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Abstract

This paper proposes optical wavelength division multiplexed (WDM) networks with
limited wavelength conversion that can efficiently support lightpaths (connections) be-
tween nodes. Each lightpath follows a route in the network and must be assigned a
channel along each link in its route. The load A., of a set of lightpath requests is the
maximum over all links of the number of lightpaths that use the link. At least M.,
wavelengths will be needed to assign channels to the lightpaths. If the network has full
wavelength conversion capabilities then A,., wavelengths are sufficient to perform the
channel assignment.

We propose ring networks with fixed wavelength conversion capability within the
nodes that can support all lightpath request sets with load Ap., at most W — 1,
where W is the number of wavelengths in each link. We also propose ring networks
with selective pairwise wavelength conversion capability within the nodes that can
support all lightpath request sets with load A,., at most W. We also propose a star
network with fixed pairwise wavelength conversion capability at its hub node that can
support all lightpath request sets with load A,.. at most W. We extend this result
to tree networks and also networks with arbitrary topologies. These results show that
significant improvements in traffic-carrying capacity can be obtained in WDM networks
by providing very limited wavelength conversion capability within the network.
Keywords: Optical networks, routing, wavelength division multiplexing, wavelength
conversion.
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Figure 1: A network with wavelengths {wp, w;,w2,w3}. Channels are shown as lines between
nodes.

1 Introduction

Wavelength Division Multiplexing (WDM) is an important approach to utilize the large
available bandwidth in a single mode optical fiber. WDM is basically frequency division
multiplexing in the optical frequency domain, where on a single optical fiber there are multi-
ple communication channels at different wavelengths (corresponding to carrier frequencies).
There has been a great deal of interest in WDM networks that employ wavelength routing.
These networks support lightpaths, which are end-to-end circuit-switched communication
connections that traverse one or more links and use one WDM channel per link. These light-
paths could serve as the physical communication links for a variety of high-speed networks
such as ATM (Asynchronous Transfer Mode) networks.

An example of a WDM wavelength routing network is shown in Figure 1. It is com-
posed of four nodes with optical fiber links, each having four WDM channels at wavelengths
{wo,w1,wq,ws}. Switching is done at each node so that channels may be connected to form
lightpaths. Note that if channels at different wavelengths are to be connected then wave-
length conversion devices are needed that can shift the wavelength of an optical signal. For
example, in Figure 1, lightpath C'1 is composed of two WDM channels at wavelength wy on
links 1 and 2. Hence, it does not need a wavelength converter. However, lightpath C2 needs
a converter at node 2 because it is composed of two WDM channels at different wavelengths
(w1 and ws). The advantage of wavelength conversion is that WDM channels will be used

more efficiently, but the disadvantage is increased cost and complexity.

1.1 Limited Wavelength Conversion

In this paper we will explore circuit-switched wavelength routing WDM network architec-

tures that employ limited wavelength conversion, i.e., WDM channels have restrictions on
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Figure 2: A network with wavelengths {wp, w1, ...,ws} to illustrate limited wavelength con-
version. The lines between nodes represent channels, and lines within nodes indicate which
channels may be connected.
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Figure 3: A network with wavelengths {wp, w1, ...,ws} to illustrate fixed wavelength conver-
sion. The lines between nodes represent channels, and lines within nodes indicate which
channels may be connected.

the channels they may be connected to on other links. For example, Figure 2 shows a
network with seven WDM channels between nodes where the channels are at wavelengths
{wo,w1,...,we}. The lines within nodes show which pairs of channels may be connected.
Note that the network has some wavelength conversion, but with restrictions. For exam-
ple, at node 0 channels at wavelengths {wp,w;} may only be connected to other channels at
wavelengths {wp, w1 }. A special case of limited wavelength conversion is fized wavelength con-
version which is illustrated in Figure 3. Here, at each node, each channel may be connected
to exactly one predetermined channel on every other link. For example, in Figure 3, channel

at w; in link 3 may be connected only to channel w(;1)moaw in link 0 for s = 0,1,...,W — 1.
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Figure 4: Different types of wavelength conversion.

Networks with limited /fixed wavelength conversion will be less costly to implement than
networks without restrictions on wavelength conversion (i.e., having full wavelength con-
version capability), but may still provide enough conversion to use channels efficiently. The
different types of conversion possible within the node are illustrated in Figure 4. Within each
node the wavelength conversion can be done all-optically or by receiving the signal, switch-
ing it electronically and retransmitting it on another wavelength (O-E-O). The all-optical
approach uses optical wavelength converter devices. In some of these devices, such as those
based on four-wave mixing [1], the conversion efficiency is a strong function of the input and
output wavelengths, naturally leading to limited conversion capability. Even otherwise we
can save on the number of such devices required in the node. In the O-E-O approach we can
implement limited conversion using much fewer electronic switches than would be needed

for full conversion.

1.2 Network Model

We assume that the links and WDM channels are bidirectional (or full duplex). Network
nodes are connected by fiber optic links, and for simplicity it is assumed that all pairs of
nodes have at most one link between them. Each link has W WDM bidirectional channels
at wavelengths {wp, w1, ..., ww_1}, where wg < wy < ... <ww_1.

Each node has switching capability to connect WDM channels to form full duplex light-
paths. The switching capability will determine which pairs of channels may be connected

to one another. We will refer to two channels that may be connected to one another as



being attached. For example, at node 0 in Figure 2, channels at wavelengths {wp,w} are
attached, channels at {wy, w3} are attached, channels at {w4,ws} are attached, and channels
at wg are attached. A node has wavelength degree k (for some integer k& > 0) if for each pair
of incident links, each channel in one link is connected to at most k other channels in the
other link. For example, node 0 in Figure 2 has wavelength degree two. A node has full
wavelength converston if its wavelength degree is W. A node is said to have fized wavelength
conversion if its wavelength degree is one, (for example, see Figure 3). Note that a node
with no wavelength conversion has wavelength degree one. (Again these different types of
conversion are illustrated in Figure 4.)

The network supports sets of lightpaths. A lightpath is specified by a path in the network
that is referred to as a route. A lightpath is realized by a set of channels, one on each link
along its route so that channels that are incident to a common node are attached at the
node. Such a set of channels is referred to as a channel assignment for the route. This
realization allows communication signals to be sent on a lightpath between the ends of the
route by having them transported along attached channels.

A set of lightpaths is specified by a set of routes, one route per lightpath. A set of routes
will be referred to as a request. A channel assignment for a request is a collection of channel
assignments, one per route of the request such that each channel is assigned to at most one
route, i.e., no two routes share a channel. Note that a channel assignment for a request
realizes the lightpaths corresponding to a request. An important parameter of a request is
its load, which is the value Ap.x = max.cg Ae, where )\, denotes the number of routes using
link e and E denotes the set of links in the network. Clearly at least A\n.x wavelengths are

needed to satisfy a request with load Apax.

1.3 Organization

In this paper, we propose ring and star networks with limited wavelength conversion to
support sets of lightpaths efficiently. In Section 2, we discuss our results for ring networks.
We give a ring network with one node having fixed wavelength conversion and the rest of
the nodes with no wavelength conversion such that all requests with load Apax < W —1 have
channel assignments. We also give a ring network with two nodes with wavelength degree
two and the rest of the nodes with no wavelength conversion such that all requests with load

Amax < W have channel assignments. Note that the first deployed WDM networks are likely



to be rings, as seen from several recent testbeds (see for example [2, 3]).

In Section 3, we discuss our results for star networks as well as extensions to tree networks,
and networks with arbitrary topologies where route lengths are at most two. We present
a star network that has fixed wavelength conversion and has channel assignments for all
requests with load A\pn.x < W, when W is an even number. Note that the networks that have
channel assignments for all requests with load at most W utilize the channels as efficiently as
networks with full wavelength conversion at all nodes. In Section 4, we provide conclusions
and discuss how our results can be extended when links and channels are directed.

Note that we consider the problem of finding channel assignments for sets of lightpaths
all at one time. Thus, if a new lightpath is to be included to an existing set of lightpaths
(while keeping the same routes for the lightpaths), the channel assignments for all lightpaths
may have to be recomputed. In this sense, the channel assignment is done offltne. There
is also the more practical consideration of online channel assignment, i.e., setting up new
lightpaths without changing the assignment for existing lightpaths. Although we only con-
sider the offline case, we believe that its understanding can lead to fundamental insights to
the online case, just as understanding rearrangeable nonblocking networks can help to un-
derstand efficient wide-sense and strict-sense nonblocking networks [4]. Also, offline channel

assignment will be more efficient in utilizing channels than online channel assignment.

1.4 Related Work

Previous work focuses primarily on networks with either no wavelength conversion or net-
works with full wavelength conversion (i.e., any pair of WDM channels may be connected).

The joint lightpath routing and channel assignment problem in networks without wave-
length conversion is known to be NP-complete [5] and remains NP-complete even for rings
[6]. Given a routing already, an algorithm that finds a channel assignment in a ring net-
work without wavelength conversion if 2 \pax — 1 < W is given in [7] as well as [8]. An
algorithm that finds channel assignments in a tree network without wavelength conversion if
%)\max < W is given in [8]. Sample requests can easily be constructed for these networks that
require W = 2)\.x — 1 wavelengths and W = %)\max wavelengths for rings and stars respec-
tively. [9] gives algorithms that find channel assignments for the case of a directed network
without wavelength conversion and directed lightpath requests for trees, if 15 p.x/8 < W,

and for rings, if 2 \n.x < W. Several heuristic channel assignment schemes have also been



proposed for networks without wavelength conversion [10, 11, 5, 12, 13, 14].

Variants of the limited conversion model are considered in [15, 16, 17, 18]. In [16, 15]
it is assumed that each node has a limited number of wavelength converters and that each
converter has no restrictions on the wavelengths of the channels it can connect. Here, the
restriction is on the number of wavelength conversions at a node. In [17], a network with
limited wavelength conversion is used to study the performance due to limited wavelength
shifting capability of devices based on four wave mixing. The converters allow wavelengths to
be shifted within a given range. Also, the work in [18] studies sparse wavelength conversion,
where networks are comprised of a mix of nodes having full and no wavelength conversion.
The channel assignment in these papers [15, 16, 17, 18] are simple heuristics, and their
performance analyses are based upon probabilistic models and techniques (i.e., compute
blocking probabilities of setting up lightpaths) which may not be as appropriate for networks
that require channels to be highly utilized.

There are some recent results on the online channel assignment problem for ring networks
[19], where lightpath requests arrive and leave the network dynamically. The problem of

recovering from link and node faults in ring networks using limited wavelength conversion is

addressed in [20].

2 Rings

In this section we will consider ring networks. Without loss of generality, it will be assumed

that a ring network has a clockwise direction (and counter-clockwise direction) as shown in

Figure 5. Its nodes are numbered 0,1,..., N — 1 consecutively in the clockwise direction,
where N denotes the number of nodes. The links are also numbered 0,1,...,N — 1 in the
clockwise direction such that for each 2 = 0,1,..., N — 1, the link between node 2 and node

(14 1) mod N is numbered ¢ (see Figure 5).

Most of the results of this section assume that there is a collection of lightpaths to be set
up, and their set of paths (i.e., a request) is already given. However, we should note that for
the ring network, there is an algorithm that can compute minimum load requests for sets of
lightpaths, specified by their terminating nodes [21]. However, simple shortest path routing

does not perform very poorly as shown below.

Theorem 1 Suppose we are given a request of source-destination pairs and the minimum
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Figure 5: A ring network.

possible load for satisfying this request 1s Apmax. Then shortest-path routing yields a load of

at most 2 max.

Proof. Suppose shortest-path routing yields a load A,,. Consider a link ¢ with load A,.
Rerouting k lightpaths using link ¢ using their longer routes on the ring can reduce the load
on link 2 to at most A\;, — k. Note that since all these lightpaths are routed on paths on
length < |N/2] initially, their longer routes on the ring will all use the link |N/2| + ¢,
increasing its load by k. Therefore an optimal routing algorithm would have a load given by
Amax > ming(Asp — k, k), or Amax > [Asp/2]. O

For the rest of the section, we describe ring networks that lead to efficient channel as-
signments for requests. To find channel assignments, we will use a structure for the requests
called a cut-and-color partition, which we define next.

A cut-and-color partition for a request {po, ..., pm_1}, where m is the number of routes
in the request, may be computed as follows. Pick an arbitrary node, say node 0, called the
primary node. This will be used to “cut” routes in two as explained below. First, refer to
routes that pass through node 0 as cut routes and the rest of the routes as uncut. A set P
of routes is generated as follows. Include each uncut route in P. For each cut route p;, cut
(or split) it at node 0 into a pair of paths {a;, b;} called residual routes such that each has
node 0 as a terminating node. Let a; denote the residual route that traverses link N — 1,
and let b, denote the residual route that traverses link 0. Refer to a; as the left residual
route, and b; as the right residual route. Include the residual routes in P. The resulting set
P will be referred to as the uncut and residual routes of the request. (Figure 6(a) shows a
request {po, p1,...,p6}. Note that p, and ps are cut routes since they pass through node 0.
Also note that the routes of the request do not have to be distinct, for example p; and ps

are the same. Figure 6(b) shows the uncut and residual routes in P. Note that as and a4
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Figure 6: Shown in (a) is a request {po, p1,...,ps} for a four node ring network. Shown in
(b) is the collection P of uncut and residual routes for the request.
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Figure 7: A cut-and-color partition and a channel assignment.

are the left residual routes of cut routes p, and p4, respectively; and note that b, and b4 are
the right residual routes of p, and pa, respectively.)

Next, partition the routes in P into W subsets (P, Py,..., Pw_1) such that routes in
the same subset do not traverse common links of the ring network. We will refer to the
partition (Po, Py, ..., Pw_1) as a cut-and-color partition for the request. One way to find a
cut-and-color partition is to assign numbers {0, ..., W —1} to the routes in P such that routes
with a common link have distinct numbers. This is like coloring paths in an interval graph
[22, Sec.16.5] because no route of P crosses through node 0. Hence, we can use a greedy
algorithm assignment that requires Apax numbers [22, Sec.16.5]. Then for: =0,1,...., W —1,
all routes that have been assigned to number ¢ are in subset P,. (Figure 7(a) shows a cut-and-

color partition for the request in Figure 6(a). The cut-and-color partition is (P, P1, P2, P3),
where PO = {vaa'Z}v Pl = {b2vplva'4}7 P2 = {b4vp3}7 P3 = {p5}7 ay = (27370)7 bZ = (071)7



as = (3,0), and by = (0,1,2).)

Theorem 2 Suppose the ring network has full wavelength conversion at one node and no
wavelength conversion at the other nodes. Then any request with load at most W has a

channel assignment.

Proof. Without loss of generality, assume that node 0 has the full wavelength conversion.
Suppose we are given an arbitrary request R with load at most W. Let (P, ..., Pw_1) denote
the cut-and-color partition for the request and let P be the set of uncut and residual routes.
Note that P is also a request of routes with load at most W. We will first find a channel
assignment for P. For : = 0,1,...,W — 1, assign the wavelength w; to each route in F;. For
each route in P, assign it the channels at its wavelength at each link it traverses. The result
is a channel assignment for P since the channels assigned to any route are attached (because
the channels are at the same wavelength) and no channel is assigned to more than one route
(because each P; has at most one route traversing any link). A channel assignment for R can
be modified from P as follows: for each cut route p; assign it the channels that are assigned
to its residual routes. Note that the resulting channel assignment for cut routes are attached
because node 0 has full wavelength conversion. (Figure 7(b) shows a channel assignment for
the request in Figure 6(a) that results from the cut-and-color partition in Figure 7(a).) O

The ring network of Theorem 2 has a channel assignment for every request with load at
most W. However, one of its nodes has wavelength degree W. The next theorem states that
there is a ring network with wavelength degree one (i.e., fixed wavelength conversion) that
has channel assignments for every request with load at most W — 1.

First we will define additional structure for a request that will help determine a channel
assignment. Consider a sequence of routes (pg, p1, ..., pr—1), where k is the number of routes
in the sequence. The sequence is referred to as a multi-cycle of routes (MCR) if for ¢ =
0,1,...,k — 1, the last node of p; is the first node of p(;11)moar When we consider the routes
to be going in the clockwise direction. Hence, an MCR is just a sequence of routes that
circumvents the ring in the clockwise direction one or more times. The number of times an
MCR goes around the ring is called its multiplicity. Figure 8 shows an MCR with multiplicity
three.

An MCR partition for arequest R = {po, p1, ..., Pm—1} is a collection of MCRs (Mg, M1, ..., Mj_1),
where k is the number of MCRs, such that the MCRs are composed of the routes of R and
each route is in exactly one MCR. Thus, the MCRs form a partition of R. The next lemma

10



Figure 8: An MCR (po, p1, ..., p7) that starts and ends at node 1.

states that there is an MCR partition for every full request, which is defined to be a request

where each link has exactly W routes traversing it.

Lemma 1 Consider a ring network with a full request R = {po,p1,...,Pm-1}. An MCR

partition can be found for the request.

Proof. We describe a way to construct an MCR partition of R. Find a cut-and-color
partition (Py, ..., P_1) for R. Let P denote the set of uncut and residual routes of R. Note
that P is also a full request. Note also that for each ¢ = 0,1,...,W — 1, there can be at
most one route of P; that traverses any link, since P; belongs to a cut-and-color partition.
However since R is a full request, there will be exactly one route of P; that traverses any
link.

For¢:=0,1,...,W — 1, let M/ be the sequence of routes of P; visited when going around
the ring in the clockwise direction starting from node 0. Note that M] is an MCR since each
link is traversed by exactly one route of P,. Since the (P, Py, .., Pw_1) is a partition for P,
(M{, My, ..., My, ;) is an MCR partition for P.

Let F' denote the MCR partition (M{, M], ..., Mj,_;). Next is a procedure to iteratively
modify F' and P so that the residual routes in P are replaced by cut routes, and F' remains

an MCR partition of P.

Step 1. If P has no residual routes then STOP. Otherwise, in P, find the pair of residual
routes of some cut route p;. Let a; and b, denote the left and right residual routes of

p;, respectively.

11



Step 2. Let M, and M, denote the MCRs that contain a; and b;, respectively. (Note that
M, and M, could be the same if @, and b; are in the same MCR.)

Step 3. Form a new sequence M of routes as follows. First, let M = M,. If M, # M, (i.e.,
a; and b; are not in the same MCR of F') then append the sequence M, to M. Note
that M 1s an MCR of P and contains both a; and 5;.

Step 4. Modify M as follows, so that residual routes {a;, b;} are replaced by their corre-

sponding cut route p;:

(a) If M, = M, (i.e., a; and b; are in the same MCR of F') then modify M by removing
b; and replacing a; with p;.

(b) Otherwise, if M, # M, then modify M by replacing the pair (a;, b;) with p,. (Note
that this can be done because {a;, b;} are consecutive routes in M, which in turn

is due to a; being the last route in M,, and b, being the first route in Mj.)

Step 5. Modify P by removing {a;,b;} and adding p,. Modify F by removing {M,, M,}
and adding M. Note that F'is still an MCR partition for P. Go to Step 1.

Note that the procedure stops when P = R. Since F' is an MCR partition for P, the
procedure computes an MCR partition for R. O

We will define ring networks that take advantage of the MCR partition structure. The
channels of these ring networks can be organized into sequences of channels called multi-
cycles of channels (MCC), which will be defined next. An MCC is a sequence of distinct
channels (¢, c1, ..., ck—1) that starts at some node j goes around the ring in the clockwise
direction one or more times and ends at node j. In addition, for z = 0,1,...,k — 1, the
channels ¢; and c(i41)moar must be attached. Note that %k is a multiple of N and that for
¢ =0,1,...,k — 1, channel ¢ is in link (: + j) mod N. The multiplicity of an MCC is the
number of times it goes around the ring, i.e., it is equal to % Figure 9(a) shows an MCC
with multiplicity 3 that starts and ends at node 1. Note that the starting (and ending) node
could be any node in the ring, but for convenience we will choose specific starting and ending
nodes.

Note that for any m = 0,1, ..., W — 1, the set of channels in an MCC with multiplicity m
i1s a channel assignment for the set of routes in an MCR with multiplicity m. To illustrate

this, let (po, p1, ..., pk—1) denote the MCR, and for ¢ = 0,1,...,k— 1, let n, denote the number

12
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Figure 9: An example MCC with multiplicity 3 that starts and ends at node 1.

of links traversed by p;. Note that the MCR goes around the ring in the clockwise direction,
and that each route goes in the clockwise direction. Let j denote the first link that pg
traverses. Assume without loss of generality that the MCC also starts at link j. Then a
channel assignment for the routes of the MCR is as follows: the first ng channels of the MCC
are assigned to pg, the next ny channels of the MCC are assigned to p;, and so forth. Figure
9(b) shows how the channels of the MCC in Figure 9(a) can be a channel assignment for an
MCR with multiplicity 3.

Now consider ring networks with fixed conversion such that their channels form a single
MCC, i.e., the MCC has multiplicity W. We will refer to such networks as a single-MCC
ring network. An example of such a network is the network shown in Figure 3. Here at
node 0, the channel at w; in link 3 is attached to the channel at w(1)moaw in link 0 for
1=0,1,...,W — 1. At the other nodes, for : = 0,1,..., W — 1, channels at w; are attached to
each other (no wavelength conversion). Another example is the network shown in Figure 10.
At node 0, channels at w; are attached to channels at w;y; for even valuesof ¢ < W —1. f W
is odd then channels at wy_; are attached to each other. At node 1, channel w; is attached
to channel w;;; for odd values of : < W — 1. Channels at wy are attached to each other, and
if W is even then channels at wy_; are attached to each other. At other nodes there is no

wavelength conversion.

Theorem 3 For a single-MCC ring network, any request with load at most W — 1 has a

channel assignment.

Proof. Let R be an arbitrary request with load at most W — 1. We will first show that

13
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Figure 10: An example of a single-MCC ring network with wavelengths {wo,ws, ..., ws}-

an MCR M with multiplicity W can be formed from the routes of R and additional dummy
routes.

Without loss of generality, assume that each link of the ring has exactly W —1 routes of R
crossing it (otherwise, we can add dummy one-hop routes). Then R is a full request for a ring
network with W — 1 wavelengths. Thus, we can apply Lemma 1 to find an MCR partition
(Mo, My, ..., My_1), where k < W is the number of MCRs, such that %1 m; = W —1, where
m; denotes the multiplicity of M; forz =0,1,...,k—1. Now fort = 0,1, ..., k—1, let z; be the
node where MCR M; starts and ends. Without loss of generality, let 2o < z; < ... < zp_1.
Let p’' = {p{, P}, .., Pr_1} be a collection of dummy routes such that for ¢ = 0,1,....,k — 1, p!
starts at node z;, ends at node Z(;41)modr, and goes clockwise around the ring. However, if
T; = T(i+1)modk then the route p) has zero length, i.e., it is a path that starts and ends at
node T; = Z(;11)moar Dut does not traverse any links. Note that each link of the ring network
has at most one route of p’ traversing it because zg < 27 < ... < z4_1, i.e., p' has load at
most one.

An MCR M can be formed by combining the MCRs (Mo, My, ..., My_1) and dummy
routes {py, pi, ..., Pp_1} as follows: M = (Mo, py, M1,p7, ..., Mi—1,p)_1). Note that M is an
MCR because for : = 0,1, ...,k — 1, the dummy route p. starts at the end of M; and ends at
the beginning of M(;{1)moar. The routes of M have load that is either W —1 or W because R
has load W —1 and p’ has load at most one. If the routes of M have load W —1 then another
dummy route py can be appended to M that starts and ends at node zg (the starting and
ending point for M) and circumvents the ring exactly once. Then M will be an MCR with
multiplicity exactly W.

14



Since M 1s an MCR with multiplicity W and the single-MCC ring network has an MCC
with multiplicity W, there is a channel assignment for the routes of M. Thus, there is a
channel assignment for R. O

The following theorem states that with fixed conversion, all requests with load at most
W are not guaranteed to have a channel assignment, proving that Theorem 3 provides the

best possible construction and channel assignment for a fixed-conversion ring network.

Theorem 4 For any value of W, there is a value n such that the following is true. For any
ring network with W wavelengths, fized wavelength conversion at every node, and N > n
(recall that N is the number of nodes), there is a request with load W that does not have a

channel assignment.

Outline of Proof: We will show that for any ring network with fixed wavelength conver-
sion and a sufficient number of nodes, there is a full request that does not have a channel
assignment. We will allow requests to contain routes that start and end at a common node
and circumvent the ring clockwise exactly once. Such routes will be referred to as full cycle
routes, and their starting (and ending) nodes will be referred to as their terminating nodes.
(At the end of this outline, we will discuss requests that disallow full cycle routes.) Also, let
n=W.

First, notice that a ring network with fixed conversion at every node has its channels
attached to form a single collection of channel disjoint MCCs (i.e., they do not share any
channels). Consider two cases:

Case 1, one of the MCCs has multiplicity m > 1: Consider a full request consisting of W
full cycle routes with distinct terminating nodes (which is possible since N > W). Let us
suppose there is a channel assignment for the request. We proceed to show that this is false.
Let H be an MCC with multiplicity m, and let pg be one of the routes that has its channels
from H. Without loss of generality assume that pp has terminating node 0. Note that the
terminating node 0 has the incident links 0 and N — 1. Now let ¢y denote the channel in link
0 assigned to pg. Let cy_1 denote the channel in link N — 1 that is attached to ¢y. Note that
cy—1 cannot be assigned to py because H has multiplicity m > 1. Note that cy_; cannot be
assigned to any other route because the other routes do not have node 0 as a terminating
node and ¢y (the channel attached to ¢y_1 through node 0) is assigned to py. Since cy_1 is

not assigned to a route and the request is full, the channel assignment is invalid.
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Case 2, all of the MCCs have multiplicity one: Then we have W MCCs. Consider the
following request which is composed of W —2 full cycle routes and three routes (Mo, M1, M),
which form an MCR with multiplicity two. The full cycle routes have terminating node 0.
Route Mj starts at node 3 and ends at node 2, route M; starts at node 2 and ends at node
1, and route M, starts at node 1 and ends at node 3. Note that the routes of the request
overlap one another. Since the routes overlap, each route requires channels from a different
MCC. Since there are W + 1 routes, there can be no channel assignment.

Note that the above argument can be modified when full cycle routes are disallowed.
This can be done by replacing full cycle routes with MCRs with multiplicity one. However,
n must be large enough to insure that terminating nodes are distinct. O

Theorem 3 illustrates that providing fixed wavelength conversion is sufficient to obtain
efficient channel assignments for the offline case, as long as the load of the request is at most
W — 1. By allowing a bit more wavelength conversion, a ring network may be designed to
have channel assignments for all requests with load at most W. This is stated in the next

theorem.

Theorem 5 There is a ring network that has wavelength degree two at two nodes and no
wavelength conversion at the other nodes such that every request with load at most W has a

channel assignment.

The proof of the theorem will be given after preliminary definitions and results. The
ring network of the theorem is a special case of a class of ring networks we refer to as multi-
MCC ring networks. A multi-MCC' ring network is one where for any k£ > 1 and collection
(mo, m1,...,m_1) of positive integers that satisfies Y*-J m; = W, there is a collection of
MCCs (Ho, Hy, ..., Hy—1) that are channel disjoint and for « = 0,1, ..., k—1, H, has multiplicity

my;.

Theorem 6 For a multi-MCC ring network, any request with load at most W has a channel

asstgnment.

Proof. Without loss of generality, we may assume that the request is full. Otherwise, we can
make it full by adding dummy one-hop routes. From Lemma 1, there is an MCR partition
(Mo, My, ..., My_1) for the request, where k is the number of MCRs in the partition. For
i=0,1,....,k — 1, let m; be the multiplicity of M;. Note that >3 m; = W. Therefore, from

16



the definition of a multi-MCC ring network, there is a collection of MCCs (Hy, H1, ..., Hx—1)
such that for ¢ = 0,1,...,k — 1, m; is the multiplicity of H;. It is now straight forward
to construct a channel assignment for the request since for each : = 0,1,...,k — 1, we can
construct a channel assignment for the routes of M; from the channels in H,. O

We now describe a particular multi-MCC ring network which we refer to as a paired
wavelengths (PW) ring network. The network has two nodes with wavelength conversion
capability called the primary and secondary nodes. All other nodes have no wavelength
conversion.

To describe the wavelength conversion capability at the primary and secondary nodes we
will use the following terminology. We say that a pair of wavelengths (w,w’) form a switching
pair at a node if WDM channels at {w,w’} are attached. Now at the primary and secondary
nodes, WDM channels at the same wavelength are attached. At the primary node, the
following pairs of wavelengths form switching pairs: (wp,w1), (wa,ws), and so forth. At the
secondary node the following pairs of wavelengths form switching pairs: (wq,ws), (w3, was),
and so forth. Figure 2 shows how the channels are attached for the case W = 7, and where

the primary and secondary nodes are nodes 0 and 1, respectively.

Lemma 2 Consitder the PW ring network. Let 5 and k be arbitrary integers satisfying
0<3< 574k <W-—1. Then there is an MCC with multiplicity k + 1 that only uses

channels with wavelengths {wj,wjt1, ooy Witk }-

Proof. The proof will be by induction on k. For the case when k& = 0, the lemma is true
because a sequence of channels at w; that goes around the ring once is an MCC described
by the lemma.

Now suppose the lemma is true for the case k—1, i.e., thereis an MCC M with multiplicity
k that only uses channels at wavelengths {w;,w;11, ....,w;4%—1}. We will show that the lemma
is true for k.

Now consider the case when 7 + k& — 1 is odd (the case when 7 + k — 1 is even will be
discussed later). Without loss of generality, assume that M starts and ends at the primary
node, and that its first channel is at wjir_1. At the primary node, the first channel is
attached to channels at w;;x_1 and w;;r because 5 + k — 1 is odd. Since M has attached
first and last channels and only occupies wavelengths {w;, w;t1,....,w;1k—1}, the last channel

of M must be at w;;x_1. Therefore, we have the following
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e The MCC M starts and ends at the primary node, and its first and last channels are

at Witk—1-

e At the primary node, the first and last channels of M are attached to the channels at

Witk

Let M* be the MCC that starts and ends at the primary node and has channels only at
wjtr. Note that the last and first channels of M are attached to the first and last channels
of M*, respectively, at the primary node. Appending the sequence M* to M results in an
MCC sequence as described in the Lemma.

Now consider the case when 7+ k — 1 is even. Then an MCC for the lemma can be found
in a similar way as when 7 + k£ — 1 were odd except that M and M™ start and end at the

secondary node. O
Lemma 3 The PW ring network is a multi-MCC ring network.

Proof. Suppose k& > 0 is some integer, and (mg, my,...,mg_1) is a collection of positive
integers that satisfy Y50 m; = W. We will show that there exists a collection of MCCs
(Mo, My, ..., My_1) such that for : = 0,1,...,k — 1, the multiplicity of M, is m,.

Note that the wavelengths may be partitioned into subsets (€, %4, ..., Q_1), where
Qo = {wo, w1,y Wmg—1}, 21 = {Wmg> Wmo+1s -y Wmgtm; -1}, and so forth. Note that for
1=0,1,...,k — 1, the number of wavelengths in 2; is m;. From Lemma 2, we know that for
1 =0,1,...,k — 1, there is an MCC M, with multiplicity m, that only uses the wavelengths
in §;. The resulting collection (My, M, ..., My_1) completes the proof. O
Proof of Theorem 5: The theorem follows from Theorem 6, Lemma 3, and the fact that
a PW ring network has wavelength degree two at two nodes and no wavelength conversion
at the other nodes. O

Next we describe another class of multi-MCC ring networks based upon permutation in-
terconnection networks such as the Benes network [23]. We will refer to these as permutation
ring networks. The permutation interconnection network corresponding to a permutation
ring network will be referred to as a template permutation network. The template permuta-
tion network for a ring network of N nodes has N + 1 stages of links, each stage having W
links and the stages are labeled 0,1, ..., N. The links in the first stage are called the inputs,
and the links in the last stage are called the outputs. The set of input (resp., output) links
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Figure 11: Shown in (a) is template permutation network composed of a Benes permutation
network followed by a set of paths to the output links. Shown in (b) is a permutation ring
network with four nodes, W = 4, and based on the template permutation network in (a).

are labeled {0,1,...,W — 1}. The template network has the property that for any permu-
tation (7(0),7(1),...,m(W — 1)) of (0,1,..., W — 1), there is a set of W link-disjoint paths
between the inputs and outputs such that for ¢ = 0,1,...,W — 1, the path that starts from
input ¢ ends at output 7(z). An example template network is shown in Figure 11(a) which
1s composed of a Benes permutation network for the first 2log, W stages of links and then
a collection of paths to the output links.

From the template permutation network Giemp, a permutation ring network G,;ny can be
defined as follows. For : = 1,2,..., N — 1, the W links at stage ¢ of Gtemp are assigned to
the W channels at link ¢ of G,;ny. The 2W links at stages 0 and N of Giemp are assigned
to the W channels at link 0 of G,;,, so that the both the input and output links labeled
¢ are assigned to the channel at wavelength w;, for : = 0,1,...,W — 1. The permutation
ring network has its channels attached according to the interconnection of Giemy, 1.€., if two
links of Giemyp are incident to a common node then their corresponding channels in G,;,4 are
attached. Figure 11(b) shows a permutation ring network based on the template network of
Figure 11(a). Note that the ring network has wavelength degree at most two at each node.

Permutation ring networks are multi-MCC ring networks because the template permu-
tation network has the property that there is a set of link-disjoint paths between its inputs
and outputs according to any permutation. For example, an MCC of multiplicity m can be
determined as follows. Note that there is a set of m link disjoint paths {po, p1, ..., Pm-1} in
Gtemp such that for ¢ = 0,1,...,m — 1, p; starts at input 2 and ends at output 2 + 1 mod m.

Note that for ¢ = 0,1,...,m — 1, the links traversed by path p; corresponds to a sequence
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Figure 12: Shown in (a) is a star network with a hub node at center and rim nodes connected
to the hub. Shown in (b) is how channels are attached at a hub node that has FCWP and
when W =4 .

of attached channels that start at w; at link 0, goes clockwise around the ring network, and
ends at w;11moam at link 0. Thus, the channels of the ring network that correspond to the
links of Giemp traversed by {po, p1, ..., Pm-1} can form an MCC of multiplicity m.

Since a permutation ring network is a multi-MCC ring network, Theorem 6 implies the

following theorem.

Theorem 7 For a permutation ring network, any request with load at most W has a channel

asstgnment.

While the PW-network is a better choice than a permutation network for efficient wave-
length assignment, since it requires fewer switches/wavelength converters, permutation net-
works will turn out to be useful for handling failures in the network. This topic is explored

in detail in [20].

3 Stars, Trees and Meshes

In this section, we will first consider star networks, and then consider more general networks.
Throughout this section we will assume that W is even, so that the wavelengths may be paired
as follows: (wp,w1), (w2, ws3), ..., (Ww_2,ww_1). For e =0,1,..., g — 1, let (gi, h;) denote the
pair (wa;, w2it1)-

A star network consists of a hub node and one or more rim nodes, as shown in Figure

12(a). There are links between the rim nodes and the hub only. The star network we
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Figure 13: Shown in (a) is a request {po, p1, ..., ps} for a star network of four links. Shown
in (b) is a balanced set of directions for the request.

W _1q

consider has a hub node with fixed channel conversion such that for : = 0,1,..., 5 — 1,

channels at g; are only attached to channels at h;. We call such a node as one having fized
conversion wavelength pairs (FCWP). Figure 12(b) shows a hub node having FCWP. Notice
that channels at the same wavelength are not attached.

As in the previous section, requests will be given structure that will lead to efficient
channel assignments. In particular, the routes of a request will be given directions, and
these directions will be used to determine a channel assignment. To direct a route, one of its
terminating nodes is designated as the first node, the other terminating node is designated as
the last node, and the route is assumed to go from the first to the last node. Now consider a
request, and suppose the routes of the request are directed. If the routes along each link are
directed such that exactly half traverse the link in one direction and the other half traverse
the link in the opposite direction then the request is said to have a balanced set of directions.
Figure 13(a) shows a request for a star network, and Figure 13(b) shows a balanced set of
directions for the request.

The following lemma considers tree networks, of which star networks are a special case.
It also considers a full request (recall, a full request is one where every link has W routes

traversing it).

Lemma 4 Consider a tree network T with W even. Fvery full request R = {po, p1, - Pm—1}

may have its routes directed such that it has a balanced set of directions.

Proof. First we will show that at each node in T', the number of routes of R that terminate
at the node is even. Consider an arbitrary node v in T', and let d denote the number of

links that are incident to it. Now note that since R is full, each link has exactly W routes
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traversing it. Thus, Y .cg, pe = d- W, where p. is the number of routes of R that traverse
link e, and FE, is the set of links incident to u. Now let n; denote the number of routes that
terminate at u, and let ny denote the number of routes that have u as an intermediate node.
Therefore, ny + 2ny = Y g, pe. Thus, ny 4 2ny = d- W. Since both W and 2n, are even,
nq must be even.

Second, we will show that the routes of R may be put into a sequence r = (pr(0), Pr(1) -+, Pr(m—1))
where (7(0),7(1),...,7/(m —1)) is a permutation of (0,1,...,m — 1), and may be given direc-
tions such that for 2 = 0,1,...,m — 1, the last node of px(;) is the first node of pr((i+1)modm)-
To show that the sequence r and the directions exist, consider the following multigraph G,
i.e., a graph which can have multiple edges between nodes. The graph G has the same nodes
as T. Its edges are represented by the set {pg,pi,..., Pm—1}, where the p; is an edge in G
between two nodes v and v if « and v are the two terminating nodes of route p; in 7'. Note
that G 1s a multigraph where each of its nodes has an even number of incident edges because
the number of routes of R that terminate at any node in T is even. Thus, there is an Euler
tour for G [24, Chap. 7], and the tour corresponds to r. The way in which the Euler tour
can be traversed will give a set of directions for the routes in r.

Note that the directions for the routes of r is also a set of directions for the routes of R.
We will verify that the directions are balanced by checking the routes that cross an arbitrary
link e. Now consider traversing the sequence of routes in r by following their directions.
Notice that the traversal follows the links of 7', and that the tree T' can be considered as two
subtrees connected by e. Thus, if the traversal crosses link e in one direction, then the next
time it crosses e it will be in the opposite direction because the only way to get between
the two subtrees is across e. Therefore, the traversal crosses link e exactly % times in both

w

directions because the request is full and W is even. Hence, there are - routes crossing e in

either direction. Since e is an arbitrary link, the set of directions for the request is balanced.

a

Theorem 8 Consider a star network with N nodes, W even, and where the hub node has

FCWP. Then any request with load at most W has a channel assignment.

Proof. First let {eg,e1,...,en_2} denote the links of the star network. Next, consider a
request R and assume without loss of generality that it is full (otherwise, we can make it full
by adding dummy one-hop routes). Let Ry = {po,p1,...,Pm-1} denote the two-hop routes
of R. Note that the other routes of R are one-hop routes, and denote these by R;. From
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Figure 14: The bipartite graph G corresponding to the star network and directed routes of
Figure 13(b).

Lemma 4, we can direct the routes of R so that they are balanced. Since the routes of R,
are now directed, they have first and second links that they traverse.

The channel assignment for a route p; in R, will be specified by a number n, that satisfies
0<n< g and which is referred to as the wavelength pair indez (WPI) for p;. In particular,
the channels for p; is the channel at g, on the first link of p; and the channel at A, on the
second link. Note that the channels are attached because the hub node has FCWP. Now
refer to a collection of WPIs, one per route of R,, as a feasible collection if, for each link e,
the WPIs of routes that use e as their first link are distinct and the WPIs of routes that
use e as their second link are distinct. Note that the resulting channel assignment will have
each channel assigned to at most one route. Thus, a feasible collection of WPIs leads to a
channel assignment for R,.

To determine a feasible collection of WPIs, consider a bipartite graph G (see Figure 14)
which has two sets of vertices { fo, f1, ..., fn—2} and {so, 1, ..., sny—2}. (Forz=0,1,...,. N —2,
the vertices f; and s; both represent link e; in the star network, but f; corresponds to when
e; is the first link of a route and s; corresponds to when e, is the second link.) Bipartite
graph G has edges by, ..., by,_1, where for e = 0,1,...,m — 1, b; is between f; and s if e; and
er are the first and second links, respectively, that route p; traverses. Note that each vertex
of G has at most g incident edges because R is balanced, i.e., at most % routes in R, use
a link as their first (resp., second) link. Then numbers {0, 1, ..., g — 1} can be assigned to
the edges of G such that at each vertex, the numbers assigned to the edges of any vertex are
distinct. In particular, the assignment can be accomplished using the scheduling algorithms
used for Satellite Switched/Time Division Multiple Access (SS/TDMA) systems [25]. Let
these numbers be the WPIs for the routes corresponding to their edges. Note that these
WPIs for the routes in R, are feasible, and so there is a channel assignment for R,.

To complete the channel assignment for R, we have to find channel assignments for the

routes in Ry. This is trivial since the the routes in R; are one-hop. O
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Corollary 1 Consider an arbitrary topology network G with W even and where all nodes
with two or more incident links have FCWP. There is a channel assignment for each request

that has load at most W and routes traversing at most two links.

Proof. A star network graph G, is used to represent the links of G. Each link e in G
is represented by a distinct edge in G, which is also labeled e. A channel assignment
for a request R = {po, p1,..., Pm—1} in network G can be determined as follows. Let R' =
{py, Pty Pu_1} be a set of routes for Gy such that for ¢ = 0,1,....,m — 1, p! traverses
the edges of Gt with the same labels as the links traversed by p;,. Note that R’ has load
at most W on G4, since it has the same load as R on . Thus, we can apply Theorem 8
to R’ on G4y to get a channel assignment for R’. Note that this channel assignment can
be translated into a channel assignment for R on G in a straightforward way because the
channels assigned to the same route of R are attached. The channels assigned to a route are
attached because routes that traverse two links in G have intermediate nodes with FCWP.
O

In the next theorem, we consider a tree network. We will refer to nodes that have one
incident link as a leaf node. We will refer to nodes that have channels at {go, g1, ..., gw/2-1}
attached to channels at {ho, hi,..., hyyjo_1} as patch nodes. Note that patch nodes have

wavelength degree g

Theorem 9 Consider a tree network with W even and s composed of nodes that are patch
nodes, leaf nodes, and nodes that have FCWP. Suppose that the network s such that all
nodes with FCWP have neighboring nodes that are leaf or patch nodes. Then every request

with load at most W has a channel asstgnment.

Outline of Proof: For each request R, a channel assignment can be determined as follows.
First, find a balanced set of directions for R, which is possible by Lemma 4. Next, “cut”
routes into smaller “residual routes” at the patch nodes. This leaves a collection of uncut and
residual routes that traverse at most two links. In addition, all of the routes that traverse two
links have an intermediate node that has FOCWP. This leaves a collection of “star networks”
with hubs at nodes having FCWP. The proof of Theorem 9 implies that channel assignments
can be found each set of routes corresponding to a “star network” (here, we assume that
the directions of the residual and uncut routes that are used for the channel assignment are

the same ones computed earlier for R). The resulting channel assignments can be “patched”
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Figure 15: A tree network with leaf nodes, patch nodes, and nodes with FCWP. The neighbor
nodes of nodes with FCWP are leaf and patch nodes.

together at the patch nodes to form a channel assignment for R because the patch nodes
have the necessary channel attachments. O

See Figure 15 for an example tree network described in Theorem 9. The figure also shows
the “star networks” described in the proof of the theorem. It should be noted that since the
tree is a bipartite graph, a tree network requires at most half of its nodes to be patch nodes

for it to satisfy the conditions of the theorem.

4 Conclusion

The paper considered a network model with bidirectional links, WDM channels, and light-
paths for ring, star, and tree networks, as well as arbitrary topology networks with restrictions
on lightpath route lengths. It was shown that there are ring and star networks with minimal
wavelength conversion capabilities that can perform off-line channel assignment as well as
networks with full wavelength conversion. In fact, the ring and star networks of Theorems 5
and 8 only required wavelengths to be shifted to their nearest wavelengths, i.e., the required
range of wavelength shifting is minimal.

It should also be noted that the results of this paper can be extended to the case when
links, WDM channels, and lightpaths are unidirectional. The results on ring networks in
Section 2 can be extended in a straightforward way. Theorem 8 (the result on the bidirec-
tional star network) can be extended to the unidirectional case and where the hub does not
have any wavelength conversion (here, the bidirectional star has two unidirectional links that
go in opposite directions between the hub and any rim node). Extending all these results to

arbitrary topologies is an important open problem.
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