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Lightpath C1Figure 1: A network with wavelengths f!0; !1; !2; !3g. Channels are shown as lines betweennodes.1 IntroductionWavelength Division Multiplexing (WDM) is an important approach to utilize the largeavailable bandwidth in a single mode optical �ber. WDM is basically frequency divisionmultiplexing in the optical frequency domain, where on a single optical �ber there are multi-ple communication channels at di�erent wavelengths (corresponding to carrier frequencies).There has been a great deal of interest in WDM networks that employ wavelength routing.These networks support lightpaths, which are end-to-end circuit-switched communicationconnections that traverse one or more links and use one WDM channel per link. These light-paths could serve as the physical communication links for a variety of high-speed networkssuch as ATM (Asynchronous Transfer Mode) networks.An example of a WDM wavelength routing network is shown in Figure 1. It is com-posed of four nodes with optical �ber links, each having four WDM channels at wavelengthsf!0; !1; !2; !3g. Switching is done at each node so that channels may be connected to formlightpaths. Note that if channels at di�erent wavelengths are to be connected then wave-length conversion devices are needed that can shift the wavelength of an optical signal. Forexample, in Figure 1, lightpath C1 is composed of two WDM channels at wavelength !0 onlinks 1 and 2. Hence, it does not need a wavelength converter. However, lightpath C2 needsa converter at node 2 because it is composed of two WDM channels at di�erent wavelengths(!1 and !3). The advantage of wavelength conversion is that WDM channels will be usedmore e�ciently, but the disadvantage is increased cost and complexity.1.1 Limited Wavelength ConversionIn this paper we will explore circuit-switched wavelength routing WDM network architec-tures that employ limited wavelength conversion, i.e., WDM channels have restrictions on2



w1

w2

w3

w4

w5

w6

w0

Node 0 Node 1 Node 2 Node 3

Figure 2: A network with wavelengths f!0; !1; :::; !6g to illustrate limited wavelength con-version. The lines between nodes represent channels, and lines within nodes indicate whichchannels may be connected.
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Link 3 Link 3Figure 3: A network with wavelengths f!0; !1; :::; !6g to illustrate �xed wavelength conver-sion. The lines between nodes represent channels, and lines within nodes indicate whichchannels may be connected.the channels they may be connected to on other links. For example, Figure 2 shows anetwork with seven WDM channels between nodes where the channels are at wavelengthsf!0; !1; :::; !6g. The lines within nodes show which pairs of channels may be connected.Note that the network has some wavelength conversion, but with restrictions. For exam-ple, at node 0 channels at wavelengths f!0; !1g may only be connected to other channels atwavelengths f!0; !1g. A special case of limitedwavelength conversion is �xed wavelength con-version which is illustrated in Figure 3. Here, at each node, each channel may be connectedto exactly one predetermined channel on every other link. For example, in Figure 3, channelat !i in link 3 may be connected only to channel !(i+1)modW in link 0 for i = 0; 1; :::;W � 1.3
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Figure 4: Di�erent types of wavelength conversion.Networks with limited/�xed wavelength conversion will be less costly to implement thannetworks without restrictions on wavelength conversion (i.e., having full wavelength con-version capability), but may still provide enough conversion to use channels e�ciently. Thedi�erent types of conversion possible within the node are illustrated in Figure 4. Within eachnode the wavelength conversion can be done all-optically or by receiving the signal, switch-ing it electronically and retransmitting it on another wavelength (O-E-O). The all-opticalapproach uses optical wavelength converter devices. In some of these devices, such as thosebased on four-wave mixing [1], the conversion e�ciency is a strong function of the input andoutput wavelengths, naturally leading to limited conversion capability. Even otherwise wecan save on the number of such devices required in the node. In the O-E-O approach we canimplement limited conversion using much fewer electronic switches than would be neededfor full conversion.1.2 Network ModelWe assume that the links and WDM channels are bidirectional (or full duplex). Networknodes are connected by �ber optic links, and for simplicity it is assumed that all pairs ofnodes have at most one link between them. Each link has W WDM bidirectional channelsat wavelengths f!0; !1; :::; !W�1g, where !0 < !1 < ::: < !W�1.Each node has switching capability to connect WDM channels to form full duplex light-paths. The switching capability will determine which pairs of channels may be connectedto one another. We will refer to two channels that may be connected to one another as4



being attached. For example, at node 0 in Figure 2, channels at wavelengths f!0; !1g areattached, channels at f!2; !3g are attached, channels at f!4; !5g are attached, and channelsat !6 are attached. A node has wavelength degree k (for some integer k > 0) if for each pairof incident links, each channel in one link is connected to at most k other channels in theother link. For example, node 0 in Figure 2 has wavelength degree two. A node has fullwavelength conversion if its wavelength degree is W . A node is said to have �xed wavelengthconversion if its wavelength degree is one, (for example, see Figure 3). Note that a nodewith no wavelength conversion has wavelength degree one. (Again these di�erent types ofconversion are illustrated in Figure 4.)The network supports sets of lightpaths. A lightpath is speci�ed by a path in the networkthat is referred to as a route. A lightpath is realized by a set of channels, one on each linkalong its route so that channels that are incident to a common node are attached at thenode. Such a set of channels is referred to as a channel assignment for the route. Thisrealization allows communication signals to be sent on a lightpath between the ends of theroute by having them transported along attached channels.A set of lightpaths is speci�ed by a set of routes, one route per lightpath. A set of routeswill be referred to as a request. A channel assignment for a request is a collection of channelassignments, one per route of the request such that each channel is assigned to at most oneroute, i.e., no two routes share a channel. Note that a channel assignment for a requestrealizes the lightpaths corresponding to a request. An important parameter of a request isits load, which is the value �max = maxe2E �e, where �e denotes the number of routes usinglink e and E denotes the set of links in the network. Clearly at least �max wavelengths areneeded to satisfy a request with load �max.1.3 OrganizationIn this paper, we propose ring and star networks with limited wavelength conversion tosupport sets of lightpaths e�ciently. In Section 2, we discuss our results for ring networks.We give a ring network with one node having �xed wavelength conversion and the rest ofthe nodes with no wavelength conversion such that all requests with load �max � W �1 havechannel assignments. We also give a ring network with two nodes with wavelength degreetwo and the rest of the nodes with no wavelength conversion such that all requests with load�max � W have channel assignments. Note that the �rst deployed WDM networks are likely5



to be rings, as seen from several recent testbeds (see for example [2, 3]).In Section 3, we discuss our results for star networks as well as extensions to tree networks,and networks with arbitrary topologies where route lengths are at most two. We presenta star network that has �xed wavelength conversion and has channel assignments for allrequests with load �max � W , when W is an even number. Note that the networks that havechannel assignments for all requests with load at mostW utilize the channels as e�ciently asnetworks with full wavelength conversion at all nodes. In Section 4, we provide conclusionsand discuss how our results can be extended when links and channels are directed.Note that we consider the problem of �nding channel assignments for sets of lightpathsall at one time. Thus, if a new lightpath is to be included to an existing set of lightpaths(while keeping the same routes for the lightpaths), the channel assignments for all lightpathsmay have to be recomputed. In this sense, the channel assignment is done o�ine. Thereis also the more practical consideration of online channel assignment, i.e., setting up newlightpaths without changing the assignment for existing lightpaths. Although we only con-sider the o�ine case, we believe that its understanding can lead to fundamental insights tothe online case, just as understanding rearrangeable nonblocking networks can help to un-derstand e�cient wide-sense and strict-sense nonblocking networks [4]. Also, o�ine channelassignment will be more e�cient in utilizing channels than online channel assignment.1.4 Related WorkPrevious work focuses primarily on networks with either no wavelength conversion or net-works with full wavelength conversion (i.e., any pair of WDM channels may be connected).The joint lightpath routing and channel assignment problem in networks without wave-length conversion is known to be NP-complete [5] and remains NP-complete even for rings[6]. Given a routing already, an algorithm that �nds a channel assignment in a ring net-work without wavelength conversion if 2�max � 1 � W is given in [7] as well as [8]. Analgorithm that �nds channel assignments in a tree network without wavelength conversion if32�max �W is given in [8]. Sample requests can easily be constructed for these networks thatrequire W = 2�max � 1 wavelengths and W = 32�max wavelengths for rings and stars respec-tively. [9] gives algorithms that �nd channel assignments for the case of a directed networkwithout wavelength conversion and directed lightpath requests for trees, if 15�max=8 � W ,and for rings, if 2�max � W . Several heuristic channel assignment schemes have also been6



proposed for networks without wavelength conversion [10, 11, 5, 12, 13, 14].Variants of the limited conversion model are considered in [15, 16, 17, 18]. In [16, 15]it is assumed that each node has a limited number of wavelength converters and that eachconverter has no restrictions on the wavelengths of the channels it can connect. Here, therestriction is on the number of wavelength conversions at a node. In [17], a network withlimited wavelength conversion is used to study the performance due to limited wavelengthshifting capability of devices based on four wave mixing. The converters allow wavelengths tobe shifted within a given range. Also, the work in [18] studies sparse wavelength conversion,where networks are comprised of a mix of nodes having full and no wavelength conversion.The channel assignment in these papers [15, 16, 17, 18] are simple heuristics, and theirperformance analyses are based upon probabilistic models and techniques (i.e., computeblocking probabilities of setting up lightpaths) which may not be as appropriate for networksthat require channels to be highly utilized.There are some recent results on the online channel assignment problem for ring networks[19], where lightpath requests arrive and leave the network dynamically. The problem ofrecovering from link and node faults in ring networks using limited wavelength conversion isaddressed in [20].2 RingsIn this section we will consider ring networks. Without loss of generality, it will be assumedthat a ring network has a clockwise direction (and counter-clockwise direction) as shown inFigure 5. Its nodes are numbered 0; 1; :::; N � 1 consecutively in the clockwise direction,where N denotes the number of nodes. The links are also numbered 0; 1; :::; N � 1 in theclockwise direction such that for each i = 0; 1; :::; N � 1, the link between node i and node(i+ 1) mod N is numbered i (see Figure 5).Most of the results of this section assume that there is a collection of lightpaths to be setup, and their set of paths (i.e., a request) is already given. However, we should note that forthe ring network, there is an algorithm that can compute minimum load requests for sets oflightpaths, speci�ed by their terminating nodes [21]. However, simple shortest path routingdoes not perform very poorly as shown below.Theorem 1 Suppose we are given a request of source-destination pairs and the minimum7
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Link N-1Figure 5: A ring network.possible load for satisfying this request is �max. Then shortest-path routing yields a load ofat most 2�max.Proof. Suppose shortest-path routing yields a load �sp. Consider a link i with load �sp.Rerouting k lightpaths using link i using their longer routes on the ring can reduce the loadon link i to at most �sp � k. Note that since all these lightpaths are routed on paths onlength � bN=2c initially, their longer routes on the ring will all use the link bN=2c + i,increasing its load by k. Therefore an optimal routing algorithm would have a load given by�max � mink(�sp � k; k), or �max � d�sp=2e. 2For the rest of the section, we describe ring networks that lead to e�cient channel as-signments for requests. To �nd channel assignments, we will use a structure for the requestscalled a cut-and-color partition, which we de�ne next.A cut-and-color partition for a request fp0; :::; pm�1g, where m is the number of routesin the request, may be computed as follows. Pick an arbitrary node, say node 0, called theprimary node. This will be used to \cut" routes in two as explained below. First, refer toroutes that pass through node 0 as cut routes and the rest of the routes as uncut. A set Pof routes is generated as follows. Include each uncut route in P . For each cut route pi, cut(or split) it at node 0 into a pair of paths fai; big called residual routes such that each hasnode 0 as a terminating node. Let ai denote the residual route that traverses link N � 1,and let bi denote the residual route that traverses link 0. Refer to ai as the left residualroute, and bi as the right residual route. Include the residual routes in P . The resulting setP will be referred to as the uncut and residual routes of the request. (Figure 6(a) shows arequest fp0; p1; :::; p6g. Note that p2 and p4 are cut routes since they pass through node 0.Also note that the routes of the request do not have to be distinct, for example p1 and p5are the same. Figure 6(b) shows the uncut and residual routes in P . Note that a2 and a48
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       residual routes {b2, b4}.Figure 6: Shown in (a) is a request fp0; p1; :::; p5g for a four node ring network. Shown in(b) is the collection P of uncut and residual routes for the request.
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  Link 0          Link 1         Link 2          Link 3Figure 7: A cut-and-color partition and a channel assignment.are the left residual routes of cut routes p2 and p4, respectively; and note that b2 and b4 arethe right residual routes of p2 and p4, respectively.)Next, partition the routes in P into W subsets (P0; P1; :::; PW�1) such that routes inthe same subset do not traverse common links of the ring network. We will refer to thepartition (P0; P1; :::; PW�1) as a cut-and-color partition for the request. One way to �nd acut-and-color partition is to assign numbers f0; :::;W�1g to the routes in P such that routeswith a common link have distinct numbers. This is like coloring paths in an interval graph[22, Sec.16.5] because no route of P crosses through node 0. Hence, we can use a greedyalgorithm assignment that requires �max numbers [22, Sec.16.5]. Then for i = 0; 1; ::::;W�1,all routes that have been assigned to number i are in subset Pi. (Figure 7(a) shows a cut-and-color partition for the request in Figure 6(a). The cut-and-color partition is (P0; P1; P2; P3),where P0 = fp0; a2g, P1 = fb2; p1; a4g, P2 = fb4; p3g, P3 = fp5g, a2 = (2; 3; 0), b2 = (0; 1),9



a4 = (3; 0), and b4 = (0; 1; 2).)Theorem 2 Suppose the ring network has full wavelength conversion at one node and nowavelength conversion at the other nodes. Then any request with load at most W has achannel assignment.Proof. Without loss of generality, assume that node 0 has the full wavelength conversion.Suppose we are given an arbitrary request R with load at mostW . Let (P0; :::; PW�1) denotethe cut-and-color partition for the request and let P be the set of uncut and residual routes.Note that P is also a request of routes with load at most W . We will �rst �nd a channelassignment for P . For i = 0; 1; :::;W � 1, assign the wavelength !i to each route in Pi. Foreach route in P , assign it the channels at its wavelength at each link it traverses. The resultis a channel assignment for P since the channels assigned to any route are attached (becausethe channels are at the same wavelength) and no channel is assigned to more than one route(because each Pi has at most one route traversing any link). A channel assignment for R canbe modi�ed from P as follows: for each cut route pi assign it the channels that are assignedto its residual routes. Note that the resulting channel assignment for cut routes are attachedbecause node 0 has full wavelength conversion. (Figure 7(b) shows a channel assignment forthe request in Figure 6(a) that results from the cut-and-color partition in Figure 7(a).) 2The ring network of Theorem 2 has a channel assignment for every request with load atmost W . However, one of its nodes has wavelength degree W . The next theorem states thatthere is a ring network with wavelength degree one (i.e., �xed wavelength conversion) thathas channel assignments for every request with load at most W � 1.First we will de�ne additional structure for a request that will help determine a channelassignment. Consider a sequence of routes (p0; p1; :::; pk�1), where k is the number of routesin the sequence. The sequence is referred to as a multi-cycle of routes (MCR) if for i =0; 1; :::; k � 1, the last node of pi is the �rst node of p(i+1)modk when we consider the routesto be going in the clockwise direction. Hence, an MCR is just a sequence of routes thatcircumvents the ring in the clockwise direction one or more times. The number of times anMCR goes around the ring is called itsmultiplicity. Figure 8 shows an MCR with multiplicitythree.AnMCR partition for a requestR = fp0; p1; :::; pm�1g is a collection of MCRs (M0;M1; :::;Mk�1),where k is the number of MCRs, such that the MCRs are composed of the routes of R andeach route is in exactly one MCR. Thus, the MCRs form a partition of R. The next lemma10
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Figure 8: An MCR (p0; p1; :::; p7) that starts and ends at node 1.states that there is an MCR partition for every full request, which is de�ned to be a requestwhere each link has exactly W routes traversing it.Lemma 1 Consider a ring network with a full request R = fp0; p1; :::; pm�1g. An MCRpartition can be found for the request.Proof. We describe a way to construct an MCR partition of R. Find a cut-and-colorpartition (P0; :::; PW�1) for R. Let P denote the set of uncut and residual routes of R. Notethat P is also a full request. Note also that for each i = 0; 1; :::;W � 1, there can be atmost one route of Pi that traverses any link, since Pi belongs to a cut-and-color partition.However since R is a full request, there will be exactly one route of Pi that traverses anylink.For i = 0; 1; :::;W � 1, let M 0i be the sequence of routes of Pi visited when going aroundthe ring in the clockwise direction starting from node 0. Note that M 0i is an MCR since eachlink is traversed by exactly one route of Pi. Since the (P0; P1; ::; PW�1) is a partition for P ,(M 00;M 01; :::;M 0W�1) is an MCR partition for P .Let F denote the MCR partition (M 00;M 01; :::;M 0W�1). Next is a procedure to iterativelymodify F and P so that the residual routes in P are replaced by cut routes, and F remainsan MCR partition of P .Step 1. If P has no residual routes then STOP. Otherwise, in P , �nd the pair of residualroutes of some cut route pi. Let ai and bi denote the left and right residual routes ofpi, respectively. 11



Step 2. Let Ma and Mb denote the MCRs that contain ai and bi, respectively. (Note thatMa and Mb could be the same if ai and bi are in the same MCR.)Step 3. Form a new sequenceM of routes as follows. First, let M =Ma. If Ma 6=Mb (i.e.,ai and bi are not in the same MCR of F ) then append the sequence Mb to M . Notethat M is an MCR of P and contains both ai and bi.Step 4. Modify M as follows, so that residual routes fai; big are replaced by their corre-sponding cut route pi:(a) IfMa =Mb (i.e., ai and bi are in the same MCR of F ) then modifyM by removingbi and replacing ai with pi.(b) Otherwise, ifMa 6=Mb then modifyM by replacing the pair (ai; bi) with pi. (Notethat this can be done because fai; big are consecutive routes in M , which in turnis due to ai being the last route in Ma, and bi being the �rst route in Mb.)Step 5. Modify P by removing fai; big and adding pi. Modify F by removing fMa;Mbgand adding M . Note that F is still an MCR partition for P . Go to Step 1.Note that the procedure stops when P = R. Since F is an MCR partition for P , theprocedure computes an MCR partition for R. 2We will de�ne ring networks that take advantage of the MCR partition structure. Thechannels of these ring networks can be organized into sequences of channels called multi-cycles of channels (MCC), which will be de�ned next. An MCC is a sequence of distinctchannels (c0; c1; :::; ck�1) that starts at some node j goes around the ring in the clockwisedirection one or more times and ends at node j. In addition, for i = 0; 1; :::; k � 1, thechannels ci and c(i+1)modk must be attached. Note that k is a multiple of N and that fori = 0; 1; :::; k � 1, channel ci is in link (i + j) mod N . The multiplicity of an MCC is thenumber of times it goes around the ring, i.e., it is equal to kN . Figure 9(a) shows an MCCwith multiplicity 3 that starts and ends at node 1. Note that the starting (and ending) nodecould be any node in the ring, but for convenience we will choose speci�c starting and endingnodes.Note that for any m = 0; 1; :::;W � 1, the set of channels in an MCC with multiplicitymis a channel assignment for the set of routes in an MCR with multiplicity m. To illustratethis, let (p0; p1; :::; pk�1) denote the MCR, and for i = 0; 1; :::; k�1, let ni denote the number12
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Figure 9: An example MCC with multiplicity 3 that starts and ends at node 1.of links traversed by pi. Note that the MCR goes around the ring in the clockwise direction,and that each route goes in the clockwise direction. Let j denote the �rst link that p0traverses. Assume without loss of generality that the MCC also starts at link j. Then achannel assignment for the routes of the MCR is as follows: the �rst n0 channels of the MCCare assigned to p0, the next n1 channels of the MCC are assigned to p1, and so forth. Figure9(b) shows how the channels of the MCC in Figure 9(a) can be a channel assignment for anMCR with multiplicity 3.Now consider ring networks with �xed conversion such that their channels form a singleMCC, i.e., the MCC has multiplicity W . We will refer to such networks as a single-MCCring network. An example of such a network is the network shown in Figure 3. Here atnode 0, the channel at !i in link 3 is attached to the channel at !(i+1)modW in link 0 fori = 0; 1; :::;W � 1. At the other nodes, for i = 0; 1; :::;W � 1, channels at !i are attached toeach other (no wavelength conversion). Another example is the network shown in Figure 10.At node 0, channels at !i are attached to channels at !i+1 for even values of i < W �1. IfWis odd then channels at !W�1 are attached to each other. At node 1, channel !i is attachedto channel !i+1 for odd values of i < W � 1. Channels at !0 are attached to each other, andif W is even then channels at !W�1 are attached to each other. At other nodes there is nowavelength conversion.Theorem 3 For a single-MCC ring network, any request with load at most W � 1 has achannel assignment.Proof. Let R be an arbitrary request with load at most W � 1. We will �rst show that13
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Since M is an MCR with multiplicityW and the single-MCC ring network has an MCCwith multiplicity W , there is a channel assignment for the routes of M . Thus, there is achannel assignment for R. 2The following theorem states that with �xed conversion, all requests with load at mostW are not guaranteed to have a channel assignment, proving that Theorem 3 provides thebest possible construction and channel assignment for a �xed-conversion ring network.Theorem 4 For any value of W , there is a value n such that the following is true. For anyring network with W wavelengths, �xed wavelength conversion at every node, and N � n(recall that N is the number of nodes), there is a request with load W that does not have achannel assignment.Outline of Proof: We will show that for any ring network with �xed wavelength conver-sion and a su�cient number of nodes, there is a full request that does not have a channelassignment. We will allow requests to contain routes that start and end at a common nodeand circumvent the ring clockwise exactly once. Such routes will be referred to as full cycleroutes, and their starting (and ending) nodes will be referred to as their terminating nodes.(At the end of this outline, we will discuss requests that disallow full cycle routes.) Also, letn = W .First, notice that a ring network with �xed conversion at every node has its channelsattached to form a single collection of channel disjoint MCCs (i.e., they do not share anychannels). Consider two cases:Case 1, one of the MCCs has multiplicity m > 1: Consider a full request consisting of Wfull cycle routes with distinct terminating nodes (which is possible since N � W ). Let ussuppose there is a channel assignment for the request. We proceed to show that this is false.Let H be an MCC with multiplicity m, and let p0 be one of the routes that has its channelsfrom H. Without loss of generality assume that p0 has terminating node 0. Note that theterminating node 0 has the incident links 0 and N �1. Now let c0 denote the channel in link0 assigned to p0. Let cN�1 denote the channel in link N �1 that is attached to c0. Note thatcN�1 cannot be assigned to p0 because H has multiplicitym > 1. Note that cN�1 cannot beassigned to any other route because the other routes do not have node 0 as a terminatingnode and c0 (the channel attached to cN�1 through node 0) is assigned to p0. Since cN�1 isnot assigned to a route and the request is full, the channel assignment is invalid.15



Case 2, all of the MCCs have multiplicity one: Then we have W MCCs. Consider thefollowing request which is composed ofW�2 full cycle routes and three routes (M0;M1;M2),which form an MCR with multiplicity two. The full cycle routes have terminating node 0.Route M0 starts at node 3 and ends at node 2, route M1 starts at node 2 and ends at node1, and route M2 starts at node 1 and ends at node 3. Note that the routes of the requestoverlap one another. Since the routes overlap, each route requires channels from a di�erentMCC. Since there are W + 1 routes, there can be no channel assignment.Note that the above argument can be modi�ed when full cycle routes are disallowed.This can be done by replacing full cycle routes with MCRs with multiplicity one. However,n must be large enough to insure that terminating nodes are distinct. 2Theorem 3 illustrates that providing �xed wavelength conversion is su�cient to obtaine�cient channel assignments for the o�ine case, as long as the load of the request is at mostW � 1. By allowing a bit more wavelength conversion, a ring network may be designed tohave channel assignments for all requests with load at most W . This is stated in the nexttheorem.Theorem 5 There is a ring network that has wavelength degree two at two nodes and nowavelength conversion at the other nodes such that every request with load at most W has achannel assignment.The proof of the theorem will be given after preliminary de�nitions and results. Thering network of the theorem is a special case of a class of ring networks we refer to as multi-MCC ring networks. A multi-MCC ring network is one where for any k � 1 and collection(m0;m1; :::;mk�1) of positive integers that satis�es Pk�1i=0 mi = W , there is a collection ofMCCs (H0;H1; :::;Hk�1) that are channel disjoint and for i = 0; 1; :::; k�1,Hi has multiplicitymi.Theorem 6 For a multi-MCC ring network, any request with load at most W has a channelassignment.Proof. Without loss of generality, we may assume that the request is full. Otherwise, we canmake it full by adding dummy one-hop routes. From Lemma 1, there is an MCR partition(M0;M1; :::;Mk�1) for the request, where k is the number of MCRs in the partition. Fori = 0; 1; :::; k� 1, let mi be the multiplicity of Mi. Note that Pk�1i=0 mi =W . Therefore, from16



the de�nition of a multi-MCC ring network, there is a collection of MCCs (H0;H1; :::;Hk�1)such that for i = 0; 1; :::; k � 1, mi is the multiplicity of Hi. It is now straight forwardto construct a channel assignment for the request since for each i = 0; 1; :::; k � 1, we canconstruct a channel assignment for the routes of Mi from the channels in Hi. 2We now describe a particular multi-MCC ring network which we refer to as a pairedwavelengths (PW) ring network. The network has two nodes with wavelength conversioncapability called the primary and secondary nodes. All other nodes have no wavelengthconversion.To describe the wavelength conversion capability at the primary and secondary nodes wewill use the following terminology. We say that a pair of wavelengths (!; !0) form a switchingpair at a node if WDM channels at f!; !0g are attached. Now at the primary and secondarynodes, WDM channels at the same wavelength are attached. At the primary node, thefollowing pairs of wavelengths form switching pairs: (!0; !1), (!2; !3), and so forth. At thesecondary node the following pairs of wavelengths form switching pairs: (!1; !2), (!3; !4),and so forth. Figure 2 shows how the channels are attached for the case W = 7, and wherethe primary and secondary nodes are nodes 0 and 1, respectively.Lemma 2 Consider the PW ring network. Let j and k be arbitrary integers satisfying0 � j � j + k � W � 1. Then there is an MCC with multiplicity k + 1 that only useschannels with wavelengths f!j ; !j+1; ::::; !j+kg.Proof. The proof will be by induction on k. For the case when k = 0, the lemma is truebecause a sequence of channels at !j that goes around the ring once is an MCC describedby the lemma.Now suppose the lemma is true for the case k�1, i.e., there is an MCCM with multiplicityk that only uses channels at wavelengths f!j ; !j+1; ::::; !j+k�1g. We will show that the lemmais true for k.Now consider the case when j + k � 1 is odd (the case when j + k � 1 is even will bediscussed later). Without loss of generality, assume that M starts and ends at the primarynode, and that its �rst channel is at !j+k�1. At the primary node, the �rst channel isattached to channels at !j+k�1 and !j+k because j + k � 1 is odd. Since M has attached�rst and last channels and only occupies wavelengths f!j; !j+1; ::::; !j+k�1g, the last channelof M must be at !j+k�1. Therefore, we have the following17



� The MCC M starts and ends at the primary node, and its �rst and last channels areat !j+k�1.� At the primary node, the �rst and last channels of M are attached to the channels at!j+k.Let M� be the MCC that starts and ends at the primary node and has channels only at!j+k. Note that the last and �rst channels of M are attached to the �rst and last channelsof M�, respectively, at the primary node. Appending the sequence M� to M results in anMCC sequence as described in the Lemma.Now consider the case when j+k�1 is even. Then an MCC for the lemma can be foundin a similar way as when j + k � 1 were odd except that M and M� start and end at thesecondary node. 2Lemma 3 The PW ring network is a multi-MCC ring network.Proof. Suppose k > 0 is some integer, and (m0;m1; :::;mk�1) is a collection of positiveintegers that satisfy Pk�1i=0 mi = W . We will show that there exists a collection of MCCs(M0;M1; :::;Mk�1) such that for i = 0; 1; :::; k � 1, the multiplicity of Mi is mi.Note that the wavelengths may be partitioned into subsets (
0;
1; :::;
k�1), where
0 = f!0; !1; :::; !m0�1g, 
1 = f!m0 ; !m0+1; :::; !m0+m1�1g, and so forth. Note that fori = 0; 1; :::; k � 1, the number of wavelengths in 
i is mi. From Lemma 2, we know that fori = 0; 1; :::; k � 1, there is an MCC Mi with multiplicity mi that only uses the wavelengthsin 
i. The resulting collection (M0;M1; :::;Mk�1) completes the proof. 2Proof of Theorem 5: The theorem follows from Theorem 6, Lemma 3, and the fact thata PW ring network has wavelength degree two at two nodes and no wavelength conversionat the other nodes. 2Next we describe another class of multi-MCC ring networks based upon permutation in-terconnection networks such as the Benes network [23]. We will refer to these as permutationring networks. The permutation interconnection network corresponding to a permutationring network will be referred to as a template permutation network. The template permuta-tion network for a ring network of N nodes has N + 1 stages of links, each stage having Wlinks and the stages are labeled 0; 1; :::; N . The links in the �rst stage are called the inputs,and the links in the last stage are called the outputs. The set of input (resp., output) links18
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(a)  Template permutation network (b)  Permutation ring networkFigure 11: Shown in (a) is template permutation network composed of a Benes permutationnetwork followed by a set of paths to the output links. Shown in (b) is a permutation ringnetwork with four nodes, W = 4, and based on the template permutation network in (a).are labeled f0; 1; :::;W � 1g. The template network has the property that for any permu-tation (�(0); �(1); :::; �(W � 1)) of (0; 1; :::;W � 1), there is a set of W link-disjoint pathsbetween the inputs and outputs such that for i = 0; 1; :::;W � 1, the path that starts frominput i ends at output �(i). An example template network is shown in Figure 11(a) whichis composed of a Benes permutation network for the �rst 2 log2W stages of links and thena collection of paths to the output links.From the template permutation network Gtemp, a permutation ring network Gring can bede�ned as follows. For i = 1; 2; :::; N � 1, the W links at stage i of Gtemp are assigned tothe W channels at link i of Gring. The 2W links at stages 0 and N of Gtemp are assignedto the W channels at link 0 of Gring so that the both the input and output links labeledi are assigned to the channel at wavelength !i, for i = 0; 1; :::;W � 1. The permutationring network has its channels attached according to the interconnection of Gtemp, i.e., if twolinks of Gtemp are incident to a common node then their corresponding channels in Gring areattached. Figure 11(b) shows a permutation ring network based on the template network ofFigure 11(a). Note that the ring network has wavelength degree at most two at each node.Permutation ring networks are multi-MCC ring networks because the template permu-tation network has the property that there is a set of link-disjoint paths between its inputsand outputs according to any permutation. For example, an MCC of multiplicity m can bedetermined as follows. Note that there is a set of m link disjoint paths fp0; p1; :::; pm�1g inGtemp such that for i = 0; 1; :::;m� 1, pi starts at input i and ends at output i+ 1 mod m.Note that for i = 0; 1; :::;m � 1, the links traversed by path pi corresponds to a sequence19
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traversing it. Thus, Pe2Eu �e = d �W , where �e is the number of routes of R that traverselink e, and Eu is the set of links incident to u. Now let n1 denote the number of routes thatterminate at u, and let n2 denote the number of routes that have u as an intermediate node.Therefore, n1 + 2n2 = Pe2Eu �e. Thus, n1 + 2n2 = d �W . Since both W and 2n2 are even,n1 must be even.Second, we will show that the routes ofRmay be put into a sequence r = (p�(0); p�(1); :::; p�(m�1)),where (�(0); �(1); :::; �(m� 1)) is a permutation of (0; 1; :::;m� 1), and may be given direc-tions such that for i = 0; 1; :::;m� 1, the last node of p�(i) is the �rst node of p�((i+1)modm).To show that the sequence r and the directions exist, consider the following multigraph G,i.e., a graph which can have multiple edges between nodes. The graph G has the same nodesas T . Its edges are represented by the set fp0; p1; :::; pm�1g, where the pi is an edge in Gbetween two nodes u and v if u and v are the two terminating nodes of route pi in T . Notethat G is a multigraph where each of its nodes has an even number of incident edges becausethe number of routes of R that terminate at any node in T is even. Thus, there is an Eulertour for G [24, Chap. 7], and the tour corresponds to r. The way in which the Euler tourcan be traversed will give a set of directions for the routes in r.Note that the directions for the routes of r is also a set of directions for the routes of R.We will verify that the directions are balanced by checking the routes that cross an arbitrarylink e. Now consider traversing the sequence of routes in r by following their directions.Notice that the traversal follows the links of T , and that the tree T can be considered as twosubtrees connected by e. Thus, if the traversal crosses link e in one direction, then the nexttime it crosses e it will be in the opposite direction because the only way to get betweenthe two subtrees is across e. Therefore, the traversal crosses link e exactly W2 times in bothdirections because the request is full and W is even. Hence, there are W2 routes crossing e ineither direction. Since e is an arbitrary link, the set of directions for the request is balanced.2Theorem 8 Consider a star network with N nodes, W even, and where the hub node hasFCWP. Then any request with load at most W has a channel assignment.Proof. First let fe0; e1; :::; eN�2g denote the links of the star network. Next, consider arequest R and assume without loss of generality that it is full (otherwise, we can make it fullby adding dummy one-hop routes). Let R2 = fp0; p1; :::; pm�1g denote the two-hop routesof R. Note that the other routes of R are one-hop routes, and denote these by R1. From22
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Corollary 1 Consider an arbitrary topology network G with W even and where all nodeswith two or more incident links have FCWP. There is a channel assignment for each requestthat has load at most W and routes traversing at most two links.Proof. A star network graph Gstar is used to represent the links of G. Each link e in Gis represented by a distinct edge in Gstar which is also labeled e. A channel assignmentfor a request R = fp0; p1; :::; pm�1g in network G can be determined as follows. Let R0 =fp00; p01; :::; p0m�1g be a set of routes for Gstar such that for i = 0; 1; ::::;m� 1, p0i traversesthe edges of Gstar with the same labels as the links traversed by pi. Note that R0 has loadat most W on Gstar since it has the same load as R on G. Thus, we can apply Theorem 8to R0 on Gstar to get a channel assignment for R0. Note that this channel assignment canbe translated into a channel assignment for R on G in a straightforward way because thechannels assigned to the same route of R are attached. The channels assigned to a route areattached because routes that traverse two links in G have intermediate nodes with FCWP.2 In the next theorem, we consider a tree network. We will refer to nodes that have oneincident link as a leaf node. We will refer to nodes that have channels at fg0; g1; :::; gW=2�1gattached to channels at fh0; h1; :::; hW=2�1g as patch nodes. Note that patch nodes havewavelength degree W2 .Theorem 9 Consider a tree network with W even and is composed of nodes that are patchnodes, leaf nodes, and nodes that have FCWP. Suppose that the network is such that allnodes with FCWP have neighboring nodes that are leaf or patch nodes. Then every requestwith load at most W has a channel assignment.Outline of Proof: For each request R, a channel assignment can be determined as follows.First, �nd a balanced set of directions for R, which is possible by Lemma 4. Next, \cut"routes into smaller \residual routes" at the patch nodes. This leaves a collection of uncut andresidual routes that traverse at most two links. In addition, all of the routes that traverse twolinks have an intermediate node that has FCWP. This leaves a collection of \star networks"with hubs at nodes having FCWP. The proof of Theorem 9 implies that channel assignmentscan be found each set of routes corresponding to a \star network" (here, we assume thatthe directions of the residual and uncut routes that are used for the channel assignment arethe same ones computed earlier for R). The resulting channel assignments can be \patched"24
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