafeStack only incur reasonable overhead.

In summary, we made the following contributions.

• We propose SafeStack, a novel end-to-end sys-
tem to diagnose and patch stack-based buffer
overflow vulnerabilities. SafeStack automatically
generates and applies patches to vulnerabilities to
mitigate buffer overflow exploits while preserv-
ing system availability.

• We develop a technique, memory access virtualiza-
tion, which allows runtime relocation of memory
objects through binary instrumentation.

• We implemented SafeStack on a Linux system,
and evaluated its effectiveness and performance
using real-world attacks.

The rest of the paper is organized as follows. The
SafeStack overview, including the high-level ideas,
architecture, the work flow and important steps of
SafeStack, are introduced in Section 2. Section 3 de-
scribes the important techniques and a few challenges
we faced in implementation. The experimental and
analytical results are presented in Section 4. Section 5
gives an overview of related work. Finally, we sum-
marize our contributions in Section 6.

2 SAFESTACK

In this section, we first introduce new high-level ideas
for the design and development of SafeStack. Then we

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: SAFESTACK: AUTOMATICALLY PATCHING STACK-BASED BUFFER OVERFLOW VULNERABILITIES 3

Fig. 1. Memory Access Virtualization

discuss how system components function in dealing
with stack buffer overflow bugs.

2.1 Memory Access Virtualization

To understand a stack-based buffer overflow attack,
we show a typical stack layout for a running function
in Figure 1(a). It consists of the function’s parameters,
the return address, the previous frame pointer, and
the local variables. There are two stack-based buffers
in the local variables. If the program fails to check
the buffer bounds when it accesses the two buffers,
out-of-bound buffer access can change stack variables
adjacent to the buffers. Attackers can use accesses to
these buffers to corrupt the stack. For example, at-
tackers can use a buffer overflow exploit to overwrite
the return address on the stack with another address.
When the victim function returns, the program control
is transferred to malicious code injected by attackers.

There are two major challenges in automated buffer
overflow attack diagnosis and patching, that is, how
to automatically identify the buffers that are overflowed in
an attack and how to mitigate attacks to preserve system
availability without rebuilding the vulnerable program’s
binary. To better deal with both challenges we develop
a new technique called memory access virtualiza-
tion. Using this technique we can relocate memory
objects to other locations to maintain a program’s
functionality at run-time. With the ability of memory
object relocation, for attack diagnosis we can move
stack buffers to a monitored memory region to detect
whether some of them have out-of-bound access,
while for attack prevention we can move vulnerable
buffers into protected memory areas, and then write
values into (or take values out of) the corresponding
protected memory areas instead of the original stack
address space. Therefore, we can safely mask buffer
overflow attacks such as an out-of-bound write or an
out-of-bound read and make the program continue to
execute normally, instead of throwing up an excep-
tion and terminating the program — an undesirable
situation for an important business server program.

Fig. 2. Dual-System Architecture of SafeStack

Based on this technique, we build SafeStack to
automatically diagnose and patch stack-based buffer
overflow attacks. Specifically, we use memory access
virtualization mechanism to relocate the bug-triggering
buffer into protected memory areas, as shown in
Figure 1(b). In this way, the two vulnerable buffers
are protected from being used to overrun the control
data.

2.2 A Dual System Architecture

To preserve availability while reducing the impact on
the running application, we introduce a dual system
architecture which consists of an online production
system and an offline triage system, as illustrated
in Figure 2. The online production system is the
deployment of the application in the production en-
vironment. The offline triage system is a shadow de-
ployment of the application, which is used to identify
the bug-triggering buffers and to generate patches.

The online production system includes a set of
sensors for detecting exploits and identifying their
types at runtime, a logger component to log network
inputs for exploit diagnosis in the triage system, a
patch management component for receiving and man-
aging the patches that are generated and evaluated
from the triage system, and a runtime patch applicator
component for applying the patches with a dynamic
instrumentation tool.

The offline triage system includes a buffer infor-
mation extractor component for extracting informa-
tion about stack buffers from program binaries, a
diagnosis engine component for identifying the bug-
triggering buffers in the shadow application, a patch
generator component for generating runtime patches
according to the results of diagnosis engine, and a
patch evaluation component for evaluating whether the
patches can survive the exploits. The patch evaluation
component sends the results to the patch management
component and generates an exploit report according
to the results of the patch evaluation to help program-
mers perform postmortem exploit analysis.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Fig. 3. SafeStack Workflow

2.3 Workflow

The Workflow of SafeStack is illustrated in Figure 3.
The logger component of the online production sys-
tem records network inputs to a program into a log
file and maintains a shadow call-stack. It logs network
inputs by sessions, and only stores recent sessions to
keep the log size under a user-specified threshold.
When an attack is detected, the online system sends
the log file and the shadow call-stack with the core
dump file to the offline triage system for analysis.

In the offline triage system, the buffer information
extractor extracts the stack-buffer-related information
from the program binaries. This step is indicated as
Step � in Figure 3. Once the diagnosis engine re-
ceives an attack analysis request from the production
system, the triage system enters the diagnosis phase
to analyze the attack information, gets the candidate
vulnerable functions, and replays the inputs from the
log file, indicated as Step � in Figure 3. According to
the buffer information, the triage system dynamically
instruments the program to move the stack buffer
objects inside the candidate vulnerable functions to
the monitored memory areas, and identifies bug-
triggering buffers through testing.

Once a bug-triggering buffer is detected, the patch
generator generates runtime patches, which are evalu-
ated by the patch evaluation component to determine
whether they are able to make the application tolerate
attack recurrences (Step � in Figure 3). If so, the patch
evaluation component sends the generated runtime
patches to the production system. At the same time,
the system also generates a report according to the
patch evaluation for postmortem vulnerability analy-
sis. If no patch is generated, the system will raise an
exception to indicate that the problem may not be a
stack buffer overflow.

Finally, the runtime patch applicator in the online
production system applies patches generated from the
triage system using dynamic binary instrumentation
(Step �). In this way, SafeStack temporarily fixes the
vulnerability and prevents subsequent attacks of the
same type, which helps the production system with-
stand the buffer overflow attacks until the vendor’s
official patch becomes available.

The design of SafeStack is especially suitable for
cloud systems or data centers, which are rich in
resources. Take a cloud system as an example. We
can deploy the production system in several virtual
machines for different users and deploy just one triage
system in a separate virtual machine. The generated
patches can be easily distributed to any VM running
the vulnerable application.

3 IMPLEMENTATION

It is not straightforward to develop a system based on
the high-level ideas discussed in the previous section.
Techniques need to be developed for memory access
virtualization, stack buffer relocation, bug-triggering
buffer identification, patch generation and evaluation,
and runtime patch application. To investigate these
important techniques and to test the feasibility of our
high-level ideas, we developed a prototype SafeStack
on a Linux platform. In our implementation, a dy-
namic instrumentation tool Pin [24] is used to monitor
all the program instructions to check their memory
accesses. The exploit detection sensor in current im-
plementation detects program crashes by catching the
signal SIGSEGV. We also use the protected heap space
as the protected memory areas because significant
achievements have been made recently in dealing
with heap-related vulnerabilities [22], [23].

3.1 Memory Access Virtualization

The key technique of SafeStack is memory access virtu-
alization, which allows memory objects to be relocated
at runtime. It is the basis of both attack diagnosis and
vulnerability patching.

Memory access virtualization adopts an object-
relocation table to map the original memory address of
an object to a new address. The mapping is relatively
simple if the access to a buffer is within that buffer.
Otherwise, the mapping has to be done carefully as
the system needs to consider whether it is an out-
of-bound access or a legitimate access to a different
variable.

We focus our discussion on the memory access vir-
tualization mechanism for simple arrays. The mecha-
nism works in a similar way for other types of local
buffers, such as structures, structure arrays, unions,
and union arrays.

There are two main types of array element access:
direct access and indirect access. For example, defining
a character array of size 20 as a[20], a[5] is a direct
array element access using the constant index 5, and
a[i] is an indirect array element access using the
index variable i.

For the direct access, the array index is a constant.
The offset from the frame pointer or the stack pointer
is determined at the compilation time. In this case,
the effective memory address is inside the object-
relocation table, and the addressing mode is “Base

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: SAFESTACK: AUTOMATICALLY PATCHING STACK-BASED BUFFER OVERFLOW VULNERABILITIES 5

Procedure 1 Memory Access Virtualization Procedure
Input: ins
Output: none
1: if instruction ins is a read/write memory operation then
2: get the base register (regBase);
3: if regBase is valid then
4: get the index register (regIndex);
5: if regIndex is valid then
6: insert a call (OriginalBufferSIB) before ins to get addr;
7: rewrite addr in ins;
8: else
9: insert a call (OriginalBufferDirectAccess) before ins to get addr;

10: rewrite addr in ins;
11: end if
12: end if
13: else if instruction ins is LEA then
14: get the destination register (dest);
15: insert a call (LeaOperation) before ins to rewrite dest;
16: delete ins;
17: end if

plus Offset”. The base is the base register (EBP or
ESP) and the offset is the value between the variable
(e.g., a[20]) and the base register. SafeStack simply
replaces this original address with its corresponding
new address before executing the instruction. There
is a case that the stack buffer subscript is a constant
and out of range, such as a[24]. Fortunately, this
explicit out of bound access can be detected in the
testing phase before the application is released, and
it is reasonable that we assume the program does not
have this explicit out of bound access.

For the indirect access, the array index is an ex-
pression. The effective memory address is the sum
of the starting address of the array and the size of
the array element multiplied by the array index, and
the addressing mode is “Base plus Index plus Offset”.
The base is the base register, the offset is the value
between the starting address of the array and the base
register, and the index is the index register (storing
value i, which is scaled by the size of the array
element). SafeStack first calculates the starting address
of the array, finds the corresponding new address
according to the object-relocation table, calculates the
final new address, and replaces the original address
with it before executing the instruction.

In addition to these two types of array element
access, arrays can also be accessed by pointers to
arrays. For example, a program can define a pointer
variable pointing to an array, and access array el-
ements using the pointer variable. To handle this
type of access, SafeStack first replaces the original
address with the corresponding new address, and
subsequently all the offset calculation based on this
pointer can be directed onto the corresponding new
address without the needs to map new address for
each instruction subsequently. Similarly, most of the
time the address of an array is passed as an argument
to a function, e.g., the address of an array is passed
to the function strcpy to copy data into the array. In
this case, the value of the argument has been replaced
with the corresponding new address. This solution
avoids searching the stack frame and checking ev-

Procedure 2 Buffer SIB Procedure
Input: originalEa, regBaseV alue, regIndexV alue, scale, disp
Output: addrOriginal, addrNew
1: addrOriginal = regBaseV alue + disp;
2: addrNew = LookupTable(addrOriginal);
3: if addrNew > 0 then
4: return addrNew + regIndexV alue ∗ scale;
5: else
6: return originalEa;
7: end if

ery instruction for address mapping, and thus has
better performance. For SIMD instructions, they also
specify the addresses of arrays to process. Therefore,
SafeStack can replace them with corresponding new
address before processing.

We summarize the memory access virtualization
procedure with pseudo code in Procedure 1. The
memory access virtualization procedure inserts differ-
ent functions for direct and indirect array element ac-
cesses and the pointer referenced access, respectively.
The memory access virtualization procedure rewrites
the memory address due to the limitation of the
instrumentation tool PIN, which cannot get the actual
memory address at the instrumentation time. Note
that the LEA instruction is a special case. It is often
used for efficient computation rather than memory
access. So SafeStack moves the corresponding new
address into the destination register directly, and there
is no need to execute the original LEA instruction.

In Procedure 2 we show a representative procedure
OriginalBufferSIB which is used to deal with the buffer
itself access for a variable array subscript. The input
originalEa is the address of an array element; regBase-
Value is the content of base register; regIndexValue is
the content of index register; scale is the scale factor
and disp is the displacement. The procedure calculates
the starting address of the array and calls a procedure
LookupTable to get the corresponding new address
retrieved from the object-relocation table. SafeStack
returns a calculated new address if found, otherwise
returns the original memory address.

Using actual stack address for the stack buffer
access can cause high overhead. However, in most
cases, the offset from the frame pointer is sufficient
to determine a stack buffer inside a function. In such
cases, we can greatly simplify the above procedure for
memory access virtualization by using the process id,
thread id, the function starting code address and an
offset to uniquely determine a stack buffer. In this way
we not only eliminate the operation of locating the
memory address of stack buffers, but also decrease
the overhead of the operation for finding the corre-
sponding heap address.

3.2 Stack Buffer Relocation

To relocate a stack buffer to the protected heap space,
SafeStack allocates the same size of the corresponding
buffer on the heap space, adds padding around it

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

and places canaries around the corresponding heap
objects for bug-triggering buffer identification. Similar
to the heap management for the moved buffers in
DieHard [22], the allocated buffers are placed in the
miniheaps. However, the buffers are not randomly
placed on the heap as the padding is added around
the allocated buffers to avoid using more memory
space for identification of bug-triggering buffers.

SafeStack maps the stack buffers to new heap ad-
dresses when the value of the stack pointer decreases,
i.e., when the buffers are allocated. It only causes a
reasonable overhead when stack buffers are allocated
on the stack, but not initialized yet. Otherwise when
the stack buffer has been initialised, SafeStack must
copy the data from the stack buffer to the new heap
address.

When a function is completed, the associated mem-
ory space on the heap is freed and the mapping rela-
tionship is removed from the object-relocation table.

3.3 Bug-Triggering Buffer Identification

When a CALL instruction is detected, SafeStack must
instrument this function if the function is inside the
candidate vulnerable functions and contains stack
buffers.

To determine whether buffers in a function are
overflowed in the attack, SafeStack adds padding
around the corresponding heap objects and identifies
the bug-triggering objects with canary checking [4].
Specifically, canaries (that is, guard values) are placed
around each object when it is moved to the heap
region. When the triage system replays an attack,
it checks whether the canaries have been tampered
before the function returns. If so, the corresponding
stack buffer will be identified as a bug-triggering
buffer. If the triage system cannot find the bug-
triggering buffers, it will enter into a heavy instru-
mentation which moves all stack buffer objects into
the heap space for detection. In the heavy instrumen-
tation, all the functions containing stack buffers will
be instrumented.

The bug-triggering stack buffer is sent to the next
step for patch generation. However, the diagnosis
phase is not terminated immediately. This is because
some data in the vulnerable source space could cor-
rupt other buffer objects, which may cause the system
to repeatedly enter and exit the vulnerability diagno-
sis phase till all the vulnerabilities are found. If the
monitoring time is kept too long, however, the patch
generation will be delayed and thus the online system
kept in the vulnerability phase for a long time. In our
current implementation, the monitoring time is cho-
sen for returns of three instrumented functions after
one bug-triggering buffer is identified, or a specified
constant time is reached, or the program exits.

3.4 Patch Generation and Evaluation

Once the bug-triggering stack buffers are identified,
patches are generated to “isolate” them on the stack.
A runtime patch consists of a vulnerability signature,
a bug-triggering buffer and a vulnerability treatment.
Based on the technique developed in First-Aid [21],
SafeStack uses the return addresses of three most
recent functions on the stack as the vulnerability sig-
nature. The bug signature can be determined during
the time when the bug-triggering buffer is identi-
fied by checking the call-stack to obtain three most
recent functions. The bug-triggering buffer contains
the buffer size and the offset of the frame pointer.
All vulnerability treatments are of the same type in
the current implementation, i.e., moving the stack
buffer to the heap and then mapping the memory
addresses of the buffer on the stack to the corre-
sponding addresses on the heap. However, SafeStack
provides a common patch format which can be easily
integrated into the First-Aid system to provide more
comprehensive protection for programs.

The generated patches are evaluated before they
are applied to the online production system. The
triage system first restarts the shadow deployment
of the application and applies patches to the pro-
gram, and then replays the inputs to check if the
application can survive the exploit. If not, the system
continues to monitor the patched application to find
other vulnerabilities. If all the patches that the system
can generate have been applied, but the exploit still
exists, this exploit may not be caused only by stack
buffer overflow and the triage system will throw an
exception to the production system. A bug report is
also generated during this process.

3.5 Runtime Patch Application

When receiving patches from the triage system, the
patch management component in the production sys-
tem notifies the runtime patch applicator to apply
patches. For the patched application, once the vul-
nerability signature is matched by three most recent
functions in the call-stack, the memory access vir-
tualization mechanism will move the bug-triggering
buffers to the heap address space. The moved objects
are randomly placed on the heap to avoid them being
overrun from each other [22].

The memory access virtualization mechanism en-
sures that all the read/write memory operations to
the bug-triggering buffers are directed into its corre-
sponding heap objects. This can be guaranteed by the
memory access virtualization mechanism. Therefore,
the patched application can stay clear of the stack
buffer overflow vulnerability and prevent its recur-
rence.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: SAFESTACK: AUTOMATICALLY PATCHING STACK-BASED BUFFER OVERFLOW VULNERABILITIES 7

3.6 Other Issues and Limitations

To diagnose buffer overflow vulnerabilities we need
to obtain stack buffer information, which includes
function information and variable information. Func-
tion information contains function name (for non-
stripped binaries), starting address, and the number of
stack buffer variables. Variable information contains
the variable size, offset from the frame pointer for
each local buffer variables and buffer parameters.

With stack buffer information we can identify
all those instructions which do the memory read-
ing/writing or change the ESP/EBP register, and then
infer local variable information from the instructions
to determine the sizes of buffers and variables. Most
of the times a buffer is referenced with a buffer
pointer and an index and thus we can identify the
buffer pointer from the base register. However, a
direct memory access to the stack buffer can cause
a buffer to be split into multiple small ones, but it
is not common, as observed in our experiments. For
inlined functions, the buffers originally allocated in its
stack frame, but now they are allocated in the parent
functions. Fortunately, inline functions works directly
on application binaries, where they have already been
inlined and compiled, and there is no need for any
special treatments.

The stack buffer information can be extracted from
program binaries. Currently, a disassembly library
Libdasm [25] is used for the task. More accurate
buffer information can also be obtained by integrat-
ing more sophisticated binary analysis tools such as
IDAPro [26].

For most buffer overflow attacks, the call stack will
be corrupted because the return address is corrupted.
SafeStack uses a shadow call stack to maintain the call
stack information and thus to prevent the system from
entering into the heavy instrumentation. Our shadow
call stack not only contains the current call stack
information, but also the candidate vulnerable func-
tions most-recently returned. In our current imple-
mentation, we maintain three most recently returned
functions as the candidate vulnerable functions. There
is a problem when using setjmp/longjmp in the
program, which can disturb our work of shadow call
stack in our current implementation. Although this is
not common, improving it remains our future work.

As our main focus in the approach is to use memory
access virtualization to generate accurate patches and
apply patches, we assume the system states are in the
exact same state after reset before each replay and
therefore the attack can be reproduced in the triage
system. SafeStack records recent network sessions
using a first-in-first-out queue, as most attacks are
caused by network inputs in the same short network
session. For some applications such as banking ap-
plications, queries replay method may result in dam-
aging data. This can be done with virtual machines

or checkpoints of existing solutions. This remains our
future work.

4 EXPERIMENTAL EVALUATION

Our evaluation platform consists of three machines
connected with 100Mbps Ethernet. The first two ma-
chines are each configured with the Intel E5300 dual
core 2.6GHz processors, 2MB L2 cache, and 2GB
memory. One is used for the production system and
the other is for the triage system. The third machine is
configured with Intel E5200 dual core 2.5GHz proces-
sors, 2MB L2 cache, and 2GB memory. It is used to run
clients. The operating system kernel is Linux 2.6, and
Pin 2.8-37300 is used for dynamical instrumentation.

We evaluated the effectiveness of SafeStack with
respect to survivability and performance. To test the
survivability, we used a range of multi-process and
multi-threaded applications as our testsuite. To test
the performance, we first measured the overhead at a
function call level, and then the overall performance
at the application level.

4.1 Overall Effectiveness Analysis

As shown in Table 1, there are eight applications
used in our test, which are four web servers, i.e.,
Apache (enable the module Mod include), T-HTTPd
[27], Light-HTTPd [28] and ATP-HTTPd [29], an FTP
server ProFTPD [30], a streaming audio server Icecase
[31], an automatic news posting tool Newspost [32],
and a download accelerator Prozilla [33].

We evaluated SafeStack using nine stack-based
buffer overflow vulnerabilities in the applications:
eight of the vulnerabilities are real-world vulnerabil-
ities caused by buffers of characters. We also synthe-
sized an additional vulnerability caused by buffers of
integer, which was manually injected into the ATP-
HTTPd (named ATP-HTTPd-i in our experiment re-
sults). To simulate attack recurrences in real attack sce-
narios, we mixed normal inputs with the vulnerability
triggering inputs.

There were two types of stack overflow vulnerabili-
ties in our test. One was caused by unbounded access
to the stack. For example, the injected vulnerability in
ATP-HTTPd-i was caused by an out-of-bound access
in a for loop. The other was memory corruption
via pointer operations. For example, there was an
unbounded memory-copy vulnerability in Prozilla.
Attackers can construct a malicious file which caused
a negative number to be used as a copy parameter
passed to a function strncpy to induce the memory
corruption.

The overall effectiveness of SafeStack is illustrated
in the last two columns in Table 1. The values in col-
umn No. of Patches referred to the number of runtime
patches generated by SafeStack, i.e., the number of
stack buffers moved out of the stack. All the patched

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

TABLE 1

Applications used in evaluation

Application Version Vulnerability ID Application Description No. of Patches
Attack Recurrence

Prevention

Apache 1.3.31 CVE-2004-0940 1 Yes

T-HTTPd 2.21 CVE-2003-0899 1 Yes

Light-HTTPd 0.1 CVE-2002-1549 Web Server 2 Yes

ATP-HTTPd
0.4b

Bugtraq ID 8709 1 Yes

ATP-HTTPd-i Manually Injected 3 Yes

ProFTPD 1.3.3 CVE-2010-4221 FTP Server 1 Yes

Icecast 1.3.11 CVE-2002-0177 Streaming Audio Server 1 Yes

Newspost 2.1.1 CVE-2005-0101 Usenet Auto-poster 1 Yes

Prozilla 1.3.6 CVE-2005-2961 Download Accelerator 1 Yes

applications avoided recurrence of the same attack, as
is indicated by the last column.

We illustrate more details about SafeStack using
the web server ATP-HTTPd as an example. SafeStack
first analyzed the shadow call stack after detecting an
attack. The shadow call stack contained six functions
and three candidate vulnerable functions. The buffer
overflow was caused by unbounded check memory
copy sprintf which corrupted a stack buffer in
function http_send_error. Then, SafeStack moved
all the buffers in these vulnerable functions to the
heap and adopted the canary checking technique once
the vulnerable functions were called in the triage
system. The stack buffer with a corrupted canary was
identified as the bug-triggering buffer. In this exper-
iment, SafeStack extracted three stack buffers in the
function http_send_error from the program binary
code and identified one buffer as the bug-triggering
buffer. After that, SafeStack generated a patch for
this buffer which contained a vulnerability signature
(i.e., function http_send_error, http_send_file

and http_handler), a bug-triggering buffer (i.e., the
offset from the frame pointer was -844 and the size
was 816 bytes) and a vulnerability treatment (i.e.,
stack objects relocation). SafeStack then evaluated the
patch by applying it to the program after restarted the
program and checking whether the patched program
can survive the exploit after replaying the inputs.
In our experiment, the generated patch can survive
the exploit and the patch was applied in the pro-
duction system. Therefore, the patched application
in the production system can stay protected from
the stack buffer overflow vulnerability and prevent
its recurrence, which will be elaborated in the next
section.

We also examined the accuracy of the buffer in-
formation extractor. There are five stack buffers in
the function Log of the web server Light-HTTPd,
but SafeStack identified them as two large buffers.
The two actual bug-triggering buffers were identified
as one large bug-triggering buffer. That is, SafeStack

generated one patch, instead of two, in this function
— the other patch was generated in another function.
Although SafeStack cannot stop the two actual buffers
in the large bug-triggering buffer from overrunning
each other, it can stop them from corrupting other
objects in the stack, making the application survive
the exploit.

4.1.1 Prevention of Attack Recurrence

We evaluated the capability of attack prevention by
comparing SafeStack with the restart method. We
used a lightweight web server ATP-HTTPd in this
experiment, and the result was shown in Figure 4.
From the figure, we can see that SafeStack can ef-
fectively prevent subsequent attacks caused by the
same vulnerabilities after patches are applied into
the applications. SafeStack spent about one second to
generate a runtime patch in the triage system. After
applying the patch, the performance of ATP-HTTPd
remained stable irrespective of attacks occurrence.

4.2 Performance Analysis

To measure the performance of SafeStack, we evalu-
ated the elapsed time in the patch generation phase

� � � � �� ��
�

�

	

��

��

�

�

	

��

��

� � � � �� ��

�

�
�
��
�
�
�
�
�
��
	

�
�
�

��������	
�������

��������

�

�

���������

Fig. 4. Comparison between SafeStack and Restart

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: SAFESTACK: AUTOMATICALLY PATCHING STACK-BASED BUFFER OVERFLOW VULNERABILITIES 9

�

�

�

�

�

��

��

��
��
��
�

�
��

	

��

�

�

���������	�
����	

���������������	

�
��
��

�
��
��

�
��
��
��

��
��
���
�

�
	�
��
��
�

��
	�
��
�

�
��

�
��

��
��
�

��
�
��
��

�
��
��
	

����������	�

Fig. 5. Recovery Performance

and the patch evaluation phase for each application in
the triage system. The starting point for the measured
time was when the triage system received an attack
analysis request. Figure 5 showed the average time
for the patch generation and the patch evaluation
respectively.

As shown in Figure 5, the average patch gener-
ation time varied between 0.462s for ATP-HTTPd-
i and 11.582s for Newspost, and the average patch
evaluation time ranged from 0.432s for ATP-HTTPd-
i to 11.172s for Newspost. For desktop applications
Newspost and Prozilla, the triage time was relative
high. This is because it was mainly caused by the
application itself, which needed a long time from the
application start to the detection of an attack. For
example, before posting a file to a malicious server,
Newspost needed to wait for 10s to post by default.
After that, Newspost crashed when processing a ma-
licious crafted package sent by the server. Therefore,
it needed about 10.009s to exploit the vulnerability.
In the figure we can also see that the average patch
generation time was almost the same with the average
patch evaluation time except for Prozilla. The reason
was that SafeStack terminated the application after
three instrumented functions returned after detecting
an attack. At that time, the file download had not
been started. However, in the patch evaluation phase,
SafeStack successfully made the patched application
download the file, which needed more time without
a doubt.

4.3 Micro Benchmarks

We did micro benchmark testing to evaluate the
worst-case performance of our memory address vir-
tualization mechanism. The stack buffers we used
were character arrays. We evaluated SafeStack under
both the optimized memory address virtualization
mechanism and the unoptimized memory address
virtualization mechanism.

To test the performance of our memory address
virtualization mechanism for the former, we used four
commonly used string handling functions: memcpy,
strcpy, strcat and sprintf. We measured three

�

�

�

�

�

��

��

�

�

�
��

�
��
�
��
�	

�
�
	
�
�

���������	
�������

������������������

���������������	����

�
���
���
��
��

�
���
���
��
�

�
���
���
�

�
��
��
��
��
�

�
��
��
��
��
�

�
��
��
��
��

�
��
��
��

�
��
��
��
��
�

�
��
��
��
��
�

�
��
��
��
��

�
��
��
��

�
��
��
��
��
��

�
��
��
��
��
��

�
��
��
��
��
�

�
��
��
��
�

�	���������	���������

Fig. 6. Performance on Function Granularity

execution times for each of them: time without instru-
mentation, time for optimized SafeStack, and time for
unoptimized SafeStack. In the test, we marked a stack
buffer as a bug-triggering buffer and loaded a patch
in SafeStack. The source buffer we used was allocated
on the heap space. We changed the buffer size from
2 bytes to 4096 bytes and got the execution time over
the average time of 10000 times of string operations.
The result was shown in Figure 6, except for the
case sprintf(4096) because the time was 15.662μs,
25.247μs and 25.914μs respectively, which is too large
to show in the figure.

As shown in Figure 6, the overhead decreased while
the buffer size increased. The minimum overhead
for optimized SafeStack and unoptimized SafeStack
was 1.11 times and 1.935 times for function memcpy,
1.756% and 10.902% for function strcpy, 1.245% and
10.39% for function strcat and 61.2% and 65.458%
for function sprintf respectively.

To test the performance of our memory address vir-
tualization mechanism on stack buffer element access,
we used a loop (loop for in our experiment) to assign
values to the stack buffer and got the execution time
of the loop. We used three cases for the stack buffer
and changed the buffer size from 2 bytes to 1024 bytes
with incrementing 20 bytes each time. The execution
time was the average time of 10000 times the loop and
the result was shown in Figure 7.

As shown in Figure 7, the overhead of optimized
SafeStack ranged from 1.071 times for 2 bytes and
29.031% for 1024 bytes, and the overhead of unop-
timized SafeStack ranged from 12.741 times for 2
bytes and 4.199 times for 1024 bytes. Besides with
this test, we tested the case when the buffer size
was 4096 bytes. The result was 45.853μs for original
run, 58.602μs for instrumented run with optimized
SafeStack and 236.857μs for instrumented run with
unoptimized SafeStack. The overhead was 27.804%
and 4.166 time respectively.

From the two experiments, we can see that our
optimization for the memory address virtualization
mechanism was effective. The reason was that opti-
mized SafeStack only looked up the object-relocation

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

� ��� ��� ��� ��� ��� ��� ��� 	��
�� ����

�

��

��

��

��

��

��

�

�

�
��

�
��
�
��
�	

�
�
	
�
�

���������	��
�����

������������������

�������������������

���������������������

Fig. 7. Performance on Loop Granularity

table to get the corresponding heap address in in-
strumentation routines while unoptimized SafeStack
did this in analysis routines. SafeStack had a modest
overhead caused by our memory address virtualiza-
tion mechanism when the buffer size was relatively
big, but the overhead was relatively high when the
buffer size was relatively small. Fortunately, for actual
used applications, SafeStack only moved the bug-
triggering buffers out of stack when the patches took
effect. Therefore, the overhead for the analysis was
amortized to the entire program execution, and we
presented it in the next section.

4.4 Macro Benchmarks

We evaluated the normal execution overhead caused
by SafeStack with these eight applications and the
SPEC INT2000 benchmarks. In this experiment, we
configured SafeStack in two cases. One was only
enabling the memory address virtualization mecha-
nism, and the other was enabling the memory address
virtualization mechanism and shadow call stack. The
workloads we used contained the distributed testing
tools and the constructed workloads. For web servers,
we adopted Apache benchmark tool ab to test web
servers. For the FTP server ProFTPD, we adopted
an FTP benchmark tool dkftpbench. For the stream-
ing audio server Icecast, we adopted a source client
Ices [31] which encodes 10 audio files to a stream for
broadcasting, and each size of audio files is 3.59MB.
For the Usenet auto-poster Newspost, we posted 10
image files whose total size is 12.1MB to another
newsgroup. For Prozilla, we constructed a group of
various sizes of files for downloading. The size ranges
from 0 byte (empty file) to 256MB with the average
is 49.38MB. For the SPEC benchmarks, we used the
reference data sets as the workload. We selected a
stack buffer to patch for each benchmark to get results
for two cases. We compared the average response
time for server applications and the execution time
for desktop applications.

We show the overhead of patched applications in
normal execution (i.e., when there were no attacks)
in Figure 8. SafeStack incurred acceptable overhead.
It ranged from 0.1% to 20.628% with an average

of 6.087% for the patched run. If the shadow call-
stack mechanism is turned on, it incurred additional
overhead (8.071% percent on average). For a better
performance in a deployment, we can initially leave
the shadow call stack off, and activate it when an at-
tack is observed. The following properties of a system
make the overhead of SafeStack reasonable. On one
hand, SafeStack used the optimized memory address
virtualization mechanism and successfully prevented
subsequent attacks for all applications. Although there
were some recursive functions calls in some appli-
cations, we found that such functions were not in
the crashed call stack or they have no stack buffers.
Therefore it will not cause the unoptimized memory
address virtualization mechanism to be used. On the
other hand, our memory access virtualization mech-
anism worked when the patches took effect, which
resulted in the overhead of the address mapping oper-
ation amortized to the entire application. In the figure
we can see that the patched run incurred no overhead
for some applications because the patches did not take
effect for the application’s normal execution.

5 RELATED WORK

In this section, we compare SafeStack with other solu-
tions in preventing and responding to buffer overflow
attacks.

5.1 Fail-stop Approaches

There are many tools specially used to defend against
stack buffer overflow attacks. For example, Stack-
Guard [4] inserts a canary word before the return
address on the stack, and verifies the canary before
the function returns. StackShield [5] is similar to
StackGuard, but it stores a copy of the return address
when entering a function and restores it when the
function returns. PointGuard [9] protects pointers by
encrypting the pointers when they are stored in mem-
ory and decrypting the pointers when they are loaded
into CPU registers. CRED [8] is a bounds checker for C
and supports for some common uses of out-of-bounds
pointers in existing C programs. WIT [35] prevents
memory error exploits by the points-to analysis at
compile time and enforces write integrity and control-
flow integrity at runtime. All these approaches are
extensions to the GNU C compiler, but our SafeStack
does not rely on the compiler extensions as it extracts
the buffer information from the binary code.

Sidiroglou and Keromytis propose the first end-
point architecture for automatically repairing software
flaws [14]. It adopts source code transformations in-
cluding memory-safety transformations which target
the specific failing function. Specially, it transforms
the offending buffer to the heap. Bhatkar et al. propose
a comprehensive randomization technique to protect
the program against memory error exploits by apply-
ing a source-to-source transformation [12]. Specially,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: SAFESTACK: AUTOMATICALLY PATCHING STACK-BASED BUFFER OVERFLOW VULNERABILITIES 11

���

���

���

���

�����
�����

��	
�������

��
��
��
��
�

	

��
�
��
	

	

�
��
���
�

	

��
��
�

	

��
��
���
�
�

	

	�
��
�

��
��
��
��
��

��
��
��
��
�

��
��
�
��

��
��
��
�

��

�
��
�

��
��
�
��

!�
�"
#!
$

�

�

�

�
�
��

�
��
�
	

��
	
�
�
��

�
�
�
	

�������������

������������

�������������������������
��������

%
##
!&

%
##
!&

%
##
!&
'�

!�
�
���
�

(
��
��
��
�

)�
��
��
�

*
#!

*
#!

+�
�,
�

#'
%
##
!&

*
��
�,
�

!""��������#

Fig. 8. Overhead for Normal Execution

it transforms all the stack buffers into heap buffers.
The requirement of program source code limits the
application of these approaches.

Baratloo et al. propose two methods, Libsafe and
Libverify, to defend against stack smashing attacks
[36]. Libsafe replaces the vulnerable C library func-
tions with a safe implementation. Libverify is similar
to StackShield, but it injects verification codes at the
beginning of program execution. A combination of
two tools still cannot defend against buffer overflow
that is caused by programmer’s copy functions or the
third library functions, which can be used to corrupt
the code pointers.

A binary rewriting defense technology is proposed
to protect the return address on the stack [6]. It
just applies a combination of well-known disassembly
techniques to insert the return address defense code
to protect the integrity of the return address with a
redundant copy. However, it just only protects the
return address, and it’s ineffective against corrupting
the code pointers.

5.2 Availability-preserving Approaches

Keromytis characterizes self-healing software systems
[37] and proposes a general architecture of a self-
healing system, including self-monitor to monitor
anomalous behavior, self-diagnosis to identify faults,
self-adaptation to generate candidate fixes and self-
testing to find the best fix to deploy. Keromytis points
out the research direction in this field and we follow
this architecture to design our system.

Reboot technology attempts to restart the program
when a fault is encountered. It includes the whole
program restart, rebooting faulty parts of software
components (Micro-reboot [23]) and software rejuve-
nation [38] which is an active approach to periodi-
cally reboot the program to deal with software aging.
However, they are unable to tolerate exploits, which
deterministic vulnerabilities that can be triggered.

Failure-oblivious computing [34] tolerates memory-
related vulnerabilities by manufacturing values for

“out-of-bound read” and discarding “out-of-bound
write”. However, it needs the program to be re-
compiled with its safe compiler to generate failure-
oblivious codes. Moreover, it may result in unpre-
dicted behavior which imposes a new threat to the
program.

Rx [13] applies a method to replay the program
in a changed execution environment. However, to
survive stack buffer overflow attacks, it just drops
user’s requests which contain the malicious request.

There are several methods developed to deal with
heap-related vulnerabilities such as DieHard [22] and
First-Aid [21]. First-Aid is an extension to Rx. It
tolerates vulnerabilities by identifying the vulnera-
bility types and bug-triggering memory objects, and
generating runtime patches to temporarily fix the
vulnerability.

Another direction is to learn from attacks and au-
tomatically “heal” the vulnerable application through
an attack signature, e.g., COVERS [17] and Vigi-
lante [40].

Error virtualization [15], [16], [39], [41], [42], [43],
[45] is an efficient technique that force a heuristic-
based error value from a function where a fault oc-
curs, to bypass “faulty” region of codes. STEM [41]
speculatively emulates the faulty region of codes in a
virtual core and adopts error virtualization to recover
from faults. STEM can also be used in application
communities to collaboratively detect and tolerate
software faults and vulnerabilities [39]. SEAD [45]
adopts a dynamic instrumentation tool to dynamic
load STEM into the application. ASSURE [15] uses
a dynamic instrumentation tool to implement error
virtualization and a rescue point technique to record
the information of functions. ASSURE may cause the
application not to function well, SHelp [16] alleviates
the problem by applying “weighted” rescue points
and extends it to a virtualization computing environ-
ment. However, all of these techniques change the
execution flow of an application and cannot guarantee
that new threats are not introduced.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Band-aid patching technique [44] is proposed to
guarantee correctness after applying patches. It runs
the old and new versions of patched code in sequence.
If the old or new version crashes, it is discarded. This
approach should be handle with the resource dupli-
cation and the coexistence of old and new versions.

6 CONCLUSIONS

In this paper we presented a new system SafeStack
which can automatically patch stack-based buffer
overflow vulnerabilities. The system focuses on the
vulnerability’s origin, that is, the vulnerability trig-
gering stack buffers. The system first tries to identify
the bug-triggering stack buffers and move them out
of the stack to a protected space using a novel mem-
ory access virtualization technique, then diagnoses
vulnerabilities and finally generates runtime patches
to “fix” the vulnerabilities temporarily to protect the
applications from the subsequent recurrence of the
same attacks. We have developed a prototype system
and evaluated the system’s effectiveness using a range
of applications with different bugs. The experimen-
tal results demonstrate that our system can quickly
generate runtime patches to successfully tolerate re-
currence of the same attack. In addition, patches
generated by SafeStack incur low runtime overhead
during the applications’ normal execution.

Memory access virtualization is a key mechanism
we used to deal with stack buffer overflow attacks. As
mentioned before, this mechanism can also provide
a fine-grained memory randomization for memory
objects in runtime. Therefore, it could be used in
several other scenarios. For example, it can be used
to randomize stack objects of a function once the
function is called which can make the attacks more
difficult. Combined with ASLR [10] which provide
memory randomization in the load time.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their in-
sightful comments. We thank Mingwei Zhang for
his help in discussion of techniques for identifying
stack variables. This paper was supported by National
High-tech R&D Program (863 Program) under Grant
No. 2012AA012600, National Science and Technology
Pillar Program under Grant No. 2012BAH14F02, and
the NSFC under Grant No. 61272072.

REFERENCES

[1] “US-CERT vulnerability notes database,”
http://www.kb.cert.org/vuls/bymetric?open\&start=1\
&count=20.

[2] “Internet security threat report,”
http://www.symantec.com/enterprise/threatreport/index.jsp.

[3] M. Nicholls, “Tutorial: Seh based exploits and the develop-
ment process,” http://www.ethicalhacker.net/content/view/
309/2/.

[4] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Au-
tomatic Adaptive Detection and Prevention of Buffer-overflow
Attacks,” in Proceedings of the 7th conference on USENIX Security
Symposium. USENIX Association, 1998, pp. 63–78.

[5] “A stack smashing technique protection tool for linux,”
http://www.anglefire.com/sk/stackshield.

[6] M. Prasad and T. Chiueh, “A Binary Rewriting Defense against
Stack Based Buffer Overflow Attacks,” in Proceedings of the
2003 USENIX Annual Technical Conference. USENIX Associa-
tion, 2003, pp. 211–224.

[7] T. Chiueh and F. Hsu, “RAD: A Compile-time Solution to
Buffer Overflow Attacks,” in Proceedings of the 21st International
Conference on Distributed Computing Systems. IEEE, 2001, pp.
409–417.

[8] O. Ruwase and M. Lam, “A Practical Dynamic Buffer Over-
flow Detector,” in Proceedings of the 11th Annual Network and
Distributed System Security Symposium. USENIX Association,
2004, pp. 159–169.

[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard:
Protecting Pointers from Buffer Overflow Vulnerabilities,” in
Proceedings of the 12th conference on USENIX Security Sympo-
sium. USENIX Association, 2003, pp. 91–104.

[10] T. P. Team, “Pax,” http://pax.grsecurity.net.
[11] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfus-

cation: An Efficient Approach to Combat a Broad Range of
Memory Error Exploits,” in Proceeding of 12th USENIX Security
Symposium, 2003.

[12] S. Bhatkar, R. Sekar, and D. DuVarney, “Efficient techniques
for comprehensive protection from memory error exploits,”
in Proceedings of the 14th conference on USENIX Security Sympo-
sium. USENIX Association, 2005, pp. 271–286.

[13] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating Bugs
as Allergies—A Safe Method to Survive Software Failures,” in
Proceedings of the 20th ACM Symposium on Operating System
Principles. ACM, 2005, pp. 235–248.

[14] S. Sidiroglou and A. Keromytis, “Countering Network Worms
Through Automatic Patch Generation,” in IEEE Security &
Privacy, 2005, vol. 3, no. 6, pp. 41–49.

[15] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and
A. Keromytis, “ASSURE: Automatic Software Self-healing Us-
ing REscue points,” in Proceedings of the 14th International
Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2009, pp. 37–48.

[16] G. Chen, H. Jin, D. Zou, B. Zhou, W. Qiang, and G. Hu,
“SHelp: Automatic Self-healing for Multiple Application In-
stances in a Virtual Machine Environment,” in 2010 IEEE
International Conference on Cluster Computing. IEEE, 2010, pp.
97–106.

[17] Z. Liang and R. Sekar, “Fast and Automated Generation of At-
tack Signatures: A Basis for Building Self-protecting Servers,”
in Proceedings of the 12th ACM Conference on Computer and
Communications Security, ACM, 2005.

[18] A. Keromytis, “”Patch on Demand” Saves Even More Time?”
Computer, 2004, vol. 37, no. 8, pp. 94–96.

[19] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt, “Automatic
Diagnosis and Response to Memory Corruption Vulnerabili-
ties,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ACM, 2005.

[20] A. Smirnov and T. Chiueh, “Automatic Patch Generation for
Buffer Overflow Attacks,” in Third International Symposium on
Information Assurance and Security. IEEE, 2007, pp. 165–170.

[21] Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-Aid: Surviving
and Preventing Memory Management Bugs during Produc-
tion Runs,” in Proceedings of the 4th ACM European conference
on Computer systems. ACM, 2009, pp. 159–172.

[22] E. Berger and B. Zorn, “DieHard: Probabilistic Memory Safety
for Unsafe Languages,” in Proceedings of the 2006 ACM SIG-
PLAN conference on Programming Language Design and Imple-
mentation. ACM, 2006, pp. 158–168.

[23] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot - a Technique for Cheap Recovery,” in Proceed-
ings of the 6th conference on Symposium on Operating Systems
Design and Implementation. USENIX Association, 2004, pp. 31–
44.

[24] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood, “Pin: Building Cus-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN et al.: SAFESTACK: AUTOMATICALLY PATCHING STACK-BASED BUFFER OVERFLOW VULNERABILITIES 13

tomized Program Analysis Tools with Dynamic Instrumenta-
tion,” in Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation. ACM, 2005,
pp. 190–200.

[25] “A disassembly library,” http://code.google.com/p/libdasm/.
[26] “IDAPro multi-processor disassembler and debugger,”

http://www.hex-rays.com/products/ida/index.shtml.
[27] “Thttpd defang remote buffer overflow vulnerability,”

http://www.securityfocus.com/bid/8906/.
[28] “A light http server and content management system,”

http://lhttpd.sourceforge.net/.
[29] “Atphttpd remote get request buffer overrun vulnerability,”

http://www.securityfocus.com/bid/8709/discuss/.
[30] “A highly configurable gpl-licensed ftp server software,”

http://www.proftpd.org/.
[31] “A GPL streaming media server,” http://www.icecast.org/.
[32] “Newspost remote buffer overflow vulnerability,”

http://www.securityfocus.com/bid/12418/.
[33] “Prozilla buffer overflow vulnerability,”

http://www.securityfocus.com/bid/14993.
[34] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and

W. Beebee Jr, “Enhancing Server Availability and Security
through Failure-oblivious Computing,” in Proceedings of the
6th conference on Symposium on Opearting Systems Design and
Implementation. USENIX Association, 2004, pp. 303–316.

[35] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro,
“Preventing Memory Error Exploits with WIT,” in Proceedings
of the 2008 IEEE Symposium on Security and Privacy. IEEE, 2008,
pp. 263–277.

[36] A. Baratloo, N. Singh, and T. Tsai, “Transparent Run-time
Defense Against Stack Smashing Attacks,” in Proceedings of
the 2000 USENIX Annual Technical Conference. USENIX Associ-
ation, 2000, pp. 251–262.

[37] A. D. Keromytis, “Characterizing Self-Healing Software Sys-
tems,” in Proceedings of the 4th International Conference on
Mathematical Methods, Models and Architectures for Computer
Networks Security. 2007.

[38] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” in Proceed-
ings of the 25th Annual International Symposium on Fault-Tolerant
Computing. IEEE, 1995, pp. 381–391.

[39] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis, “Software
Self-Healing Using Collaborative Application Communities,”
in Internet Society Symposium on Network and Distributed Systems
Security. 2006, pp. 95–106.

[40] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham, “Vigilante: End-to-end Containment
of Internet Worms,” in Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP). ACM, 2005.

[41] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis,
“Building a Reactive Immune System for Software Services,”
in Proceedings of the USENIX Annual Technical Conference. 2005,
pp. 149–161.

[42] S. Sidiroglou, M. E. Locasto, and A. D. Keromytis, “Hardware
Support For Self-Healing Software Services,” ACM SIGARCH
Computer Architecture News. vol. 33, no. 1, 2005, pp. 42–47.

[43] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis, “A Dy-
namic Mechanism for Recovering from Buffer Overflow At-
tacks,” in Proceedings of the 8th Information Security Conference.
Springer, 2005, pp. 1–15.

[44] S. Sidiroglou, S. Ioannidis, and A. Keromytis, “Band-aid Patch-
ing,” in Third Workshop on Hot Topics in System Dependability.
USENIX, 2007, pp. 102–106.

[45] M. E. Locasto, A. Stavrou, G. F. Cretu, and A. D. Keromytis,
“From STEM to SEAD: Speculative Execution for Automated
Defense,” in USENIX Annual Technical Conference. USENIX,
2007, pp. 219–232.

Gang Chen received his BS degree (2008)
in Information Security from Huazhong Uni-
versity of Science and Technology (HUST),
Wuhan, China. He is now working toward
the Ph.D. degree of computer science and
technology at HUST. His research is focused
on software security and reliability in cloud
computing.

Hai Jin is a Cheung Kung Scholars Chair
Professor of computer science and engineer-
ing at Huazhong University of Science and
Technology (HUST) in China. He is now
Dean of the School of Computer Science
and Technology at HUST. Jin received his
PhD in computer engineering from HUST in
1994. In 1996, he was awarded a German
Academic Exchange Service fellowship to
visit the Technical University of Chemnitz in
Germany. Jin worked at The University of

Hong Kong between 1998 and 2000, and as a visiting scholar
at the University of Southern California between 1999 and 2000.
He was awarded Excellent Youth Award from the National Science
Foundation of China in 2001. Jin is the chief scientist of ChinaGrid,
the largest grid computing project in China, and the chief scientist
of National 973 Basic Research Program Project of Virtualization
Technology of Computing System. Jin is a senior member of the
IEEE and a member of the ACM. Jin is the member of Grid Fo-
rum Steering Group (GFSG). He has co-authored 15 books and
published over 400 research papers. His research interests include
computer architecture, virtualization technology, cluster computing
and grid computing, peer-to-peer computing, network storage, and
network security. Jin is the steering committee chair of International
Conference on Grid and Pervasive Computing (GPC), Asia-Pacific
Services Computing Conference (APSCC), International Conference
on Frontier of Computer Science and Technology (FCST), and An-
nual ChinaGrid Conference. Jin is a member of the steering commit-
tee of the IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), the IFIP International Conference on Network
and Parallel Computing (NPC), and the International Conference on
Grid and Cooperative Computing (GCC), International Conference
on Autonomic and Trusted Computing (ATC), International Confer-
ence on Ubiquitous Intelligence and Computing (UIC).

Deqing Zou is a Professor of Computer Sci-
ence at Huazhong University of Science and
Technology (HUST). He received his Ph.D. in
Computer Science from HUST in 2004. His
main research interests include system se-
curity, trusted computing, virtualization and
cloud security.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Bing Bing Zhou received the BS degree
from Nanjing Institute of Technology, China
and the PhD degree in Computer Science
from Australian National University, Australia.
He is currently an associate professor at the
University of Sydney. His research interests
include parallel/distributed computing, Grid
and cloud computing, peer-to-peer systems,
parallel algorithms, and bioinformatics. He
has a number of publications in leading in-
ternational journals and conference proceed-

ings. His research has been funded by the Australian Research
Council through several Discovery Project grants.

Zhenkai Liang is an assistant professor of
the School of Computing, National Univer-
sity of Singapore. His main research interest
is in system security, software security, and
software debugging. His research has been
focusing on signature generation for remote
attacks, malicious program analysis and con-
finement, web security, and debugging tech-
niques. As a co-author, he received the
ACM SIGSOFT Distinguished Paper Award
at ESEC/FSE in 2009, the Best Paper Award

at USENIX Security Symposium in 2007, and the Outstanding Paper
Award at the Annual Computer Security Applications Conference
(ACSAC) in 2003. He also received the Young Investigator Award
of National University of Singapore in 2008. He got his Ph.D. degree
from Stony Brook University in 2006, and B.S. from Peking University
in 1999.

Weide Zheng received his BS degree (2009)
and MS degree (2012) in Information Se-
curity from Huazhong University of Science
and Technology (HUST), Wuhan, China. His
main research interests include fault toler-
ance and security issues in cloud computing,
virtualization and network. Currently, He is a
software engineer at Baidu, Inc.

Xuanhua Shi received his Ph.D. degree in
computer engineering from Huazhong Uni-
versity of Science and Technology (China) in
2005. From 2006, he worked as an INRIA
Post-Doc in PARIS team at Rennes for one
year. Currently he is an associate profes-
sor in Service Computing Technology and
System Lab (SCTS) and Cluster and Grid
Computing Lab (CGCL) at Huazhong Univer-
sity of Science and Technology (China). His
research interests include cloud computing,

data intensive computing, fault-tolerance, virtualization technology.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

