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Abstract

To meet the requirement of very high data rates for wireless Internet artadnadia
services, multiple transmitting and multiple receiving antennas have be@oged for
fourth generation wireless systems. In cellular systems, performaricaited by fading
and cochannel interference from other users. Most of the current studies on minlpiple
multiple-output (MIMO) systems assume that the cochannel interference isgmithlly
and temporally white. In this thesis, we focus on MIMO systems under both kpatal
temporally colored interference.

In MIMO systems, diversity gain is effectively achieved by the nplétireceiving an-
tennas. Outage performances of several receive diversity schemasayrtically com-
pared for an interference-limited environment in a Rayleigh fading chaielinvesti-
gate three diversity schemes: a practical variation of maximaid-catnbining, equal-gain
combining (EGC) and selection combining (SC). An exact outage probability exqress
is derived for EGC by accurately calculating the interference powdreabtitput of the
combiner. It is found that the relative performance between EGC and SC deperus on t
number of interferers and interferer power distribution.

Channel estimation and data detection for MIMO systems under both spatially and
temporally colored interference are studied. By modelling interferemtistats as being
approximately temporally and spatially separable, we propose an algorittomtly jes-

timate channel and spatial interference correlation matrices based>amom likelihood



principle. Multi-vector-symbol data detection is developed to exploit the teahpaier-
ference correlation. In the case of one interferer operating at a loweratatghe results
show that significant improvement can be achieved by taking account of the tenmporal
terference correlation in data detection.

Information capacities of MIMO channels under spatially and temporally cbeck
interference are derived. Capacity gains due to the knowledge of the channel amalri
interference statistics at the transmitter are assessed. To@thése capacity gains, we
propose an adaptive modulation scheme exploiting the channel matrix and intezferenc
statistics estimated by the receiver. In particular, the impachahgel estimation error

and feedback quantization error on adaptive modulation is evaluated for MIMénsys
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Chapter 1

Introduction

Communicating over a wireless channel is highly challenging due to the complex propa-
gation medium. The major impairments of the wireless channel are fading anchoetha
interference. Due to ground irregularities and typical wave propagation phenoo@na s
as diffraction, scattering, and reflection, when a signal is launched intoitbkegs envi-
ronment, it arrives at the receiver along a number of distinct paths, réfierees multipath.
Each of these paths has a distinct and time-varying amplitude, phase and angieabf ar
These multipaths add up constructively or destructively at the receiesicdd the received
signal can vary over frequency, time, and space. These variations ketigely referred

to as fading and deteriorate the link quality. Moreover, in cellular sysf¢o maximize the
spectral efficiency and accommodate more users while maintaining the minguaility

of service, frequencies have to be reused in different cells that areasegaufficiently
apart. Therefore, the desired user's signal may be corrupted by the imedgenerated
by other users operating at the same frequency. This kind of interferencesid catlhan-
nel interference (CCI). As a result, to increase capacity and spefficéency of wireless
communication systems, it is crucial to mitigate fading and CCI.

One of the key technologies to mitigate fading and CCI is to implement anteniya arra



in the system [45, 46, 70, 83, 122]. Antenna arrays can be employed at the transmitter, or
receiver, or both ends. With an antenna array at the receiver, fading cadgused by diver-
sity techniques, i.e., combining independently faded signals on different antéanhase
separated sufficiently apart. If antennas receive independently fadedssigmalinlikely
that all signals undergo deep fades, hence, at least one good signal can be rédeired.
common diversity schemes are selection combining (SC), equal gain combiE®B1Q) (
and maximal ratio combining (MRC). To reduce strong interference, appremoatbin-
ing weights can be chosen to maximize the signal-to-interference-plus-abs€SINR),
i.e., enhance the desired signal and suppress the interfering signals, as vegllice fad-
ing . If the desired and interfering signals are highly directional, the aedation pattern
may form a beam, i.e., beamform, to the desired user and null the inter&agimajs.

Recently, antenna arrays located at transmitters have attractedimeigst. Trans-
mit diversity was first introduced by Wittheben in [123], and later populargedarokh's
space-time codes [113]. Similar to the receiver-based beamforminggihitmnel informa-
tion of the desired and cochannel users is available at the transmittemitdoeamforming
can be used to enhance the signal-to-noise ratio (SNR) for the intended usemamaeni
the interference energy sent towards cochannel users [32,41,92].

To meet the requirement of very high data rates for wireless Internet artadnadia
services, multiple antennas at both the transmitter and receiver haveptmmsed for
fourth generation broadband wireless systems [73,80,96]. In a rich scattevingrenent
where channel links between different transmitters and receivers fageeimdiently, it was
shown that, by decomposing a multiple-input multi-output (MIMO) channel into severa
single-input single-output (SISO) subchannels, the Shannon's information capacity of a
MIMO channel increases linearly with the smaller of the numbers of tratisgnand re-

ceiving antennas [35, 114]. To realize this high capacity, various spaceramatission



schemes were investigated, including space-time trellis coding [112,118¢-8p@e block
coding [8, 110, 111], and space-time differential coding [57,58]. Moreover, considerabl
work has been conducted to exploit the MIMO capacity using the already highly deglelope
one-dimensional coding and decoding techniques. As a result, different layerediapace
architectures were proposed, including Diagonal- [34], Vertical- [47], and Tudd-Bbs
Layered Space-Time [99], also known as D-, V-, and T-BLAST, respalgtivState-of-
the-art research of MIMO systems was reviewed in [42]. Information@agpaf MIMO

channels under different environment has been summarized in [48].

1.1 Motivation and Thesis Overview

Most of the current studies on MIMO systems assume that the interference spladidly
and temporally white. For example, information channel capacity of a MIMOuimder
both spatially and temporally white interference was assessed in [35chbfhel estima-
tion was studied in [52,71,77,100,109] and data detection was investigated in [36,47,55]
Spatially white interference means that the interfering signals on eifteeceiving anten-
nas are uncorrelated with the same power. Temporally white interfenempdes that in
the decision statistics for symbol detection, the interfering signals are netetted from
symbol to symbol with the same power. However, in cellular systems, teeenénce
may be both spatially and temporally colored. The spatial correlation caxpltesreed by
the simple case of one interferer: the interfering signals at differenhaaseare different
scaled versions of the same signal, hence they are correlated. The terop@iation may
be caused by the intersymbol interference as we will explain more in the.thesis
Recently, MIMO systems with spatially colored interference havaetttd interest.

Information channel capacity of MIMO systems under spatially colored irmante was



studied in [15, 19,30, 31]. Performance analysis of outage and error rate for MIM&rss/st
with cochannel interference was given in [61]. In this thesis, we mainlydan MIMO
systems under both spatially and temporally colored interference in slbfadiag.

In Chapter 2, background on data detection algorithms for MIMO systems is first re-
viewed. The MIMO channel model used in this thesis is then described. Key pespefti
the Kronecker matrix product used extensively in the thesis are also reliewe

We begin with a discussion on diversity systems, which are single-inputgteatiuitput
systems (SIMO), in Chapter 3. It is well known that receiver diversay combat fading
and, to some extent, reduce CCI. A comparative analysis of outage performande@r M
EGC and SC in fading and CCI has not been attempted in the literature. IneClgpt
we first derive an exact outage probability expression for EGC, then provide §ti-ana
cal comparison on outage probability for MRC, EGC and SC with Rayleigh fading in a
interference-limited environment.

Since the Shannon's channel information capacity can be greatly increased by-empl
ing multiple transmitting antennas, we move to describe MIMO systentShapter 4, we
present new algorithms for joint channel estimation and data detection undeljpaiia
temporally colored interference. The impact of spatially and temporallyred interfer-
ence on system performance are assessed by Monte Carlo simulations.

Chapter 4 focuses on the processing at the receiver-side and assumes thatthé-t
ter has no knowledge of the channel matrix and interference statistics. teCla we
assess the potential impact of matrix channel knowledge as well as intedestatistics
at the transmitter on channel capacity under spatially and temporally @i@ddahterfer-
ence. Assuming the receiver has perfect knowledge of the channel matrix arfereree
statistics, we derive the channel capacities for different combinations eflkdge of the

channel matrix and interference statistics at the transmitter.



In Chapter 6, we consider joint processing at the transmitter and receigeadtical
systems. With the estimates of channel matrix and interferencetistatis Chapter 4, we
propose an adaptive modulation scheme to increase the system spectralcgtfddie also
investigate the practical issue of channel estimation error and feedbactzagtian error
for MIMO adaptive modulation.

Chapter 7 concludes this thesis and suggests future work.

1.2 Thesis Contributions

The primary contributions of this thesis are briefly summarized as follows.

e An exact outage probability expression is derived for EGC in Rayleigh fadirtg wit
multiple interferers by accurately calculating the interference paivére output of
the combiner. Using this exact expression, the accuracy of the approximaterinterfe

ence power calculation in the existing literature is assessed.

e Outage performances of several diversity schemes, including a pracication
of MRC that does not require signal-to-noise ratios at different antennas, EGC and
SC, are compared analytically for an interference-limited environimemRayleigh
fading channel. The analysis provides insight into performance of diversity ssheme
in the presence of CClI, as well as assesses the impact of cochannel entedieer

distributions.

e Performance of a MIMO user in a multi-user environment is considered. An algo-
rithm is proposed to jointly estimate the channel and spatial interferencsatoyn
matrices for the desired MIMO user under spatially and temporally colorted-i

ference. By exploiting temporal interference correlation, a multi-vesyanbol data



detection scheme is developed. The benefits of taking temporal and spati@rinterf
ence correlation into account for channel estimation and data detectioraduated

through simulations.

¢ Assuming that the receiver has perfect knowledge of the channel matrix and inter
ference statistics, information capacities of MIMO channels are elé@for different
combinations of knowledge of the channel matrix and interference statistibe at t
transmitter under both spatially and temporally colored interference. Trieditseof
taking the knowledge of the channel matrix and interference statistics ataitne t

mitter are assessed.

¢ With the channel matrix and interference statistics estimated aet®éver, we pro-
pose an adaptive modulation scheme to increase the system spectral gffiCiemc
impact of channel estimation error and feedback quantization error on adapiive m
ulation is evaluated for MIMO systems. Rate-distortion theory is usealssess
the achievable performance when feedback on channel information, from receiver

to transmitter, is quantized.



Chapter 2

Background

In this chapter, we first review the definition of circularly symmetric carpbaussian
random vectors. Data detection algorithms for multiple-input multiple-outpuM@)i
systems and the MIMO channel model used in this thesis are then describedly, Fipal

review key properties of the Kronecker matrix product that will be used in |&ipters.

2.1 Circularly Symmetric Complex Gaussian Random Vec-
tors

In this thesis, since we deal with the circularly symmetric complex &angsandom vector

quite often, we review its definition [86].

Definition 1 A complex random vectot is circularly symmetric Gaussian with mean

and covariance matriR if

R(x

(1) the elements ik = ) , WwhereR(-) and3(-) denote the real and imaginary part,
3(x)

respectively, are jointly Gaussian;

(2) E{x} = p;



RR) —S(R
@ B0 ) x— '} =R, ande {(x— £ x— £} =3 | 0 T | here
3(R) R(R)
T andT denote conjugate-transpose and transpose, respectively.
We denote the circularly symmetric complex Gaussian random veckor &V (p, R),

i.e., a random vector with probability density function (PDF)

1

J(x) = mexp{—u—mm—l(x—m}

where N is the dimension of the random vector. Note that only for the circularly sym-
metric complex Gaussian random vector can its PDF be completely spdwifted mean
vectorp and the covariance matriR. In general, the PDF of a complex Gaussian ran-
dom vector is determined from the mean vegqioand the covariance matrix of, i.e.,
E{(x— E[%))(x— E[x])"}.

The random vector degenerates to the random variable if the dimension of the vector,
N, isreduced to 1. Ift = x1 + jx2 is a circularly symmetric complex Gaussian random
variable with meam and variance?, then¥(x) = i, andz; andz, are independent joint

Gaussians each with varianeé/ 2.

2.2 MIMO Data Processing

Consider a MIMO link withV; transmitting andV, receiving antennas, denoted a§, N, ).

The baseband model of the received signal vector is expressed as [47]
y=Hx+n (2.1)

whereH is the N, x N, channel matrix, and is the V; x 1 transmitted signal vector. The
N, x 1 noise vecton is assumed to be circularly symmetric complex Gaussian with zero

mean and covariance matfx



Assume that the receiver has perfect knowledge of channel nkataixd spatial noise
covariance matriR. If the transmitted signal is chosen from the signal constellation with
equal probability, the optimum receiver is a maximum-likelihood (ML) recastivat selects
the most probable transmitted signal vectogiven the received signal vectgr More
specifically, the optimum ML receiver selects a transmitted signetioveéhat maximizes

the conditional PDF

Pr(y|x) = mexp{ — (y—Hx)' R (y—Hx) }. (2.2)

Assuming the signal transmitted on each antenna is drawn frabh-any signal constella-
tion, there aré// M possible choices of the transmitted signal vector. The optimum receiver
computes the conditional PDF for each possible transmitted signal vector, laots ske
one that yields the largest conditional PDF. Hence, the complexity of the optimum ML
receiver grows exponentially with the number of transmitting antenkias,

Due to the high complexity of the optimum receiver, various suboptimal recewech
yield a reasonable tradeoff between performance and complexity have bestigeesl.
Examples of nonlinear suboptimal detectors are the sphere detector [27] and detectors
which combine linear processing with local ML search [69]. The linear suboptiexa
tectors usually used in practice are zero-forcing (ZF) and minimum nepasarad error
(MMSE) detectors [36, 44, 47]. Data detection for MIMO systems is simdanultiuser
detection for synchronous users [117], where in MIMO systems we consider one user hav-
ing multiple transmitting antennas and in multi-user detection we considéipieulsers
each having one transmitting antenna. The ZF and MMSE MIMO detectors aredkim t
decorrelating and MMSE multiuser detectors, respectively.

In the following, we briefly derive ZF and MMSE detectors which include thealete
algorithmsin [36,44,47] as special cases of spatially white noise. We assatig & N,..

Note that these two detectors are valid even for non-Gaussian noise.
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2.2.1 Zero-forcing detector

With Gaussian noise, the best linear estimate @€ the value ofx that maximizes the

conditional PDF in (2.2), which is equivalent to minimizing the term
L(X) = (y—Hx)' R~ (y— Hx). (2.3)
Settingd L(x)/0x = Oyields the soft estimate
%zF = (HIR™'H)"'HTR ly. (2.4)

The detected signal vector is obtained by quantizing the soft estikpate® the nearest
value in the signal constellation.

Substituting (2.1) into (2.4), we obtain
%zg = X+ (HIR7TH)"!HTR !n. (2.5)

From (2.5), we observe that, regardless of whether the noise is Gaussian dfista
zero-forcing solution, completely nulling out signals from undesired transsnittéence,
Xzr IS an unbiased estimate »f It can be shown that the covariance matrix of the estima-

tion error is
E{(X—XzF) (X = Xz¢)'} = (HIRT'H) ", (2.6)

For spatially white noise witR = o1 ., the soft estimate in (2.4) is reducedig: =
(HTH)~'HTy [47], where(HTH)~'HT is the pseudo-inverse ¢f if the rank ofH equals

N, [50].

2.2.2 MMSE detector

We seek linear estimate= Ay such that the mean square error (MSE)

J(A) = tr{E[(x—Ay)(x—Ay)T}} 2.7)

10



is minimized. Without loss of generality, we assume that the transmittglsvector is
zero-mean and with covariance matfiXxx'} = | y,. Itis also assumed that the transmitted
signal vector is independent of the noise vector, igxn’} = 0. Substituting (2.1) into

(2.7), the MSE becomes
J(A):tr{INt—AH—HTAT—l—A(HHT—l—R)AT}. (2.8)
By settingd.J(A)/0A = 0, we obtain

A = HT<HHT+R>_1 (2.9)
_ <|Nt-|-HTR_1H>_1HTR_1 (2.10)

where the second equality is due to the matrix identity in [78, p528, D.11]. Hencspfthe

MMSE estimate is
-1
XmSE = <|Nt + HTR—1H> HIRly. (2.11)

Again, the detected signal vector is obtained by quantizing the soft estipatg: to the
nearest point in the signal constellation.
Substituting (2.9) into the matrix of the trace operation in (2.8), we obtaindliarc

ance matrix of the estimation error

—1
E{(X_XMMSE)(X_XMMSE)T} = ly,—HI <HHT—|— R> H
—1
= Iy~ (I +HIRTH)  HIRH
1 —1

_ (th+HTR— H> (2.12)
where the second equality is due to the alternative expressian(efH  +R)~! in (2.10),
and the last equality comes from the fact that = (1 y, + HIR™'H)~ (1, + HIR™'H).

By substituting (2.1) into (2.11), it is easy to see that soft MMSE estimgigse IS a

biased estimate of.

11



For spatially white noise witlR = | ;. , the estimate in (2.11) is reducedXQmsg =

(Iy, + HIH) "' Hiy [55].

2.2.3 Zero-forcing and MMSE detectors with ordering

Analogous to the successive interference cancellation in multiuser idetgt17], to en-
hance the receiver performance, successive symbol cancellation may beysed with
ZF or MMSE MIMO detection. When successive cancellation is applied, ther ande
which the components of the transmitted signal vector are detected is impiaortHrg
overall performance of the system. It is shown that post-detection sigmadise ratios
(SNRs) should be used as the criterion for signal ordering [36]. Hence, assumaiogn-
ponents of the transmitted signal vector have the same power, we should fictttbete
signal component which has the smallest estimation error variance. Witstineation
error covariance matrices in (2.6) and (2.12), the ZF and MMSE detectionitiims with

ordering are described as follows [55].
Step 1 Initializationk =1, Hy =H, X, =X, Y =Y.

Step 2 Determine the ordering. Calculate the estimation error covariaatrix P, =
(HIR™"H,)~" for ZF detector oy = (I y,41_ +H R 'H;)~! for MMSE de-
tector. Findm = arg@]jnpk(j,j) wherePy(j,7) denotes thegth diagonal element
of P;.. Hence, thenth signal component aof;, has the smallest estimation error

variance.

Step 3 Calculate the weighting matAx = (H,iR‘lHk)—lH,iR—1 for ZF detector oA, =
(I v 41—k + H,iR‘lHk)—lH,iR—1 for MMSE detector. Thenth element ofx;, is
estimated ag}’ = Q(Ax(m,:)yx) whereAy(m,:) denotes thenth row of matrix

A, andQ(-) denotes the quantization appropriate to the signal constellation.

12



Step 4 Assuming the detected signal is correct, remove the detectetl fexgndhe re-
ceived signaly, = Vi — 2'Hy(:,m) whereHy(:, m) denotes thenth column of

Hy.

Step 5Hy,4 is obtained by eliminating the:th column of matrixd;. X; is obtained by

eliminating themth component of vectox;,.
Step 6 Ifk < Ny, incrementt and go to step 2.

Recall that the ZF and MMSE detection without ordering are described by (2.%24drid,
respectively.

Performances of ZF and MMSE detectors are compared in [9](faria MIMO system
with QPSK modulation. Itis shown that, at a bit error réie®, compared to ZF detection,
MMSE detection has a 3dB gain in SNR when no signal ordering is used and a 8dB gain for
the case of signal ordering. The inferior performance of ZF detection is causkd byite
enhancement, a price paid for completely nulling out signals from undesired tteersmi
Algorithms of ordered ZF or MMSE detectors with reduced computational complexdy

improved numerical robustness have been investigated in [55] and [127].

2.3 Channel Model

To simulate the flat fading MIMO channel, we use a Ricean model [30, 93]. The channel
matrix has two components: a deterministic specular (line-of-sight) componeiat an-
dom scattered component. With the Ricdasfactor defined as the ratio of deterministic-

to-scattered power, the channel matrix is given by

K 1
H= H*P —H*c. 2.13
K+1 + K+1 ( )

13



2.3.1 Specular component

The specular component is given by
H = a (0, )a(00)" (214)

wheref; andé, are the angles of departure and arrival of the specular signal at the trans-
mitter and receiver, respectively. The array response vectors ggdbwer and transmitter
area,(-) anday(-), respectively. For aiV,-element uniform linear array, the array response

vector is given by
af) =[1 exp(—j2ndsind) ... exp(—j2nd(N, — l)sinﬁ)]T (2.15)

whered is the angle between the signal and the normal to the array athe antenna

spacing expressed in wavelengths.

2.3.2 Scattered component

The elements in the scattered componidrit are each zero-mean circularly symmetric
complex Gaussian with cross-correlations determined by factors suaigbsspread at
the base station and mobile, antenna array geometry, and mean direction basigas.

To derive the fading correlations among MIMO channels, the scattering model pcbpps
Jakes [59] is used to provide a reasonable description of the scattering envit@rmend
the transmitter and receiver [94]. It is usually assumed that the molslerisunded by
local scatterers, and that the base station is elevated and unobstrudtezhlogcatter-
ers. In [103], the spatial fading correlation was derived for isotropidesgag (uniformly
distributed scatterers) around the mobile. In [4], the space-time fadimglation of the
general scenario of nonisotropic scattering around the mobile was discussed. tRer ma

matical convenience and simplicity for simulation, the correlation mafrMIMO links

14



may be approximated by a Kronecker product of fading correlation matrices for the an-
tenna arrays at the base station and mobile [103, 104]. The validity of this appraamati
has been studied in [4,22] from experimental measurements.

In this thesis, we adopt the spatial fading correlation presented in [4] dtedmsed-
form expression which is easy to calculate numerically (the expressif®8]j involves
integration). In Fig. 2.1, without loss of generality, we assume that the basmstad
mobile take on roles of receiver and transmitter, respectively. Thedvaisen receives the
signal from a particular direction with an angle spread Denote |j— BS, as the link
between thdth antenna element at the mobile and thie antenna element at the base
station, andy;, as the gain of the link Y- BS, due to scattering. For isotropic scattering
around the mobile and a small angle sprégdhe correlation between link gaing, and

hmg iS [4]

E{hlph;zq} N exp[jcpg cos(apg)]

1/2
x Iy ({ — blzm — c]%qu sinz(ozpq) — 2¢pgbim Asin( oy ) sin(ﬁlm)} ) (2.16)

wherel is the zeroth-order modified Bessel functiép, = 27d;,,, andc,; = 27,, where

d;, andé,, are the antenna spacing in wavelengths; anglgesindj;,,, are shown in Fig.
2.1. Given spatial cross-correlations among MIMO links, we can simutatelements of
H*¢ by multiplying the square root of the cross-correlation matrix with a vectonadé-

pendent identically distributed (i.i.d.) zero-mean circularly symmewmplex Gaussians.

The links from one mobile antenna element to two different base station elearents

highly correlated at angle spreasl= 0, and become uncorrelated asincreases. As
the line-of-sight (LOS) component becomes prominéntfactor increases), the MIMO

channel links become spatially correlated.
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scatterer ring

-

Figure 2.1. Geometric configuration of(3,2) channel with local scatterers around the
mobile user: BS, is the pth antenna element at the base statiopjs the /th antenna
element at the mobild,,, is the antenna spacing in wavelengths betweentieandqth
antenna elements at the base statifypy, is the antenna spacing in wavelengths between

the/th andmth antenna elements at the mobile, ands the angle spread.

2.4 Properties of Kronecker Product

Throughout this thesis, Kronecker product will be used extensively. Its definition apel pr

erties are summarized as follows [75].

e The Kronecker product of two matricés(m x n) andB (p x ¢) is defined as

anB -+ a1,B

AoBE
amB - amnB
whereq;; andb;; are the(z, 7)th element of matrixA andB, respectively, and the

dimension ofA @ B is mp x ngq.
e For matricesA(m x n), B(p x ¢), C(n x r), andD(q x s),
(A@B)(C®D)=AC®BD. (2.17)
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For matriceA(m x n) andB(p x q),
(A@B)f = AT @B (2.18)
For nonsingular square matric&gm x m) andB(n x n),
(A@B) ' =A"1gB™ (2.19)
For square matrice&(m x m) andB(n x n),
det(A@ B) = det(A)" det(B)™. (2.20)

If Hermitian matrice\(m x m) andB(n x n) can be eigenvalue-decomposed\as
U1A1UI andB = U2A2U$, respectively, the’\ @ B can be eigenvalue-decomposed

as

A@B= (U1 ®Us) (A1 @A) (U1 @ Uy)T. (2.21)

17



Chapter 3

Outage Probability Comparisons for Diversity
Systems with Cochannel Interference in

Rayleigh Fading

3.1 Introduction

Space diversity is an effective method to improve the performance of exalolio systems.

In space diversity, the received signals from all antenna branches arelpnapaghted

and combined to combat fading, as well as cochannel interference (CCI) [107]e Thre
commonly used space diversity schemes are maximal ratio combining (MB@3| gain
combining (EGC), and selection combining (SC) [17]. For fading channels with ahly a
ditive white Gaussian noise (AWGN) and no CCI, MRC is the optimal combinihgrse;
however, MRC carries high implementation complexity. The implementatasts for
EGC and SC are much lower than that of MRC, but they are both suboptimal combining
schemes in an AWGN environment. The optimal criterion is defined here inetiges

of maximizing the signal-to-noise ratio (SNR) at the output of the diversity coenpor

equivalently, in the sense of minimizing bit error rate (BER). In the presef cochannel
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interfering signals at the receiving antennas, all aforementioned diwscsiemes are, in

fact, suboptimal. The optimal combining scheme in this scenario is callechampticom-

bining (OC) [16,120], which achieves the maximum signal-to-interference-gise ratio

(SINR) at the combiner outplitTo fully implement OC, however, it is required to estimate

the second-order statistics of interference and noise. In practical sydtarsimplicity or

due to the lack of knowledge of interference and noise statistics, suboptimaleshsuch

as MRC, EGC and SC, may be used instead of OC. However, to the authorksnbesbt

edge, a comparative analysis of relative performance for these suboptimalescimefad-

ing and CCI has not been attempted. Such knowledge can be useful to better understand
the design tradeoffs in practical cellular systems.

We assume that CCI is the primary source of system degradation [43]. Thergéore,
ignore thermal noise in our analysis and consider an interference-limitecdement [6,
21,63,102]. In an interference-limited environment, MRC, which maximizgsub@NR
and whose weights depend on noise powers on antenna branches [17], becomes invalid.
Hence, we consider a variation of MRC, denoted as channel-matched combinirig),(CM
whose weights are given as the desired user's channel vector. In pragdiemhs where
diversity branches are usually assumed to have the same noise powerss MfRGded to
CMC [7]. As aresult, in this chapter, we provide a comparison study, both asadlytand
numerically, on the outage probability for CMC, EGC, and SC with CCI and flaldigh
fading in an interference-limited environment. Our analysis considersbénealy number
of interferers, as well as arbitrary interferer power distributions.

Outage probability is an important performance criterion for mobile systemsiipegr

in the presence of interferers over fading channels. This criterion esgeethe probability

IFor such a system, maximizing output SINR does not necégsarnirespond to minimizing the BER

unless the additive interference has a Gaussian distitouti
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of unsatisfactory reception over the intended coverage area and can b& asedamum
quality of service requirement. In an interference-limited environntéetoutage is de-
fined as the event when the signal-to-interference ratio (SIR) at the conthitpeit drops
below a threshold, i.e., Poyr = Pr{SIR < 3}. Although bit or symbol error rates are more
practical performance criteria, they are hard to calculate in soroerostances. There are
quite a few papers on the analysis of average bit or symbol error rates of disyistieéyns
under fading and CCI [2,3,67,87,101, 118]. However, most of these papers presented ap-
proximate analyses since CCI is explicitly assumed to be Gaussian. Thecal@dation
of bit or symbol error rates under CCI is, in general, very difficult. The difficalises
from the fact that CCI may not be Gaussian. Therefore, we will study outage pribypail
our work.

In previous related work, Brennan [17], in his now classic paper, showed ihtite |
absence of CCl, the outage probability of MRC outperforms EGC and SC for an arbitrar
fading distribution. The relative outage probability performances for EGC anth&&
ever, depend on the exact fading distribution. For Rayleigh fading, EGC has lovageout
probability than that of SC. On the other hand, for a more disperse probability density
function, the opposite is true. With the presence of CClI, an outage probability study for
diversity systems is a completely different problem. This problem hasvexteiuch inter-
est in the past. In [26], Cui and Sheikh studied the outage probability of MRC wittal s
number of interfering signals in Rayleigh fading. This work was later extendedaby A
and Chayawan to an arbitrary number of interfering signals, for both equal amrettiist
terferer powers [1,21]. More recently, Shah and Haimovich provided amalive outage

probability expression for CMC in Rayleigh fading with equal interferer psvwj&d2Ff.

2In [102], the combining scheme which the authors called MRally CMC.
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In [6], Abu-Dayya and Beaulieu studied the EGC outage probability for an intaréer
limited environment with Nakagami: fading, a general model of fading amplitude which
includes Rayleigh fading as the special case:ct 1. In that work, the interfering signal
components are added incoherently across antenna array elements; hence, an approxim
tion occurs in calculating the interfering power at the output of the combiner. dvierg
the analyses in [6] were restricted to equal interferer powers. Imibiik, we compute the
outage probability for EGC using coherent interference power calculation (ahaxal-
ysis) over the diversity branches for both equal and distinct interferer gowée outage
probability for SC was studied by Sowerby and Williamson [106] in Rayleighiligtd
interference. Their work was later extended by Abu-Dayya and Beaulieu §j,and
Sheikh [125] to Nakagamix fading channels. The outage probability of OC can be found
in [38,39,63,87,101,118]

The main contributions of this chapter are: (1) we derive an exact outage probabilit
expression for EGC in Rayleigh fading with multiple interferers by acelyatalculating
the interference power at the output of the combiner. Using this exact expressiassess
guantitatively the accuracy of the approximate interference power catsulaged in [6].
(2) We provide a comparison study, both analytical and numerical, on the outage probabil-
ity for CMC, EGC, and SC with CCI and flat Rayleigh fading in an intenfeeslimited
environment. In particular, we prove that CMC has a strictly lower outaglegility than
that of EGC, and that CMC has an outage probability no greater than that of SC.I&he re
tive performance of EGC and SC depends on factors such as the number of interfierers
the interferer power distribution.

This chapter is organized as follows. In Section 3.2 we describe the sysidei which
takes account of pulse shape, random delay of interfering signals, intersymbda@naned,

as well as both equal and distinct interferer powers. In Section 3.3, weed®w outage
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probability expressions for EGC and CMC. In Section 3.4, we provide analyticajj@uta
probability comparisons for three diversity schemes. Numerical resdtprasented in

Section 3.5.

3.2 System Model

The transmitted signals from the desired and:thenterfering users are, respectively,

+o0
so(t) =PI Y agmlg(t—mT)

m=—0o0

and

+o0
sit)=+/PT Y ailm]g(t—mT)

m=—0o0

whereg(t) is the transmitter pulse respongé¢]’ is the data transmission rate, afdand
P; are the transmitting powers of the desired and:thanterfering signals, respectively.
The transmitter filter is assumed to have a square-root raised-cosiueifi®y response
with a rolloff factorp (0 < p <1) [89]. The data symbols,[m] anda;[m]'s are mutually
independent with zero-mean and unit variance.

Here we show that the power of signa(?) is Ps. The power spectrum density (PSD)

Of s4(1) is [56,89)]
S() = PTLIGUES() = PIG)P

where((f) is the Fourier transform af(t), and S.(f) is the PSD of the data sequence
as|ml,m=—o0,---,—1,0,1,---,00. Since the data symbols in the sequence are mutually
independent and zero-mean with unit variance, it can be showsthat = 1. Hence, the

power of signak,(t) is

[ star=r. [ jra=r,

— 00 — 00
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where the last equality comes from the fact ljldatf) % is a raised cosine W|tyﬁ f) 12df =
1. Similarly, the transmit power of theh interfering signal is;.
Ignoring thermal noise, the baseband received signal vector &t -@bement receiver

antenna array is

=/ P;Tcq Z g(t—mT) —I—Z\/ Tc; Z a;[m]g(t —mT —7;) (3.1)

m=—o00 m=—o00

where L is the number of interfering S|gnals. The delay of itteinterfering signal rela-
tive to the desired uset;, is assumed to be uniformly distributed over the intefoal’).
The channel vectors of the desired and ttieinterfering usersg, andc;'s, are mutu-
ally independent. All channel vectors are assumed to be quasi-static (canstaattime
frame [102]) and to have uncorrelated realizations in different framesfuvther assume
independent Rayleigh fading among diversity branches, i.e., the elementamdc; are
i.i.d. circularly symmetric complex Gaussian random variables (R\i$) zero-mean and
unit variance.

Passing (t) in (3.1) through a filter matched fg¢), we have

L +oo
rue(t) = v/ PsT'Cq Z m]g(t —mT) —I—Z PTc Z ajim]g(t —mT — ;)
m=—o0 =1 m=—o0

(3.2)
whereg(t) = g(t) * g(t) and* denotes convolution. Here(t) is a Nyquist pulse with a
raised cosine spectrum and rolloff facgor
Assuming perfect synchronization for the desired user, sampling the output of the re-

ceiver matched filter at= n7", we obtain

L +oo
=/ PsTCsaqn] —I—Z PTc Z ajimlg(nT —mT — ;) (3.3)
1=1 m=—00

wherez;[r] is the signal intersymbol interference (I1SI) from thb interferer. Note that

no ISl exists for the desired user singe) is a Nyquist pulse. However, ISI exists for the
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interferers due to delays. Since the zero-mean data symbols from differeniérats are

mutually independent, we have
E{zn]} =0
and
E{zn]z}[n]} =0 for i # j,

i.e., z;[n] andz;[r] are uncorrelated far# j. In Appendix A we show that the variance of

z[n] is®
E{|=in]]*} = 1-p/4.
We express, component-wise, the desired and the interfering channel vectors as
Cs = {055716‘765’1 = -OzS7Nrejestr}
and
Ci = {Ozi,w‘jei’l Qg N, e‘jei’N’"}

The phase for the desired user chanfigl,, and the phase for the interfering user chan-
nel, 4, ;, are uniformly distributed ovel0,27). The fading amplitudes, ; andc«; ; are

Rayleigh-distributed as

fala) = Qae_o‘z, a>0.

3.3 Outage Probabilities of EGC, CMC and SC with CClI

In this section we derive an exact outage probability expression for EGC witiaanel

interference in Rayleigh fading. In the case for CMC, a new alternativegyeygeobability

3In [11], it was stated that {|z;[n]|?>} = 1 — p/4 without showing it.
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expression is derived. We will show that this new expression is more suitatdedlytical

comparison. The outage probability of SC is presented for completeness.

3.3.1 EGC Outage Probability

In equal gain combining, the outputs of all the branches are co-phased (with respect to
the desired user signal) and weighted equally. The combining weight vector of £GC i

Wege = [e/%51- - €2% 317 and the output of the combiner becomes

Wlecr[ ] = VET( EGCCS as[n —I'Z Vv BT (W EGcCl zi[n

Ny L Ny
= P,T Za‘” as[n]—l—Z\/PiT Zoz”e]w” 05,5) [n].(3.4)
j=1 =1 j=1 9

It can be shown thad; ; — 0 ;) mod 27 is uniformly distributed ovef0,27) and is in-
dependent ofy; ;. Sincec; ; is Rayleigh-distributedy, ; is circularly symmetric complex
Gaussian with zero-mean and unit variance.

Sincez;[n] andz;[n] are uncorrelated far+ j, the total interference power at the com-
biner output is obtained by adding interference powers from different interférergach
interferer, interference from different antennas can combine either ireathe(see [6],
Eqn. (8b)) or coherently. In the incoherent case, to computétkhmterferer's power,
the channel amplitude of each diversity branch is first squared, and all branehbem
summed, i.e.2ﬁ1a§7j. If the interfering signals arriving at different antennas are mu-
tually uncorrelated, the incoherent calculation is exact. However, thésdaring signals
are, in general, correlated. Thus, the incoherent calculation is only an appt@mamin
the coherentinterference power calculatiophasoraddition of each interfering signal is

2

employed. Hencey, ;e/(%.i=%.), are added first, and then squared, |‘§j Y gij| in
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(3.4). Coherent interference power calculation is an improved model of B@&Cimco-
herent interference power calculation. Numerical results in Sectiodeonstrate cases
where the two interference power calculation methods lead to significdiffdyent outage
probabilities.

The instantaneous SIR at the output of EGC, assuming coherent interference power

calculation over the diversity branches, is
2 2
Ny N,
P <Z]‘:1 ozs,j> <Zj:1 ozSJ)
2 L
L N - —1 M/ N
(1_/0/4)21':1Pi E]‘:1gi,j (1 '0/4)Ez=1/“L /A

whereA; = P,/ P;, fori =1,..., L, is the power ratio of the desired signal to thie in-

SIREGC - (35)

2
terfering signal, ang; = ‘Ejvz’“lgm . Here,g; 1,...,¢; N, arei.i.d. circularly symmetric

complex Gaussian RVs with zero-mean and unit variance, @éé,l ¢i,; 1s also a circu-
larly symmetric complex Gaussian RV with mean zero and variaficelt can be shown

thaty; is exponentially distributed with meak, and its PDF is given by [89]

1
Julw) = e 2 0. (3.6)

We further note that the denominator and the numerator in (3.5) are independent. This is
due to the independence assumption between the channel vectors for the desired and the
interfering signals. This independence property can simplify the ensuing outage fitpbabi
analyses.

Letting X £ " a,; andl £ S5 4;/A, in (3.5), the output SIR of EGC can be

rewritten as SIR. = % The outage probability is expressed as
POUT,EGC(ﬁ) = PI’(SIREGC < ﬁ)

= mu{Pr(X< \/W‘ v)}
- EU{Pr <X < m)} (3.7)
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where

o= (1-1)8 (3.8)

and (3.7) comes from the fact th&tandl/ are independent.

Computation of the outage probability in (3.7) requires the knowledge of the cumulative
distribution function (CDF) ofX'. We recall thatX is a sum of¥, i.i.d. Rayleigh RVs and
no known closed-form expression exists exceptfpr= 2. In [10] Beaulieu derived an
infinite series for the CDF of a sum of independent RVs. Essentially, this inBeites
is a Fourier series. In [115] an alternative derivation was given whiokiged insights
into the uses and limitations of the Beaulieu series. It can be shown thabtieer series

representation of CDF of is [10,115]

Pr(X . 1 =3 qu(nw()) —Jnwox A 3.9
"rodd

2 . .

wherewy = % Ty is a parameter that controls the accuracy of result [2@]«w) is the
0

characteristic function of\, and A is an error term which tends to zero for large.

Assuming/y is large, we omit the error teray in the following analysis.

The conditional outage probability in (3.7) hence can be expressed as

1 X ,
Pr(X<VAl) = ;- _Z %@e—mmo—u

nodd

oo 95 L emimoo BT o (i
_ Ly { #x 0)}, (3.10)

2 n

and the outage probability in (3.7) can be expressed as

too QQ{EU{G_jWO\/ﬁO—U} ¢X(nwo)}
-y — . (3.11)

n=1
nodd

POUT,EGC(ﬁ) =

[N
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In obtaining (3.11), we have used

00 +o0
/0 {%— Z 7¢X(n(‘f’0)e—jnwo\/ﬁ()_u] fu(u)du

n=—0o nmj
nodd
+o0o
=5 > / o nWO) eIV 1 (u)du (3.12)
"rodd

where fi7(u) is the PDF ofU, i.e., we have interchanged the integration and summation.
To justify this interchange, we introduce the following theorem [64, Theorem 15, p.423].
Let {¢,(z)} be a complete orthonormal system for the intewal « < b. Let f(x) be
piecewise continuous far < » < b and letg(x) be piecewise continuous fer < x < x,
wherea < 2y < 9 < b. Let > c,on(z) be the Fourier series of(x) with respect to
{gn(2)}. Then [72 f(x)g(x)dz = Y o [ glx)bn(x)da

In our case, using the substitutigniyu = =, the left-hand side of (3.12) becomes

/0“’ [1_ Z ¢X nwo) _Wox} fU(g )%dw

n=—oo

nodd
Z/Z (i+1)T, [__n_z_:oo Px nwo) —]nwox:| fU(@ >2ﬁ—xd:1; (3.13)
nodd

Since {e™/"wor} (n = 0,41,+2,---) is a complete orthonormal system fdfy < = <

. . 1 +oo  ¢x(nwp) —j AW i
(¢ 4+ 1)T0, the functions; — n=—oc oy et and fu <f3—0> 5. are continuous for

intervaliTy < a < (i +1)To, ands — 372 %ﬁ”o)e—j"wom is a Fourier series, accord-
nod

ing to the above introduced theorem, it is clear that we can interchange theasiamim

Fourier series and the integration. Hence (3.13) becomes

_/(ZH)TO lfU< >—d:1:— Jff / T o nwo)e—J"wofo<%> z—idx}

1

=0 ZTO
nodd
o [(i+é)T0]21 Yoo [(i+é)T0]2 e (o)
0 0 X (nwo o \/ﬁ_u
- 5 du — ————Le oV u)du|(3.14
Z /M ZfU(u) “ Z %ﬂoﬂ nrj fo(u) }( )
1=0 *~ Bo n=—oo 8o
nodd



where (3.14) is obtained through the substitution =2 /3,. Since the series in the square

brackets in (3.14) convergesfé(}zr)lz)/?jz/ﬁo Pr(X < v/Bou) fu(u)du, (3.14) becomes

00 1 400 ooqu(nwo) _jmwoy/Fou
| Shotide= Y [ S e

0

n=—oo

nodd
+o0o o0
1 .
_ 1 Z / QbX(nwO) e_anm/ﬁoufU(u)du
2 0 nmj
n=—0c0
nodd

which is the right-hand side of (3.12). Therefore, (3.12) is valid.
Now back to the expression of outage probability in (3.11). It can be shown that the

characteristic function ok in (3.11) is [89, Eqgn. (2-1-133j]

1w A
dx(w) = {1171 (1;—;—“—) +jﬁwe—w2/4] (3.15)
2 4 2
where; Fi(a;b; z) is the degenerate hypergeometric function defined as [5]
L az (a)yz2? (a)nz"
1F1(ash;z) =1+ 2 + 0),2 +-+ )t +
and
(a)p =ala+1)(a+2)---(a+n—1), (a)o=1. (3.16)

We recall that/ is a weighted sum of, i.i.d. exponential RVs. The PDF df, in the

case of equal interferer powers, = --- = Ay = A, is given by [89, Eqn.(14-4-13)]

Jfulu) = ! . LuL_le_NAr“, u >0, (3.17a)
(L= ()

and in the case of distinct interferer poweks # A ; for « # j, is given by [89, Eqn.(14-5-
26)]

L Ay Ag
Jfulu) = Z — e MY u >0 (3.17b)
k=1

=

4In [89, Eqn. 2-1-133], a minor typo needs to be corrected, 'y'.g/w/?vaze—”2”2/2 should be

—v252/2

J/ 7/ 2voe



where

m=]] ,A" : (3.18)

In (3.11), we rewrite

EU{e_j"WO\/ﬁO—U} = /0 cos(nwo/ Bol) frr(u)du —j/o sin(nwo/ Bol) fr(u)du
(3.19)

In the case of equal interferer powers, by substituting (3.17a) into (3.19), vee hav
Ey {e—jnwovﬁoU}

—]/ sm(nwox/ﬁou) Le Nrudu}
0

2 (0.0]
= L{/ cos(nwo/ P )x 21, —wy e’ dx
0

(=1 (3)
—]/ sin(nwo ﬁox)xZL_le_NArxzdx}
0

1 nzwz F(L—I— > ﬁON nzwg
= F L : 0 r R I S— R 2 T TAA ﬁONT
1 1( 727 AN ﬁo ) .] F(L) nwO\l A €
3 n2w?
Fil1-L;= 93V,
X1 1( 2 A — 5o )}

n2w? 1 1 2,2
= 6_4—1\()60NT{1F1 (——L r woﬁoN)

2 27 4A
.F<L+%> Bo Ny 3 n?w
S S F o 0
Iy ey T 1(1 L 50N>
oL 1 n’wg o BN,
= (L4 )emm N p g - :
NG ( —|—2>e D_op | jnwo oA (3.20a)

where the second equality follows from the substitutica /«; the third equality follows

from [51, Eqn. 3.952(7), (8)]; the fourth equality follows from Kummar transfororafb]
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1F1(a,b,z)=¢€*1F1(b—a,b,—z). To express the resultin a compact form, the last equality
follows from [51, Eqn. 9.240] wheré, (=) is the parabolic cylinder function. We use

nwo

2 2
. . n Wy
Kummar transformation sinee s #o/Nry <% — Ly L 22080 N, ) converges much more

rapidly than, /'y <L, 5= ‘”0 ﬁ0N> in numerical calculation.
Similarly, in the case of distinct interferer powers, by substituting4B) into (3.19),

we have

Ey {e—jHWO\/—ﬁoU}

o0 A
= Z—kwk{/ cos(nwox/ﬁou)e_N_iudu—j/
Nr 0 0

o0

A
sin(nwo/ ﬁou)e_N_l;udu}

k=1
2A o0 A o0 A
= Z kwk{/ cos(nwo/Box)e” m Z:I;d:zj— / sin(nwo ﬁox)e_N_ixzxdx}
o 0 0
L
- BN, 11 nzwg VT Bo Ny
_ IRy ] VT
I;Wke { 1( 2°2 A, BoNy | — 3 5 0\ Th,
I 2 2
_ntwj Nr
= Zwke 8A ﬁONTD_g Jnwo bo : (3.20b)
= 2Ay,

where the second equality follows from the substitutica /«; the third equality follows
from [51, Eqn. 3.952(7), (8)]; the last equality follows from [51, Eqn. 9.240].
Substitution of (3.15) and (3.20) into (3.11) yields the outage probability of EGC for

both equal and distinct interferer powers.

3.3.1.1 EGC outage probability: case ofV, =2

The CDF of a sum of two i.i.d Rayleigh RVs is known [17] [53]. Fér = 2, the conditional

outage probability in (3.7) is

Pr <X < \/60U> 1Pl /gﬁoUe_%ﬁoUerfO/ﬁoTU) (3.21)

where the error function €rf is defined as eft) = % Iy e dz.

31



In the case of equal interferer powers, averaging (3.21) with respectiita)3we have

POUT,EGC,NZ:Z(ﬁ)

L ,rc0
- 1_ —(Bot+% Jul=1 4y
S (3) )
L ,c0 -
()/0 o
A A
- 1_<m%+A> - '<2> Ve
></0 erf(@):pue_@xzdx
_ ( A )L_F(LJF%) 7o ( A )L
0 \2B+A (L) \ Go+A\Go+A

2L [ A\ 1 3. A+0o
— | — Ml L+=L+1; L+ = — 3.22a
rorer () 0 (g e 3-S50 (3229

()

where the second equality follows from [51, Eqn. 3.351(3)] and the substitution/v;
the third equality follows from [51, Eqn. 3.478(1), 6.286(1)] whefg(a,b;c;z) is the

hypergeometric function [5] defined as

o F1(a,byc;2) = Z (a)n(b)n 2"

n=0

(¢)n n!
and(a), is defined as (3.16).
Similarly, in the case of distinct interferer powers, averaging (3.21) vespect to

(3.17b), we have

POUT,EGC,NZ:Z(ﬁ)




Ap+Bgy 2

L L
= 11— T —— — Apmp/m— erf(z)z“e Fo d
Z Ak +200 kzzl : k\/_ﬁo 0 (<) )

Ay,
1‘|‘Z/\k7Tk ﬁo Ak—l—ﬁo) arctan( 1+ ﬁo)

1 T
Ak‘|‘60 2

Go( A+ 50)~ 2] (3.22h)

where the second equality follows from the substitutiea | /Gou /2, and the third equality

follows from [51, Eqn. 3.478(1), 6.292].

3.3.2 CMC Outage Probability

In channel-matched combining, the desired user signal at all diversity braaches-
phased and weighted according to the desired user channel amplitudes. The combining

weight vector is thusv.,c = Cs, and the signal at the output of CMC becomes

W, f[n] = /PsT(clcs)asn +Z\/ (cfei)ziln

The SIR at the output of CMC is

+ 2
P, |cics |Cs|2

SIRouc = - Nt . (3.23)
_ ' . . CsC;
i e B BV w e

2

: fe . :
wherec,| = \/cic,. In [102], it was shown tha% is a zero-mean complex Gaussian RV

with unit variance, and it is independent@f In Appendix B, it is further proved thc’és%

T 2
CsC;
is circularly symmetric. By denoting; as ‘ o we can rewrite the SIR. as

N,
Z] Tl 0‘273

(1—p/4) S mif As

where; is exponentially distributed with unit mean. Sm%éE is independent of,, the

SIR.yc = (3.24)

denominator and the numerator in (3.24) are, in fact, independent.
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Let X = N: o andlU = L: ni/A;. Since X; andU; are independent, the
71=1""s,3 1=1

outage probability of CMC with the outage threshgldan be calculated as

POUT,CMC(ﬁ) =P (% < ﬁO) - /0 le(l'l) /xl/ﬁo fU1 (ul)dU1d$1 (325)

wherefy, (x1) andfy, (u1) are the PDFs ok andUy, respectively. Sincd; is chi-square

distributed, we have [89]

Ny—1 _—z
xy " e 2 > 0.

fx (21) =

L(N:)

As U, is aweighted sum of i.i.d. exponential RVs, we have, in the case of equal interferer

powers [89, (14-4-13)],

AL
fo,(uy) = (L= 1)'u1L_le_A“1, up >0 (3.26a)

and for the case of distinct interferer powers [89, (14-5-26)],

L

Jon(un) =) Agmpe™™ 4wy > 0 (3.26b)
k=1

wherer;, is defined in (3.18).

In the case of equal interferer powers, using [51, 3.351(2)], we have

00 L—ll A k A
up)duy = — (=) zke R, 3.27a
[ o= 25 () az19
and in the case of distinct interferer powers, we have
o0 L A,
//ﬁ fUl(ul)dm:Z?Tke Pot, (3.27b)
F1/20 k=1

Substituting (3.27) into (3.25) and using [51, 3.351(3)], in the case of equal interfever po

ers, the outage probability of CMC is

B NS kN A N
POUT,CMC(ﬁ)_ <ﬁ0‘|‘/\> kz:;) k!(N,«—l)! (ﬁo—l—/\) ; (3.288_)
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and in the case of distinct interferer powers,

L Ny
Pour owe(3) = Zm ( % io Ak) . (3.28b)

It can be verified that (3.28) is numerically equivalent to the outage expressesived
by Aalo and Chayawan [1, (13)-(14)] and another alternative expression deriv@daly
and Haimovich [102, (43)]. However, as shown in Section 3.4, our present CM@eouta

probability expressions are more suitable for analytical outage probability casapari

3.3.3 SC Outage Probability

Selection combining chooses the branch with the largest SIR. Hence, the outad®ljpyoba

of SC can be expressed as [17]

Pom,sc(ﬁ) =P <S|Rsc,1 < 57 Tt 7S|Rs<;Nr < 6) (3-29)

where SIR.; is the SIR for the'th receiving antenna. Since SIR, SIRs,....SIR v,

are i.i.d. RVs, we have
Poursd3) = [P (SIRec1 < 5)]". (3-30)

Without loss of generality, we consider the first antenna branch and write

2
as,l

(1= p/A) iz o? [\

whereaij andozﬁj are exponentially distributed with unit mean. The outage probability of

SIR.; = (3.31)

SC can be obtained from [6], [108][125], for the case of equal interferer powers, as

Poursc B) = [1 - (gaoi A) L

SNote that the SC outage probability expression (Eqn. (19sgmted in [106] is only valid for equal

N,
: (3.32a)

interference powers.
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and, for the case of distinct interferer powers, as

(3.32b)

S
Pounsc(ﬁ) = Lz::l Tk 50 AL

3.4 Analytical Outage Probability Comparisons

3.4.1 Outage Probability Comparison for CMC and EGC

In this section, we use two methods to show that CMC has a strictly loweg@piaba-

bility than that of EGC. We first rewrite the output SIR expression of CMC iR4Bas
NZ] laS] NZ] laS]

=) N/ (1= p/4) S v/ A

wherey; = N,n;. Sincey; is exponentially distributed with unit meamn, is exponentially

SIRCMC —

(3.33)

distributed with meanV, . Comparing (3.33) with (3.5), we immediately recognize that the
denominatorg; = (1 —p/4) El Lvi/Ai in (3.33) and, = (1 —p/4) EZL:lMi/Ai in (3.5)

have the same distribution. We write the outage probabilities as

Ny Ny
POUTCMC(ﬂ)Pr{eraz7j/§1<ﬁ} /Pr{zaz,j<ﬁ§/Nr}f§1(§)d§ (334)
J=1 J=1

and

N, : N,
POUT,EGC(ﬁ) = Pr (Z as,j) /§2 <Py = /PI’ { Zas,j < \/E} fﬁz(f)df (335)
=1

since the denominator and numerator are independent in (3.33) and (3.5).

We now provide a geometric interpretation to explain that CMC has a lower condi-
tional outage probability, i.el?r{zj o7 < BEIN, } < Pr {E;V:Tﬂs,j < \/[3_5} This
geometric argument is, in essence, same as the one used by Brennan [17]. tHaxgeve

emphasize, the key difference is that the CCI is not considered in [17] bunhitligdied in
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» 051

N

Figure 3.1. Regions of integration for the conditional outage probability of CMC and EGC.

our study. ConsideN, = 2, as shown in Fig. 3.1, for CM@r <oz§71 +ai, < 65/2) is ob-
tained by integrating the joint density function®f ; anda;, » over the interior of a quarter
circle, while for EGC,Pr (ozs,l +as2 < \/[3_5) is obtained by integrating the same density
function over a triangular region. Since the integration region for CMC is smi@an that
for EGC, it is obvious that forV, = 2, CMC has a lower conditional outage probability.
For N, > 2, by integrating the joint density function ef, 1, ..., a, y, Over a space o, -
dimensions, by the same arguments, it can also be shown that CMC has a low&onahdi
outage probability than that of EGC. Upon averaging the conditional outage probability
with respect to the PDFs @f and¢; in (3.34) and (3.35), since PDHg, (¢) = f¢,(§), itis
clear that the outage probability for CMC is strictly lower than that for EGC

We can also use the Cauchy-Schwarz inequality [54] to prove that CMC has & lowe

outage probability than that of EGC. We rewrite (3.34) and (3.35) as

Ny
Pourene( ) = /PI’ {Nr Zaij < ﬂf} f&(f)df
=1

and

N, 2
POUT,EGC(ﬁ) = /Pr (Z as,j) < B¢ fﬁz(f)df-
j=1
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By applying the Cauchy-Schwarz inequality, we have

N, : N,
(Zl . ozSJ) < N, Zozij.

=1

Since PDFsf¢, (&) = f¢,(£), we havePourenc(3) < Pouresc( 3), Where equality is achieved
when N, = 1 (single antenna). When, > 1, the outage probability for CMC is strictly
lower than that for EGC. We remark that this conclusion is true for arlitirgerferer

power distributions.

3.4.2 Outage Probability Comparison for CMC and SC
3421 L[ =1case

We first consider the case of one interfering signal. This approximates the basethe

system has one strong dominant interfering user. By seftiagl in (3.28a) and (3.32a),

()
L:1_ Bo+ A '

Therefore, the outage probabilities for CMC and SC are, in fact, the samieefaase of

we obtain

POUT,CMC(ﬁ) = POUT,SC(ﬁ)

L=1

one interfering signal.

An alternative way to show this equality is to observe that,/fct 1, in the denom-
inators of (3.24) and (3.31)}; = ni/A1 andY; 2 ail//\l have the same distribution.
Note thatY; andY; are exponentially distributed with meanA;. For CMC, the outage

probability can be calculated as

Ne 02
Pr(SIRwc < 3) = Pr<27%1a”<ﬂo)
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Ny 2
oo
= EO{s,l,n',Ozser {PI’ (}/1 > %) }

Aq Ny 2
- E ¢ By 2=
Xs 1y, Xs Np

A VY
= {E%1 [e B 1]} (3.36)

where the third equality follows the fact tha&i is exponentially distributed with mean
1/A; andPr (Y] > y) = e~1¥; the last equality is due to the fact that:,---,a, v, are

i.i.d. RVs. For SC, the outage probability can be calculated as

o? N
P(SIRc< ) = [Pr (T; < ﬁ())]

2 Nr
as,l
A MY
_ {Eas,l [e % 1” . (3.37)

Comparing (3.36) to (3.37), we have that, whee- 1, the outage probabilities of CMC

and SC are identical.

3.4.2.2 L>1case

When the number of interfering signals is greater than one, we prove that, foriequal
terferer powers, the outage probabilities for CMC is smaller than those dF&Ulistinct
interferer powers, our numerical results suggest that CMC still outperf®Gwghen’. > 1.

To prove Pour evc(3) < Poursd3) In the case of equal interferer powers, we need to

show that, from (3.28a) and (3.32a),

o \VE kN1 A N AN
(ﬁo+A> 2, 1) <50+A> < 1‘<50+A>

for L > 1 andN, > 1. Before proving this result, we introduce two lemmas.

Ny

(3.38)

39



Lemma 1 For a positive integerV, and a non-negative integér,

(3.39)

b (Ny +]—1 (N, +R)!
Z i NE!
J=

Proof: We prove Lemma 1 by induction. Clearly, (3.39) is true foe 0. Assuming

(3.39) holds fork, we shall show that the expression holds#er 1, i.e.,

%(Nr—l-j—l)!_(f\fr—l-k—l—l)! (3.40)
= (N, =130 N k1) '
To show this, we expand the left side of (3.40) as
’il(zvrﬂ'—l)! B z’“: N+J—1 (N, +k)!
= (N, —1)l5t p (Nr—l)!(k+1)!
B (N +k) (N, + k)
N, 1E! (N, = DI(k+1)!
(N +k+1)!
T ONM(E+1)
Therefore, (3.40) holds. By induction, we have Lemma 1. |

Lemma 1 can also be found in the exercise of [116, pp. 212] where no proof is given.

Lemma 2 For positive integerd. > 1 and N, > 1, we have

(N+k )

N _1)%’ ¥ 4 higher order terms (3.41)

<1+x+---+xL‘1>N’“—Z

k=0
Proof: We prove Lemma 2 by induction. It can be shown easily that (3.41) is true for
N, = 2. Now assuming (3.41) holds, we need to show that the expression holds for,

i.e.,

Ny +k
i Z %x + higher order terms (3.42)
k=0 "

We write the left side of (3.42) as

(1—|—$—|—---—|—$L_1)NT+1
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= (1-|-:1?-|----—|—:1;L_1)(1_|_;1;_|_..._|_xL—1)Nr

_ Ny +E—1)! (N, + L —2)! _
- (1 L1<1 A (—k L=1
L a7 (N, L—1)"
+ higher order term)s
(Ny+75-1) (Ny —1
= 1+ (N +1D)a+- +Z+—J) kg Z “ L1
J=0 =0

+ higher order terms

Applying Lemma 1 in the last expression, we have (3.42). By induction, we have Lemma
2. |

From Lemma 2, it follows that, far > 0, N, > 1, and/l > 1,

(Ny+k—1
(I+a4-- gl N’” > Z—I__—l)’k')xk (3.43)

Denoting[ﬁ by x, for the case of equal interferer powers, we rewrite the outage

probability for CMC as

L—1
N, +k-1)!
POUT, CMC(J?) = (1 — J})NT Z —((N — 1)%') $k7 (344)
o r k!

and the outage probability for SC as

Ny
POUT,SC(J?) = <1 - $L>
(3.45)
= (1—:1;)N’"(1—|—:1;—|—...—|—:1;L_1)N’"
where( < x < 1 (since both3y, and A are both positive). Now comparing (3.44) and
(3.45) and using (3.43), we immediately obtain the inequality in (3.38), that isutage

probability for CMC is strictly lower than that of SC whén> 1.

3.4.3 Outage Probability Comparison for EGC and SC

A general analytical outage probability comparison of EGC and SC in interfeieddé-
cult. As shown in Section 3.5, the relative performance of EGC and SC depenastorsf

such as the number of interferers and the interferer power distribution.
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3.5 Results and Discussions

In this section, in addition to assessing the accuracy of incoherent ilectepower cal-
culation for EGC in [6], we make quantitative comparisons of the outage probabilitie
for CMC, EGC, and SC with cochannel interference in a Rayleigh fading chandedra
interference-limited environment. Outage probabilities for finite SNRRsalo simulated.
The outage probabilities for EGC using incoherent interference power calcuéagon
obtained from [6, (16)] by specializing the Nakagamifading channels to a Rayleigh
fading channél In obtaining our numerical results for the outage probabilities of EGC
in (3.11) using coherent combining, we choose the pefipih the range of 40 to 80.
It was found that typically 64 or 128 terms in the series enable an accuraidy ®fto
be achieved. Unless otherwise specified, all EGC outage probabilities areenbtesing
coherent interference power calculation . We use (3.28) and (3.32) to compute the outa
probabilities for CMC and SC, respectively. All outage probabilities aregqdain normal
probability papers [65, Appendix 2B]. In obtaining the results, we set the rollofbfac

p=0.

3.5.1 Coherent and Incoherent Interference Power Calculations for

EGC

The concept of coherent and incoherent interference power calculation over ¢nsitgliv
branches for EGC has been introduced in Section 3.3.1. Here, we compare théctwo ca

lation methods analytically for the case of one interferer. With the incoharemnterence

6In [6], a minor typo in (16a) needs to be corrected, i, ,is to be substituted with .
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power calculation, the SIR at the EGC output becomes

2
A N
1—p1/4 <Zj=1 aSJ) K
SIReGC incoherent N 3 = CT (3.46)
Ej:l as,j E

A Ny 2 A N, .
where we have: = I_Apl/4 <2j:10é57]‘> and¢, = >3 7 aZ ;in (3.46). It can be shown

straightforwardly that; has a chi-square distribution withV, degrees of freedom and its

PDF is given by

1
['(Ny)

pC1(C1) = §1 rlemtn (3.47)

With a coherent interference power calculation, the SIR at the output of EGG.5) (

becomes

2
A1 <ZN7‘ o >
1—p/4 J=1""5J K
SlREGC,coherenF 2l i (3-48)
H1 H1

where i is exponentially distributed with meaN, and its PDF is given by (3.6). We
note that the numerators in (3.46) and (3.48) are identical. For a given outage threshold
(3, the outage probabilities for incoherent and coherent interference power daltale,
respectively, given by, {Pr(¢; > x/3)} and E, {Pr(u1 > x/3)}. For practical appli-
cations, the low outage probability region is of interest, i.e., small vadfigs and it is
sufficient to compare the tail probabilities ¢f and ;. Fig. 3.2 plots the PDFs afy
(incoherent calculation method) and (coherent method) for four antennas and one inter-
ferer. By comparing tails, it is clear that in the low outage probabiligyae, the coherent
interference power calculation yields a higher outage probability.

Figs. 3.3 and 3.4 compare outage probabilities using the incoherent and coherent in-
terference power calculations for EGC. Fig. 3.3 plots the outage probabibtids £ 1
interferer and forV, = 1,2, and 4 antennas under equal interferer powers. As shown, for

the trivial case ofN, = 1, as expected, both calculation methods give the same outage
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Figure 3.2. Probability density functions gf and(; for L = 1 interferer andV, = 4

antennas.

probability. When/N, > 1 antennas and for low outage probabilities, the coherent inter-
ference power calculation method predicts a higher outage probability. In othds veor
outage analysis using incoherent interference power combining over the dibeesithes
can underestimate the outage probability. For exampleyfot 4, at a 0.01 outage proba-
bility level, the incoherent interference power calculation overessithe output SIR by
about 1.5 dB. Similar observations can be made in Fig. 3.4 for a fixed number of antennas
(v, = 4) and different numbers of interferers, where we note that the outage performance
difference increases between these two interference power catcutagithods as the num-
ber of interferers decreases.

To study the case of distinct interferer powers, we define the ratio of sigmadrto

average interference power as

P,
Awg(dB) = 101og g ———————.
(/L) 3 b
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nas. The interference power vector foe= 2 is [0.1,0.9].

Denote the normalized interference power vectoq BY(q1, ¢z, - - . , q1], whereZZ»L:1 g =1.

Giveng; andA..4, we can calculate theh signal to interference power ratig as

P,
Ai(dB) = Z(dB) = Aquy(dB) — 101og,o( Las).

7

In Fig. 3.5, we compare the Monte Carlo simulation of EGC outage probability using
(3.5) with the analytical outage probability using the new coherent interferencer paiv
culation method for the cases of both equal and distinct interferer poweriofdsisthe

analysis and simulation results agree.
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3.5.2 Outage Probability Comparisons For CMC, EGC and SC

Fig. 3.6 plots the outage probabilities for CMC, EGC, and SC against the outage tdreshol
(3 with four diversity branches and equal interferer power(10 dB) for . = 1,2, and6
interferers. Fig. 3.6 shows that the outage probabilities for all divershtgraes increase
with an increasing number of interferers. We further confirm, as shownatiobe3.4.1,
that the outage probabilities for CMC are smaller than those of EGC in all cassidered.
However, the improvements of CMC over EGC are small. For exampléyfef 4, L =2
and at 1% outage probability level, the corresponding output SIR of EGC and CMC are,
respectively, about about 3.5 dB and 4.5 dB. Therefore, with a four-elemewt trea
advantage of CMC over EGC is only 1 dB. We further observe that this 1 dB impevwem
is approximately the same over a wide range of outage probability levels anénsitige
to the number of interferers. Fig. 3.6 also indicates that the outage probalmhtieMC
are smaller than those obtained using SC, except that, in the special casariédeeer,
these two diversity schemes yields the same outage probability. The impnteeoi CMC
over SC, however, increase quickly with an increasing number of intestere

Fig. 3.7 compares the outage probabilities of CMC, EGC, and SC with three inter-
ferers and equal interferer powers £ 10 dB) for N, = 2 and4 diversity branches. As
shown, CMC outperforms EGC and SC. However, when the number of antenna branches
decreases, the performance differences among three diversity schemesigmificant.
For example, for a dual branch receiver, the improvements of CMC over EGSQ@iadle,
respectively, 0.5 dB and 0.7 dB. We remark that in the case of equal itegdewers,
changing the power ratia simply causes the outage probability curves in Figs. 3.6 and
3.7 to shift horizontally.

Figs. 3.8 and 3.9 study the impacts of distinct interferer powers on the outage proba-

bilities for CMC, EGC, and SC. WithV, = 4 diversity branches, Fig. 3.8 compares the
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outage probabilities fof. = 2 interferers with a highly unbalanced interference power vec-
tor [0.1,0.9] and for L = 6 interferers with a more evenly-distributed interference power
vector[0.05,0.1,0.15,0.22,0.23,0.25]. In both cases, CMC outperforms EGC and SC. The
relative performance for EGC and SC, in fact, depends on the interferene pewtor.
For six interferers, Fig. 3.8 shows that EGC outperforms SC. This isasintailthe case of
equal interferer powers in Fig. 3.6. For two interferers, however, E<G@ferior to SC.
This is in sharp contrast to the case of equal interferer powers. It is dine tiact that
interference power vectdd.1,0.9] represents the case of a strong dominant interferer, and
SC performs almost as well as CMC for this scenario. Witk 3 interferers and inter-
ference power vectdf.1,0.2,0.7], Fig. 3.9 compares the outage probabilities ior= 2
and4 diversity branches. Comparing to the case of equal interferer powers i8.Fighe
performance difference between EGC and SC is smaller. This is, agaim theedresence

of a dominant interferer.

3.5.3 Finite SNRs

In the presence of noise, it is difficult to obtain an analytical outage expreksi&@GC
which enables accurate numerical calculation. Therefore, we use Montestatllation

to obtain the outage probability curves. Assuming that all antenna branches haamthe s
noise powers, Figs. 3.10 and 3.11 show the outage probabilities of’ CE&C and SC

at different SNRs for four antennad/( = 4), one interferer {, = 1) and equal interferer
powers (\ = 10 dB). We observe that, for one interferer, as expected, SC outperforms EGC
at high SNRs, but may not outperform EGC at lower SNRs. To investigate luzelg

the analysis of an interference-limited environment holds for finite SNRgongare the

L =1 curves in Fig. 3.6 to those in Figs. 3.10 and 3.11. We note that the performance of

’In this case, CMC is equivalent to MRC.
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CMC and EGC is within 2 dB at low SNR (10 dB) and almost the same as that e thg
the interference-limited analysis at higher SNR (20 dB). The interferbmited analysis

of SC is less accurate for finite SNRs.

3.6 Conclusions

In this chapter, a new outage probability expression for EGC, using the exacernterf
ence power calculations, has been derived for an interference-linmt@dement and flat
Rayleigh fading. With this new analysis, we assess the accuracy of thengxiséthod
which calculates the interference power approximately. The numeriadtgethow that
with four receiving antennas, as much as 1.5 dB difference in output SIR of EGCroembi

may exist at the same outage probability. Hence, the existing method caro leaerly
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optimistic outage performance prediction.

We have analytically compared the outage probabilities for channel-matchedaogbi
(CMC, a practical variation of MRC that does not require SNRs at differategrmas),
EGC, and SC in an interference-limited environment over flat Raylagim§. We have
shown that CMC has a lower outage probability than that of EGC, and that CMC has no
greater outage probability than that of SC. The relative outage performanceshdf@
and SC, however, depends on the number of interferers and interferer powutstr
For finite SNRs, the simulation results show that the relative performagiveeen EGC

and SC is SNR-dependent.
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Chapter 4

Channel Estimation and Data Detection for
MIMO Systems under Spatially and Temporally

Colored Interference

4.1 Introduction

A large Shannon channel capacity exists for wireless systems with mukligplenitting

and receiving antennas in a rich scattering environment [35, 114]. It was shaivthe
capacity increases linearly with the smaller of the numbers of transgand receiving
antennas. While a substantial amount of research has been conducted for a sin@le MIM
link without interference, the impact of interference on MIMO systems hesnitby at-
tracted much interest. In a cellular environment, cochannel interfe(€@g from other
cells exists due to channel reuse. In [30], channel capacities in the presesuatiafly
colored interference were derived with varying degrees of knowledge of the dmaatnix

and interference statistics at the transmitter. In [19] and [20], itadegsonstrated that the
capacity improvement of MIMO over SIMO (single-input multiple-output) gnsiicantly

reduced going from a noise-limited to an interference-limited environcheato the lack
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of degrees of freedom at the receiver to combat CCI. In [105], with totafereice power
fixed, it was shown that the capacity degrades significantly as the number &diiatsrin-
creases. The MIMO capacity with interference in the limit of a large Ibemof antennas
was studied in [74]. The spectral efficiency of a multicell system wittMial links was
assessed in [14,15, 31]. The output signal-to-interference-power ratio \(@analyti-
cally calculated in [60] when a single data stream is transmittediodependent Rayleigh
MIMO channels. Space-time codes which suppress interference have bestgatesl
in [37,124]. While the majority of the studies deal with channel capacity, ingagger
we will focus on the symbol error rate performance of a MIMO link with intezfere in
practical systems.

The estimation of vector channels and spatial interference statisti€sOMA (code
division multiple access) SIMO systems can be found in [108]. Most studies of dhanne
estimation and data detection for MIMO systems assume spatially apadtely white in-
terference. In [77], maximum-likelihood (ML) estimate of the channel matsing train-
ing sequences was presented assuming temporally white interference. idggarfect
knowledge of the channel matrix at the receiver, ordered zero-forcing (ZRnamchum
mean-squared error (MMSE) detection were studied for both spatially anmbtally white
interference in [47] and [55], respectively. However, in cellular eyst, the interference
is, in general, both spatially and temporally colored.

In this chapter, we propose an algorithm to jointly estimate the channel anal siiati-
ference correlation matrices from training sequences. By exploiting theaeal interfer-
ence correlation, we develop a multi-vector-symbol MMSE data detectiom&chie the
case of a single interferer, we show that the spatial and temporal secondrtederence
statistics are separable, and that the temporal interference comelah be determined a

priori. The benefits of taking the temporal and spatial interference comeliatio account
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for channel estimation and data detection are evaluated through Monte Qaulatson.
The assumption of the decoupled structure of interference statistics in Senpeeof noise
is also tested.

This chapter is organized as follows. In Section 4.2, we present a system fapdel
interference statistics. In Section 4.3, we derive ML estimatefi®@fchannel and spa-
tial interference correlation matrices assuming known temporal ermte correlation. In
Section 4.4, one-vector-symbol detection is extended to a multi-vector-symitsodr by
exploiting the temporal interference correlation. In Section 4.5, for the chsee in-
terferer, we assess the benefits of taking temporal and spatial intexéecerrelation into
account for channel estimation and data detection, and test the assumption obtinaekbc

structure of interference statistics in the presence of noise.

4.2 System Model

We consider a single-user link consisting'gftransmitting andV, receiving antennas. The
desired user transmits data frame by frame. Each framéhdata vectors. The firs¥
data vectors are used for training so that the desired user's channelanatinterference
statistics can be estimated, and the remaining data vectors are fonatfon transmission.
Recall in Section 2.2, in a slow flat fading environment, the received lsigcéor at time

j is expressed as
y; =HxX;+n;, 7=0,---,M—1 4.1

wherex; is the transmitted data vectdd, is the N, x N; spatial channel gain matrix, and
interference vecton; is zero-mean circularly symmetric complex Gaussian. We assume
channel matrix is fixed during one frame. This is a reasonable assumption since high

speed data services envisioned for MIMO systems are intended to low moisiits. By
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the same argument, it is also assumed that the interference statrstifised during one
frame.

In practice, the interference could be both spatially and temporally etecel We as-
sume that the cross-correlation between the interference vectorest ind; is £ {nm}} =
An(i,j)RwhereA (1, 7) is the(z, j)th element of theél! x M matrixA ;. As a result, the
covariance matrix of the concatenated interference vectofnf ---nl, |17is

Ay (0,0)R Ay (0, M —1)R
E{ﬁﬁ*} = : ; =Ay®R (4.2)
Ay(M—1,00R -+ Ay(M—-1,M—1)R
where @ denotes Kronecker product, and matrideg andR capture the temporal and
spatial correlation of the interference, respectively. Th¢)th element of matriR is the
correlation between th&h and;th elements of interference vectog, £ €0,---, M — 1.
The correlation matrice$;; andR are determined by the application-specific signal model.
Eqgn. (4.2) implies that the spatial and temporal interference statisgcseparable. In
Section 4.5, we will give an example in which the interference covariamaix has a
Kronecker product form.

In addition to interference correlation, we remark that a decoupled temgputapatial
correlation structure arises in the statistics of fading vector chanaaetssting of a mobile
with one antenna and a base station with an antenna array [81, 82]. Denoting the flat
fading channel vector a&t), it is shown that, for uniformly distributed scatterers around
the mobile, the channel vector is zero-mean circularly symmetric compdesgegan with

correlation matrix
E {a(t)af(t + V)} = Jo(war)Ry

wherew,; is the maximum Doppler frequency dependent on the mobile's speed; and

the zero-order Bessel function of the first kind. The temporal and spatial danetd the
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fading channel vector are described .hyw,r) andRg, respectively. Spatial correlation
matrix R; depends on the antenna array's geometry, relative position between the mobile

and the base station, and the radius of the scatterer ring around the mobile.

4.3 Joint Estimation of Channel Matrix and Spatial Inter-
ference Statistics

During a training period ofV vector symbols, we concatenate the received signal vec-
tors, the training signal vectors and the interference vectoss=asy. ---y%_ 7, x =
(xt - xk_]7 andn = [nd ---nk;_]T, respectively. The received signal in (4.1) is rewrit-

ten as
y=(Ixy®@H)Xx+n

wheren is circularly symmetric complex Gaussian with zero-mean and caves matrix
Ay ®R. Assuming prior knowledge of the temporal interference correlation mAtiix
we need to estimate the channel makiixand the spatial interference correlation maRix

If RandA y are nonsingular, we have the conditional PDF

1
7NNy det(Ay @ R)

Pr(yH.R) = exp{~ [y~ (v o X' (Ay @Ry~ (Iy o H)K .

(4.3)
4.3.1 Maximume-likelihood solution

The ML estimate of the pair of matricd$l,R) is the value of(H,R) that maximizes
the conditional PDF in (4.3), which is equivalent to maximizindr(y|H,R). Using the

inverse and determinant properties of Kronecker product in (2.19) and (2.20), it can be
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shown that maximizing (4.3) is equivalent to minimizing

1
f(H,R) :1ﬂdet(R)+ﬁ[y—('N®H)X]T(A&1®R_1)[)7—(|N®H)7<]- (4.4)
Denoting the elements dfy' as
a0 ot OQN-1
Ay = , (4.5)
aN-1,0 *** ON—1,N—1
we expand the second term in (4.4) as
I - _ e -
T Oy X A oRT Y- (v o H)X
agoR™ o g n_RT! Yo — HXo
L i
= —[y-(Iy®H
N [y—(Ixy @H)X]
any_1oR™Y - ayo v R Yn—1—HXy_1
>0l a0 Ry, — Hx;)
1
= ¥ {(YO_HXO)T“'(YN—I_HXN—I)T
Y vt Ry — Hx;)
N—1N—
= ﬁ Z Z — HXx; )TR (y; —Hx;). (4.6)
i=0 j=0
Substituting (4.6) into (4.4), we obtain
| N-1N-
JHR) = Indet(R) + - > aig(yi— Hxi) R (y; — Hx;)
i=0 j=0
| N=IN-1
= Indet(R)+tr{ R™' aij(yi —HX) (y; —Hx;)T 3. (4.7)
=0 j=0

The last equality comes from the fact thigt— Hxi)T R~!(y; — Hx;) is a scalar, hence

(vi —Hx)) ' R7' (y; —Hx;) = tf{(yz' —Hx;) R (y; — HXJ)}
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_ tr{R—1 (v —Hx;) (yi — HXz’)T}

due to t{AB) = tr(BA).
To find the value ofH, R) that minimizesf(H,R) in (4.7), we se¥ f(H,R)/0H = 0.

The derivative off (H, R) with respect to matri¥ is defined as [76]

af ... af
Of(H.R Oh11 RN,
’ — 4.8
OH (4.8)
_of ... of
Ohn,1 OhN, N,

whereh;; is the (s, j)th element of the complex matrid. The computation of (4.8) in-

volves the derivative with respect to a complex number which is definedasxample,

the(1,1)th element in (4. 8)8h = {% - ﬁ} whereh;; =z + jy [76].

Defining the weighted sample correlation matricas

—1N-1

yy N Z Z ay 5YiY ]7 (49)

1=0 3=0

—1N-1

Z a; ;X y], (4.10)

10]0

and
Ryy = a; jXi X (4.11)

from (4.7), we have

dfH,R) 9

_tr(HR,,R™ —tr(Fe—lﬁeT HT> tr(HTR—lHﬁm>}.
oH aH{ (HR:R™) W)

Using the fact that
otr (R—lﬁeLyHT>
oH

1To distinguish weighted sample correlation matrices framventional sample correlation matrices in

=0

Section 4.3.2, we denote the former by a tilde and the latittrowt a tilde.

59



and identities of matrix derivative [79]

Or(AXB) ;o1
— _—=A'"B
X
and
IMr(XTAXB) oo
T = ATX*B
X ’
we obtain
H=Rl R . (4.12)

The spatial interference correlation matrix is estimated by seﬁ'yf‘(gﬁ-l, R)/OR = 0.

Using identities of matrix derivative in [73]

IndetlX) _ %71 for det(X) > 0 (4.13)
oX
and
-1
w: (x—lsx—l)T for X nonsingular (4.14)
we have
N N—-1N-1 g
JGR. L k) R
R~ RN+ |RY o (3= F) (5= ) R
1=0 3=0
Therefore
) | NNl . NN
R = v Zam‘ <Yi—HXz’> <YJ—HXJ> (4.15)
1=0 3=0
_ R Hlfixy (4.16)

2Although the identities of derivatives in [75] are for reahtmices, it can be shown that they are also

applicable to complex matrices.
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In Appendix C, it is shown that the estimatdsandR can also be obtained by first setting
df(H,R)/0R=0[68]. However, the derivation is much simpler by settthfH,R)/0H =

0 first. It can be shown that in (4.12) is an unbiased estimator, and tRdh (4.16) is a
biased estimator [88]. We remark thaﬁ;ﬁy andR,, in (4.12) were instead known cross-

and auto-correlation matrices, the estimateHarould represent the Wiener solution.

4.3.2 Special case: temporally white interference

If interference is temporally white, with loss of generality, we may stiis A y = | y into

(4.9)-(4.16), and obtain estimates
H, =Rl R} (4.17)
and
Ru = Ryy — HuwRuy (4.18)

where the subscript indicates temporally white interference, and the sample correlation

matrices
1 N-1
Ry = 5 D_ YVl (4.19)
1=0
1 N-1
_ ol
Rey = N ZZ; XY, (4.20)
and
1 N-1
_ o
Ry =+ Z X; X! (4.21)

Note thatH,, in (4.17) is the same as the channel estimate used in [77]. We remark that
both H in (4.12) andH.,, in (4.17) are unbiased, however, the variancesi athould be

smaller than those dfl,.
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4.3.3 Whitening filter interpretation

To obtain insight on the estimates in (4.12) and (4.16), we let the received segtars
during the training period undergo a linear transformation where the transfoeoeiged

signal vectors are

V.- Yy_1] = Yo...yn_1]AF7.
At the output of the transformation, we have

Y,=Hx;+nl, i=0,....,N—1, (4.22)
where the transformed training signal vectors and interference veceors ar

Xy Xy 4] = [Xo.. Xy_1]Ay"?
and

Ng...NNv_q] = [no...nN_l]A;/z,

respectively. Concatenating the transformed interference vectﬁf&a{sng .. .n/]g_l]T, it

can be shown that
n = (A @ly,)n

wheren = [nf"...n%,_,]7. Since the covariance matrix ofis Ay @ R, the covariance

matrix ofn’ is
covn’) = (A @1y, )covn) (AL @1 )f

= (AP oly) Ay eRAG P aly,)

= Iy®R (4.23)

where we used the properties of Kronecker product in (2.17) and (2.18). We also used

—-1/2

the fact that temporal correlation matixy is symmetric, so i\, '~. From (4.23), it is
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obvious that the transformed interference vectors...ny_, } are temporally white with
spatial correlation matrik.
As a result, we can estimat¢ andR from the sample correlation matrices of trans-

formed signal vectors as in Section 4.3.2. The sample correlation matrix

1 N-1
.
Ryy = N Zy;yz
=0

1
= o Yl V)
1 _ _
= W[YO . -YN—1]AN1/2ANT/2[YO Yot
1 _ .
— N[yo---yN—l]ANl[yO"-yN—l]T:Ryy7

which shows that the weighted sample correlation matrigyef..yy_1} is equivalent to
the sample correlation matrix c{% . .y’N_l}. Similarly, the weighted sample correlation
matriceslfixy andR,, are equivalent to the sample correlation matriees, andR,,.,
respectively. Therefore, the estimates in (4.12) and (4.16) can alsaalieedeby first
temporally whitening the interference, and then forming the estimates thhensample
correlation matrices of the transformed signal vectors.

If we drop the Gaussian assumption of interference statistics, the NthastH in
(4.12) is still a least-squares (LS) estimate. During the training peafte; whitening
interference, the transformed received signal is shown in (4.22). ThestiiSate of the
channel matrix is the one minimizing

N «
1=0

N-1
folF) = tr{l (% = Hx) <w—Hx;>*}

= tr{Ryy —HRyy —RL T+ R, H T

_ tr{Ryy— HRyy — ﬁeLyHuHﬁmHT}

By settingd f3(H)/0H = 0, we obtain the channel estimate in (4.12).
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4.4 Data Detection

We focus on ordered MMSE detection due to the better performance of MMSE contpared
ZF detection [9] as we mentioned in Section 2.2.3. For received signal wgetdiix; +n;,
modifying the algorithm in [55], the steps of ordered MMSE detectior;dfom y; with

estimated channel and interference spatial correlation matrices dodows:
Step 1 Initialization: set = 1, H, = H, X, = X;, Vs = Vi.

Step 2 Calculate the estimation error covariance mé&gix= (1, 11 + H,ili_lHk)—l.
Find m = argminPy(7,7) wherePy(7,7) denotes thegth diagonal element d?y.
J

Hence, thenth signal component of;, has the smallest estimation error variance.

Step 3 Calculate the weighting matmy, = (I y,41—x +H}R™'Hz)'HIR™L. Themth
element ofx;, is estimated by:;" = Q) (Ax(m,:) V) whereA;(m,:) denotes the
mth row of matrixA; and@(-) denotes the quantization appropriate to the signal

constellation.

Step 4 Assuming the detected signal is correct, remove the detected fexgndhe re-
ceived signaly, = Vi — 27'Hy(:,m) whereHy(:, m) denotes thenth column of

Hy.

Step 5Hy, is obtained by eliminating the:th column of matrixd;. X; is obtained by

eliminating thenth component of vectox;,.
Step 6 Ifk < Ny, increment: and go to Step 2.

We refer to this scheme asme-vector-symbol detecti@s we deteck; usingy; only. Note
that the above algorithm is the modified version of the algorithm in Section 2.2&ew

the true channel and interference spatial correlation matrices areedfis the estimates.
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When interference is temporally colored, there is performance to be gainadiby t
the temporal interference correlation into account. That is, we maypise ...,y to
detectXy.1,..., Xy jointly whereV is the training length and/ is the frame length. Due
to the complexity of using all the received signal vectors and for simpladipresentation,
we considertwo-vector-symbol detection which (y;,y;+1) is used to detectx;, X;+1)
jointly. The one-vector-symbol algorithm can be easily extended to the twoiveginbol

version by writing

Yi H O X; n;
- -
Yit+1 0O H Xi+1 N; 11
\4 H X; n;

With the estimated channel, an estimateHofdenoted a$c1, can be obtained. Using the
estimated spatial interference correlation and the known tempordirgace correlation,
we are able to estimate the covariance matrixigfdenoted aéf?. Replacingx;, v;, H
andR in the one-vector-symbol algorithm by, V;, H and R respectively, we obtain the

two-vector-symbol detection algorithm.

4.5 Applications

In this section, we apply the channel estimation in Section 4.3 and dataidetiecsection
4.4 to the case of a single-user link with one dominant cochannel interferer ogeaati

different data rates.

4.5.1 System model

Consider a desired user with one dominant cochannel interferer. The assumption of one

cochannel interferer is reasonable in cellular TDMA or FDMA systems éspewhen
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sectoring is used. In 7-cell reuse systems, with 60 degree sectors, the miiehannel
interfering cells would be reduced to one [91]. Hence, there will be only one co-dhanne
interferer. We assume that the desired and interfering users Maeed . transmitting
antennas, respectively, and that there ygeceiving antennas. Assuming thermal noise
is small relative to interference, we ignore thermal noise in the fortonlaf the problem.

The accuracy of this assumption in a noisy channel will be verified in Sectoa.4n a

slow flat fading environment, the vector signal at receiving antennas is

e, M P &
y(t) = ]i[t H kz_;) XkL(N](t—kT) + TH]k_z_: bkgj(t—kT]—T) (424)

whereM is the frame length, and (V, x N;) andH; (/V, x L) are the channel matrices

of the desired and interfering users, respectively. The channel matrie@ssumed fixed
over a frame, and have independent realizations from frame to frame. Thé&aasmis-
sion rates of the desired and interfering usersldi and1/77, respectively. The spectra
of transmitimpulse responsgé& ) andg; (¢) are square-root raised cosines with parameters
T andT7, respectively. The same rolloff factgt, is assumed for both(¢) andg;(¢). The
data vectors of the desired and interfering usersxaréV; x 1) andb; (L x 1), respec-
tively. We assume that data symbols«jris andb;,'s are mutually independent, zero-mean
and with unit variance. We denote, and P; as the transmit powers of the desired and
interfering users, respectively. The delay of the interfering usetivelto the desired user
is 7, assumed to lie if < 7 < max(T,T7).

Passingy(t) in (4.24) through a filter matched to the transmit impulse response of the

desired use(?), the vector signal at the output of the matched filter is

[P,T, Pl &
Yue(t) = ;[t H Z Xpg(t —ET) + TH[ Z brgr(t —kTr—7) (4.25)
k=0 k=—c0

whereg(t) = g(t)* g(t) andg;(t) = gr(t) * g(¢). Recall that(¢) has a square-root raised-

cosine spectrum, hencgt) has a raised-cosine spectrum and satisfies Nyquist condition
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for zero intersymbol interference.
Assuming perfect synchronization for the desired user, as we sample the output of the

matched filter (4.25) at time= 7', we obtain

P,T PrT > .
yj:,/Ttijﬂ/%Hl > bgs (5T — KTy 7). (4.26)
k=—o0

nj

The interference vectar; is zero-mean as the data vector of interfering umeis zero-
mean. Note that there is no intersymbol interference for the desired usereviiovior
the interferer, due to the delay and/or mismatch between the transmit@ederenpulse

responses, intersymbol interference exists.

45.2 Interference statistics

The cross-correlation between the interference vectors in (4.26) & filmandqT' is

E{njnjl}

P;T & - N
- ]L[_HI‘E Y ba (T =k T —7) Y. bLgilal—keTi=7) | 4 H]
k1=—00 k2:—oo
Priy 1 o ;
— THIHl-k; {g](]T—kT]—T)g](qT—kTI—T)}a

where the last equality is due to the fact tﬁa{ by, b,tz } = 0for k; # ks and thatr {bkb}c} =
;.
During a training period ofV vector symbols, the covariance matrix of the concatenated

interference vecton= [n/ - --n%._,]7 has the form of a Kronecker product in (4.2) where

o0

Av(,g)= ) {gl(jT_kTI_T)gl(qT_kTI_T)}a 0<j,q<N—-1 (4.27)
k=—o0
and
Prr
R= %HIH}. (4.28)



The N, x N, spatial correlation matriR is determined by the interferer's channel matrix.
The N x N temporal correlation matriX ;- depends on parametefsand?’, delayr and
pulseg;(t), and can be calculated a priori if we have knowledge of these parameters. The
temporal correlation is due to the intersymbol interference in the sampéenng signal.
We remark that for the case of multiple interferers with the same d#laycovariance
matrix of interference also has the form of a Kronecker product.

We study the temporal interference correlation matrices of two casgmtérferer at
the same data rate as the desired sighat (I'7), and (2) interferer at a lower data rate than
the desired signal, i.e., the data rate of the desired user is an integgrleniithat of the

interferer (' = mT, m > 1).

4.5.2.1 Interferer at the same data rate as desired signal

The desired and interfering users have the same transmit impulse responsepdaisum
is the square-root of a raised cosine with paramgtand rolloff factor. Thereforeg;(¢)

has a raised-cosine spectrum, and it is given by

cos(mt)T)

g](t) = sinc(ﬂ/T)m.

The temporal correlation of interference vectors at tigilesindq7' is

o0

AvGha) = > {ar(GT = kT = 7)gr(qT — kT =)}, (4.29)

k=—o00
We note thatA 5 (j,q) depends ory — ¢. This indicates that the sequence consisting of
interference vectors is stationary. Hence, the temporal correlationxns symmetric
Toeplitz. By appropriate truncation of the infinite series in (4.29), we can raatlgr
calculate the temporal correlation matrix. For the caseef 1, T'= 1, here are two

examples of temporal correlation matrices at different interfereydela
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1. 7 = 0.5, the element of the temporal correlation matrix is

0.5 7=g¢q

An(j,q)=1 025 |j—g|=1 for 0<j¢<N-1 (4.30)

0 otherwise
2. 7 =0.25, the element of the temporal correlation matrix is

0.7 j=q
An(j,q)=1q 0125 |j—q/=1 for 0<j¢<N—L

0 otherwise
4.5.2.2 Interferer at a lower data rate than desired signal

The desired and interfering users employ the transmit impulse pulses whoselsizec
are square-root of raised cosines with the same rolloff fa¢tand parameterg and77,

respectively. The waveform @f (¢) is given by

gr(t)y=F"" {\/Grc,Tj(f)\/Grc,T(f)}

whereF~! denotes the inverse Fourier transform, ahdr(f)is the raised-cosine Fourier
spectrum with parametdr and rolloff factor3. With 77 = mT, the temporal correlation

of interference vectors at time& andq1' is

o0

An(7,q) = Z {g](jT—ka—T)g](qT—ka—T)}. (4.31)

k=—o00
Unlike in the case of same-data-rate interferer widey€;, ¢) depends on — ¢, in the case
of lower-data-rate interfere 5 (j, ¢) depends on the values paindq. This indicates that
the sequence consisting of interference vectors is cyclostationary. A segsisactto be
cyclostationary in the wide sense if its mean and autocorrelation are pefdgi89]. It

can be seen thaty (7, ¢) is periodic with periodn, i.e.,Ax(j,¢) = An(j +m,qg+m). As
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Figure 4.1. Waveform ofj;(¢) for the case of lower-data-rate interferer with = 27,

T=1andg=1.

a result, the temporal correlation matfy; is symmetric, but not Toeplitz. Furthermore,
for N > m, the number of nontrivial eigenvalues &fy is [ N/m] where[-] rounds the
argument to the nearest integer towards infinity [72]; therefbkeis singular.

By appropriate truncation of the infinite series in (4.31), we can numericaltylate
the temporal correlation matrix. For the caselpt= 27,7 =1 andj = 1, the waveform

of g;(t) is given by

1/2 ‘
gr(t) = / \/[1—|—COS(27Tf)]-%[1+cos(7rf)]e]2”ftdf,

—1/2
and it is shown in Fig. 4.1. The following are three examples of temporal etioel

matrices with training lengthv = 8 at different interferer delays:
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1. 7 =0,

Ag =

0.725

0.252
—0.075
—0.002
—0.015
—0.000
—0.006

—0.000

2. 7 =10.25,

As=

0.648

0.400

—0.048

—0.006

—0.010

—0.001

—0.004

—0.000

0.252
0.200
0.252
0.111
—0.002
0.016
—0.000

0.007

0.400
0.277
0.105
0.084
0.002
0.011
0.000

0.005

—0.075
0.252
0.725
0.252

—0.075

—0.002

—0.015

—0.000

—0.048
0.105
0.648
0.400

—0.048

—0.006

—0.010

—0.001

—0.002
0.111
0.252
0.200
0.252
0.111

—0.002

0.016

—0.006
0.084
0.400
0.277
0.105
0.084
0.002

0.011

71

—0.015
—0.002
—0.075
0.252
0.725
0.252
—0.075

—0.002

—0.010
0.002
—0.048
0.105
0.648
0.400
—0.048

—0.006

—0.000
0.016
—0.002
0.111
0.252
0.200
0.252

0.111

—0.001
0.011
—0.006
0.084
0.400
0.277
0.105

0.084

—0.006
—0.000
—0.015
—0.002
—0.075

0.252

0.725

0.252

—0.004

0.000

—0.010

0.002

—0.048

0.105

0.648

0.400

—0.000
0.007
—0.000
0.016
—0.002
0.111

0.252

0.200

—0.000
0.005
—0.001
0.011
—0.006
0.084
0.400

0.277

(4.32)



3. 7=0.5,
0.462 0.461  0.018 —0.008  0.001 —0.001 0.000 —0.000
0.461 0.462  0.044  0.018 0.004 0.001 0.001  0.000
0.018 0.044  0.462  0.461  0.018 —0.008 0.001 —0.001
A —0.008 0.018 0.461  0.462  0.044  0.018 0.004  0.001
o 0.001 0.004 0.018 0.044 0.462  0.461 0.018 —0.008
—0.001 0.001 —0.008 0.018 0.461  0.462 0.044  0.018

0.000 0.001  0.001  0.004 0.018 0.044 0.462  0.461

—0.000 0.000 -0.001  0.001 —-0.008  0.018 0.461  0.462

4.5.3 Data detection without estimating channel and interference

During a training period ofV symbol vectors, instead of estimating the channel matrix and
interference statistics, one can alternatively employ a least sxj(ls8¢ estimate of matrix

M which minimizes the average estimation error

f2(M) = trac Z —My;) ( Myi)T} :
By settingd f2(M)/0M = 0O, we obtain
M=R,,R (4.33)

where sample correlation matricBs, andR,, are defined in (4.20) and (4.19), respec-
tively. The transmitted signal vectat is detected ag) (My;) whereQ(-) is the quanti-
zation appropriate to the signal constellation. We remark that (4.33) is the&kmain
Direct Matrix Inversion (DMI) algorithm [121] generalized for multipleput signals. A
significant loss in performance is expected for this LS detector since withtmagss of
channel and spatial interference correlation matrices, iterativeSEetection cannot be

performed.
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45.4 Simulation results

Monte Carlo simulations are used to assess the benefits of taking temporgadiad s
interference correlation into account for channel estimation and dataidatecthe case
of one interferer. Although it is difficult to know the temporal interference eatron in
practice, it is of interest to examine the performance loss due to ignoringottnedation.

We evaluate average symbol error rates (SERS) over different reatigaf the de-
sired and interfering users' channel matrices. The channel model in SB&imused to
simulate the channel matrices. Uniform linear arrays are employed. IndeperajdeigR
fading is assumed for the interfering user modelling a lack of a line-of-saghponent and
severe fading for signals coming from other cells. Hence, the elements of ¢maani
H; are i.i.d. zero-mean circularly symmetric complex Gaussian withuamiance. For the
desired user, the angle of departure of the specular signal at the mobile and the angle of
arrival at the base station are 0 and 60 degrees with respect to the nofrealsh array,
respectively; these angles are the same across the array. The antenngssaittie mo-
bile and the base station are 0.5 and 10 wavelengths, respectively. Imihlatson, both
independent and correlated MIMO links are considered for the desired user.

We assume that the desired user has 5 transmitting and 5 receiving anterthtdse a
interfering user has 6 transmitting anterth@®oth the desired and interfering users employ
uncoded QPSK modulation. The training signal vectors are taken to be columns of an
FFT matrix [55]. This guarantees that the training sequences from diffesrgntitting
antennas are orthogonal. We define SIR(eB)0log P/ P;. Without loss of generality,
we let P; = 1 in the simulation. The SERs of two cases are simulated: (1) interfetiee at

same data rate as the desired signal, and (2) interferer at a lowenttathan the desired

3To make the spatial interference correlation matrix nogsiar, we let the number of receiving antennas

be no greater than the number of transmitting antennas afitédering user, i.e.N, < L.
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signal, i.e., the data rate of the desired user is twice that of the irgerfer
In Figs. 4.2to 4.7, with solid and dashed lines representing one- and two-gyotdiol

data detection, respectively, we show the average SERSs for the folloaseg:c

¢ perfectly known channel parameters and interference statisticsgymativector-symbol

(curve 1) and two-vector-symbol (curve 2) detection;

¢ channel and spatial interference correlation matrices are estirasseding known
temporal interference correlation, with one-vector-symbol (curve 3) andréstnr-

symbol (curve 4) detections;

e channel and spatial interference correlation matrices are esti@sgdading tempo-

rally white interference, with one-vector-symbol detection (curve 5);

¢ only the channel matrix is estimated assuming temporally white interference; an
identity spatial interference correlation matrix is used in one-vesporbol data de-

tection (curve 6).

o least-squares (LS) estimate of the transmitted signal vector withouteardetection

(Section 4.5.3) (curve 7).
The first case is presented for reference. The fourth case correspondsuoéme BLAST
system [47] [55].
4.5.4.1 Interferer at the same data rate as desired signal

We examine the case @f=1, g =1, ~ = 1/2, and the nonsingular temporal interference
correlation matrix shown in (4.30). Figs. 4.2 to 4.4 show the average S&Rmsaiing

lengths2 Ny, 4V and6 NV, respectively. Independent Rayleigh fading is assumed for the
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desired user. Comparing the LS detection (curve 7) with other methods, asezkprath
lower symbol error rates can be achieved by using ordered MMSE detection.

Comparing curves 5 and 6, we observe that for training lengt¥hsand6 /v, gains can
be obtained by estimating spatial interference correlation. Howeveag $&biort training
length, for example2 Ny, due to inaccurate estimates of spatial interference correlation, it
is better to estimate only the channel matrix and assume spatially wtetéarence. The
performance gap between curves 5 and 6 increases as the training lengthsardre to
better estimates of interference spatial correlation obtained with tdrageing lengths.

By examining curves 3 and 5, we observe that the improvement in taking temporal
interference correlation into accountéhannel estimatioms not significant, and this im-
provement decreases as the training length increases. This phenomenon caaibhedxpl
as follows: in estimating channel and temporal interference correlatagrices for tempo-
rally colored interference, the received signal vectors first undergmaformation which
temporally whitens the interference vectors as discussed in Section3i3cg.the tempo-
ral correlation in (4.30) drops quickly to zero after one time lag, the benefieitemporal
whitening of interference vectors is not significant, especially for longitngilengths.

By comparing curves 3 and 4, there is a slight improvement of two-vector-syméol o
one-vector-symbol detection. This implies that not much gain can be achievekify ta
temporal interference correlation into accountlata detectiorowing to the low temporal
correlation. Due to better estimates of channel and interference spatialation matri-
ces obtained with a longer training length, the performance gap between cureds43 a
increases as the training length increases.

In Fig. 4.3, for training length V;, by comparing curves 4 and 6, we observe a total of
1.5dB gain in SIR by estimating spatial interference correlation and taplicit advan-

tage of known temporal interference correlation in channel estimation aadidsgction.
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Average Symbol Error Rate

—&— perfect known H&R, one-vector-symbol (1)

10*4 —4— perfect known H&R, two—-vector-symbol (2)
—— est. H&R, spatial & tempo. color. interf., one-vector-symbol (3) 3

—* est. H&R, spatial & tempo. color. interf., two-vector-symbol (4)

—— est. H&R, spatial color. & tempo. white interf. (5)

—&— est. H, spatial & tempo. white interf. (6)

-5| —— LS data detection (7) ;

;
Za2

0 2 4 6 10 12 14 16

8
SIR (dB)

Figure 4.2. Average symbol error rate vs. SIRwith= N, =5, L = 6, and training length
2N;. Independent Rayleigh fading is assumed for the desired user. Both the desired and

interfering users are at the same data rate.

About 1dB of the gain is due to the estimation of spatial interference correlamahthe
remaining 0.5dB gain is due to exploiting temporal interference correlationanre! es-
timation and data detection. We also observe that training lehgttachieves most of the

performance gain.

4.5.4.2 Interferer at a lower data rate than desired signal

We examine the case aff =27, T =1, § =1, 7 = 0.25 and the temporal interference
correlation matrix for training length 8 shown in (4.32). Recall that tinepteral correla-

tion matrix in the lower-data-rate-interferer case is singularavad the singularity, the
diagonal elements o v are increased by a small amount; hence, the temporal correla-
tion matrix used for channel estimation may be modified to+ 61 5 within the proposed

framework. In our simulation, we chose= 0.01.
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Average Symbol Error Rate

Figure 4.3. Average symbol error rate vs. SIRwith= N, =5, L = 6, and training length

4N;. Independent Rayleigh fading is assumed for the desired user. Both the desired and

—&— perfect known H&R, one-vector-symbol (1)
—4&— perfect known H&R, two-vector-symbol (2)
—— est. H&R, spatial & tempo. color. interf., one-vector-symbol (3)

—* est. H&R, spatial & tempo. color. interf., two-vector-symbol (4)
—— est. H&R, spatial color. & tempo. white interf. (5)

—&— est. H, spatial & tempo. white interf. (6)

—— LS data detection (7)

Za2

2 4 6 10 12

8
SIR (dB)

interfering users are at the same data rate.

Average Symbol Error Rate

Figure 4.4. Average symbol error rate vs. SIR with= N, =5, L = 6, and training length

6/N;. Independent Rayleigh fading is assumed for the desired user. Both the desired and

16

—&— perfect known H&R, one-vector-symbol (1)

—4— perfect known H&R, two—-vector-symbol (2)

—— est. H&R, spatial & tempo. color. interf., one-vector-symbol (3)
—* est. H&R, spatial & tempo. color. interf., two-vector-symbol (4)
—— est. H&R, spatial color. & tempo. white interf. (5)

—&— est. H, spatial & tempo. white interf. (6)

—— LS data detection (7)

Za2

2 4 6 10 12

8
SIR (dB)

interfering users are at the same data rate.
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The same set of average SER curves as in the same-data-rate-@ntegbs are simu-
lated. Figs. 4.5 to 4.7 show the SERs for different training lengths. Independgeidgta
fading is assumed for the desired user. As in the case of the same-@gataederer, curve
7 illustrates the poor performance without ordered detection. Curves 5 and 6 singgest
for short training lengths it is better to estimate only the channel matrix ssuh@e spa-
tially white interference in data detection; however, for moderately tosmging lengths,
gains can be obtained by estimating spatial interference correlation.

By examining curves 3 and 5, we observe that the improvement in taking temporal
interference correlation into accountahannel estimatiors not that significant. However,
this improvement is larger than that in the same-data-rate-intedase due to the high
temporal correlation in the lower-data-rate-interferer case.

In contrast to the same-data-rate-interferer case, curves 3 andwvtishbthe im-
provement of two-vector-symbol over one-vector-symbol detection is signifiicemnto the
higher temporal interference correlation. This implies that significant gairbe achieved
by taking temporal interference correlation into accoundata detectiorfor the lower-
data-rate-interferer case.

By comparing curves 4 and 6 in Fig. 4.6, for training length, there is a total of 4dB
gain in SIR by estimating spatial interference correlation and takingradge of known
temporal interference correlation in channel estimation and data aete&bout 3.5dB
of the gain is due to exploiting temporal interference correlation in channehasin
and data detection. Hence, when there is lower-data-rate interfecemsgjerable perfor-
mance loss occurs if we ignore the temporal interference correlation. In@addis in the
same-data-rate-interferer case, we observe that training léngtlchieves most of the

performance gain.
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Figure 4.5. Average symbol error rate vs. SIR with= N, =5, L = 6, and training

length2V;. Independent Rayleigh fading is assumed for the desired user. The data rate of

the desired user is twice that of interfering user.
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Figure 4.6. Average symbol error rate vs. SIR with= N, =5, L = 6, and training

length4 NV;. Independent Rayleigh fading is assumed for the desired user. The data rate of

the desired user is twice that of interfering user.
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Figure 4.7. Average symbol error rate vs. SIR with= N, =5, L = 6, and training
length6 V;. Independent Rayleigh fading is assumed for the desired user. The data rate of

the desired user is twice that of interfering user.

45.4.3 Correlated channels for the desired user

As mentioned in Section 2.3, MIMO links become correlated as the angle spraadsiag

or the Riceank” factor increasing. Figs. 4.8 and 4.9 show that the SERs are improved as
the desired user's angle spread at the base station increases for botheharshiower-
data-rate-interferer cases with SIR=10dB, training lergth Correlated Rayleigh fading
(Ricean factork” = 0) is assumed for the desired user. The improvement in SER is due
to the diversity gain as the channels become uncorrelated. We observe thaiglter a
spreads larger than 6 degrees, the performance is close to the case wheteliks

are independently faded. It is also observed that as the angle spread dec¢heaSER
curves obtained from channel estimates approach the curves from perfectly &namnel.
Therefore, the estimates of channel and spatial interference corretaéisites become

more accurate as the angle spread decreases.
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Figs. 4.10 and 4.11 show that SERs degradéiaRicean factor increases for both
the same- and lower-data-rate-interferer cases with SIR=10dBingdength4 N;. The
channel scattered components are independently faded for the desired user. THa-degra
tion in SERSs is due to the loss of diversity gain as channels become correlé¢ede,
the line-of-sight component does not improve the SERs of a MIMO system, which agrees
with the degradation of information capacity observed in [30]. Howeversihgle data
stream is transmitted simultaneously from the multiple antennas with pyogedected
transmit beamforming weights, we would expect that the SER would improve ds-the
Ricean factor increases [31]. In Figs. 4.10 and 4.11, we also observe tlingt Rgcean
factor increases, the SER curves obtained from channel estimates appeeach/es from
perfectly known channel. Therefore, the estimates of channel and spatiénetee cor-

relation matrices become more accuratéascreases.

4.5.4.4 Validity of the decoupled structure of interference statists in the presence

of noise

In the presence of noise, for temporally white interference, the Kronecker prsaluct

ture of interference statistics still holds; however, for temporallpicad interference, the
interference statistics can only be approximated by the Kronecker product. ,Hteisaaf

interest to examine the effect of this approximation. We model the thermal reoéseeao-

mean circularly symmetric complex Gaussian vector with covariarateix 1, i.e, the

thermal noise is independent from antenna to antenna, and the noise power on each antenna
is o%. We define interference-to-noise-power-ratio INR0log P;/o?, whereP; = 1 in

the simulation. Assume independent Rayleigh fading for the desired user, tranmgtd |

4N, and SIR=10dB. For the case of the same-data-rate interferer, refermogues 3 and

5in Fig. 4.12, we observe that for INRs lower than 17dB (noise higher than a certain
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Figure 4.8. Average symbol error rate vs. angle spread With= N, = 5, L = 6,
SIR=10dB, and training length/,. Correlated Rayleigh fading (Ricean fact@r= 0)
is assumed for the desired user. Both the desired and interfering usatdfa@esame data

rate.
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Figure 4.9. Average symbol error rate vs.
SIR=10dB, and training length/,. Correlated Rayleigh fading (Ricean fact@r= 0)

is assumed for the desired user. The data rate of the desired user idwtiokihterfering

user.
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Figure 4.10. Average symbol error rate v&'-Ricean factor withN, = N, =5, L =
6, SIR=10dB, training lengti N;. The channel scattered components are independently

faded for the desired user. Both the desired and interfering users aresattleedata rate.
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Figure 4.11. Average symbol error rate v&.-Ricean factor withV; = N, =5, L = 6,
SIR=10dB, and training lengthV;. The channel scattered components are independently

faded for the desired user. The data rate of the desired user is twice thegridiing user.
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Figure 4.12. Average symbol error rate vs. INR wikh= N, =5, L = 6, SIR=10dB, and
training length V;. Independent Rayleigh fading is assumed for the desired user. Both the

desired and interfering users are at the same data rate.

level), ignoring interference temporal correlation leads to smallé&sSEbmpared to the
case of assuming interference temporal correlation of (4.30). This suggddtsetdacou-
pled interference statistics with temporal correlation of (4.30) iscanrate approximation
for INRs higher than 17dB. Similarly, Fig. 4.13 shows that, in the case of therldata-
rate interferer, the decoupled structure of interference statisticgabd approximation for

INRs higher than 12dB.

45.4.5 Effect of exploiting knowledge of spatial interference-plus-aise correlation

Since the temporal interference correlation is hard to know in practige,af interest
to assess the improvement of estimating the spatial correlation ofeiréace-plus-noise
over the case of assuming the interference-plus-noise to be spatially Whttethe total

interference power fixed, Fig. 4.14 compares the average SER for one (solidrohévo
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Figure 4.13. Average symbol error rate vs. INR wikh= N, =5, L = 6, SIR=10dB, and
training lengtht V;. Independent Rayleigh fading is assumed for the desired user. The data

rate of the desired user is twice that of interfering user.

(broken line) interferers. In the case of two interferers, the intergdnave the same power

and are asynchronous due to random delays. Both the desired and interfering users employ
a(5,5) MIMO link, the total-interference-to-noise-ratio is 12dB, and the trainémgth is

4Ny. Itis assumed that both the desired and interfering users operate at thelatmate.

Fig. 4.14 shows that for one interferer, there is 1.2dB gain over a wide range 8fsSIN

by estimating the spatial correlation of interference-plus-noise; whidéwo interferers,

the corresponding gain in SINR is negligible as the two curves are nearly syosech

Thus, with a(5,5) MIMO link and two interferers, the interference is accurately modelle

as spatially white.
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Figure 4.14. The improvement of estimating spatial correlation of interéerplus-noise
in practical systems. With total interference power fixed, the saliesliare for one inter-
ferer, and the broken lines are for two interferers. Both the desired agrdenbhg users
employ a(5,5) MIMO link, the same data rate, total-interference-to-noise-ratio of 12dB

and training length ot V.
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4546 Confidence intervals

To obtain an accurate estimate of the actual SER in simulations, it ess@&( to ensure
that a sufficient number of data symbols have been processed. The number of symbols
required can be determined from the confidence intéfealthe estimated SER.

Let S; and Sy denote the true and estimated SER values Anthe number of data
symbols processed in the simulation, an approximateonfidence interval fof; can be

computed as [29, p. 564]

S*E—Q\/7SE(1]V_SE),SE+Q\/7SE(1N_SE) (4.34)

where the value of) depends o as shown in Table 4.1. In (4.34), the width of the

confidence interval is
(4.35)

From (4.35), we have

4185(1 = S)Q?
Ny = E( = E)Q” (4.36)

This gives the number of symbols required to obtain the desired confidence intestfal wi
For example, withSp = 1073, W = 2 x 10~4 and a95% confidence interval, from (4.36),
we need to simulate about 384000 symbols. With five transmitter antennas in th@ MIM
link, 76800 vector symbols are required. In the simulations, we have simulateficzesf
number of data symbols for@% confidence interval and the confidence interval width

equal to020% of Sp.

“4For an estimation of SER, we can computg/aconfidence interval. If we compute thé& confidence
interval for a large number of estimations of SEf%; of the obtained confidence intervals will include the

true SER.
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g | 90% | 95% | 99%

Q|1.65]1.96| 258

Table 4.1. Corresponding values®@ffor various confidence levels.

4.6 Conclusions

In this chapter, by modelling interference statistics as being approxyrataporally and

spatially separable, we have proposed an algorithm to jointly estimate dharthspa-

tial interference correlation matrices. By exploiting the temporakfatence correlation,
one-vector-symbol detection has been extended to a two-vector-symbol versimdiin
tion, multi-vector-symbol detection with more than two vector symbols is plessin the

case of one interferer, we have shown that the interference statstiudeled temporally
and spatially separable, and that the temporal interference correlaipmencaused by
the intersymbol interference of the interferer. The impact of temporal andhkpaterfer-

ence correlation on channel estimation and data detection was assessegsulisishow
that much lower SERs can be achieved by estimating the channel matrirtarfgrence
statistics. For moderately long training lengths, for example, four to siggithe number
of transmitting antennas, gains are obtained by estimating spatial itecéecorrelation;
however, for much shorter training lengths, it is better to estimate onlgltaenel matrix
and assume spatially white interference in data detection due to poortestiohthe spatial
interference correlation matrix. We have investigated the situatl@rewigh temporal in-
terference correlation results from a cochannel interferer operatingweadata rate. The
benefit of taking temporal interference correlation into accouahannel estimatiors not

significant for both same- and lower-data-rate interference cases dweesiodarply reduced

temporal correlation after one time lag. In the case of lower-datasregerence, much
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improvement can be achieved by taking account of the temporal interferenettorrin
data detection For a(5,5) MIMO link with independent Rayleigh fading, by exploiting
temporal interference correlation in channel estimation and data detee® obtain 0.5dB
and 3.5dB gains in SIR for same- and lower-data-rate interference cespsctively. Our
results show that a training length equal to four times the number of transnatttegnas
achieves most of the performance gain. We also observe that for angle sprgad#han
6 degrees, the SER performance is close to the case where MIMO links arenddafle

faded.
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Chapter 5

Information Capacity of MIMO Systems with

Spatially and Temporally Colored Interference

5.1 Introduction

In Chapter 4, we focused on the processing at the receiver while we assume kimatv|-
edge of the channel matrix and interference statistics is available aatiemitter (inde-
pendent data streams with uniform power allocation across the transmittegnas). In
this chapter, we consider the benefit of knowing channel matrix and interferernictict
at the transmitter. We address this problem from the view point of informationtheor
Current work on information capacity of MIMO systems focuses on temporalltewhi
interference. Channel capacity under both spatially and temporally whitécrgece was
studied in [35, 62,103, 114]. In [30], the capacity was studied for spatially colaréd a
temporally white interference; capacity expressions were derived fiereiit degrees of
knowledge of the channel matrix and interference statistics at the traesniis we have
shown in Section 4.5, in cellular systems the interference can be not onigllgdait also
temporally colored. Therefore in this chapter, assuming the receiver hizetpenowl-

edge of the channel matrix and interference statistics, we investigatditMO capacity
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with different degrees of knowledge of the channel matrix and interferencgtisgat the
transmitter under both spatially and temporally colored interference.

This chapter is organized as follows. The capacity in the case of full knowleflge
channel matrix and interference statistics at the transmitter igetkn Section 5.2. In
Section 5.3, channel capacities in the cases of partial knowledge of the chartinekma
interference statistics at the transmitter are discussed. Siomlasults are presented in

Section 5.4.

5.2 Channel Capacity: General Case

Consider a single-user link consisting 8f transmitting andV, receiving antennas. The

N,-dimensional received signal vector at tlie time instant is
Vi=Hx;+n;, :=0,1,... . N—1 (5.1)

wherex; is the transmitted signah, is zero-mean circularly symmetric complex Gaussian
interference vector, and is an N, x N, quasi-static flat fading channel matrix. As shown
in Section 4.5, the interference could be both spatially and temporally colatedepa-
rable temporal and spatial correlation. Here we assume that the interéasstemporally
stationary. Therefore, the interference covariance matrix can be leo@s a Kronecker
product of temporal and spatial correlations where the temporal correlatiox msaym-
metric Toeplitz. We remark that we are studying a channel with memory. ddergthis
channel is information-stable with additive stationary ergodic noise [28].
Concatenatingy = [yJ -y, _ 7, xn = [x¢ ---x§,_,JT andny = [nf---nL,_ |7, we

rewrite (5.1) as

ynv = HyXy + Ny (5.2)



whereHy = |y @ H. The covariance matrix diy is Ry = Ay @ R where theN x N
symmetric Toeplitz matrid - and the/N, x N, matrixR capture the temporal and spatial
interference correlations, respectively. In addition, we assume thebthelation matrices
A andR are nonsingular, and that the signal vectgris independent of the interference
vectornyy.

Assume that the receiver has the knowledge of both channel niatand interference
statistics. Since the channelin (5.2) is information-stable, the channeligaigaexpressed

as [28]

1 _
C= lim — T(Xyn:yn,H.R 5.3
I (Xy;Yn,H,Ry) (5.3)

whereZ(-;-) denotes mutual informatiots is the constrained transmit power, agy =
E{xxyX}}. Note that we considéd andRy as channel outputs.

The mutual information term in (5.3) can be expanded as
= H(yn.H,Ry)—H(yn,H,Ry[Xy)

= H(ynH,Ry)+H(H,Ry)—H(yn[Xn,H,Ry) — H(H,Ryx|Xy)

= H(YN|H,|E3N)—H(I7]N|XN,H,RN) (5.4)
= H(YN|H,RN) —H(ﬁN“fQN) (5.5)
= H(yn|H,Ry) —log; det(meRy) (5.6)

where#(-) denotes entropy; (5.4) comes from the fact thaH, Ry |Xy) = H(H,Ry)
sincexy is independent oH andRy; (5.5) is due to the fact thaty is independent of
H andXxy; (5.6) follows the fact that the differential entropy of a circularly symmaet
complex Gaussian random vector with covariance m&riglog, det(7eQ).

In (5.6), to maximize the mutual informatidh(Xy;yy,H,Ry), we have to find the

distribution ofx,y which maximizesH(yy|H,Ry). Note that ifxy satisfies the power
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constraint 2z ) < N - P, so doexy — E{Xy }; hence we can restrict our attention to
zero-mearx,y andX;y becomes the covariance matrix>gf. As a resultyy has covari-
ance matrixH NEjNH}V +Ry. Since circularly symmetric complex Gaussian distribution
is entropy maximizer [114]H(yx |H, Ry ) is maximized wheltyy is circularly symmetric
complex Gaussian and the maximum valubjs det {We <FI NEavHE + RN” . Clearly,
zero-mean circularly symmetric complex Gaussian vectomaximizes the mutual infor-
mation.

From (5.6), we have

T (Xn;yYn,H,Ry)

< logydet {We (HNEMH}V+R ) ~log, det (reRy)
= logydet (HyZanHY, +Ruy ) +log, det (Ry!) (5.7)
= logydet (1, ENH}VRﬁ (5.8)
— log, det INNt—|—ExNHTR 1HN> (5.9)
= logydet [Ly.x + Eon(lx 0 H) (A R (1y o H)]

= log,det

|
|

where (5.7) is due tdet(A~!) = det(A)~! for a nonsingular matrix [75]; (5.8) follows

v+ By (A O HIRTH) | (5.10)

fromdet(AB) = det(A) det(B) [75]; (5.9) is due to the identityet (1 + AB) = det(l 4+ BA)
which is proved in Appendix D; (5.10) is due to the properties of Kronecker product in

(2.18), (2.19) and (2.17). Substituting (5.10) into (5.3), the channel capacity becomes

1
i L wrEa (o) 6
C NﬂoNtr(EfrJ?)‘E?NPslogzdet In.n, +Een (Ay @H'RTH (5.11)

To find X5 that maximizes the mutual information in (5.10), we use eigenvalue de-

composition and express the Hermitian matfi{R—'H as
Tp—ly T _ di 1 N
H'R 'H _VHRDHRVHR7 DHR—dlaquRv"'vdHR) (5.12)
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whered}m, e ,d}VfR are eigenvalues di 'fR='H, andV r is a unitary matrix consisting
of eigenvectors oH'R~'H. Similarly, we eigenvalue-decompose the Hermitian matrix

Ay as
Ay =UsnDanUl y, Day =diagdiy,...,dYy); (5.13)
hence
Ay =UpyD UL, Dk =diagl/dhy,.... 1/dYy). (5.14)
Note thatA&1 @ HTR~'H is Hermitian. Using eigenvalue decomposition, we have
-1 tp—1ly T _ i 1 N-N;
A @H'RT'H = VyDyVY, Dy =diagdy,...,dyx""). (5.15)

According to the Kronecker product property (2.21), the diagonal m&tkix= Dx}V ®
Dy r and the unitary matri¥ y = Uy @ Vg r. More specifically, we express the elements
inDy as
d%_l)N+j:ij§I—R, i=1,....N;, j=1,...,N. (5.16)
AN

Assuming that the transmitter knows the channel matrix and interferenististgboth
temporal and spatial correlations), the mutual information in (5.10) is magnivhen
San = VPNV with Vv shown in (5.15) an®Py = diagpl, ..., pN ") [114]. The

mutual information in (5.10) becomes

N-N¢

T (xn;yn,H,Ry) = Y logy (1 +pivdiy). (5.17)
1=1

To find p,..., Nt that maximize (5.17) with power constraift’* 1 piy, = N Py, we
use Lagrange multipliers. We form the Lagrangian function

N-N¢ o N-N¢ '
T oy A = logy (14 piydly) + A (Z p’zv) :
1=1 1=1
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By settingd.J/dp; = 0, we have

LA
14+p ’d’ In2
and
i I I A
PN T A2

Sincep, has to be positive, we have
N

. 1\T
P = (M—T>
dN

where(z)* denotes the larger of 0 and andy: is chosen such that

N-N N N d] +
> =23 (n-tr) e

1=11=1

Substituting (5.17) into (5.3), the capacity is expressed as
N N, a o\ d
CHRA = hm WZZIOgZ{H_( diﬁ[R) ;—R}
j=1i=1 AN
where the subscript indicates that the transmitter has the knowledge of chanmekbmeét
both temporal and spatial interference correlations.
As N — oo, the eigenvalues of Toeplitz matrixy approach the DFT of the first row
of Ay, i.e., the power spectrum of interferenéé;f), 0 < f < 1 [25]. Therefore,

o (! N\ digg
CHRA_;/O log, [1+</,L_ : ) N(f)} df (5.18)

?
dHR

wherey is chosen such that

Z/( diqR> df = Ps. (5.19)

This implies joint water-filling in both spatial and frequency domain as irctise of fre-

guency selective fading [90].
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In the special case of temporally white interferent¢/) = 1, the capacity in (5.18) is

equivalent to the capacity in [30], i.e.,

Nt 1 =+ )
Crra=r=»_log, {1 + (,,L - ) d}m] (5.20)
1=1 HR

wherey is chosen such that

Ny 1 +
> (,,L — ) = P, (5.21)

7
pa dirp

and water-filling is applied in spatial domain only.

5.3 Special Cases

5.3.1 Transmitter knows channel and spatial interference correlation

matrices

Without knowledge of temporal interference correlation, the transmitter a&sstimat the
interference is temporally white with = | 5. As a result, the water-filling is applied only

in spatial domain according td andR. The optimal transmit covariance matrix is
Son = v @VyRPV o (5.22)

with V  in (5.12) andP = diag(p",...,p"t). The elements in matriR are obtained by

water-filling in spatial domain

. 1 \ 7T
p’:(M— : > (5.23)

wheredy, , is the eigenvalue dfifR~!H as shown in (5.12), andis chosen such that
N,
> p =P (5.24)
i=1
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Substituting (5.22) into (5.11), we obtain

1
Cur = lim ~logydet |Iny, + (I @ VirPVr) (A7 @ HIRT'H)|

N—o0
. 1 -1 T
= ]\;gnooﬁlogzdet {INJ\Q‘I'AN ®VHRPAHRVHR] (5.25)
B

It can be shown that matrB& is Hermitian and the eigenvalues of malﬁmrep"dqu/dﬂN,
i=1,...,N,j=1,...,N. Hence, (5.25) becomes
7 oy
Cyr = ngnooﬁzz:bgz (1—|— y iIVR

1=11=1 ‘Z\ )
Nt 1 -
_ Pdyp
= ;/0 log, {1+ N(f)} df (5.26)

wherep! is determined by (5.23) and (5.24).

5.3.2 Transmitter knows channel matrix

The transmitter assumes that the interference is both temporally andllgpahite with
Ay =1y andR = Iy,. Hence, the water-filling is applied in spatial domain according to

H only. Using eigenvalue decomposition, we express
HfH = UyDyUl,, Dy =diagd),...,dY).
The optimal transmit covariance matrix is
San = Iy @ UyPUL (5.27)

whereP = diagp',...,p"\*). The elements in matriR are obtained by water-filling in

spatial domain according td

. 1\ 7T
P = (M - —) (5.28)
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wherey is chosen such that
Ne
> p =P (5.29)
i=1

Substituting (5.27) into (5.11), we have

Cy = lim %logzdet :IN.Nt+<IN®UHPU}[> <AN1®HTR—1H>}

N—oo

—  lim %10& det :lN.Nt+ <|N®UHP1/2> <|N®p1/zujq> <AN1®HTR—1H>}

N—oo

- ngnoo%logzdet :lN.Nt+ <|N®P1/2U}[> (A;@@HTR*H) <IN®UHP1/2>}

1 -
= lim Nlogzdet |N~Nt‘|‘ANI®P1/2U}[HTR_1HUHP1/2}.

N—oo

A

Note that matriXA is Hermitian and can be eigenvalue decomposed. Denoting the eigen-
values of matrixA asdh, . ,dgt, together with the eigenvaluesAlI;,1 in (5.14), we have
the capacity

1 L i
_ : - A
Cr o= Jlim 53 D log, (“%J

1=11=1

Ny 1 diA
= ; /0 log, {1+ N f)] df. (5.30)

5.3.3 Transmitter has no knowledge of channel and interference

Uniform power allocation is used at the transmitter, i.e., the optimacance matrix of
the input is

Ps
EfN:|N®_INt- (5.31)
N

Substituting (5.31) into (5.11), we obtain the capacity

1 P,
Choinfo = lim Nlogz det {INNt + <|N®FIM> <AN1®HTR_1H>}
t

N—oo

.1 1 P i
— ngnooﬁlogzdet {IN.Nt—kANl@EHTR 1H}.
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The eigenvalues of Hermitian matr/bg_\,l @ H'R='H are shown in (5.16). Thus, we have

N N d
Choinfo = A}gﬂoo N ZZlogz (1 + _d—>
AN

1=11=1

- Z / log, <1+ﬁ5 ;é%) df. (5.32)

5.4 Numerical Results

We use the system model in Section 4.5.1 and assume that the desired andingterfe
users transmit at the same data rate. From (4.28) in Section 4.5.2, thé ispatiarence
correlation matrix iR = %H[H} where P is the interference powel; is the number of
interfering transmitting antennas, aHd is the interferer's channel matrix. We assume that
the rolloff factor of the raised-cosine pulse shapihg: 1. For the interferer delag.47T
wherel /T' is the data rate, the elements of the temporal interference correlattar ozan

be obtained by numerical calculation of (4.27) as

0.5477 i=j
Aijr=04=14 02261 |i—j]=1 for 0<éi;<N-1 (5.33)
0 otherwise

If there is no delay between the desired user and the interferer, thergeteafiéhe temporal

correlation matrix are

1 1=
Aijr=0= for 0<i,7<N-—1.
0 otherwise

Hence, the interference is temporally white for a synchronized interfé&ete that the
interference power is smaller in the case of an asynchronous interferer.
As in Section 4.5.4, both independent and correlated MIMO links are considered for

the desired user, and independent Rayleigh fading is assumed for the intarfersame
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geometry of antenna arrays as in Section 4.5.4 is assumed for the desireBatbethe
desired and interfering users are equipped Witd) MIMO links, i.e., Ny = N, = L = 4.

For slow fading channels and applications with decoding delay constraints, animpor
tant performance measure is the capacity at a given outage probability [12, 8bjeskn
circumstances, the transmission duration of a codeword (this duration is long etwough
accommodate a very long codeword) may be much smaller than the coherence time of t
fading channel, and the channel is almost fixed during the transmission of the codeword.
Hence, the channel capacity is viewed as a random entity as it depends on thainesiaat
random channel parameters. The definition and operational meaning of outage caacity ¢
be found in [18]. In this section, we consider 10% outage capacity, denoteg,asvhere
Pr(C < Cy1) =10%.

Monte Carlo simulation is used to assess the 10% outage capacity for ditissemp-
tions of knowledge of channel matrix and interference statistics at the titsrive use
(5.18), (5.26), (5.30) or (5.32) to calculate the capacity for a particular eg@irz of the
desired and interfering users' channel matrices. From the empiricabdigin [86], we
find outCy 1. In the simulations, we leP;, = 100 and define SIR (dBﬁ 10logyg Ps/ Pr.

We point out that all water-filling results depend not only on SIR but also on valugs of
and P; since water-filling is a nonlinear operation.

Fig. 5.1 shows the outage capacity versus SIR for spatially and temporalkedah-
terference (the interferer delay(si7’). Independent Rayleigh fading is assumed for the
desired user. We observe that knowledge of the channel matrix offers a snmaith gai-
pacity, which is consistent with [104]. This is due to the independent fading of theedesi
user. If the elements in channel matkixare i.i.d. zero-mean complex Gaussians, water-
filling power allocation does not significantly outperform uniform power allocatiahat

the disparity among the eigenvaluestbfH is not large [104]. Fig. 5.1 also shows that,
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as interference becomes weak (from low to high SIR), the benefit of knowirmfgrgace

spatial correlation at the transmitter diminishes. Moreover, it ismeskin Fig. 5.1 that
lack of knowledge of temporal correlation of the interference at the traresnadiuses a
small capacity reduction. This can be explained by the low interference tahquorela-

tion in (5.33) as the correlation drops quickly to zero if the time differendarger than

one.

Fig. 5.2 shows the outage capacity for temporally white but spatially coloteder-
ence (the interferer delay is zero). Independent Rayleigh fading is assuntbéd tesired
user. Comparing Figs. 5.1 and 5.2, we observe that temporally colored inteddgsyn-
chronous interferer) gives higher capacity. This is partially due to the ematerference
power in the case of asynchronous interferer, and partially due to the facthabtal cor-
relation in interference increases capacities. To see how the telnspam@ation increases
the capacity, let us consider an extreme case where the temporal inteefem@relation is
unity for all time differences, i.e., interference vectors are theesanall sampling times.
With the knowledge of channel matrix and interference statistics avaiklthe receiver,
the interference can be easily determined by the receiver if the triassgnds one train-
ing vector symbol. Therefore, after the first training vector symbol, the charamebe
considered as interference-free, and we can transmit unlimited amouirntfwhation
over the channel within our assumption of interference-limited environment.

Fig. 5.3 shows the effect of Ricean factgrassuming the scattered components of the
desired user's channel are independently faded/ Ascreases, the rank of the channel
matrix approaches one, and the disparity among the eigenvaltiid-oincreases. There-
fore, water-filling power allocation achieves much higher capacities timform power
allocation does. In Fig. 5.3, as expected, the gain achieved by knowing the chariiel ma

increases a&’ grows. Due to the rank reduction of the channel matrix, we observe that
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Figure 5.1. 10% outage capacity versus SIR for temporally and spatially colatezd i
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ored interference (interferer delayl7T’) with Ny = N, = L = 4 and SIR=10dB. The scat-

tered component of the desired user's channel is independently faded.

capacities decrease asincreases.

Fig. 5.4 shows the effect of angle spread at the base station antenna amayngss
Ricean factoi” = 0. As angle spread decreases, the MIMO links become more and more
correlated, and the rank of the channel matrix is reduced to one at zero angle:. dpeace,
similar to the case of increasing Ricean fackoy Fig. 5.4 shows that the capacity gain
achieved by knowing channel matrix decreases as angle spread increasespeéied,
it is observed that capacities increase as the angle spread increasesvel] capacities
are not improved significantly when angle spread is larger than 6 degrees.e,Hbac
MIMO channel links can be considered to be faded independently with angle spregas lar

than 6 degrees. Figs. 5.3 and 5.4 also show that the knowledge of interferepogakem

correlation does not offer significant capacity gains.
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Rayleigh fading (Ricean factdt = 0) is assumed for the desired user.

5.5 Conclusions

In this chapter, we have derived the channel capacities of MIMO systems (pateally
and temporally correlated interference. Assuming that the receiverstimichannel ma-
trix and interference statistics, channel capacities have beenigatesl for different de-
grees of knowledge of the channel matrix and interference statistics aatisartitter. It is
shown that if the interference spatial and temporal correlation isadblaiat the transmitter,
water-filling power allocation in both spatial and frequency domain should besdppVith
the temporal interference correlation of the same-data-rate inteckecase in Chapter 4,
the results show that the knowledge of interference temporal correlation aatisnit-

ter does not offer significant capacity improvement. As the MIMO channel linksrbec
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more correlated, knowing the channel matrix at the transmitter provides sagrtitapac-
ity gains. It is observed that the MIMO links can be considered to be faded indepbnde

if the angle spread at the base station antenna array is larger than 6 degrees.

106



Chapter 6

Adaptive Modulation for MIMO Systems

6.1 Introduction

In Chapter 4, we considered channel estimation and data detection at tverdoeChap-

ter 5, we showed that, for continuous input signals, with knowledge of the channel matrix
and interference statistics at the transmitter, there are gains tchie/ed in information
capacity via water-filling power allocation at the transmitter. Iis tthapter, we will con-
sider joint processing at the transmitter and receiver. With the chartimabéss in Chapter

4, we will investigate how to implement the water-filling power allezatat the transmitter

in practical systems with finite alphabet input signals.

Studies for continuous input signals suggest that, if both transmitter and recereer ha
perfect knowledge of the channel gain matrix and interference statistieg;hieve the
capacity, we can decompose the MIMO channel into independent subchannels and apply
optimum water-filling on these subchannels [30], i.e., we allocate more powebthan-

nels with high channel gains. However, for finite alphabet input signals, poveeatthn
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alone may not be an efficient way to maximize capacity. This is due to theahtfecla-
tionship between channel capacity and SNR for continuous-input signals versusediscre
input signals. Consider a single-input single-output (SISO) channel, for continuous inputs,
the channel capacity increases without bound as SNR increases; while fotedisprés,
assuming the transmitted signal is drawn fromAdrpoint constellation with equal prob-
ability, the channel capacity saturatedat, M bits/channel use at high SNR. Therefore,

for discrete inputs, to boost data throughput, we need to apply not only power allocation,
but also other techniques, including varying the size of signal constellations.isT hat

good subchannels, we allocate more power and use higher-level modulation. As a result
data rates are higher on good subchannels. In the following, joint adaptation of power and
modulation level is referred to as adaptive modulation [49,119].

Adaptive modulation for MIMO systems maximizing information rate has beendaons
ered for flat and frequency selective fading channels in [66,90, 95,97, 98] assunfegs per
channel knowledge at both the transmitter and receiver. In practical sdieenchannel
transfer matrix and interference statistics are estimated byetteaver, for example, from
training symbol sequences. Hence, perfect channel knowledge may not be obtainable.
On the other hand, to enable adaptive modulation, channel knowledge is required at the
transmitter. In frequency division duplex (FDD) systems, this requiressitever to feed
channel information back to the transmitter. In practical systems, dusnited feedback
channel bandwidth, low-resolution quantized channel information is fed back [84je-The
fore, the transmitter and receiver may not have the identical channel infomthe to
guantization error. The performance of adaptive modulation based on channel ma@an fe
back was presented in [128]. In this chapter, we will investigate the itrgfamperfect
channel knowledge and feedback quantization error on adaptive modulation in MIMO sys-

tems. The channel estimates from Chapter 4 is used. Rate-distortion ta@orglved in
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our work to assess the achievable performance of feedback quantization. Sinesuttse

in Chapters 4 and 5 show that taking temporal interference correlationaoctaiat neither
increases the channel capacity nor improves the symbol error rates, in thisrciage will

focus on temporally white interference.

To apply adaptive modulation, the MIMO channel has to be decomposed into subchan-

nels. In Section 6.2, MIMO channel diagonalization is described for both tenhpa#tate

and colored interference. The adaptive modulation algorithm is describectiioisé.3.

The effects of imperfect channel estimates and feedback quantizatioricertemporally

white interference are investigated in Sections 6.4 and 6.5, respgctive

6.2 Diagonalization of MIMO Channels

6.2.1 Temporally white interference

Fig. 6.1 shows how to decompose a MIMO channel into independent single-input single-
output (SISO) subchannels for temporally white interference. Assume that theatha
matrix H is quasi-static, and that the interference vectas zero-mean circularly sym-
metric complex Gaussian with covariance matix In Fig. 6.1, at the transmitter side,

the signal to be conveyed, is multiplied by a pre-processing matNk; z. Note that the
entries insare independent and could have different signal constellation sizes and powers.
At the receiver side, a post-processing matjthR—l/2 is applied. The unitary matrices

Vi r andU g are obtained via singular value decomposition (SVD) of
RY2H = Uy p®ypVi g, (6.1)

Since the pre-processing mathNi; z is a unitary matrix, the power of the transmitted

signal,x = VRS, is the same as that &f As a result, the soft output in Fig. 6.1 is
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expressed as

r = ULRY2(HVyrs+n)

— UL LR V2HV yps+ UL R0
———— —
No
= q)HRS‘|‘ Nop

where it can be shown thﬂ{nong} =1. Since®yr is a diagonal matrix, the MIMO

channel is transformed into independent SISO subchannels. The inputs of subchannels are
elements o§; the channel gains are equal to the singular valu& éf2H; the interference
on each subchannel is zero-mean Gaussian with unit variance; the numberctfeffe
subchannels (subchannels with non-zero gains) is determined by the number of non-zero
singular values oR~!/2H. Hence, by linear transformations at the transmitter and receiver,
the MIMO channel is decomposed into several SISO channels. The signal caiostella
sizes and powers of signalssmvill be determined by the adaptive modulation algorithmin
Section 6.3. We remark that the pre-processing matrix constitutes a form of transmit
beamforming.

The post-processing matﬂix}[ RR—l/ Z can also be interpreted as follows. The received
signal vecto in Fig. 6.1 is first filtered byR /2 to spatially whiten the interference. Then
the unitary transformatioU}[R is applied to complete the diagonalization of the composite

channeR~1/2H,

6.2.2 Temporally colored interference

To maximize the information transmission rate, block transmission Earad so that the
temporally colored interference is taken into account. Assume that a blogkdata vec-
tors is transmitted. By stacking thé received signal vectors, the system can be modelled

as (5.2) with augmented channel mattx; = | y © H and interference covariance matrix
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Figure 6.1. Diagonization of an MIMO channel under temporally white interference.

Ry = Ay @R. Similar to the case of temporally white interference, we decompose the
composite channel as

VHN = (AveR TV (IyoH)

R
_ <A_1/2 ® R—1/2> (Iny @H) (6.2)
— AC 1/2®R—1/2H
= (UnwDL ULy ) @ (Unr®unViy) 6.3)
= (Uan®@Ugg) <DX11V/2 ® ‘I>HR> (Uan @Vgg)'
where in (6.2) it can be shown thaty @ R) ™% = A @ R-1/2 ; (6.3) is due to SVDs
in (5.13) and (6.1). If the SVD of
~1/2

Ry "Hy = UN<I>NVN, (6.4)

we have
Uy =Uanv@Ugr, Vn=Upxy@Vgr and @y = DX}V/Z @®yR.

Fig. 6.2 shows the diagonalization of the MIMO channel with temporally colored in-
terference. At the transmitter, powers and signal constellations of sigmahe block
SV =(S1,1,--+»81Ns---25N,,1,- - - SN, ) are determined frorn® - in (6.4) by an adaptive
modulation algorithm. At the receiver, after collecting all signals durhmg block, ZF

detection is applied.
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Figure 6.2. Diagonization of an MIMO channel under temporally colored interference

6.3 Adaptive Modulation

Similar adaptive modulation algorithms that are used for orthogonal frequencyodivisi
multiplexing (OFDM) systems can be adapted and applied to MIMO systems. aFw
gorithms are of practical importance: the Hughes-Hartogs algorithm which nmesmi
data throughput with a target bit error rate (BER) [13], and Chow-Cioffi-Bingh@o-al
rithm [24] along with its improved version [33] which transmits a fixed date with low-
est error rate possible. Note that the latter algorithm will use up all tagadle transmit
power, while the former one may not since the power increment from a low lewduim
lation to a higher level is discrete. In our work, we choose the Hughes-Hartogslahgor
due to two reasons. First, most applications, such as voice and video trsiosmigve
target BERs. Second, in wireless systems, we may want to use agdttgmit power as
possible to minimize the interference to other users. In addition, in our workestact
the modulation schemes to BPSK, QPSK, 16-square QAM and 64-square QAM.

The spectral efficiency of a MIMO system is expressed in terms of daggeatunit
bandwidth in bits/sec/Hz. If we seridbits/vector symbol, the data rateAg$7; bits/sec
whereT; is the symbol duration. With Nyquist pulses, we can assume that the signal

bandwidth isl /7. Therefore, the data rate per unit bandwidth lsits/sec/Hz.
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6.3.1 Adaptive modulation algorithm

We define an ordered list of possible modulation schemes d8RSK,QPSK,16QAM,
64QAM}, i.e., ), =BPSK and so on. To facilitate adaptive modulation, given subchannel
gains, we first calculate an incremental power mafjy,, where the(m,n)th element
Pincrmn = Pmpn — Pm—1n, 1 <m <4, and P, ,, denotes the required transmit power
for the nth subchannel to support modulation schefhg at some target BER. Clearly,
P, =0.

To maximize the data throughput with a transmit power constrdyyi, each time we
choose the subchannel that requires the least incremental power. The algoritinnmia-s

rized as follows [13]:

Step l: =1, Pysed= 0, andp_(i) = Pincr-

Incr

Step 2 Search the first row rﬁ)cr for the smallest element. If th@,»)th element is the

smallest ancHJ-(i)

incr.1.n = Pincr, ., thenth subchannel requires the smallest incremen-

tal power from modulation leve];_; to ();.

Step 3 If Pused+ Finer j,n < Protal, the modulation level on theth subchannel is increased
to ();, and FPysed< Fused+ Fincr jn; Otherwise, the adaptive modulation is com-

pleted and exit the algorithm.

[=1,2.3, andP*Y  — poi. Thatis, we

incr,4,n

Step 4 ObtaiP{'*!) py plitl) — pli

incr incr,l,n incrl+1,n’

move the elements in thah column ofP.(i)

icr Up one place, and set the last element

as Potal-
Step5:=1:+1, and go to Step 2.

To make sure that the modulation levels on subchannels are upper-bounded by 64QAM, in

updatingPi(,?Cr, we set the last element &ga).
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Figure 6.3. QPSK signal constellation with Gray code mapping.

6.3.2 Bit error rate of modulation schemes

To build up the incremental power mati, ¢, we need to know the required SNR for
a modulation scheme to achieve the target BER. With Gray code bit mapping 8K,QP
16QAM and 64QAM as shown in Figs. 6.3 to 6.5, the BERs in AWGN can be expressed

as [23,89,126]

1
Py Bpsk = §erfc(ﬁ)7 (6.5)
1 ¥
Pb,QPSK: §erfc 5 , (66)

1
Py 160aM = 3 {3erfc<, / %) + 2erfc (3, / %) —erfc (5 %) } ) (6.7)

— i l l v
Py eagam = 24{7erfc<,/42>+6erfc<3\/;> erfc<5\/;>
[0 _ J
+erfc<9 42> erfc<13 42>} (6.8)

where~ is SNR per symbol, and the complementary error function(erfs defined as

and

erfqz) = % [~ e="dz. The BERs of BPSK, QPSK, 16-square QAM and 64-square

s
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Figure 6.4. 16-square QAM signal constellation with Gray code mapping.

QAM are shown in Fig. 6.6. We use Gray mapping due to the closed-form BER ex-
pressions. According to Fig. 6.6, required SNRs to achieve a predefined t&Beai®

summarized in Table 6.1.
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Figure 6.5. 64-square QAM signal constellation with Gray code mapping.
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Figure 6.6. Bit error rates vs. SNR per symbol in AWGN channel for BPSK, QPSK,

16-square QAM and 64-square QAM.
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target BER| BPSK | QPSK | 16QAM | 64QAM
102 4.3203 | 7.2235 | 13.9286 19.8041
10-3 6.7396 | 9.7811 | 16.4862| 22.5000
5x 1076 | 10.0922| 13.0415| 19.7696| 25.8525
10-8 | 12.1198| 14.9770| 21.8894| 28.1567

Table 6.1. Required SNRs in dB for a predefined target BER.

6.4 Effect of Imperfect Channel Estimates

In practical systems, the receiver estimates the channel matrixéerfierence statistics
and feeds them back to the transmitter so that adaptive modulation can bel athe
transmitter. In practice, we usually have neither perfect channelastsmnor perfect feed-
back paths. In this section, to focus on the effect of imperfect channel ¢ssifram
training sequences, we assume a perfect feedback path from the recéisestitter and

temporally white interference.

6.4.1 System model

Consider a MIMO link with N; transmitting andV, receiving antennas. The received

P
Yi = HX;+ 4/ lelbz'—FWi

n;

signal is

wherex; is the transmitted vector symbol with power constraiaf H is the N, x N,
guasi-static channel matrix of the desired user,@and the interference-plus-noise vector.
We assume that interference comes frbitnansmitters which could belong to one or more

interferers. The total interference poweHs the N, x L matrixH; consists of quasi-static
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Figure 6.7. Adaptive modulation with imperfect channel estimates.

interfering users' channel gains,consists ofl, i.i.d. zero-mean interfering signals each
with unit variance anay; is the additive white Gaussian noise vector with zero-mean and
covariance matrix=| ~,.. Note that each interfering transmitter has the same transmitted

power. It can be shown that the covariance matrix of interference plusisoise

P
R:TIH[HHU%M.

With temporally white interference and noise, during the training period efctor
symbols, the estimates of the desired user's channel matrix and the gpatitdrence
correlation matrixH andR, can be obtained by (4.17) and (4.18), respectively.

During the data transmission period, as shown in Fig. 6.7, the transmitteeegiger
calculate the pre- and post-processing matiiteg andU!, ,R~'/2, respectively, via SVD
of R™/2H = Uy p@ ;1 gV}, 5. The power and modulation level for each transmitted signal
in sare determined frorﬁ)HR by the adaptive modulation algorithm. To demodulate the
transmitted signals, the receiver scales the appropriate constellbtiadhe power coeffi-

cient obtained from the adaptive modulation algorithm.
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6.4.2 Simulation results

We consider a desired user wittia4) MIMO link and L = 5 interfering transmitters. The
interfering users are assumed to experience i.i.d. Rayleigh fading. Forshedlaser,
both independent and correlated MIMO links are considered, and the same antegna arra
geometry as in Section 4.5.4 is assumed. Monte Carlo simulation is usedlt@ate the
average system performance over different channel realizations. Imtl&sbn, we set
the total interference poweét; = 1, and interference-to-noise power ratio INR=20 dB.

In Figs. 6.8 and 6.9, we compare the performance of adaptive modulation with non-
adaptive case assuming perfect knowledge of channel and spatial interfeverstation
matrices at the transmitter. The desired user is assumed to expearighdeayleigh fad-
ing. For the adaptive modulation, the target bit error rate0is’. For the non-adaptive
case, QPSK s assumed for each transmitter and uniform power allotsagipplied among
transmitting antennas; ordered MMSE detection is used at the receasdtate the trans-
mitted symbols. As expected, for the adaptive case, the system operatetsaaf)¢hSER
for all values of SIR. The data throughput increases significantly with SIR a@atev
ally saturates at 24 bits/sec/Hz since the modulation on each subchanisélicsee to 64
QAM. For the non-adaptive case, the data throughput is fixed at 8 bits/sec/Hz% vai-al
ues of SIR, and the BER improves significantly as SIR increases. At IBytBé adaptive
modulation sacrifices spectral efficiency to obtain low BERs; whileglt BlR, it sacrifices
the unnecessarily low BERS to achieve high data rate. We point out that in thelaptive
case, the transmitters use up all the available power, while in the aelape, at high SIR,
only part of the transmit power is consumed. Therefore, for applications wgbttBERS,
adaptive modulation achieves a higher spectral efficiency.

For data throughput 8 bits/sec/Hz and BER 2, we observe that the adaptive scheme

requires SIR 9 dB from Fig. 6.8, and the non-adaptive scheme requires SIR 15 dB from
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Figure 6.8. The number of bits transmitted per Hz per sec for adaptive modulation and

non-adaptive scheme assuming perfect channel knowledge at the transmittearggéte t

BER in adaptive modulation i®)—3, N; = N, = 4, andL = 5. The desired user is assumed

to experience i.i.d. Rayleigh fading.

Fig. 6.9. Therefore, there are 6 dB SIR saving by using adaptive modulation.

When channel and spatial interference correlation matrices are gstifinam training
sequences, with target BER 3, Fig. 6.10 shows the actual achieved bit error rate versus
training length. We observe that even for moderately long training lengthsse.gimes
the number of transmitting antennas, the actual achieved BER is much highehé&an t
target BER. Hence, with estimated channel and spatial interferencdat@mn matrices,
we have to set the target BER much lower than the actual BER. After expets, it is
found that to make the actual BER b&? for training length6 N; and4 N;, we have to set
the target BER to b& x 10~ and10~5, respectively. The required SNRs for target BERs
5% 107% and10~® are shown in Table 6.1.

Fig. 6.11 shows the spectral efficiency for adaptive modulation with chanm@latss
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Figure 6.9. Average bit error rate for adaptive modulation and non-adaptive scesume-a
ing perfect channel knowledge at the transmitter. The target BER in adaptielation is
1073, N; = N, =4, andL = 5. The desired user is assumed to experience i.i.d. Rayleigh

fading.
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Figure 6.10. The achieved bit error rate versus training length of adaptive moduéith
target BER1073. Itis assumed tha¥; = N, = 4, andL = 5. The desired user is assumed

to experience i.i.d. Rayleigh fading.

where the actual BERs achieve—3. As expected, the throughput improves as channel
estimates become accurate. Compared to the case of perfectly known cledome|3
bits/sec/Hz degradation occurs with training lengtf}. For example, at SIR 15 dB, with
perfectly known channel we can transmit 13 bits/vector symbol, and withingalength
4Ny we transmit 10 bits/vector symbol.

The spectral efficiency shown in Fig. 6.11 does not take the training overhead int
account. Although a longer training length yields a higher throughput for data transmission
period (after training period), it requires more overhead. Therefore, e/enterested in
overall spectral efficiency which takes the training overhead intowatdc Assume that the
data is transmitted frame by frame, and that the channel is estimatied béginning of
each frame. For a certain frame length, we would like to find out a good traienggh

which maximizes the overall spectral efficiency. For example, at SIRB,5Fig. 6.11
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Figure 6.11. The number of bits transmitted per Hz per sec versus SIR for adaptive m

ulation with N; = N, = 4, L. = 5. The actual achieved BER i$~3. The desired user is

assumed to experience i.i.d. Rayleigh fading.

shows that for training length/N; and 6 Ny, we can transmit 10 bits/vector symbol and
11 bits/vector symbol, respectively. If we haXe = 4 transmitting antennas and a frame
length M, for training lengtht vV, and6 Ny, the overall spectral efficiency (87 — 4 x V) x
10/M bits/sec/Hz andM — 6 x N¢) x 11/M bits/sec/Hz, respectively. It can be shown that
if the frame length is more than 104 vector symbols, it is worth using trainimggtes V;.

To investigate the effect of a LOS component in the desired user's charmpeb.ER
shows the spectral efficiency of adaptive modulation for different Riceatorawhere
the actual achieved BER i€)~2. We fix SIR to be 10 dB. The scattered components
of the desired user's MIMO links are assumed to be independently faded. Reatalkt
K increases, the rank of the MIMO channel matrix reduces. In Fig. 6.12, as the LOS
component becomes more prominent, the number of subchannels is reduced, hence data

throughput decreases. We observe thakasicreases, the loss in spectral efficiency due
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Figure 6.12. The number of bits transmitted per Hz per sec versus Ricean fadtor
adaptive modulation witlv;, = N, =4, L =5, SIR=10 dB. The actual achieved BER is
10~3. The scattered components of the desired user's channel are assumed to be indepen-

dently faded.

to imperfect channel estimates diminishes. This can be explained by théhdador a
fixed training length, the channel estimates become accurate at large ohliesas we
mentioned in Section 4.5.4.3.

To investigate the effect of correlated fading among the desired useimel links,
Fig. 6.13 shows data throughputs for different angle spreads at the base station antenna
array with SIR 10 dB. For training lengthV, and6V;, the actual achieved BER i$ 3.
We assume correlated Rayleigh fading £ 0) for the desired user. Recall that as the
angle spread increases, MIMO links become more and more uncorrelated. Figh®ais3 s
improvements in data throughput as angle spread increases due to the increksétha
MIMO channel matrix. It is shown that as the angle spread increases, thia lgfssctral

efficiency due to imperfect channel estimates slightly increases. @&hibe explained by
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Figure 6.13. The number of bits transmitted per Hz per sec versus angle spreagfiveada
modulation withN; = N, = 4, L =5, SIR=10 dB. The actual achieved BERIi& 3. The

desired user is assumed to experience correlated Rayleigh fadiag)).

the fact that for a fixed training length, the channel estimates become lmssi@cfor a
large angle spread, as we mentioned in Section 4.5.4.3. We also observe thahehen

angle spread is larger than 4 degrees, system performance is invariagldspread.

6.5 Effect of Feedback Quantization

To enable adaptive modulation at the transmitter, the receiver has tohieethannel in-
formation back to the transmitter. In some practical systems, the iatoymthat needs to
be fed back is represented by af-bit description via some quantization process. This
scenario arises when a digital channel with limited bandwidth is allddatdeedback. As
a result, transmitter and receiver may not have the same channel infonrdaé to quanti-

zation error. In practice, we have both imperfect feedback and impetfanhel estimates.
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To separate the impact of imperfect feedback from that of imperfect chastmabges and
for the purpose of analysis, in this section, we assume perfect channel knowletige at t
receiver and focus on the effect of feedback quantization. Investigation abthbined

impact of imperfect channel estimates and imperfect feedback is |dfitime work.

6.5.1 Analysis of quantization error

We assess the achievable quantization error by rate distortion theory [84halibe the
analysis, we consider a noise-limited environment with negligible interéerand spatially
white Gaussian noise. Independent Rayleigh fading is assumed for the desiredheiser
channel matrixH has N, x N; i.i.d. zero-mean circularly symmetric complex Gaussian
components with unit variance. Equivalently, with real and imaginary pdrtgs2 N, N;
i.i.d. zero-mean real Gaussian random variables each with varigpeel /2.

Vector quantization is employed to transmit knowledgeldfom the receiver to trans-
mitter. We useV, bits to describe the N, N; real elements of. LettingH be the recon-
struction of the quantizeld, we consider vector quantization that minimizes mean squared

error [84]

Ny N

1 .
R i

1=1 j=1 ke{real,imag

where H,;;, and Flijk denote the real-valued elements of matdxandH, respectively.
Since the real and imaginary componentsiiare i.i.d. Gaussian, the mean squared error

can be lower-bounded by the corresponding distortion-rate function [25], i.e.,
1
02> D(R,) = o%27 = 52—21% (6.9)

whereR, = N,/(2N, N;) is the number of descriptive bits per real componerti ofor a

fixed i, this lower bound can be approached arbitrarily closely/gsV; goes to infinity.
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For a very large N, Ny, this lower bound is achieved when the quantization ergoH — H
is a zero-mean complex Gaussian random matrix, independett with i.i.d. real and
imaginary parts each having variant&z,;). More specifically, fore,;;, = H,j; — F]ijk,
the lower bound of quantization error is achieved wWigR, ~ A (0,07 — D(R,)), €ij ~
N(0,D(Ry,)), and H; ;;, is independent of, ;. SinceH, ;. = Hyji, + ¢, Hij and H,jp,
are jointly Gaussian random variables with covariance

COV( Hji, Hijk) = E[HijiHiji)

= Bl(Hji+eqn) Hir)

= U%I_D(Rq)

where the last equality comes from the fact that andHijk are zero-mean and indepen-
dent.

Fig. 6.14 shows the adaptive modulation with quantized feedback. The transmitter
determines the unitary pre-processing matrix and adaptive modulation acctoding
SVD of the quantized channel matitk = LNJH@H\N/}[. The receiver uses the SVD of the
perfectly known channel matrid = Uy® HV}[ to determine the post-processing matrix

and scale the signal constellations for data detection.

6.5.2 Simulation results

Monte Carlo simulation is used to evaluate the effect of feedback quaotizat the perfor-
mance of adaptive modulation. To simulate matridemndH, i.i.d. pairs of( H; [:]ijk),i =
L,....,Ny,j=1,...,Ny,k € {realimag are generated. For each pdif;;; and ﬁljk are

jointly real Gaussian random variables with

H;p 0.5 0.5—D(R
o) (o (Rg)
Hiji, 0.5—D(Ry) 0.5—D(Ry)
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Figure 6.14. Adaptive modulation with feedback quantization.

whereD(R,) is shown in (6.9).

We consider g4,4) MIMO system with SNR 15 dB. Figs. 6.15 and 6.16 show the
upper bounds of system performance (best possible performance) versus quantizaltion lev
with target BER10~2. In Fig. 6.15, we observe that the BER improves significantly as
the quantization level increases, and eventually reaches the targetBER. 6.16, we
observe that the spectral efficiency increases as the transmitter abtai@s.ccurate chan-
nel information. Both figures suggest that, to achieve target performance, [Loimdex
channel gain should be used for the feedback quantization. Figs. 6.17 and 6.18 show the
performance for target BER)~. We observe that 22 bits/complex channel gain should be
used for the feedback quantization. Hence, fot,@) MIMO link, with target BER1072,
we need22 x 16 = 352 bits to quantize the channel matrix. Since the receiver has four
antennas, ignoring channel coding and assuming that each antenna uses QPSK, we need
352/(4 x 2) = 44 vector symbols for the feedback of channel matrix.

To see how much overhead requires due to the feedback of channel matrix, weiconside
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Figure 6.15. Average bit error rate versus quantization level of feedbackWyithV, = 4,

SNR=15 dB and target BER)~2.

a system operating at a carrier frequency of 1.9 GHz and symbol rate 24.3 ksymiodse
bandwidth of 30 kHz [47]. If the mobile is moving at= 5 m/sec (18 km/hour), the maxi-
mum Doppler shiftf,, = v/ A = 31.7 Hz where)\ is the wavelength at the carrier frequency.
The normalized Doppler spredd, /symbol rate= 0.13%. The normalized Doppler spread
can also be interpreted as the ratio of symbol duration to channel coherencenoaé¢he
coherence time is inversely proportional to the maximum Doppler shift [91]. Cobere
time is the time duration over which the channel is essentially invarfsguming that the
frame length is 200 vector symbols (the assumption of quasi-static channel holds-for nor
malized Doppler spread 0.13%), for the4) MIMO link and target BER10~ discussed

above, the overhead for feedbackdg 200 = 22%.
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Figure 6.16. The number of bits transmitted per Hz per sec versus quantizatibofleve

feedback withV; = N, = 4, SNR=15dB and target BER) 2.
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Figure 6.17. Average bit error rate versus quantization level of feedback\vyithV, =4,

SNR=15 dB and target BER) 3.
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Figure 6.18. The number of bits transmitted per Hz per sec versus quantizatibofleve

feedback withV; = N, = 4, SNR=15dB and target BER) 3.

6.6 Conclusion

In this chapter, we have investigated the effects of imperfect chartmab¢ss and feedback
guantization error on adaptive modulation for MIMO systems. We show that forcappli
tions with target BERs, adaptive modulation achieves higher spectrakefficcompared

to the non-adaptive scheme. In studying the effect of imperfect channel estinna as-
sume a perfect feedback path from the receiver to transmitter. The tithadss of channel
and spatial interference correlation matrices in Chapter 4 are emplQgedpared to the
case of perfectly known channel, fo4 4) MIMO system, 3 bits/sec/Hz degradation in
spectral efficiency occurs for a training length equal to four times the numbearait-
ting antennas and the actual achieved BEBER>. When the angle spread at base station

antenna array is larger than 4 degrees, the system performance is closededtvehere
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MIMO links are independently faded. In analyzing the effect of feedback quawtizati

ror, we assume perfect channel knowledge at the receiver and a noise-Bmiiscthment.

Rate distortion theory is used to assess the achievable quantizationlels@hown that

for a (4,4) MIMO link with independent Rayleigh fading, to achieve target BER 3,

22 bits/complex channel gain should be used for the feedback quantization, which may be

translated into the required overhead for feedback.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis and sisgyesal

topics for future research.

7.1 Conclusions

In this thesis, we have studied the impact of spatially and temporally abioterference
on the performance of MIMO systems.

In Chapter 3, outage performances of several diversity schemes have begicahal
compared for an interference-limited environment in a Rayleigh fading chaimethree
diversity schemes are equal gain combining (EGC), selection combining(®Channel-
matched combining (CMC), a practical variation of maximal ratio combifMBC) that
does not require SNRs at different antennas. An exact outage probability expreasion w
derived for EGC by accurately calculating the interference power at tipeioot the com-
biner. With this exact analysis, we show that the existing method, which e&ésuihe in-
terference power approximately, may lead to optimistic outage probalstitpates. With
four receiving antennas, the existing method may overestimate the output SGTafdn-

biner by as much as 1.5dB. The comparisons for diversity schemes show that CMC has a
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lower outage probability than that of EGC, and that CMC has no greater outage pitybabili
than that of SC. The relative outage performance between EGC and SC, haveperds
on the number of interferers and interferer power distribution.

In Chapter 4, we investigated algorithms of channel estimation and datdidetfEs
MIMO systems under spatially and temporally colored interference. By riogehter-
ference statistics as being approximately temporally and spatiallys@pawe have pro-
posed an algorithm to jointly estimate channel and spatial interferenadatoon matrices.
By exploiting the temporal interference correlation, one-vector-symbol datdtas been
extended to a multi-vector-symbol version. In the case of one interferer, veeshawn
that the interference statistics is indeed temporally and spatigtigrable, and that the
temporal interference correlation may be caused by the intersymbol irtecgeof the in-
terferer. The impact of temporal and spatial interference correlati@mannel estimation
and data detection was assessed. We also investigated the situatienhigiietemporal
interference correlation results from a cochannel interferer operatiadoater data rate.
The results show that the benefit of taking temporal interference correlatmadcount in
channel estimation is not significant for both same- and lower-data-ratéeisiece cases.
In the case of lower-data-rate interference, much improvement cachievad by taking
account of the temporal interference correlation in data detection. Fof aMIMO link
with independent Rayleigh fading, by exploiting temporal interference correliaticman-
nel estimation and data detection, we obtain 0.5dB and 3.5dB gains in SIR for sagne- a
lower-data-rate interference cases, respectively.

In Chapter 5, with spatially and temporally colored interference, wesassl the ben-
efit of knowing channel matrix and interference statistics at the tratesnfiom the view
point of information theory. Assuming that the receiver knows the channel matilixna

terference statistics, we derived the channel capacities of MIM@mgsivith different
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assumptions of knowledge of channel matrix and interference statistics aatisenttter.
It is shown that, with interference spatial and temporal correlatiailae at the transmit-
ter, water-filling power allocation in both spatial and frequency domains dhmuapplied.
With the temporal interference correlation of the same-data-ratéané@ce case in Chap-
ter 4, the results show that knowledge of interference temporal correlatiom@ansmitter
does not offer significant capacity improvement.

In Chapter 6, we proposed an adaptive modulation scheme using the channel matrix
and interference statistics estimated by the receiver. We igag¢stl the effects of imper-
fect channel estimates and feedback quantization error on adaptive moduatMiO
system. In studying the effect of imperfect channel estimates, we assperéeat feed-
back path from the receiver to transmitter and use the ML estimates ohehand spatial
interference correlation matrices presented in Chapter 4. Compatesicade of perfectly
known channel, for &4,4) MIMO system, it is shown that 3 bits/sec/Hz degradation in
spectral efficiency occurs for a training length equal to four times the numbearcs-t
mitting antennas and the actual achieved BER?. In analyzing the effect of feedback
guantization error, we assume perfect channel knowledge at the receiver asd-imaded
environment. Rate distortion theory was used to assess the achievable aji@angzror
for independently Rayleigh faded MIMO links. Itis shown that, f¢ral) link, to achieve
the target BER 03, 22 bits/complex channel gain should be used for the feedback quan-
tization, which may be used to calculate the required overhead for feedback.

The results in this thesis also show that a training length equal to four tiraesimber
of transmitting antennas achieves most of the performance gain. It is obsbatert
angle spreads larger than 5 degrees, the system performance is close tethdess

MIMO links are independently faded.
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7.2 Future Work

Here are some suggestions for future work.

¢ In Chapter 3, we analytically compared the performance of diversity systeas
Rayleigh fading environment. One may compare the performance of these diversity
systems in Nakagami fading. However, it may not be easy to conduct an arlalytica

comparison.

e The results in Chapter 4 show that in the case of interference from loverale
users, much improvement can be achieved by taking account of the temporal inter-
ference correlation in multi-vector-symbol data detection. It is theeebbinterest
to investigate how to estimate an interferer's delay so that theaehinterference

correlation can be estimated.

¢ In Chapter 6, we considered the effects of imperfect channel estimateseizhtk
error on adaptive modulation separately. It would be useful to evaluate thar-perf
mance degradation caused by both impairments. An alternative model of feedback

error as in [84] may be used.

e The adaptive modulation scheme in Chapter 6 requires the whole channel matrix to
be fed back from receiver to transmitter. When the number of antennas in teesys
becomes large, the amount of feedback information would be impractically large.
is of interest to investigate transmission schemes which requiretuaed amount

of feedback information.

137



Appendix A

Variance of z;|n]

In this appendix, we show that the variance:gf.] in (3.3) isl — p/4. We have

E{lzn]l’} = E{ziln]=[n]}

= Z E{gz(nT—mT—n)} (A1)

_ S B {2 ) (A2)
k=—o0

_ l f: /T 2(kT—T)alT

- Tk:—oo 0 !

kT

= 7 Z/ gA(t)dt (A3)

v ST

= %/_OO gz(t)dt
1 (0.0]
o NGR (A.)

where (A.1) follows from the assumption that the data symbols ofttihénterferer are
independent and with unit variance; (A.2) follows from the substitutiean — m; (A.3)
follows from the substitutiort = £7"— 7; (A.4) follows from Parseval's theorem where

G/(f) is the Fourier transform of(¢). Sinceg(t) is a Nyquist pulse with a raised cosine
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spectrum and rolloff factgs, we have [89]

r 0<|
=1 42 (-]} <<
0 /] >

Hence, we have

I T (2T T
[ enes = g [ {1 T

1
= l—p—l—B/ (1+cosmu
2 Jo
_q_r
4

Hence, the variance af[n]is 1 — p/4.
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Appendix B

Cl C;
S

Circular Symmetry of o

In this appendix, we show that 2 Tl—°| in (3.23) is a circularly symmetric complex Gaus-
sian RV with zero-mean and unit variance. Note thadndc; are independent zero-mean
circularly symmetric complex Gaussian random vectors each with ieova matrix y;, .

Letc, =c, r+jCs y @ndc; = C; g+ jC;  Wherec, g, C, 1, C; g andc; ; are real Gaussian
vectors. Hencey; = v; r + jv; 1 Where the real and imaginary parts are

CszCi7R + Cz:]CZ'J
Cs |

ViR =

and

T T
C, rCi, 1 —C; jGiR

1Cs]

v =

For a givenc,, v; g andv; ; are zero-mean joint Gaussians since they are linear transfor-
mation of zero-mean joint Gaussiajt$ , c/;|”. The variance of; ; conditioned orc,
IS
var [Ui,R|Cs]
= E[vfplcs
= K {vi7Rng|Cs}
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<C§ RCi.R+CL [cu) <CZRCS,R + CZ]Qs,I)
|2

_= E CS

Cs

CSTRE {Ci7RCZR} CS7R—|—CZJE {C“CZR} CS7R—|—CST7RE {CLRCH CSJ—I-CZJE {CUCH Cs 1
|2

Cs

1 1
CS,RCS7R —I_ CS,]CS7]
|2

1
2 |Cs
1
2
where £ {Ci7RCZ»TR} =F {C“CZ»T]} = 3ly, and E {C“CZ»TR} =F {Ci7RCZ»T]} = 0. Similarly,
the variance of; ; conditioned orc; is
9 1
var[v; 1/cs] = E [v|cs] = 5
The covariance of; p andv; ; conditioned orc; is
cov(v; r,vi,7|Cs)
E [vi rvi 1|Cs]
T
= F {Ui,RUZ'7]|Cs}

<C§ RCi,R+C! [cu) <CZICS,R - CZRch)

= F C
o 5
_1€0C R—Cl Gy
2 [
= 0

Hence, givert,, v; is a circularly symmetric zero-mean complex Gaussian with unit vari-

ance, and its PDF is
fui(vilCs) = = lelul”,

Sincef,,(vi|Cs) is independent of;, it is clear thaw; is independent of;. Henceyp; is a
circularly symmetric zero-mean complex Gaussian with unit variawgh@ut condition-

ing oncy).
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Appendix C

Alternative derivation of H and R

To find the value ofH, R) that minimizesf(H,R) in (4.7), we set f(H,R)/0R= 0. Using

the identities of matrix derivative in (4.13) and (4.14), we obtain

—1N-1

R= ﬁ Z Z a; 5 (Y, )y — ij)T. (C.1)

1=0 3=0
Substitutingﬁ into (4.7), we note that the estimateldfis determined by minimizing the
determinant
—1N-1
f1(H) = det Z > aijly )(y; — Hx;)T 3 (C.2)
1=0 3=0
With the weighted sample correlation matrices defined in (4.9)-(4.11), #texmn

(C.2), denoted aB, can be expressed as

—1N-1
F = — Z > aij(yi ) (yj — Hx;)! (C.3)
1=0 3=0
t t o E i B-lp
_ <H nyRm>Rm <H nyRm> +Ryy — R RIIR,,. (C.4)

Y N T ¥
Now we show that botI'(H . RLyR;;> Rux <H . RLyR;;> andR,, — Ri,R-IR,,
are positive semidefinite.
Lemma 3 Matrix B; = R,,, — R, R;!R,, is positive semidefinite.
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Proof: Notice that matrixB; is equal to matrix in (C.3) ifH = R} R— We define

matrix A as
A= lyo—RLRIx ... yvo1—RL R xnv_1l,
and matrixB; can be re-expressed as
By = iAA;AT
N
whereAN1 is defined in (4.5). For any, x 1 complex vectow,

1 1
wiB;w= WWTAANIATW = ﬁbIAﬁl by

where theV x 1 vectorb; = Afw. SinceA y is positive definiteA ! is positive definite as

well. Hencew'B;w > 0 for anyw, and matrixB; is positive semidefinite. [
Y . TR T .
Lemma 4 Matrix By = <H — Rl«yR;a}> 2 <H — Rl«yR;a}> is positive semidefinite.

Proof: Define matrix

and rewriteR,.,. in (4.11) as
Rer = - XAZIXT
For any NV, x 1 complex vectow, we have

WTBQW

t
_ %WT<H R R >XA 1xT<H R R )w

TY xx Ty \TT

1 -
= ﬁb;A ~'b2

N 1
where theN x 1 vectorb, = Xt (H — R, R=1) w. Again, sinceA ! is positive definite,
Y \rx N

w'B,w > 0 for anyw, and matrixB; is positive semidefinite. [
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To find the value oH that maximizeslet(F) in (C.4), we introduce the following

lemma [75].

Lemma 5 If matricesA (m x m) andB (m x m) are positive semidefinite, then
det(A+B) > det(A) + det(B).

Notice that, in (C.4)R,, — R},R;!R,, is independent ofl. By applying Lemma 3, it

is easy to see thdkt(F) is minimized by choosing

H=Rl,R. (C.5)

R=R,, —HR,,. (C.6)
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Appendix D

Proof of det(l + AB)=det(l +BA)

The matrix identitydet (1 + AB) = det (I + BA) has been used extensively in the work of
channel capacity of MIMO systems [30, 104, 114]. However, the author has not seen a

proof of this identity in the literature. In this appendix, we will prove this idgnt
Lemma 6 If Ais anm x n matrix, B is ann x m matrix, andm < n, we have
det (1., + AB) = det (l,, + BA). (D.1)

Proof: Theorem 1.3.20 in [75] states thBA has the same eigenvaluesARB, to-
gether with an additional — m zero eigenvalues; that isg 4 (1) = t"~ " pag(t), where the

characteristic polynomial 0B is defined ap 4 5(t) = det (¢l — AB). Therefore, we have

ppa(t) =t"""pap(t)
— det(tl, — BA) = """ det(tl , — AB)

— (—1)"det(BA—tl,) = "™ (—1)™ det(AB — tl ). (D.2)

Lettingt = —1in (D.2) yields (D.1). [
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