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Abstract

To meet the requirement of very high data rates for wireless Internet and multimedia

services, multiple transmitting and multiple receiving antennas have been proposed for

fourth generation wireless systems. In cellular systems, performance is limited by fading

and cochannel interference from other users. Most of the current studies on multiple-input

multiple-output (MIMO) systems assume that the cochannel interference is both spatially

and temporally white. In this thesis, we focus on MIMO systems under both spatially and

temporally colored interference.

In MIMO systems, diversity gain is effectively achieved by the multiple receiving an-

tennas. Outage performances of several receive diversity schemes are analytically com-

pared for an interference-limited environment in a Rayleigh fading channel.We investi-

gate three diversity schemes: a practical variation of maximal-ratio combining, equal-gain

combining (EGC) and selection combining (SC). An exact outage probability expression

is derived for EGC by accurately calculating the interference power at the output of the

combiner. It is found that the relative performance between EGC and SC depends on the

number of interferers and interferer power distribution.

Channel estimation and data detection for MIMO systems under both spatially and

temporally colored interference are studied. By modelling interference statistics as being

approximately temporally and spatially separable, we propose an algorithm to jointly es-

timate channel and spatial interference correlation matrices based on maximum likelihood
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principle. Multi-vector-symbol data detection is developed to exploit the temporal inter-

ference correlation. In the case of one interferer operating at a lower datarate, the results

show that significant improvement can be achieved by taking account of the temporalin-

terference correlation in data detection.

Information capacities of MIMO channels under spatially and temporally correlated

interference are derived. Capacity gains due to the knowledge of the channel matrix and

interference statistics at the transmitter are assessed. To achieve these capacity gains, we

propose an adaptive modulation scheme exploiting the channel matrix and interference

statistics estimated by the receiver. In particular, the impact of channel estimation error

and feedback quantization error on adaptive modulation is evaluated for MIMO systems.
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Chapter 1

Introduction

Communicating over a wireless channel is highly challenging due to the complex propa-

gation medium. The major impairments of the wireless channel are fading and cochannel

interference. Due to ground irregularities and typical wave propagation phenomena such

as diffraction, scattering, and reflection, when a signal is launched into the wireless envi-

ronment, it arrives at the receiver along a number of distinct paths, referred to as multipath.

Each of these paths has a distinct and time-varying amplitude, phase and angle of arrival.

These multipaths add up constructively or destructively at the receiver. Hence, the received

signal can vary over frequency, time, and space. These variations are collectively referred

to as fading and deteriorate the link quality. Moreover, in cellular systems, to maximize the

spectral efficiency and accommodate more users while maintaining the minimumquality

of service, frequencies have to be reused in different cells that are separated sufficiently

apart. Therefore, the desired user's signal may be corrupted by the interference generated

by other users operating at the same frequency. This kind of interference is called cochan-

nel interference (CCI). As a result, to increase capacity and spectral efficiency of wireless

communication systems, it is crucial to mitigate fading and CCI.

One of the key technologies to mitigate fading and CCI is to implement antenna arrays
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in the system [45, 46, 70, 83, 122]. Antenna arrays can be employed at the transmitter, or

receiver, or both ends. With an antenna array at the receiver, fading can bereduced by diver-

sity techniques, i.e., combining independently faded signals on different antennas that are

separated sufficiently apart. If antennas receive independently faded signals, it is unlikely

that all signals undergo deep fades, hence, at least one good signal can be received.Three

common diversity schemes are selection combining (SC), equal gain combining (EGC)

and maximal ratio combining (MRC). To reduce strong interference, appropriate combin-

ing weights can be chosen to maximize the signal-to-interference-plus-noise ratio (SINR),

i.e., enhance the desired signal and suppress the interfering signals, as wellas reduce fad-

ing . If the desired and interfering signals are highly directional, the arrayradiation pattern

may form a beam, i.e., beamform, to the desired user and null the interferingsignals.

Recently, antenna arrays located at transmitters have attracted muchinterest. Trans-

mit diversity was first introduced by Wittneben in [123], and later popularizedby Tarokh's

space-time codes [113]. Similar to the receiver-based beamforming, if thechannel informa-

tion of the desired and cochannel users is available at the transmitter, transmit beamforming

can be used to enhance the signal-to-noise ratio (SNR) for the intended user and minimize

the interference energy sent towards cochannel users [32,41,92].

To meet the requirement of very high data rates for wireless Internet and multimedia

services, multiple antennas at both the transmitter and receiver have beenproposed for

fourth generation broadband wireless systems [73,80,96]. In a rich scattering environment

where channel links between different transmitters and receivers fade independently, it was

shown that, by decomposing a multiple-input multi-output (MIMO) channel into several

single-input single-output (SISO) subchannels, the Shannon's information capacity of a

MIMO channel increases linearly with the smaller of the numbers of transmitting and re-

ceiving antennas [35, 114]. To realize this high capacity, various space-time transmission
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schemes were investigated, including space-time trellis coding [112,113], space-time block

coding [8, 110, 111], and space-time differential coding [57, 58]. Moreover, considerable

work has been conducted to exploit the MIMO capacity using the already highly developed

one-dimensional coding and decoding techniques. As a result, different layered space-time

architectures were proposed, including Diagonal- [34], Vertical- [47], and Turbo-Bell Labs

Layered Space-Time [99], also known as D-, V-, and T-BLAST, respectively. State-of-

the-art research of MIMO systems was reviewed in [42]. Information capacity of MIMO

channels under different environment has been summarized in [48].

1.1 Motivation and Thesis Overview

Most of the current studies on MIMO systems assume that the interference is bothspatially

and temporally white. For example, information channel capacity of a MIMO linkunder

both spatially and temporally white interference was assessed in [35,114],channel estima-

tion was studied in [52,71,77,100,109] and data detection was investigated in [36,47,55].

Spatially white interference means that the interfering signals on different receiving anten-

nas are uncorrelated with the same power. Temporally white interferenceimplies that in

the decision statistics for symbol detection, the interfering signals are uncorrelated from

symbol to symbol with the same power. However, in cellular systems, the interference

may be both spatially and temporally colored. The spatial correlation can be explained by

the simple case of one interferer: the interfering signals at different antennas are different

scaled versions of the same signal, hence they are correlated. The temporal correlation may

be caused by the intersymbol interference as we will explain more in the thesis.

Recently, MIMO systems with spatially colored interference have attracted interest.

Information channel capacity of MIMO systems under spatially colored interference was
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studied in [15,19,30,31]. Performance analysis of outage and error rate for MIMO systems

with cochannel interference was given in [61]. In this thesis, we mainly focus on MIMO

systems under both spatially and temporally colored interference in slow flat fading.

In Chapter 2, background on data detection algorithms for MIMO systems is first re-

viewed. The MIMO channel model used in this thesis is then described. Key properties of

the Kronecker matrix product used extensively in the thesis are also reviewed.

We begin with a discussion on diversity systems, which are single-input multiple-output

systems (SIMO), in Chapter 3. It is well known that receiver diversitycan combat fading

and, to some extent, reduce CCI. A comparative analysis of outage performance for MRC,

EGC and SC in fading and CCI has not been attempted in the literature. In Chapter 3,

we first derive an exact outage probability expression for EGC, then provide an analyti-

cal comparison on outage probability for MRC, EGC and SC with Rayleigh fading in an

interference-limited environment.

Since the Shannon's channel information capacity can be greatly increased by employ-

ing multiple transmitting antennas, we move to describe MIMO systems. InChapter 4, we

present new algorithms for joint channel estimation and data detection under spatially and

temporally colored interference. The impact of spatially and temporally colored interfer-

ence on system performance are assessed by Monte Carlo simulations.

Chapter 4 focuses on the processing at the receiver-side and assumes that the transmit-

ter has no knowledge of the channel matrix and interference statistics. In Chapter 5, we

assess the potential impact of matrix channel knowledge as well as interference statistics

at the transmitter on channel capacity under spatially and temporally correlated interfer-

ence. Assuming the receiver has perfect knowledge of the channel matrix and interference

statistics, we derive the channel capacities for different combinations of knowledge of the

channel matrix and interference statistics at the transmitter.
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In Chapter 6, we consider joint processing at the transmitter and receiver inpractical

systems. With the estimates of channel matrix and interference statistics in Chapter 4, we

propose an adaptive modulation scheme to increase the system spectral efficiency. We also

investigate the practical issue of channel estimation error and feedback quantization error

for MIMO adaptive modulation.

Chapter 7 concludes this thesis and suggests future work.

1.2 Thesis Contributions

The primary contributions of this thesis are briefly summarized as follows.� An exact outage probability expression is derived for EGC in Rayleigh fading with

multiple interferers by accurately calculating the interference powerat the output of

the combiner. Using this exact expression, the accuracy of the approximate interfer-

ence power calculation in the existing literature is assessed.� Outage performances of several diversity schemes, including a practical variation

of MRC that does not require signal-to-noise ratios at different antennas, EGC and

SC, are compared analytically for an interference-limited environmentin a Rayleigh

fading channel. The analysis provides insight into performance of diversity schemes

in the presence of CCI, as well as assesses the impact of cochannel interferer power

distributions.� Performance of a MIMO user in a multi-user environment is considered. An algo-

rithm is proposed to jointly estimate the channel and spatial interference correlation

matrices for the desired MIMO user under spatially and temporally colored inter-

ference. By exploiting temporal interference correlation, a multi-vector-symbol data
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detection scheme is developed. The benefits of taking temporal and spatial interfer-

ence correlation into account for channel estimation and data detection are evaluated

through simulations.� Assuming that the receiver has perfect knowledge of the channel matrix and inter-

ference statistics, information capacities of MIMO channels are derived for different

combinations of knowledge of the channel matrix and interference statistics at the

transmitter under both spatially and temporally colored interference. The benefits of

taking the knowledge of the channel matrix and interference statistics at the trans-

mitter are assessed.� With the channel matrix and interference statistics estimated at thereceiver, we pro-

pose an adaptive modulation scheme to increase the system spectral efficiency. The

impact of channel estimation error and feedback quantization error on adaptive mod-

ulation is evaluated for MIMO systems. Rate-distortion theory is used toassess

the achievable performance when feedback on channel information, from receiver

to transmitter, is quantized.
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Chapter 2

Background

In this chapter, we first review the definition of circularly symmetric complex Gaussian

random vectors. Data detection algorithms for multiple-input multiple-output (MIMO)

systems and the MIMO channel model used in this thesis are then described. Finally, we

review key properties of the Kronecker matrix product that will be used in later chapters.

2.1 Circularly Symmetric Complex Gaussian Random Vec-

tors

In this thesis, since we deal with the circularly symmetric complex Gaussian random vector

quite often, we review its definition [86].

Definition 1 A complex random vectorx is circularly symmetric Gaussian with mean���
and covariance matrixR if

(1) the elements in~x= 264 <(x)=(x) 375, where<(�) and=(�) denote the real and imaginary part,

respectively, are jointly Gaussian;

(2)Efxg= ���;
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(3)Ef(x����)(x����)yg=R, andE �(~x�E[~x])(~x�E[~x])T	= 12 264 <(R) �=(R)=(R) <(R) 375wherey andT denote conjugate-transpose and transpose, respectively.

We denote the circularly symmetric complex Gaussian random vector asx�CN (���;R),
i.e., a random vector with probability density function (PDF)f(x) = 1�N det(R) expn�(x����)yR�1(x����)o
whereN is the dimension of the random vector. Note that only for the circularly sym-

metric complex Gaussian random vector can its PDF be completely specifiedby the mean

vector��� and the covariance matrixR. In general, the PDF of a complex Gaussian ran-

dom vector is determined from the mean vector��� and the covariance matrix of~x, i.e.,E �(~x�E[~x])(~x�E[~x])T	.

The random vector degenerates to the random variable if the dimension of the vector,N , is reduced to 1. Ifx = x1+ jx2 is a circularly symmetric complex Gaussian random

variable with mean� and variance�2, thenE(x) = �, andx1 andx2 are independent joint

Gaussians each with variance�2=2.

2.2 MIMO Data Processing

Consider a MIMO link withNt transmitting andNr receiving antennas, denoted as(Nt;Nr).
The baseband model of the received signal vector is expressed as [47]

y= Hx +n (2.1)

whereH is theNr�Nt channel matrix, andx is theNt�1 transmitted signal vector. TheNr� 1 noise vectorn is assumed to be circularly symmetric complex Gaussian with zero

mean and covariance matrixR.
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Assume that the receiver has perfect knowledge of channel matrixH and spatial noise

covariance matrixR. If the transmitted signalx is chosen from the signal constellation with

equal probability, the optimum receiver is a maximum-likelihood (ML) receiver that selects

the most probable transmitted signal vectorx given the received signal vectory. More

specifically, the optimum ML receiver selects a transmitted signal vector that maximizes

the conditional PDFPr(yjx) = 1�Nr det(R) expn� (y�Hx)yR�1 (y�Hx)o: (2.2)

Assuming the signal transmitted on each antenna is drawn from anM -ary signal constella-

tion, there areMNt possible choices of the transmitted signal vector. The optimum receiver

computes the conditional PDF for each possible transmitted signal vector, and selects the

one that yields the largest conditional PDF. Hence, the complexity of the optimum ML

receiver grows exponentially with the number of transmitting antennas,Nt.
Due to the high complexity of the optimum receiver, various suboptimal receiverswhich

yield a reasonable tradeoff between performance and complexity have been investigated.

Examples of nonlinear suboptimal detectors are the sphere detector [27] and detectors

which combine linear processing with local ML search [69]. The linear suboptimal de-

tectors usually used in practice are zero-forcing (ZF) and minimum mean-squared error

(MMSE) detectors [36, 44, 47]. Data detection for MIMO systems is similar to multiuser

detection for synchronous users [117], where in MIMO systems we consider one user hav-

ing multiple transmitting antennas and in multi-user detection we consider multiple users

each having one transmitting antenna. The ZF and MMSE MIMO detectors are akin to the

decorrelating and MMSE multiuser detectors, respectively.

In the following, we briefly derive ZF and MMSE detectors which include the detection

algorithms in [36,44,47] as special cases of spatially white noise. We assume thatNt�Nr.
Note that these two detectors are valid even for non-Gaussian noise.
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2.2.1 Zero-forcing detector

With Gaussian noise, the best linear estimate ofx is the value ofx that maximizes the

conditional PDF in (2.2), which is equivalent to minimizing the termL(x) = (y�Hx)yR�1 (y�Hx) : (2.3)

Setting@L(x)=@x = 0 yields the soft estimate~xZF = (HyR�1H)�1HyR�1y: (2.4)

The detected signal vector is obtained by quantizing the soft estimate~xZF to the nearest

value in the signal constellation.

Substituting (2.1) into (2.4), we obtain~xZF = x+(HyR�1H)�1HyR�1n: (2.5)

From (2.5), we observe that, regardless of whether the noise is Gaussian or not,~xZF is a

zero-forcing solution, completely nulling out signals from undesired transmitters. Hence,~xZF is an unbiased estimate ofx. It can be shown that the covariance matrix of the estima-

tion error is Ef(x�~xZF)(x�~xZF)yg= (HyR�1H)�1: (2.6)

For spatially white noise withR= �2INr , the soft estimate in (2.4) is reduced to~xZF =(HyH)�1Hyy [47], where(HyH)�1Hy is the pseudo-inverse ofH if the rank ofH equalsNt [50].

2.2.2 MMSE detector

We seek linear estimate~x = Ay such that the mean square error (MSE)J(A) = tr
nE�(x�Ay)(x�Ay)y�o (2.7)
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is minimized. Without loss of generality, we assume that the transmitted signal vector is

zero-mean and with covariance matrixEfxxyg= INt. It is also assumed that the transmitted

signal vector is independent of the noise vector, i.e.,Efxnyg = 0. Substituting (2.1) into

(2.7), the MSE becomesJ(A) = tr

�
INt�AH�HyAy+A

�
HH y+R

�
Ay�: (2.8)

By setting@J(A)=@A= 0, we obtain

A = Hy�HH y+R
��1

(2.9)= �
INt +HyR�1H��1HyR�1 (2.10)

where the second equality is due to the matrix identity in [78, p528, D.11]. Hence, thesoft

MMSE estimate is ~xMMSE = �INt +HyR�1H��1HyR�1y: (2.11)

Again, the detected signal vector is obtained by quantizing the soft estimate~xMMSE to the

nearest point in the signal constellation.

Substituting (2.9) into the matrix of the trace operation in (2.8), we obtain the covari-

ance matrix of the estimation errorEn(x�~xMMSE)(x�~xMMSE)yo = INt�Hy�HH y+R
��1

H= INt��INt +HyR�1H��1HyR�1H= �
INt+HyR�1H��1 (2.12)

where the second equality is due to the alternative expression ofHy(HH y+R)�1 in (2.10),

and the last equality comes from the fact thatINt = (INt +HyR�1H)�1(INt +HyR�1H).
By substituting (2.1) into (2.11), it is easy to see that soft MMSE estimate~xMMSE is a

biased estimate ofx.
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For spatially white noise withR = INr , the estimate in (2.11) is reduced to~xMMSE =�
INt +HyH��1Hyy [55].

2.2.3 Zero-forcing and MMSE detectors with ordering

Analogous to the successive interference cancellation in multiuser detection [117], to en-

hance the receiver performance, successive symbol cancellation may be jointly used with

ZF or MMSE MIMO detection. When successive cancellation is applied, the order in

which the components of the transmitted signal vector are detected is importantto the

overall performance of the system. It is shown that post-detection signal-to-noise ratios

(SNRs) should be used as the criterion for signal ordering [36]. Hence, assuming the com-

ponents of the transmitted signal vector have the same power, we should first detect the

signal component which has the smallest estimation error variance. With theestimation

error covariance matrices in (2.6) and (2.12), the ZF and MMSE detection algorithms with

ordering are described as follows [55].

Step 1 Initialization:k = 1; Hk = H; ~xk = x; ~yk = y.

Step 2 Determine the ordering. Calculate the estimation error covariance matrixPk =(HykR�1Hk)�1 for ZF detector orPk = (INt+1�k +HykR�1Hk)�1 for MMSE de-

tector. Findm = argminj Pk(j; j) wherePk(j; j) denotes thejth diagonal element

of Pk. Hence, themth signal component of~xk has the smallest estimation error

variance.

Step 3 Calculate the weighting matrixAk = (HykR�1Hk)�1HykR�1 for ZF detector orAk =(INt+1�k +HykR�1Hk)�1HykR�1 for MMSE detector. Themth element of~xk is

estimated aŝxmk = Q(Ak(m; :)~yk) whereAk(m; :) denotes themth row of matrix

Ak andQ(�) denotes the quantization appropriate to the signal constellation.
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Step 4 Assuming the detected signal is correct, remove the detected signal from the re-

ceived signal,~yk+1 = ~yk� x̂mk Hk(:;m) whereHk(:;m) denotes themth column of

Hk.

Step 5 Hk+1 is obtained by eliminating themth column of matrixHk. ~xk+1 is obtained by

eliminating themth component of vector~xk.

Step 6 Ifk < Nt, incrementk and go to step 2.

Recall that the ZF and MMSE detection without ordering are described by (2.5) and(2.11),

respectively.

Performances of ZF and MMSE detectors are compared in [9] for a(4;4) MIMO system

with QPSK modulation. It is shown that, at a bit error rate10�3, compared to ZF detection,

MMSE detection has a 3dB gain in SNR when no signal ordering is used and a 8dB gain for

the case of signal ordering. The inferior performance of ZF detection is caused by the noise

enhancement, a price paid for completely nulling out signals from undesired transmitters.

Algorithms of ordered ZF or MMSE detectors with reduced computational complexityand

improved numerical robustness have been investigated in [55] and [127].

2.3 Channel Model

To simulate the flat fading MIMO channel, we use a Ricean model [30, 93]. The channel

matrix has two components: a deterministic specular (line-of-sight) component and a ran-

dom scattered component. With the RiceanK-factor defined as the ratio of deterministic-

to-scattered power, the channel matrix is given by

H =r KK+1Hsp+r 1K+1Hsc: (2.13)
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2.3.1 Specular component

The specular component is given by

Hsp = ar(�r)at(�t)T (2.14)

where�t and�r are the angles of departure and arrival of the specular signal at the trans-

mitter and receiver, respectively. The array response vectors at thereceiver and transmitter

arear(�) andat(�), respectively. For anNr-element uniform linear array, the array response

vector is given by

a(�) = [1 exp(�j2�d sin�) : : : exp(�j2�d(Nr�1)sin�)]T (2.15)

where� is the angle between the signal and the normal to the array, andd is the antenna

spacing expressed in wavelengths.

2.3.2 Scattered component

The elements in the scattered componentHsc are each zero-mean circularly symmetric

complex Gaussian with cross-correlations determined by factors such as angle spread at

the base station and mobile, antenna array geometry, and mean direction of signal arrivals.

To derive the fading correlations among MIMO channels, the scattering model proposed by

Jakes [59] is used to provide a reasonable description of the scattering environment around

the transmitter and receiver [94]. It is usually assumed that the mobile issurrounded by

local scatterers, and that the base station is elevated and unobstructed bylocal scatter-

ers. In [103], the spatial fading correlation was derived for isotropic scattering (uniformly

distributed scatterers) around the mobile. In [4], the space-time fading correlation of the

general scenario of nonisotropic scattering around the mobile was discussed. For mathe-

matical convenience and simplicity for simulation, the correlation matrix of MIMO links
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may be approximated by a Kronecker product of fading correlation matrices for the an-

tenna arrays at the base station and mobile [103, 104]. The validity of this approximation

has been studied in [4,22] from experimental measurements.

In this thesis, we adopt the spatial fading correlation presented in [4] due to its closed-

form expression which is easy to calculate numerically (the expression in[103] involves

integration). In Fig. 2.1, without loss of generality, we assume that the base station and

mobile take on roles of receiver and transmitter, respectively. The basestation receives the

signal from a particular direction with an angle spread�. Denote Ul�BSp as the link

between thelth antenna element at the mobile and thepth antenna element at the base

station, andhlp as the gain of the link Ul�BSp due to scattering. For isotropic scattering

around the mobile and a small angle spread�, the correlation between link gainshlp andhmq is [4]Efhlph�mqg � exp[jcpq cos(�pq)]�I0�n� b2lm� c2pq�2 sin2(�pq)�2cpqblm�sin(�pq) sin(�lm)o1=2�(2.16)

whereI0 is the zeroth-order modified Bessel function;blm = 2�dlm andcpq = 2��pq wheredlm and�pq are the antenna spacing in wavelengths; angles�pq and�lm are shown in Fig.

2.1. Given spatial cross-correlations among MIMO links, we can simulate the elements of

Hsc by multiplying the square root of the cross-correlation matrix with a vector of inde-

pendent identically distributed (i.i.d.) zero-mean circularly symmetric complex Gaussians.

The links from one mobile antenna element to two different base station elementsare

highly correlated at angle spread� = 0, and become uncorrelated as� increases. As

the line-of-sight (LOS) component becomes prominent (K factor increases), the MIMO

channel links become spatially correlated.
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BSq BSp Ul Um�pq � �lm�pq dlm scatterer ring

Figure 2.1. Geometric configuration of a(2;2) channel with local scatterers around the

mobile user:BSp is the pth antenna element at the base station,Ul is the lth antenna

element at the mobile,�pq is the antenna spacing in wavelengths between thepth andqth
antenna elements at the base station,dlm is the antenna spacing in wavelengths between

thelth andmth antenna elements at the mobile, and� is the angle spread.

2.4 Properties of Kronecker Product

Throughout this thesis, Kronecker product will be used extensively. Its definition and prop-

erties are summarized as follows [75].� The Kronecker product of two matricesA (m�n) andB (p� q) is defined as

A
B
4= 266664 a11B � � � a1nB

...
...am1B � � � amnB

377775
whereaij andbij are the(i; j)th element of matrixA andB, respectively, and the

dimension ofA
B ismp�nq.� For matricesA(m�n), B(p� q), C(n� r), andD(q� s),(A
B)(C
D) = AC
BD: (2.17)
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� For matricesA(m�n) andB(p� q),(A
B)y = Ay
By: (2.18)� For nonsingular square matricesA(m�m) andB(n�n),(A
B)�1 = A�1
B�1: (2.19)� For square matricesA(m�m) andB(n�n),det(A
B) = det(A)ndet(B)m: (2.20)� If Hermitian matricesA(m�m) andB(n�n) can be eigenvalue-decomposed asA=
U1���1Uy1 andB = U2���2Uy2, respectively, thenA
B can be eigenvalue-decomposed

as

A
B = (U1
U2)(���1
���2)(U1
U2)y: (2.21)
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Chapter 3

Outage Probability Comparisons for Diversity

Systems with Cochannel Interference in

Rayleigh Fading

3.1 Introduction

Space diversity is an effective method to improve the performance of mobile radio systems.

In space diversity, the received signals from all antenna branches are properly weighted

and combined to combat fading, as well as cochannel interference (CCI) [107]. Three

commonly used space diversity schemes are maximal ratio combining (MRC),equal gain

combining (EGC), and selection combining (SC) [17]. For fading channels with only ad-

ditive white Gaussian noise (AWGN) and no CCI, MRC is the optimal combining scheme;

however, MRC carries high implementation complexity. The implementationcosts for

EGC and SC are much lower than that of MRC, but they are both suboptimal combining

schemes in an AWGN environment. The optimal criterion is defined here in the sense

of maximizing the signal-to-noise ratio (SNR) at the output of the diversity combiner, or

equivalently, in the sense of minimizing bit error rate (BER). In the presence of cochannel
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interfering signals at the receiving antennas, all aforementioned diversity schemes are, in

fact, suboptimal. The optimal combining scheme in this scenario is called optimum com-

bining (OC) [16,120], which achieves the maximum signal-to-interference-plus-noise ratio

(SINR) at the combiner output1. To fully implement OC, however, it is required to estimate

the second-order statistics of interference and noise. In practical systems, for simplicity or

due to the lack of knowledge of interference and noise statistics, suboptimal schemes, such

as MRC, EGC and SC, may be used instead of OC. However, to the author's bestknowl-

edge, a comparative analysis of relative performance for these suboptimal schemes in fad-

ing and CCI has not been attempted. Such knowledge can be useful to better understand

the design tradeoffs in practical cellular systems.

We assume that CCI is the primary source of system degradation [43]. Therefore,we

ignore thermal noise in our analysis and consider an interference-limited environment [6,

21,63,102]. In an interference-limited environment, MRC, which maximizes output SNR

and whose weights depend on noise powers on antenna branches [17], becomes invalid.

Hence, we consider a variation of MRC, denoted as channel-matched combining (CMC),

whose weights are given as the desired user's channel vector. In practical systems where

diversity branches are usually assumed to have the same noise powers, MRC is reduced to

CMC [7]. As a result, in this chapter, we provide a comparison study, both analytically and

numerically, on the outage probability for CMC, EGC, and SC with CCI and flat Rayleigh

fading in an interference-limited environment. Our analysis considers an arbitrary number

of interferers, as well as arbitrary interferer power distributions.

Outage probability is an important performance criterion for mobile systems operating

in the presence of interferers over fading channels. This criterion represents the probability

1For such a system, maximizing output SINR does not necessarily correspond to minimizing the BER

unless the additive interference has a Gaussian distribution.
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of unsatisfactory reception over the intended coverage area and can be used as a minimum

quality of service requirement. In an interference-limited environment,the outage is de-

fined as the event when the signal-to-interference ratio (SIR) at the combiner output drops

below a threshold�, i.e.,POUT =PrfSIR< �g. Although bit or symbol error rates are more

practical performance criteria, they are hard to calculate in some circumstances. There are

quite a few papers on the analysis of average bit or symbol error rates of diversitysystems

under fading and CCI [2,3,67,87,101,118]. However, most of these papers presented ap-

proximate analyses since CCI is explicitly assumed to be Gaussian. The exactcalculation

of bit or symbol error rates under CCI is, in general, very difficult. The difficulty arises

from the fact that CCI may not be Gaussian. Therefore, we will study outage probability in

our work.

In previous related work, Brennan [17], in his now classic paper, showed that, in the

absence of CCI, the outage probability of MRC outperforms EGC and SC for an arbitrary

fading distribution. The relative outage probability performances for EGC and SC, how-

ever, depend on the exact fading distribution. For Rayleigh fading, EGC has lower outage

probability than that of SC. On the other hand, for a more disperse probability density

function, the opposite is true. With the presence of CCI, an outage probability study for

diversity systems is a completely different problem. This problem has received much inter-

est in the past. In [26], Cui and Sheikh studied the outage probability of MRC with a small

number of interfering signals in Rayleigh fading. This work was later extended by Aalo

and Chayawan to an arbitrary number of interfering signals, for both equal and distinct in-

terferer powers [1,21]. More recently, Shah and Haimovich provided an alternative outage

probability expression for CMC in Rayleigh fading with equal interferer powers [102]2.

2In [102], the combining scheme which the authors called MRC is really CMC.
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In [6], Abu-Dayya and Beaulieu studied the EGC outage probability for an interference-

limited environment with Nakagami-m fading, a general model of fading amplitude which

includes Rayleigh fading as the special case ofm = 1. In that work, the interfering signal

components are added incoherently across antenna array elements; hence, an approxima-

tion occurs in calculating the interfering power at the output of the combiner. Moreover,

the analyses in [6] were restricted to equal interferer powers. In thiswork, we compute the

outage probability for EGC using coherent interference power calculation (an exact anal-

ysis) over the diversity branches for both equal and distinct interferer powers. The outage

probability for SC was studied by Sowerby and Williamson [106] in Rayleigh-distributed

interference. Their work was later extended by Abu-Dayya and Beaulieu [6], Yao and

Sheikh [125] to Nakagami-m fading channels. The outage probability of OC can be found

in [38,39,63,87,101,118]

The main contributions of this chapter are: (1) we derive an exact outage probability

expression for EGC in Rayleigh fading with multiple interferers by accurately calculating

the interference power at the output of the combiner. Using this exact expression, weassess

quantitatively the accuracy of the approximate interference power calculation used in [6].

(2) We provide a comparison study, both analytical and numerical, on the outage probabil-

ity for CMC, EGC, and SC with CCI and flat Rayleigh fading in an interference-limited

environment. In particular, we prove that CMC has a strictly lower outage probability than

that of EGC, and that CMC has an outage probability no greater than that of SC. The rela-

tive performance of EGC and SC depends on factors such as the number of interferersand

the interferer power distribution.

This chapter is organized as follows. In Section 3.2 we describe the system model which

takes account of pulse shape, random delay of interfering signals, intersymbol interference,

as well as both equal and distinct interferer powers. In Section 3.3, we derive new outage
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probability expressions for EGC and CMC. In Section 3.4, we provide analytical outage

probability comparisons for three diversity schemes. Numerical results are presented in

Section 3.5.

3.2 System Model

The transmitted signals from the desired and theith interfering users are, respectively,ss(t) =pPsT +1Xm=�1as[m]~g(t�mT )
and si(t) =pPiT +1Xm=�1ai[m]~g(t�mT )
where~g(t) is the transmitter pulse response,1=T is the data transmission rate, andPs andPi are the transmitting powers of the desired and theith interfering signals, respectively.

The transmitter filter is assumed to have a square-root raised-cosine frequency response

with a rolloff factor� (0 � � � 1) [89]. The data symbolsas[m] andai[m]'s are mutually

independent with zero-mean and unit variance.

Here we show that the power of signalss(t) is Ps. The power spectrum density (PSD)

of ss(t) is [56,89] S(f) = PsT 1T j ~G(f)j2Sa(f) = Psj ~G(f)j2
where ~G(f) is the Fourier transform of~g(t), andSa(f) is the PSD of the data sequenceas[m];m=�1; � � � ;�1;0;1; � � � ;1. Since the data symbols in the sequence are mutually

independent and zero-mean with unit variance, it can be shown thatSa(f) = 1. Hence, the

power of signalss(t) is Z 1�1S(f)df = PsZ 1�1 j ~G(f)j2df = Ps
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where the last equality comes from the fact thatj ~G(f)j2 is a raised cosine with
R1�1 j ~G(f)j2df =1. Similarly, the transmit power of theith interfering signal isPi.

Ignoring thermal noise, the baseband received signal vector at anNr-element receiver

antenna array is

r(t) =pPsTcs +1Xm=�1as[m]~g(t�mT )+ LXi=1pPiTci +1Xm=�1ai[m]~g(t�mT � �i) (3.1)

whereL is the number of interfering signals. The delay of theith interfering signal rela-

tive to the desired user,�i, is assumed to be uniformly distributed over the interval[0;T ).
The channel vectors of the desired and theith interfering users,cs and ci's, are mutu-

ally independent. All channel vectors are assumed to be quasi-static (constantover a time

frame [102]) and to have uncorrelated realizations in different frames. We further assume

independent Rayleigh fading among diversity branches, i.e., the elements ofcs andci are

i.i.d. circularly symmetric complex Gaussian random variables (RVs) with zero-mean and

unit variance.

Passingr(t) in (3.1) through a filter matched to~g(t), we have

rMF(t) =pPsTcs +1Xm=�1as[m]g(t�mT )+ LXi=1pPiTci +1Xm=�1ai[m]g(t�mT� �i)
(3.2)

whereg(t) = ~g(t) � ~g(t) and� denotes convolution. Here,g(t) is a Nyquist pulse with a

raised cosine spectrum and rolloff factor�.

Assuming perfect synchronization for the desired user, sampling the output of the re-

ceiver matched filter att= nT , we obtain

r[n] =pPsTcsas[n]+ LXi=1pPiTci +1Xm=�1ai[m]g(nT �mT � �i)| {z }zi[n] (3.3)

wherezi[n] is the signal intersymbol interference (ISI) from theith interferer. Note that

no ISI exists for the desired user sinceg(t) is a Nyquist pulse. However, ISI exists for the
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interferers due to delays. Since the zero-mean data symbols from different interferers are

mutually independent, we have Efzi[n]g= 0
and E�zi[n]z�j [n]	= 0 for i 6= j;
i.e.,zi[n] andzj[n] are uncorrelated fori 6= j. In Appendix A we show that the variance ofzi[n] is3 E�jzi[n]j2	= 1��=4:

We express, component-wise, the desired and the interfering channel vectors as

cs = h�s;1ej�s;1 � � ��s;Nrej�s;NriT
and

ci = h�i;1ej�i;1 � � ��i;Nrej�i;NriT :
The phase for the desired user channel,�s;j, and the phase for the interfering user chan-

nel, �i;j, are uniformly distributed over[0;2�). The fading amplitudes�s;j and�i;j are

Rayleigh-distributed as f�(�) = 2�e��2; � � 0:
3.3 Outage Probabilities of EGC, CMC and SC with CCI

In this section we derive an exact outage probability expression for EGC with cochannel

interference in Rayleigh fading. In the case for CMC, a new alternative outage probability

3In [11], it was stated thatE�jzi[n]j2	 = 1��=4 without showing it.
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expression is derived. We will show that this new expression is more suitable for analytical

comparison. The outage probability of SC is presented for completeness.

3.3.1 EGC Outage Probability

In equal gain combining, the outputs of all the branches are co-phased (with respect to

the desired user signal) and weighted equally. The combining weight vector of EGC is

wEGC = �ej�s;1 � � �ej�s;Nr �T , and the output of the combiner becomes

wyEGCr[n] = pPsT (wyEGCcs)as[n]+ LXi=1pPiT (wyEGCci)zi[n]= pPsT0@ NrXj=1�s;j1Aas[n]+ LXi=1pPiT0B@ NrXj=1�i;jej(�i;j��s;j)| {z }gi;j 1CAzi[n]:(3.4)

It can be shown that(�i;j � �s;j) mod 2� is uniformly distributed over[0;2�) and is in-

dependent of�i;j. Since�i;j is Rayleigh-distributed,gi;j is circularly symmetric complex

Gaussian with zero-mean and unit variance.

Sincezi[n] andzj[n] are uncorrelated fori 6= j, the total interference power at the com-

biner output is obtained by adding interference powers from different interferers. For each

interferer, interference from different antennas can combine either incoherently (see [6],

Eqn. (8b)) or coherently. In the incoherent case, to compute theith interferer's power,

the channel amplitude of each diversity branch is first squared, and all branches are then

summed, i.e.,
PNrj=1�2i;j. If the interfering signals arriving at different antennas are mu-

tually uncorrelated, the incoherent calculation is exact. However, these interfering signals

are, in general, correlated. Thus, the incoherent calculation is only an approximation. In

the coherentinterference power calculation,phasoraddition of each interfering signal is

employed. Hence,�i;jej(�i;j��s;j), are added first, and then squared, i.e.,
���PNrj=1 gi;j���2 in
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(3.4). Coherent interference power calculation is an improved model of EGC over inco-

herent interference power calculation. Numerical results in Section 3.5demonstrate cases

where the two interference power calculation methods lead to significantlydifferent outage

probabilities.

The instantaneous SIR at the output of EGC, assuming coherent interference power

calculation over the diversity branches, is

SIREGC = Ps�PNrj=1�s;j�2(1��=4)PLi=1Pi ���PNrj=1 gi;j���2 = �PNrj=1�s;j�2(1��=4)PLi=1�i=�i (3.5)

where�i = Ps=Pi, for i = 1; : : : ;L, is the power ratio of the desired signal to theith in-

terfering signal, and�i = ���PNrj=1 gi;j���2. Here,gi;1; : : : ; gi;Nr are i.i.d. circularly symmetric

complex Gaussian RVs with zero-mean and unit variance, thus,
PNrj=1 gi;j is also a circu-

larly symmetric complex Gaussian RV with mean zero and varianceNr. It can be shown

that�i is exponentially distributed with meanNr and its PDF is given by [89]f�(�) = 1Nr e��=Nr;�� 0: (3.6)

We further note that the denominator and the numerator in (3.5) are independent. This is

due to the independence assumption between the channel vectors for the desired and the

interfering signals. This independence property can simplify the ensuing outage probability

analyses.

LettingX 4=PNrj=1�s;j andU 4=PLi=1�i=�i in (3.5), the output SIR of EGC can be

rewritten as SIREGC = X2(1��=4)U . The outage probability is expressed asPOUT,EGC(�) = Pr(SIREGC < �)= EUnPr�X <p�0U ��� U�o= EUnPr�X <p�0U�o (3.7)
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where �0 = �1� �4�� (3.8)

and (3.7) comes from the fact thatX andU are independent.

Computation of the outage probability in (3.7) requires the knowledge of the cumulative

distribution function (CDF) ofX. We recall thatX is a sum ofNr i.i.d. Rayleigh RVs and

no known closed-form expression exists except forNr = 2. In [10] Beaulieu derived an

infinite series for the CDF of a sum of independent RVs. Essentially, this infiniteseries

is a Fourier series. In [115] an alternative derivation was given which provided insights

into the uses and limitations of the Beaulieu series. It can be shown that theFourier series

representation of CDF ofX is [10,115]Pr(X < x) = 12 � +1Xn=�1nodd

�X(n!0)n�j e�jn!0x+� (3.9)

where!0 = 2�T0 , T0 is a parameter that controls the accuracy of result [10],�X(!) is the

characteristic function ofX, and� is an error term which tends to zero for largeT0.
AssumingT0 is large, we omit the error term� in the following analysis.

The conditional outage probability in (3.7) hence can be expressed asPr�X <p�0U� = 12 � +1Xn=�1nodd

�X(n!0)n�j e�jn!0p�0U= 12 � +1Xn=1nodd

2=ne�jn!0p�0U �X(n!0)on� ; (3.10)

and the outage probability in (3.7) can be expressed asPOUT,EGC(�) = 12 � +1Xn=1nodd

2=�EUne�jn!0p�0Uo �X(n!0)�n� : (3.11)
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In obtaining (3.11), we have usedZ 10 �12 � +1Xn=�1nodd

�X(n!0)n�j e�jn!0p�0u�fU (u)du= 12 � +1Xn=�1nodd

Z 10 �X(n!0)n�j e�jn!0p�0ufU (u)du (3.12)

wherefU (u) is the PDF ofU , i.e., we have interchanged the integration and summation.

To justify this interchange, we introduce the following theorem [64, Theorem 15, p.423].

Let f�n(x)g be a complete orthonormal system for the intervala � x � b. Let f(x) be

piecewise continuous fora� x� b and letg(x) be piecewise continuous forx1 � x� x2,
wherea � x1 < x2 � b. Let

Pcn�n(x) be the Fourier series off(x) with respect tof�n(x)g. Then
R x2x1 f(x)g(x)dx=PcnR x2x1 g(x)�n(x)dx.

In our case, using the substitution
p�0u= x, the left-hand side of (3.12) becomesZ 10 �12 � +1Xn=�1nodd

�X(n!0)n�j e�jn!0x�fU�x2�0�2x�0 dx= 1Xi=0 Z (i+1)T0iT0 �12 � +1Xn=�1nodd

�X(n!0)n�j e�jn!0x�fU�x2�0�2x�0 dx (3.13)

Sincefe�jn!0xg (n = 0;�1;�2; � � �) is a complete orthonormal system foriT0 � x �(i+1)T0, the functions12 �P+1n=�1nodd

�X(n!0)n�j e�jn!0x andfU �x2�0� 2x�0 are continuous for

intervaliT0 � x � (i+1)T0, and12 �P+1n=�1nodd

�X(n!0)n�j e�jn!0x is a Fourier series, accord-

ing to the above introduced theorem, it is clear that we can interchange the summation in

Fourier series and the integration. Hence (3.13) becomes1Xi=0 �Z (i+1)T0iT0 12fU�x2�0�2x�0 dx� +1Xn=�1nodd

Z (i+1)T0iT0 �X(n!0)n�j e�jn!0xfU�x2�0�2x�0 dx�= 1Xi=0 �Z [(i+1)T0]2�0(iT0)2�0 12fU (u)du� +1Xn=�1nodd

Z [(i+1)T0]2�0(iT0)2�0 �X(n!0)n�j e�jn!0p�0ufU (u)du�(3.14)
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where (3.14) is obtained through the substitutionu= x2=�0. Since the series in the square

brackets in (3.14) converges to
R [(i+1)T0]2=�0(iT0)2=�0 Pr(X <p�0u)fU (u)du, (3.14) becomesZ 10 12fU (u)du� +1Xn=�1nodd

Z 10 �X(n!0)n�j e�jn!0p�0ufU (u)du= 12 � +1Xn=�1nodd

Z 10 �X(n!0)n�j e�jn!0p�0ufU (u)du
which is the right-hand side of (3.12). Therefore, (3.12) is valid.

Now back to the expression of outage probability in (3.11). It can be shown that the

characteristic function ofX in (3.11) is [89, Eqn. (2-1-133)]4�X(!) = �1F1�1; 12;�!24 �+ jp�2 !e�!2=4�Nr
(3.15)

where1F1(a;b;z) is the degenerate hypergeometric function defined as [5]1F1(a;b;z) = 1+ azb + (a)2z2(b)22! + � � �+ (a)nzn(b)nn! + � � �
and (a)n = a(a+1)(a+2) � � �(a+n�1); (a)0 = 1: (3.16)

We recall thatU is a weighted sum ofL i.i.d. exponential RVs. The PDF ofU , in the

case of equal interferer powers,�1 = � � �= �L = �, is given by [89, Eqn.(14-4-13)]fU (u) = 1(L�1)! �Nr� �LuL�1e� �Nr u; u� 0; (3.17a)

and in the case of distinct interferer powers,�i 6= �j for i 6= j, is given by [89, Eqn.(14-5-

26)] fU (u) = LXk=1 �kNr�ke��kNr u; u� 0 (3.17b)

4In [89, Eqn. 2-1-133], a minor typo needs to be corrected, i.e., jp�=2v�2e�v2�2=2 should bejp�=2v�e�v2�2=2.
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where �k = LYi=1i6=k �i�i��k : (3.18)

In (3.11), we rewriteEUne�jn!0p�0Uo= Z 10 cos(n!0p�0U)fU (u)du� jZ 10 sin(n!0p�0U )fU (u)du:
(3.19)

In the case of equal interferer powers, by substituting (3.17a) into (3.19), we haveEU ne�jn!0p�0Uo= 1(L�1)!� �Nr �L�Z 10 cos(n!0p�0u)uL�1e� �Nr udu�j Z 10 sin(n!0p�0u)uL�1e� �Nr udu�= 2(L�1)!� �Nr �L�Z 10 cos(n!0p�0x)x2L�1e� �Nr x2dx�j Z 10 sin(n!0p�0x)x2L�1e� �Nr x2dx�= 1F1�L; 12 ;�n2!204� �0Nr�� j��L+ 12��(L) n!0r�0Nr� e�n2!204� �0Nr� 1F1�1�L; 32; n2!204� �0Nr�)= e�n2!204� �0Nr(1F1�12 �L; 12; n2!204� �0Nr��j��L+ 12��(L) n!0r�0Nr� 1F1�1�L; 32; n2!204� �0Nr�)= 2Lp� ��L+ 12�e�n2!208� �0NrD�2L jn!0r�0Nr2� !
(3.20a)

where the second equality follows from the substitutionx=pu; the third equality follows

from [51, Eqn. 3.952(7), (8)]; the fourth equality follows from Kummar transformation [5]

30



1F1(a;b;z)= ez1F1(b�a;b;�z). To express the result in a compact form, the last equality

follows from [51, Eqn. 9.240] whereDp(z) is the parabolic cylinder function. We use

Kummar transformation sincee�n2!204� �0Nr1F1�12 �L; 12 ; n2!204� �0Nr� converges much more

rapidly than1F1�L; 12 ;�n2!204� �0Nr� in numerical calculation.

Similarly, in the case of distinct interferer powers, by substituting (3.17b) into (3.19),

we haveEU ne�jn!0p�0Uo= LXk=1 �kNr�k�Z 10 cos(n!0p�0u)e��kNr udu� j Z 10 sin(n!0p�0u)e��kNr udu�= LXk=1 2�kNr �k�Z 10 cos(n!0p�0x)e��kNr x2xdx� jZ 10 sin(n!0p�0x)e��kNr x2xdx�= LXk=1�ke�n2!204�k �0Nr(1F1��12 ; 12; n2!204�k �0Nr�� jp�2 n!0s�0Nr�k )= LXk=1�ke�n2!208�k �0NrD�2 jn!0s�0Nr2�k ! : (3.20b)

where the second equality follows from the substitutionx=pu; the third equality follows

from [51, Eqn. 3.952(7), (8)]; the last equality follows from [51, Eqn. 9.240].

Substitution of (3.15) and (3.20) into (3.11) yields the outage probability of EGC for

both equal and distinct interferer powers.

3.3.1.1 EGC outage probability: case ofNr = 2
The CDF of a sum of two i.i.d Rayleigh RVs is known [17] [53]. ForNr =2, the conditional

outage probability in (3.7) isPr�X <p�0U�= 1� e��0U �r�2�0Ue�12�0Uerf

 r�0U2 !
(3.21)

where the error function erf(�) is defined as erf(z) = 2p� R z0 e�x2dx.
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In the case of equal interferer powers, averaging (3.21) with respect to (3.17a), we havePOUT,EGC,N2=2(�)= 1� 1(L�1)!��2�LZ 10 e�(�0+�2 )uL�1du� 1(L�1)!��2�LZ 10 r�2�0u e��0+�2 uuL�1erf

 r�0U2 !du= 1�� �2�0+��L� 1(L�1)!��2�Lp2��0�Z 10 erf

 r�02 x!x2Le��0+�2 x2dx= 1�� �2�0+��L� ��L+ 12��(L) s ��0�0+�� ��0+��L+ 2L2L+1� ��0�L 2F1�L+ 12 ;L+1;L+ 32;��+�0�0 �
(3.22a)

where the second equality follows from [51, Eqn. 3.351(3)] and the substitutionx =pu;

the third equality follows from [51, Eqn. 3.478(1), 6.286(1)] where2F1(a;b;c;z) is the

hypergeometric function [5] defined as2F1(a;b;c;z) = 1Xn=0 (a)n(b)n(c)n znn!
and(a)n is defined as (3.16).

Similarly, in the case of distinct interferer powers, averaging (3.21) with respect to

(3.17b), we havePOUT,EGC,N2=2(�)= 1� LXk=1 �k2 �kZ 10 e�(�k2 +�0)udu� LXk=1 �k2 �k Z 10 r�2�0ue��0+�k2 uerf

 r�0U2 !du
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= 1� LXk=1�k �k�k+2�0 � LXk=1�k�kp� 2�0 Z 10 erf(x)x2e��k+�0�0 x2dx= 1+ LXk=1�k�k"p�0(�k+�0)�3=2 arctan s1+ �k�0!� 1�k+�0 � �2p�0(�k+�0)�3=2# (3.22b)

where the second equality follows from the substitutionx=p�0u=2, and the third equality

follows from [51, Eqn. 3.478(1), 6.292].

3.3.2 CMC Outage Probability

In channel-matched combining, the desired user signal at all diversity branchesare co-

phased and weighted according to the desired user channel amplitudes. The combining

weight vector is thuswCMC = cs, and the signal at the output of CMC becomes

wyCMCr[n] =pPsT (cyscs)as[n]+ LXi=1pPiT (cysci)zi[n]:
The SIR at the output of CMC is

SIRCMC = Ps ���cyscs���2(1��=4)PLi=1Pi ���cysci���2 = jcsj2(1��=4)PLi=1 1�i ���cysci���2jcsj2 (3.23)

wherejcsj=qcyscs. In [102], it was shown thatc
yscijcsj is a zero-mean complex Gaussian RV

with unit variance, and it is independent ofcs. In Appendix B, it is further proved thatc
yscijcsj

is circularly symmetric. By denoting�i as

���cysci���2jcsj2 , we can rewrite the SIRCMC as

SIRCMC = PNrj=1�2s;j(1��=4)PLi=1 �i=�i (3.24)

where�i is exponentially distributed with unit mean. Sincecyscijcsj is independent ofcs, the

denominator and the numerator in (3.24) are, in fact, independent.
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Let X1 =PNrj=1�2s;j andU1 =PLi=1 �i=�i. SinceX1 andU1 are independent, the

outage probability of CMC with the outage threshold� can be calculated asPOUT,CMC(�) = P �X1U1 < �0�= Z 10 fX1(x1)Z 1x1=�0 fU1(u1)du1dx1 (3.25)

wherefX1(x1) andfU1(u1) are the PDFs ofX1 andU1, respectively. SinceX1 is chi-square

distributed, we have [89]fX1(x1) = 1�(Nr)xNr�11 e�x1; x1 > 0:
AsU1 is a weighted sum ofL i.i.d. exponential RVs, we have, in the case of equal interferer

powers [89, (14-4-13)],fU1(u1) = �L(L�1)!uL�11 e��u1; u1 > 0 (3.26a)

and for the case of distinct interferer powers [89, (14-5-26)],fU1(u1) = LXk=1�k�ke��ku1; u1 > 0 (3.26b)

where�k is defined in (3.18).

In the case of equal interferer powers, using [51, 3.351(2)], we haveZ 1x1=�0 fU1(u1)du1 = L�1Xk=0 1k!� ��0�kxk1e� ��0x1; (3.27a)

and in the case of distinct interferer powers, we haveZ 1x1=�0 fU1(u1)du1 = LXk=1�ke��k�0 x1: (3.27b)

Substituting (3.27) into (3.25) and using [51, 3.351(3)], in the case of equal interferer pow-

ers, the outage probability of CMC isPOUT,CMC(�) =� �0�0+��Nr L�1Xk=0 (k+Nr�1)!k!(Nr�1)! � ��0+��k ; (3.28a)
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and in the case of distinct interferer powers,POUT, CMC(�) = LXk=1�k� �0�0+�k�Nr : (3.28b)

It can be verified that (3.28) is numerically equivalent to the outage expressionsderived

by Aalo and Chayawan [1, (13)-(14)] and another alternative expression derived byShah

and Haimovich [102, (43)]. However, as shown in Section 3.4, our present CMC outage

probability expressions are more suitable for analytical outage probability comparison.

3.3.3 SC Outage Probability

Selection combining chooses the branch with the largest SIR. Hence, the outage probability

of SC can be expressed as [17]POUT,SC(�) = P �SIRSC;1 < �; � � � ;SIRSC;Nr < �� (3.29)

where SIRSC;i is the SIR for theith receiving antenna. Since SIRSC;1;SIRSC;2; : : : ;SIRSC;Nr
are i.i.d. RVs, we have POUT,SC(�) = [P (SIRSC;1 < �)]Nr : (3.30)

Without loss of generality, we consider the first antenna branch and write

SIRSC;1 = �2s;1(1��=4)PLi=1�2i;1=�i (3.31)

where�2s;j and�2i;j are exponentially distributed with unit mean. The outage probability of

SC can be obtained from [6], [106]5, [125], for the case of equal interferer powers, asPOUT,SC(�) = "1�� ��0+��L#Nr ; (3.32a)

5Note that the SC outage probability expression (Eqn. (1)) presented in [106] is only valid for equal

interference powers.
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and, for the case of distinct interferer powers, asPOUT,SC(�) = " LXk=1�k �0�0+�k#Nr : (3.32b)

3.4 Analytical Outage Probability Comparisons

3.4.1 Outage Probability Comparison for CMC and EGC

In this section, we use two methods to show that CMC has a strictly lower outage proba-

bility than that of EGC. We first rewrite the output SIR expression of CMC in (3.24) as

SIRCMC = NrPNrj=1�2s;j(1��=4)PLi=1Nr�i=�i = NrPNrj=1�2s;j(1��=4)PLi=1 �i=�i (3.33)

where�i =Nr�i. Since�i is exponentially distributed with unit mean,�i is exponentially

distributed with meanNr. Comparing (3.33) with (3.5), we immediately recognize that the

denominators�1 4= (1��=4)PLi=1 �i=�i in (3.33) and�2 4= (1��=4)PLi=1�i=�i in (3.5)

have the same distribution. We write the outage probabilities asPOUT,CMC(�) = Pr8<:Nr NrXj=1�2s;j��1 < �9=;= Z Pr8<: NrXj=1�2s;j < ��=Nr9=;f�1(�)d� (3.34)

andPOUT,EGC(�) = Pr8><>:0@ NrXj=1�s;j1A2��2 < �9>=>;= Z Pr8<: NrXj=1�s;j <p��9=;f�2(�)d� (3.35)

since the denominator and numerator are independent in (3.33) and (3.5).

We now provide a geometric interpretation to explain that CMC has a lower condi-

tional outage probability, i.e.,PrnPNrj=1�2s;j < ��=Nro < PrnPNrj=1�s;j <p��o. This

geometric argument is, in essence, same as the one used by Brennan [17]. However, we

emphasize, the key difference is that the CCI is not considered in [17] but it is included in
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Figure 3.1. Regions of integration for the conditional outage probability of CMC and EGC.

our study. ConsiderNr =2, as shown in Fig. 3.1, for CMC,Pr��2s;1+�2s;2 < ��=2� is ob-

tained by integrating the joint density function of�s;1 and�s;2 over the interior of a quarter

circle, while for EGC,Pr��s;1+�s;2 <p��� is obtained by integrating the same density

function over a triangular region. Since the integration region for CMC is smaller than that

for EGC, it is obvious that forNr = 2, CMC has a lower conditional outage probability.

ForNr > 2, by integrating the joint density function of�s;1; : : : ;�s;Nr over a space ofNr-
dimensions, by the same arguments, it can also be shown that CMC has a lower conditional

outage probability than that of EGC. Upon averaging the conditional outage probability

with respect to the PDFs of�1 and�2 in (3.34) and (3.35), since PDFsf�1(�) = f�2(�), it is

clear that the outage probability for CMC is strictly lower than that for EGC.

We can also use the Cauchy-Schwarz inequality [54] to prove that CMC has a lower

outage probability than that of EGC. We rewrite (3.34) and (3.35) asPOUT,CMC(�) = Z Pr8<:Nr NrXj=1�2s;j < ��9=;f�1(�)d�
and POUT,EGC(�) = Z Pr8><>:0@ NrXj=1�s;j1A2 < ��9>=>;f�2(�)d�:
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By applying the Cauchy-Schwarz inequality, we have0@ NrXj=1 1 ��s;j1A2 �Nr NrXj=1�2s;j:
Hence, the conditional outage probabilitiesPr8<:Nr NrXj=1�2s;j < ��9=;� Pr8><>:0@ NrXj=1�s;j1A2 < ��9>=>; :
Since PDFsf�1(�) = f�2(�), we havePOUT,CMC(�)� POUT,EGC(�), where equality is achieved

whenNr = 1 (single antenna). WhenNr > 1, the outage probability for CMC is strictly

lower than that for EGC. We remark that this conclusion is true for arbitrary interferer

power distributions.

3.4.2 Outage Probability Comparison for CMC and SC

3.4.2.1 L= 1 case

We first consider the case of one interfering signal. This approximates the case when the

system has one strong dominant interfering user. By settingL = 1 in (3.28a) and (3.32a),

we obtain POUT,CMC(�)����L=1 = POUT,SC(�)����L=1 =� �0�0+��Nr :
Therefore, the outage probabilities for CMC and SC are, in fact, the same for the case of

one interfering signal.

An alternative way to show this equality is to observe that, forL = 1, in the denom-

inators of (3.24) and (3.31),Y1 4= �1=�1 andY2 4= �21;1=�1 have the same distribution.

Note thatY1 andY2 are exponentially distributed with mean1=�1. For CMC, the outage

probability can be calculated asPr(SIRCMC < �) = Pr PNrj=1�2s;jY1 < �0!
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= E�s;1;���;�s;Nr (Pr Y1 > PNrj=1�2s;j�0 !)= E�s;1;���;�s;Nr �e��1�0 PNrj=1�2s;j�= �
E�s;1 �e��1�0 �2s;1��Nr

(3.36)

where the third equality follows the fact thatY1 is exponentially distributed with mean1=�1 andPr(Y1 > y) = e��1y; the last equality is due to the fact that�s;1; � � � ;�s;Nr are

i.i.d. RVs. For SC, the outage probability can be calculated asP (SIRSC< �) = "Pr �2s;1Y2 < �0!#Nr= (
E�s;1"Pr Y2 > �2s;1�0 !#)Nr= �
E�s;1 �e��1�0 �2s;1��Nr : (3.37)

Comparing (3.36) to (3.37), we have that, whenL = 1, the outage probabilities of CMC

and SC are identical.

3.4.2.2 L > 1 case

When the number of interfering signals is greater than one, we prove that, for equalin-

terferer powers, the outage probabilities for CMC is smaller than those of SC. For distinct

interferer powers, our numerical results suggest that CMC still outperformsSC whenL> 1.

To provePOUT, CMC(�) < POUT, SC(�) in the case of equal interferer powers, we need to

show that, from (3.28a) and (3.32a),� �0�0+��Nr L�1Xk=0 (k+Nr�1)!k!(Nr�1)! � ��0+��k < "1�� ��0+��L#Nr
(3.38)

for L > 1 andNr > 1. Before proving this result, we introduce two lemmas.
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Lemma 1 For a positive integerNr and a non-negative integerk,kXj=0 (Nr+ j�1)!(Nr�1)!j! = (Nr+k)!Nr!k! : (3.39)

Proof: We prove Lemma 1 by induction. Clearly, (3.39) is true fork = 0. Assuming

(3.39) holds fork, we shall show that the expression holds fork+1, i.e.,k+1Xj=0 (Nr+ j�1)!(Nr�1)!j! = (Nr+k+1)!Nr!(k+1)! : (3.40)

To show this, we expand the left side of (3.40) ask+1Xj=0 (Nr+ j�1)!(Nr�1)!j! = kXj=0 (Nr+ j�1)!(Nr�1)!j! + (Nr+k)!(Nr�1)!(k+1)!= (Nr+k)!Nr!k! + (Nr+k)!(Nr�1)!(k+1)!= (Nr+k+1)!Nr!(k+1)! :
Therefore, (3.40) holds. By induction, we have Lemma 1.

Lemma 1 can also be found in the exercise of [116, pp. 212] where no proof is given.

Lemma 2 For positive integersL > 1 andNr > 1, we have(1+x+ � � �+xL�1)Nr = L�1Xk=0 (Nr+k�1)!(Nr�1)!k! xk+ higher order terms: (3.41)

Proof: We prove Lemma 2 by induction. It can be shown easily that (3.41) is true forNr = 2. Now assuming (3.41) holds, we need to show that the expression holds forNr+1,

i.e., (1+x+ � � �+xL�1)Nr+1 = L�1Xk=0 (Nr+k)!Nr!k! xk+ higher order terms: (3.42)

We write the left side of (3.42) as(1+x+ � � �+xL�1)Nr+1
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= (1+x+ � � �+xL�1)(1+x+ � � �+xL�1)Nr= (1+x+ � � �+xL�1)�1+Nrx+ � � �+ (Nr+k�1)!(Nr�1)!k! xk+ � � �+ (Nr+L�2)!(Nr�1)!(L�1)!xL�1+ higher order terms
�= 1+(Nr+1)x+ � � �+ kXj=0 (Nr+ j�1)!(Nr�1)!j! xk+ � � �+L�1Xj=0 (Nr+ j�1)!(Nr�1)!j! xL�1+ higher order terms:

Applying Lemma 1 in the last expression, we have (3.42). By induction, we have Lemma

2.

From Lemma 2, it follows that, forx > 0, Nr > 1, andL > 1,(1+x+ � � �+xL�1)Nr > L�1Xk=0 (Nr+k�1)!(Nr�1)!k! xk: (3.43)

Denoting ��0+� by x, for the case of equal interferer powers, we rewrite the outage

probability for CMC asPOUT, CMC(x) = (1�x)Nr L�1Xk=0 (Nr+k�1)!(Nr�1)!k! xk; (3.44)

and the outage probability for SC asPOUT,SC(x) = �1�xL�Nr= (1�x)Nr(1+x+ : : :+xL�1)Nr (3.45)

where0 < x < 1 (since both�0 and� are both positive). Now comparing (3.44) and

(3.45) and using (3.43), we immediately obtain the inequality in (3.38), that is, theoutage

probability for CMC is strictly lower than that of SC whenL > 1.

3.4.3 Outage Probability Comparison for EGC and SC

A general analytical outage probability comparison of EGC and SC in interferenceis diffi-

cult. As shown in Section 3.5, the relative performance of EGC and SC depends on factors

such as the number of interferers and the interferer power distribution.
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3.5 Results and Discussions

In this section, in addition to assessing the accuracy of incoherent interference power cal-

culation for EGC in [6], we make quantitative comparisons of the outage probabilities

for CMC, EGC, and SC with cochannel interference in a Rayleigh fading channel and an

interference-limited environment. Outage probabilities for finite SNRs are also simulated.

The outage probabilities for EGC using incoherent interference power calculationare

obtained from [6, (16)] by specializing the Nakagami-m fading channels to a Rayleigh

fading channel6. In obtaining our numerical results for the outage probabilities of EGC

in (3.11) using coherent combining, we choose the periodT0 in the range of 40 to 80.

It was found that typically 64 or 128 terms in the series enable an accuracy of10�8 to

be achieved. Unless otherwise specified, all EGC outage probabilities are obtained using

coherent interference power calculation . We use (3.28) and (3.32) to compute the outage

probabilities for CMC and SC, respectively. All outage probabilities are plotted on normal

probability papers [65, Appendix 2B]. In obtaining the results, we set the rolloff factor�= 0.

3.5.1 Coherent and Incoherent Interference Power Calculations for

EGC

The concept of coherent and incoherent interference power calculation over the diversity

branches for EGC has been introduced in Section 3.3.1. Here, we compare the two calcu-

lation methods analytically for the case of one interferer. With the incoherentinterference

6In [6], a minor typo in (16a) needs to be corrected, i.e.,An is to be substituted withALn .
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power calculation, the SIR at the EGC output becomes

SIREGC,incoherent= �11��=4 �PNrj=1�s;j�2PNrj=1�2s;j = ��1 (3.46)

where we have� 4= �11��=4 �PNrj=1�s;j�2 and�1 4=PNrj=1�2s;j in (3.46). It can be shown

straightforwardly that�1 has a chi-square distribution with2Nr degrees of freedom and its

PDF is given by p�1(�1) = 1�(Nr)�Nr�11 e��1: (3.47)

With a coherent interference power calculation, the SIR at the output of EGC in (3.5)

becomes

SIREGC,coherent= �11��=4 �PNrj=1�s;j�2�1 = ��1 (3.48)

where�1 is exponentially distributed with meanNr and its PDF is given by (3.6). We

note that the numerators in (3.46) and (3.48) are identical. For a given outage threshold�, the outage probabilities for incoherent and coherent interference power calculation are,

respectively, given byE� fPr(�1 > �=�)g andE� fPr(�1 > �=�)g. For practical appli-

cations, the low outage probability region is of interest, i.e., small valuesof �, and it is

sufficient to compare the tail probabilities of�1 and�1. Fig. 3.2 plots the PDFs of�1
(incoherent calculation method) and�1 (coherent method) for four antennas and one inter-

ferer. By comparing tails, it is clear that in the low outage probability region, the coherent

interference power calculation yields a higher outage probability.

Figs. 3.3 and 3.4 compare outage probabilities using the incoherent and coherent in-

terference power calculations for EGC. Fig. 3.3 plots the outage probabilities for L = 1
interferer and forNr = 1;2, and 4 antennas under equal interferer powers. As shown, for

the trivial case ofNr = 1, as expected, both calculation methods give the same outage
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Figure 3.2. Probability density functions of�1 and �1 for L = 1 interferer andNr = 4
antennas.

probability. WhenNr > 1 antennas and for low outage probabilities, the coherent inter-

ference power calculation method predicts a higher outage probability. In other words, an

outage analysis using incoherent interference power combining over the diversitybranches

can underestimate the outage probability. For example, forNr = 4, at a 0.01 outage proba-

bility level, the incoherent interference power calculation overestimates the output SIR by

about 1.5 dB. Similar observations can be made in Fig. 3.4 for a fixed number of antennas

(Nr = 4) and different numbers of interferers, where we note that the outage performance

difference increases between these two interference power calculation methods as the num-

ber of interferers decreases.

To study the case of distinct interferer powers, we define the ratio of signal power to

average interference power as�avg(dB) = 10 log10 Ps(1=L)PLi=1Pi :
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Figure 3.3. Outage probability comparison of coherent and incoherent interference power

calculation for EGC with one interferer (L = 1) and equal interferer powers (� = 10 dB)

for Nr = 1;2, and 4 antennas.
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Figure 3.5. Analytical EGC outage probability using coherent interference power calcu-

lation and Monte Carlo simulated outage probability for equal (� = 10 dB) and distinct

(�avg = 10 dB) interference power distributions withL = 2 interferers andNr = 4 anten-

nas. The interference power vector forL= 2 is [0:1;0:9].
Denote the normalized interference power vector byq= [q1; q2; : : : ; qL], where

PLi=1 qi=1.

Givenqi and�avg, we can calculate theith signal to interference power ratio�i as�i(dB) = PsPi (dB) = �avg(dB)�10 log10(Lqi):
In Fig. 3.5, we compare the Monte Carlo simulation of EGC outage probability using

(3.5) with the analytical outage probability using the new coherent interference power cal-

culation method for the cases of both equal and distinct interferer powers. As shown, the

analysis and simulation results agree.
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3.5.2 Outage Probability Comparisons For CMC, EGC and SC

Fig. 3.6 plots the outage probabilities for CMC, EGC, and SC against the outage threshold� with four diversity branches and equal interferer power (� = 10 dB) for L = 1;2, and6
interferers. Fig. 3.6 shows that the outage probabilities for all diversity schemes increase

with an increasing number of interferers. We further confirm, as shown in Section 3.4.1,

that the outage probabilities for CMC are smaller than those of EGC in all cases considered.

However, the improvements of CMC over EGC are small. For example, forNr = 4, L = 2
and at 1% outage probability level, the corresponding output SIR of EGC and CMC are,

respectively, about about 3.5 dB and 4.5 dB. Therefore, with a four-element array, the

advantage of CMC over EGC is only 1 dB. We further observe that this 1 dB improvement

is approximately the same over a wide range of outage probability levels and is insensitive

to the number of interferers. Fig. 3.6 also indicates that the outage probabilities of CMC

are smaller than those obtained using SC, except that, in the special case of oneinterferer,

these two diversity schemes yields the same outage probability. The improvements of CMC

over SC, however, increase quickly with an increasing number of interferers.

Fig. 3.7 compares the outage probabilities of CMC, EGC, and SC with three inter-

ferers and equal interferer powers (� = 10 dB) for Nr = 2 and4 diversity branches. As

shown, CMC outperforms EGC and SC. However, when the number of antenna branches

decreases, the performance differences among three diversity schemes are insignificant.

For example, for a dual branch receiver, the improvements of CMC over EGC andSC are,

respectively, 0.5 dB and 0.7 dB. We remark that in the case of equal interferer powers,

changing the power ratio� simply causes the outage probability curves in Figs. 3.6 and

3.7 to shift horizontally.

Figs. 3.8 and 3.9 study the impacts of distinct interferer powers on the outage proba-

bilities for CMC, EGC, and SC. WithNr = 4 diversity branches, Fig. 3.8 compares the

47



−5 0 5 10 15

 0.001

  0.01

   0.1

   0.3

   0.5

Threshold SIR for outage, β (dB)

O
ut

ag
e 

pr
ob

ab
ili

ty
 P

(S
IR

<
β)

L=1

L=2

L=6

SC
EGC
CMC

Figure 3.6. Outage probability of CMC, EGC and SC withNr = 4 antennas and equal

interferer powers (�= 10 dB) forL = 1;2, and 6 interferers.
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Figure 3.7. Outage probability of CMC, EGC and SC withL = 3 interferers and equal

interferer powers (�= 10 dB) forNr = 2 and4 antennas.
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outage probabilities forL= 2 interferers with a highly unbalanced interference power vec-

tor [0:1;0:9] and forL = 6 interferers with a more evenly-distributed interference power

vector[0:05;0:1;0:15;0:22;0:23;0:25]. In both cases, CMC outperforms EGC and SC. The

relative performance for EGC and SC, in fact, depends on the interference power vector.

For six interferers, Fig. 3.8 shows that EGC outperforms SC. This is similar to the case of

equal interferer powers in Fig. 3.6. For two interferers, however, EGC is inferior to SC.

This is in sharp contrast to the case of equal interferer powers. It is due tothe fact that

interference power vector[0:1;0:9] represents the case of a strong dominant interferer, and

SC performs almost as well as CMC for this scenario. WithL = 3 interferers and inter-

ference power vector[0:1;0:2;0:7], Fig. 3.9 compares the outage probabilities forNr = 2
and4 diversity branches. Comparing to the case of equal interferer powers in Fig.3.7, the

performance difference between EGC and SC is smaller. This is, again, due to the presence

of a dominant interferer.

3.5.3 Finite SNRs

In the presence of noise, it is difficult to obtain an analytical outage expressionfor EGC

which enables accurate numerical calculation. Therefore, we use Monte Carlo simulation

to obtain the outage probability curves. Assuming that all antenna branches have the same

noise powers, Figs. 3.10 and 3.11 show the outage probabilities of CMC7, EGC and SC

at different SNRs for four antennas (Nr = 4), one interferer (L = 1) and equal interferer

powers (�= 10 dB). We observe that, for one interferer, as expected, SC outperforms EGC

at high SNRs, but may not outperform EGC at lower SNRs. To investigate how closely

the analysis of an interference-limited environment holds for finite SNRs, wecompare theL = 1 curves in Fig. 3.6 to those in Figs. 3.10 and 3.11. We note that the performance of

7In this case, CMC is equivalent to MRC.
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interferer powers (�avg = 10 dB) for L = 2 and 6 interferers. The interference power
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Figure 3.9. Outage probability of CMC, EGC and SC withL = 3 interferers and distinct
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Figure 3.10. Monte Carlo simulated outage probability of CMC, EGC and SC for a finite

SNR:Nr = 4 antennas,L = 1 interferer, equal interferer powers� = 10 dB, and SNR=20

dB.

CMC and EGC is within 2 dB at low SNR (10 dB) and almost the same as that predicted by

the interference-limited analysis at higher SNR (20 dB). The interference-limited analysis

of SC is less accurate for finite SNRs.

3.6 Conclusions

In this chapter, a new outage probability expression for EGC, using the exact interfer-

ence power calculations, has been derived for an interference-limited environment and flat

Rayleigh fading. With this new analysis, we assess the accuracy of the existing method

which calculates the interference power approximately. The numerical results show that

with four receiving antennas, as much as 1.5 dB difference in output SIR of EGC combiner

may exist at the same outage probability. Hence, the existing method can lead to overly
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Figure 3.11. Monte Carlo simulated outage probability of CMC, EGC and SC for a finite

SNR:Nr = 4 antennas,L = 1 interferer, equal interferer powers� = 10 dB, and SNR=10

dB.

optimistic outage performance prediction.

We have analytically compared the outage probabilities for channel-matched combining

(CMC, a practical variation of MRC that does not require SNRs at different antennas),

EGC, and SC in an interference-limited environment over flat Rayleigh fading. We have

shown that CMC has a lower outage probability than that of EGC, and that CMC has no

greater outage probability than that of SC. The relative outage performance between EGC

and SC, however, depends on the number of interferers and interferer power distribution.

For finite SNRs, the simulation results show that the relative performancebetween EGC

and SC is SNR-dependent.
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Chapter 4

Channel Estimation and Data Detection for

MIMO Systems under Spatially and Temporally

Colored Interference

4.1 Introduction

A large Shannon channel capacity exists for wireless systems with multiple transmitting

and receiving antennas in a rich scattering environment [35, 114]. It was shown that the

capacity increases linearly with the smaller of the numbers of transmitting and receiving

antennas. While a substantial amount of research has been conducted for a single MIMO

link without interference, the impact of interference on MIMO systems has recently at-

tracted much interest. In a cellular environment, cochannel interference(CCI) from other

cells exists due to channel reuse. In [30], channel capacities in the presence ofspatially

colored interference were derived with varying degrees of knowledge of the channel matrix

and interference statistics at the transmitter. In [19] and [20], it wasdemonstrated that the

capacity improvement of MIMO over SIMO (single-input multiple-output) is significantly

reduced going from a noise-limited to an interference-limited environmentdue to the lack
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of degrees of freedom at the receiver to combat CCI. In [105], with total interference power

fixed, it was shown that the capacity degrades significantly as the number of interferers in-

creases. The MIMO capacity with interference in the limit of a large number of antennas

was studied in [74]. The spectral efficiency of a multicell system with MIMO links was

assessed in [14, 15, 31]. The output signal-to-interference-power ratio (SIR)was analyti-

cally calculated in [60] when a single data stream is transmitted overindependent Rayleigh

MIMO channels. Space-time codes which suppress interference have been investigated

in [37, 124]. While the majority of the studies deal with channel capacity, in thispaper

we will focus on the symbol error rate performance of a MIMO link with interference in

practical systems.

The estimation of vector channels and spatial interference statistics for CDMA (code

division multiple access) SIMO systems can be found in [108]. Most studies of channel

estimation and data detection for MIMO systems assume spatially and temporally white in-

terference. In [77], maximum-likelihood (ML) estimate of the channel matrix using train-

ing sequences was presented assuming temporally white interference. Assuming perfect

knowledge of the channel matrix at the receiver, ordered zero-forcing (ZF) andminimum

mean-squared error (MMSE) detection were studied for both spatially and temporally white

interference in [47] and [55], respectively. However, in cellular systems, the interference

is, in general, both spatially and temporally colored.

In this chapter, we propose an algorithm to jointly estimate the channel and spatial inter-

ference correlation matrices from training sequences. By exploiting the temporal interfer-

ence correlation, we develop a multi-vector-symbol MMSE data detection scheme. In the

case of a single interferer, we show that the spatial and temporal second-orderinterference

statistics are separable, and that the temporal interference correlation can be determined a

priori. The benefits of taking the temporal and spatial interference correlation into account
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for channel estimation and data detection are evaluated through Monte Carlo simulation.

The assumption of the decoupled structure of interference statistics in the presence of noise

is also tested.

This chapter is organized as follows. In Section 4.2, we present a system modelfor

interference statistics. In Section 4.3, we derive ML estimates of the channel and spa-

tial interference correlation matrices assuming known temporal interference correlation. In

Section 4.4, one-vector-symbol detection is extended to a multi-vector-symbol version by

exploiting the temporal interference correlation. In Section 4.5, for the caseof one in-

terferer, we assess the benefits of taking temporal and spatial interference correlation into

account for channel estimation and data detection, and test the assumption of the decoupled

structure of interference statistics in the presence of noise.

4.2 System Model

We consider a single-user link consisting ofNt transmitting andNr receiving antennas. The

desired user transmits data frame by frame. Each frame hasM data vectors. The firstN
data vectors are used for training so that the desired user's channel matrixand interference

statistics can be estimated, and the remaining data vectors are for information transmission.

Recall in Section 2.2, in a slow flat fading environment, the received signal vector at timej is expressed as

yj = Hxj+nj; j = 0; � � � ;M �1 (4.1)

wherexj is the transmitted data vector,H is theNr�Nt spatial channel gain matrix, and

interference vectornj is zero-mean circularly symmetric complex Gaussian. We assume

channel matrixH is fixed during one frame. This is a reasonable assumption since high

speed data services envisioned for MIMO systems are intended to low mobility users. By
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the same argument, it is also assumed that the interference statisticsare fixed during one

frame.

In practice, the interference could be both spatially and temporally correlated. We as-

sume that the cross-correlation between the interference vectors at timesi andj isEnninyjo=���M (i; j)Rwhere���M (i; j) is the(i; j)th element of theM�M matrix���M . As a result, the

covariance matrix of the concatenated interference vector�n = [nT0 � � �nTM�1]T isEn�n�nyo = 266664 ���M (0;0)R � � � ���M (0;M �1)R
...

...���M (M �1;0)R � � � ���M (M �1;M�1)R 377775 =���M 
R (4.2)

where
 denotes Kronecker product, and matrices���M andR capture the temporal and

spatial correlation of the interference, respectively. The(i; j)th element of matrixR is the

correlation between theith andjth elements of interference vectornk, k 2 0; � � � ;M � 1.

The correlation matrices���M andRare determined by the application-specific signal model.

Eqn. (4.2) implies that the spatial and temporal interference statistics are separable. In

Section 4.5, we will give an example in which the interference covariancematrix has a

Kronecker product form.

In addition to interference correlation, we remark that a decoupled temporaland spatial

correlation structure arises in the statistics of fading vector channelsconsisting of a mobile

with one antenna and a base station with an antenna array [81, 82]. Denoting the flat

fading channel vector asa(t), it is shown that, for uniformly distributed scatterers around

the mobile, the channel vector is zero-mean circularly symmetric complex Gaussian with

correlation matrix Ena(t)ay(t+�)o= J0(!d�)Rs
where!d is the maximum Doppler frequency dependent on the mobile's speed, andJ0 is

the zero-order Bessel function of the first kind. The temporal and spatial correlation of the
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fading channel vector are described byJ0(!d�) andRs, respectively. Spatial correlation

matrix Rs depends on the antenna array's geometry, relative position between the mobile

and the base station, and the radius of the scatterer ring around the mobile.

4.3 Joint Estimation of Channel Matrix and Spatial Inter-

ference Statistics

During a training period ofN vector symbols, we concatenate the received signal vec-

tors, the training signal vectors and the interference vectors as�y = [yT0 � � �yTN�1]T , �x =[xT0 � � �xTN�1]T and�n = [nT0 � � �nTN�1]T , respectively. The received signal in (4.1) is rewrit-

ten as �y= (IN 
H)�x+�n
where�n is circularly symmetric complex Gaussian with zero-mean and covariance matrix���N 
R. Assuming prior knowledge of the temporal interference correlation matrix���N ,

we need to estimate the channel matrixH and the spatial interference correlation matrixR.

If R and���N are nonsingular, we have the conditional PDFPr(�yjH;R) = 1�N �Nr det(���N 
R) expn� [�y� (IN 
H)�x]y (���N 
R)�1 [�y� (IN 
H)�x]o :
(4.3)

4.3.1 Maximum-likelihood solution

The ML estimate of the pair of matrices(H;R) is the value of(H;R) that maximizes

the conditional PDF in (4.3), which is equivalent to maximizinglnPr(�yjH;R). Using the

inverse and determinant properties of Kronecker product in (2.19) and (2.20), it can be
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shown that maximizing (4.3) is equivalent to minimizingf(H;R) = lndet(R)+ 1N [�y� (IN 
H)�x]y (����1N 
R�1) [�y� (IN 
H)�x] : (4.4)

Denoting the elements of����1N as����1N = 266664 �0;0 � � � �0;N�1
...

...�N�1;0 � � � �N�1;N�1 377775 ; (4.5)

we expand the second term in (4.4) as1N [�y� (IN 
H)�x]y (����1N 
R�1) [�y� (IN 
H)�x]= 1N [�y� (IN 
H)�x]y266664 �0;0R�1 � � � �0;N�1R�1
...

...�N�1;0R�1 � � � �N�1;N�1R�1 377775266664 y0�Hx0
...

yN�1�HxN�1 377775= 1N h(y0�Hx0)y � � �(yN�1�HxN�1)yi266664 PN�1j=0 �0;jR�1(yj�Hxj)
...PN�1j=0 �N�1;jR�1(yj�Hxj) 377775= 1N N�1Xi=0 N�1Xj=0 �i;j (yi�Hxi)yR�1 (yj�Hxj) : (4.6)

Substituting (4.6) into (4.4), we obtainf(H;R) = lndet(R)+ 1N N�1Xi=0 N�1Xj=0 �i;j (yi�Hxi)yR�1 (yj�Hxj)= lndet(R)+ tr

8<:R�1 1N N�1Xi=0 N�1Xj=0 �i;j (yi�Hxi)(yj�Hxj)y9=; : (4.7)

The last equality comes from the fact that(yi�Hxi)yR�1 (yj�Hxj) is a scalar, hence(yi�Hxi)yR�1 (yj�Hxj) = tr
n(yi�Hxi)yR�1 (yj�Hxj)o
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= tr
n

R�1 (yj�Hxj)(yi�Hxi)yo
due to tr(AB) = tr(BA).

To find the value of(H;R) that minimizesf(H;R) in (4.7), we set@f(H;R)=@H = 0.

The derivative off(H;R) with respect to matrixH is defined as [76]@f(H;R)@H
= 266664 @f@h11 � � � @f@h1Nt

...
...@f@hNr1 � � � @f@hNrNt 377775 (4.8)

wherehij is the(i; j)th element of the complex matrixH. The computation of (4.8) in-

volves the derivative with respect to a complex number which is defined as, for example,

the(1;1)th element in (4.8),@f@h11 = 12 h@f@x � j @f@y i whereh11 = x+ jy [76].

Defining the weighted sample correlation matrices1 as~Ryy = 1N N�1Xi=0 N�1Xj=0 �i;jyiyyj; (4.9)~Rxy = 1N N�1Xi=0 N�1Xj=0 �i;jxiyyj; (4.10)

and ~Rxx = 1N N�1Xi=0 N�1Xj=0 �i;jxixyj; (4.11)

from (4.7), we have@f(H;R)@H
= @@H

n�tr
�
H ~RxyR�1�� tr

�
R�1~RyxyHy�+ tr

�
HyR�1H ~Rxx�o :

Using the fact that @tr
�

R�1~RyxyHy�@H
= 0

1To distinguish weighted sample correlation matrices from conventional sample correlation matrices in

Section 4.3.2, we denote the former by a tilde and the latter without a tilde.
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and identities of matrix derivative [79]@tr(AXB)@X
= ATBT

and @tr(XyAXB)@X
= ATX�BT ;

we obtain

Ĥ = ~Ryxy ~R�1xx : (4.12)

The spatial interference correlation matrix is estimated by setting@f(Ĥ;R)=@R = 0.

Using identities of matrix derivative in [75]2@ lndet(X)@X
= (XT )�1 for det(X) > 0 (4.13)

and @tr(X�1B)@X
= �X�1BX�1�T for X nonsingular; (4.14)

we have@f(Ĥ;R)@R
= (R�1)T +0@R�1 � 1N N�1Xi=0 N�1Xj=0 �i;j �yi� Ĥxi��yj� Ĥxj�y �R�11AT :

Therefore

R̂ = 1N N�1Xi=0 N�1Xj=0 �i;j�yi� Ĥxi��yj� Ĥxj�y (4.15)= ~Ryy� Ĥ ~Rxy: (4.16)

2Although the identities of derivatives in [75] are for real matrices, it can be shown that they are also

applicable to complex matrices.
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In Appendix C, it is shown that the estimatesĤ andR̂ can also be obtained by first setting@f(H;R)=@R=0 [68]. However, the derivation is much simpler by setting@f(H;R)=@H =
0 first. It can be shown that̂H in (4.12) is an unbiased estimator, and thatR̂ in (4.16) is a

biased estimator [88]. We remark that if~Rxy and~Rxx in (4.12) were instead known cross-

and auto-correlation matrices, the estimate forH would represent the Wiener solution.

4.3.2 Special case: temporally white interference

If interference is temporally white, with loss of generality, we may substitute���N = IN into

(4.9)-(4.16), and obtain estimates

Ĥw = RyxyR�1xx ; (4.17)

and

R̂w = Ryy� ĤwRxy (4.18)

where the subscriptw indicates temporally white interference, and the sample correlation

matrices

Ryy = 1N N�1Xi=0 yiyyi ; (4.19)

Rxy = 1N N�1Xi=0 xiyyi ; (4.20)

and

Rxx = 1N N�1Xi=0 xixyi : (4.21)

Note thatĤw in (4.17) is the same as the channel estimate used in [77]. We remark that

both Ĥ in (4.12) andĤw in (4.17) are unbiased, however, the variances ofĤ should be

smaller than those of̂Hw.
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4.3.3 Whitening filter interpretation

To obtain insight on the estimates in (4.12) and (4.16), we let the received signal vectors

during the training period undergo a linear transformation where the transformed received

signal vectors are [y00 : : :y0N�1] = [y0 : : :yN�1]����1=2N :
At the output of the transformation, we have

y0i = Hx0i+n0i; i= 0; : : : ;N �1; (4.22)

where the transformed training signal vectors and interference vectors are[x00 : : :x0N�1] = [x0 : : :xN�1]����1=2N
and [n00 : : :n0N�1] = [n0 : : :nN�1]����1=2N ;
respectively. Concatenating the transformed interference vectors as�n0 = [n0T0 : : :n0TN�1]T , it

can be shown that �n0 = (����1=2N 
 INr )�n
where�n = [nT0 : : :nTN�1]T . Since the covariance matrix of�n is ���N 
R, the covariance

matrix of �n0 is

cov(�n0) = (����1=2N 
 INr)cov(�n)(����1=2N 
 INr)y= (����1=2N 
 INr)(���N 
R)(����1=2N 
 INr)= IN 
R (4.23)

where we used the properties of Kronecker product in (2.17) and (2.18). We also used

the fact that temporal correlation matrix���N is symmetric, so is����1=2N . From (4.23), it is
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obvious that the transformed interference vectors
�

n00 : : :n0N�1	 are temporally white with

spatial correlation matrixR.

As a result, we can estimateH andR from the sample correlation matrices of trans-

formed signal vectors as in Section 4.3.2. The sample correlation matrix

Ry0y0 = 1N N�1Xi=0 y0iy0yi= 1N [y00 : : :y0N�1][y00 : : :y0N�1]y= 1N [y0 : : :yN�1]����1=2N ����y=2N [y0 : : :yN�1]y= 1N [y0 : : :yN�1]����1N [y0 : : :yN�1]y = ~Ryy;
which shows that the weighted sample correlation matrix offy0 : : :yN�1g is equivalent to

the sample correlation matrix of
�

y00 : : :y0N�1	. Similarly, the weighted sample correlation

matrices~Rxy and ~Rxx are equivalent to the sample correlation matricesRx0y0 andRx0x0,
respectively. Therefore, the estimates in (4.12) and (4.16) can also be realized by first

temporally whitening the interference, and then forming the estimates fromthe sample

correlation matrices of the transformed signal vectors.

If we drop the Gaussian assumption of interference statistics, the ML estimate Ĥ in

(4.12) is still a least-squares (LS) estimate. During the training period,after whitening

interference, the transformed received signal is shown in (4.22). The LS estimate of the

channel matrix is the one minimizingf3(H) = tr

( 1N N�1Xi=0 �y0i�Hx0i��y0i�Hx0i�y)= tr
n

Ry0y0�HRx0y0�Ryx0y0Hy+HRx0x0Hyo= tr
n~Ryy�H ~Rxy� ~RyxyHy+H ~RxxHyo

By setting@f3(H)=@H = 0, we obtain the channel estimate in (4.12).
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4.4 Data Detection

We focus on ordered MMSE detection due to the better performance of MMSE comparedto

ZF detection [9] as we mentioned in Section 2.2.3. For received signal vectoryi=Hxi+ni,
modifying the algorithm in [55], the steps of ordered MMSE detection ofxi from yi with

estimated channel and interference spatial correlation matrices areas follows:

Step 1 Initialization: setk = 1, Hk = Ĥ, ~xk = xi, ~yk = yi.
Step 2 Calculate the estimation error covariance matrixPk = (INt+1�k +HykR̂�1Hk)�1.

Findm = argminj Pk(j; j) wherePk(j; j) denotes thejth diagonal element ofPk.

Hence, themth signal component of~xk has the smallest estimation error variance.

Step 3 Calculate the weighting matrixAk = (INt+1�k +HykR̂�1Hk)�1HykR̂�1. Themth

element of~xk is estimated bŷxmk = Q (Ak(m; :) ~yk) whereAk(m; :) denotes themth row of matrixAk andQ(�) denotes the quantization appropriate to the signal

constellation.

Step 4 Assuming the detected signal is correct, remove the detected signal from the re-

ceived signal,~yk+1 = ~yk� x̂mk Hk(:;m) whereHk(:;m) denotes themth column of

Hk.

Step 5 Hk+1 is obtained by eliminating themth column of matrixHk. ~xk+1 is obtained by

eliminating themth component of vector~xk.

Step 6 Ifk < Nt, incrementk and go to Step 2.

We refer to this scheme asone-vector-symbol detectionas we detectxi usingyi only. Note

that the above algorithm is the modified version of the algorithm in Section 2.2.3, where

the true channel and interference spatial correlation matrices are replaced by the estimates.
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When interference is temporally colored, there is performance to be gained by taking

the temporal interference correlation into account. That is, we may useyN+1; : : : ;yM to

detectxN+1; : : : ;xM jointly whereN is the training length andM is the frame length. Due

to the complexity of using all the received signal vectors and for simplicityof presentation,

we considertwo-vector-symbol detectionin which (yi;yi+1) is used to detect(xi;xi+1)
jointly. The one-vector-symbol algorithm can be easily extended to the two-vector-symbol

version by writing 264 yi
yi+1 375| {z }�yi = 264 H 0

0 H

375| {z }�H 264 xi
xi+1 375| {z }�xi +264 ni

ni+1 375| {z }�ni :
With the estimated channel, an estimate of�H, denoted aŝ�H, can be obtained. Using the

estimated spatial interference correlation and the known temporal interference correlation,

we are able to estimate the covariance matrix of�ni, denoted aŝ�R. Replacingxi, yi, Ĥ

andR̂ in the one-vector-symbol algorithm by�xi, �yi, �̂H and �̂R, respectively, we obtain the

two-vector-symbol detection algorithm.

4.5 Applications

In this section, we apply the channel estimation in Section 4.3 and data detection in Section

4.4 to the case of a single-user link with one dominant cochannel interferer operating at

different data rates.

4.5.1 System model

Consider a desired user with one dominant cochannel interferer. The assumption of one

cochannel interferer is reasonable in cellular TDMA or FDMA systems especially when
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sectoring is used. In 7-cell reuse systems, with 60 degree sectors, the numberof co-channel

interfering cells would be reduced to one [91]. Hence, there will be only one co-channel

interferer. We assume that the desired and interfering users haveNt andL transmitting

antennas, respectively, and that there areNr receiving antennas. Assuming thermal noise

is small relative to interference, we ignore thermal noise in the formulation of the problem.

The accuracy of this assumption in a noisy channel will be verified in Section 4.5.4. In a

slow flat fading environment, the vector signal at receiving antennas is

y(t) =rPsTNt H
M�1Xk=0 xk~g(t�kT )+rPITIL HI 1Xk=�1bk~gI (t�kTI� � ) (4.24)

whereM is the frame length, andH (Nr�Nt) andHI (Nr�L) are the channel matrices

of the desired and interfering users, respectively. The channel matricesare assumed fixed

over a frame, and have independent realizations from frame to frame. The data transmis-

sion rates of the desired and interfering users are1=T and1=TI , respectively. The spectra

of transmit impulse responses~g(t) and~gI(t) are square-root raised cosines with parametersT andTI, respectively. The same rolloff factor,�, is assumed for both~g(t) and~gI(t). The

data vectors of the desired and interfering users arexk (Nt� 1) andbk (L� 1), respec-

tively. We assume that data symbols inxk 's andbk 's are mutually independent, zero-mean

and with unit variance. We denotePs andPI as the transmit powers of the desired and

interfering users, respectively. The delay of the interfering user relative to the desired user

is � , assumed to lie in0� � <max(T;TI).
Passingy(t) in (4.24) through a filter matched to the transmit impulse response of the

desired user,~g(t), the vector signal at the output of the matched filter is

yMF(t) =rPsTNt H
M�1Xk=0 xkg(t�kT )+rPITIL HI 1Xk=�1bkgI (t�kTI� � ) (4.25)

whereg(t) = ~g(t)� ~g(t) andgI(t) = ~gI(t)� ~g(t). Recall that~g(t) has a square-root raised-

cosine spectrum, hence,g(t) has a raised-cosine spectrum and satisfies Nyquist condition
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for zero intersymbol interference.

Assuming perfect synchronization for the desired user, as we sample the output of the

matched filter (4.25) at timet= jT , we obtain

yj =rPsTNt Hxj+rPITIL HI 1Xk=�1bkgI(jT �kTI� � )| {z }
nj : (4.26)

The interference vectornj is zero-mean as the data vector of interfering userbk is zero-

mean. Note that there is no intersymbol interference for the desired user. However, for

the interferer, due to the delay and/or mismatch between the transmit and receive impulse

responses, intersymbol interference exists.

4.5.2 Interference statistics

The cross-correlation between the interference vectors in (4.26) at times jT andqT isEnnjnyqo= PITIL HI �E8<:0@ 1Xk1=�1bk1gI(jT �k1TI� � )1A0@ 1Xk2=�1byk2gI(qT �k2TI� � )1A9=;HyI= PITIL HIHyI � 1Xk=�1ngI(jT �kTI� � )gI(qT �kTI� � )o;
where the last equality is due to the fact thatEnbk1byk2o=0 for k1 6= k2 and thatEnbkbyko=
IL.

During a training period ofN vector symbols, the covariance matrix of the concatenated

interference vector̄n= [nT0 � � �nTN�1]T has the form of a Kronecker product in (4.2) where���N (j; q) = 1Xk=�1ngI(jT �kTI� � )gI(qT �kTI� � )o; 0� j; q �N �1 (4.27)

and

R= PITIL HIHyI: (4.28)
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TheNr�Nr spatial correlation matrixR is determined by the interferer's channel matrix.

TheN �N temporal correlation matrix���N depends on parametersT andTI, delay� and

pulsegI(t), and can be calculated a priori if we have knowledge of these parameters. The

temporal correlation is due to the intersymbol interference in the sampled interfering signal.

We remark that for the case of multiple interferers with the same delay,the covariance

matrix of interference also has the form of a Kronecker product.

We study the temporal interference correlation matrices of two cases: (1) interferer at

the same data rate as the desired signal (T = TI), and (2) interferer at a lower data rate than

the desired signal, i.e., the data rate of the desired user is an integer multiple of that of the

interferer (TI =mT ,m> 1).

4.5.2.1 Interferer at the same data rate as desired signal

The desired and interfering users have the same transmit impulse response whose spectrum

is the square-root of a raised cosine with parameterT and rolloff factor�. Therefore,gI(t)
has a raised-cosine spectrum, and it is given bygI(t) = sinc(�t=T ) cos(��t=T )1�4�2t2=T 2 :
The temporal correlation of interference vectors at timesjT andqT is���N (j; q) = 1Xk=�1ngI (jT �kT � � )gI(qT �kT � � )o: (4.29)

We note that���N (j; q) depends onj � q. This indicates that the sequence consisting of

interference vectors is stationary. Hence, the temporal correlation matrix is symmetric

Toeplitz. By appropriate truncation of the infinite series in (4.29), we can numerically

calculate the temporal correlation matrix. For the case of� = 1, T = 1, here are two

examples of temporal correlation matrices at different interferer delays.
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1. � = 0:5, the element of the temporal correlation matrix is���N (j; q) =8>>>><>>>>: 0:5 j = q0:25 jj� qj= 10 otherwise

for 0� j; q �N �1: (4.30)

2. � = 0:25, the element of the temporal correlation matrix is���N (j; q) =8>>>><>>>>: 0:75 j = q0:125 jj� qj= 10 otherwise

for 0� j; q �N �1:
4.5.2.2 Interferer at a lower data rate than desired signal

The desired and interfering users employ the transmit impulse pulses whose spectrums

are square-root of raised cosines with the same rolloff factor� and parametersT andTI ,
respectively. The waveform ofgI (t) is given bygI(t) = F�1�qGrc;TI (f)qGrc;T (f)�
whereF�1 denotes the inverse Fourier transform, andGrc;T (f) is the raised-cosine Fourier

spectrum with parameterT and rolloff factor�. With TI =mT , the temporal correlation

of interference vectors at timesjT andqT is���N (j; q) = 1Xk=�1ngI(jT �mkT � � )gI(qT �mkT � � )o: (4.31)

Unlike in the case of same-data-rate interferer where���N(j; q) depends onj�q, in the case

of lower-data-rate interferer,���N (j; q) depends on the values ofj andq. This indicates that

the sequence consisting of interference vectors is cyclostationary. A sequenceis said to be

cyclostationary in the wide sense if its mean and autocorrelation are periodic [40, 89]. It

can be seen that���N(j; q) is periodic with periodm, i.e.,���N (j; q) =���N (j+m;q+m). As
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Figure 4.1. Waveform ofgI(t) for the case of lower-data-rate interferer withTI = 2T ,T = 1 and� = 1.

a result, the temporal correlation matrix���N is symmetric, but not Toeplitz. Furthermore,

for N � m, the number of nontrivial eigenvalues of���N is dN=me whered�e rounds the

argument to the nearest integer towards infinity [72]; therefore,���N is singular.

By appropriate truncation of the infinite series in (4.31), we can numerically calculate

the temporal correlation matrix. For the case ofTI = 2T , T = 1 and� = 1, the waveform

of gI(t) is given bygI(t) = Z 1=2�1=2r[1+cos(2�f)] � 12 [1+cos(�f)]ej2�ftdf;
and it is shown in Fig. 4.1. The following are three examples of temporal correlation

matrices with training lengthN = 8 at different interferer delays:
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1. � = 0,���8 = 266666666666666666666664
0:725 0:252 �0:075 �0:002 �0:015 �0:000 �0:006 �0:0000:252 0:200 0:252 0:111 �0:002 0:016 �0:000 0:007�0:075 0:252 0:725 0:252 �0:075 �0:002 �0:015 �0:000�0:002 0:111 0:252 0:200 0:252 0:111 �0:002 0:016�0:015 �0:002 �0:075 0:252 0:725 0:252 �0:075 �0:002�0:000 0:016 �0:002 0:111 0:252 0:200 0:252 0:111�0:006 �0:000 �0:015 �0:002 �0:075 0:252 0:725 0:252�0:000 0:007 �0:000 0:016 �0:002 0:111 0:252 0:200

377777777777777777777775 :
2. � = 0:25,���8 = 266666666666666666666664

0:648 0:400 �0:048 �0:006 �0:010 �0:001 �0:004 �0:0000:400 0:277 0:105 0:084 0:002 0:011 0:000 0:005�0:048 0:105 0:648 0:400 �0:048 �0:006 �0:010 �0:001�0:006 0:084 0:400 0:277 0:105 0:084 0:002 0:011�0:010 0:002 �0:048 0:105 0:648 0:400 �0:048 �0:006�0:001 0:011 �0:006 0:084 0:400 0:277 0:105 0:084�0:004 0:000 �0:010 0:002 �0:048 0:105 0:648 0:400�0:000 0:005 �0:001 0:011 �0:006 0:084 0:400 0:277
377777777777777777777775 :

(4.32)
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3. � = 0:5,���8 = 266666666666666666666664
0:462 0:461 0:018 �0:008 0:001 �0:001 0:000 �0:0000:461 0:462 0:044 0:018 0:004 0:001 0:001 0:0000:018 0:044 0:462 0:461 0:018 �0:008 0:001 �0:001�0:008 0:018 0:461 0:462 0:044 0:018 0:004 0:0010:001 0:004 0:018 0:044 0:462 0:461 0:018 �0:008�0:001 0:001 �0:008 0:018 0:461 0:462 0:044 0:0180:000 0:001 0:001 0:004 0:018 0:044 0:462 0:461�0:000 0:000 �0:001 0:001 �0:008 0:018 0:461 0:462

377777777777777777777775 :
4.5.3 Data detection without estimating channel and interference

During a training period ofN symbol vectors, instead of estimating the channel matrix and

interference statistics, one can alternatively employ a least squares (LS) estimate of matrix

M which minimizes the average estimation errorf2(M) = trace

( 1N N�1Xi=0 (xi�Myi) (xi�Myi)y) :
By setting@f2(M)=@M = 0, we obtain

M = RxyR�1yy (4.33)

where sample correlation matricesRxy andRyy are defined in (4.20) and (4.19), respec-

tively. The transmitted signal vectorxi is detected asQ (Myi) whereQ(�) is the quanti-

zation appropriate to the signal constellation. We remark that (4.33) is the well-known

Direct Matrix Inversion (DMI) algorithm [121] generalized for multiple input signals. A

significant loss in performance is expected for this LS detector since without estimates of

channel and spatial interference correlation matrices, iterative MMSE detection cannot be

performed.
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4.5.4 Simulation results

Monte Carlo simulations are used to assess the benefits of taking temporal and spatial

interference correlation into account for channel estimation and data detection in the case

of one interferer. Although it is difficult to know the temporal interference correlation in

practice, it is of interest to examine the performance loss due to ignoring this correlation.

We evaluate average symbol error rates (SERs) over different realizations of the de-

sired and interfering users' channel matrices. The channel model in Section2.3 is used to

simulate the channel matrices. Uniform linear arrays are employed. Independent Rayleigh

fading is assumed for the interfering user modelling a lack of a line-of-sight component and

severe fading for signals coming from other cells. Hence, the elements of channel matrix

HI are i.i.d. zero-mean circularly symmetric complex Gaussian with unitvariance. For the

desired user, the angle of departure of the specular signal at the mobile and the angle of

arrival at the base station are 0 and 60 degrees with respect to the normalsof each array,

respectively; these angles are the same across the array. The antenna spacings at the mo-

bile and the base station are 0.5 and 10 wavelengths, respectively. In the simulation, both

independent and correlated MIMO links are considered for the desired user.

We assume that the desired user has 5 transmitting and 5 receiving antennas, and the

interfering user has 6 transmitting antennas3. Both the desired and interfering users employ

uncoded QPSK modulation. The training signal vectors are taken to be columns of an

FFT matrix [55]. This guarantees that the training sequences from different transmitting

antennas are orthogonal. We define SIR(dB)= 10logPs=PI . Without loss of generality,

we letPI = 1 in the simulation. The SERs of two cases are simulated: (1) interferer atthe

same data rate as the desired signal, and (2) interferer at a lower data rate than the desired

3To make the spatial interference correlation matrix nonsingular, we let the number of receiving antennas

be no greater than the number of transmitting antennas of theinterfering user, i.e.,Nr � L.
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signal, i.e., the data rate of the desired user is twice that of the interferer.

In Figs. 4.2 to 4.7, with solid and dashed lines representing one- and two-vector-symbol

data detection, respectively, we show the average SERs for the following cases:� perfectly known channel parameters and interference statistics, withone-vector-symbol

(curve 1) and two-vector-symbol (curve 2) detection;� channel and spatial interference correlation matrices are estimatedassuming known

temporal interference correlation, with one-vector-symbol (curve 3) and two-vector-

symbol (curve 4) detections;� channel and spatial interference correlation matrices are estimatedassuming tempo-

rally white interference, with one-vector-symbol detection (curve 5);� only the channel matrixH is estimated assuming temporally white interference; an

identity spatial interference correlation matrix is used in one-vector-symbol data de-

tection (curve 6).� least-squares (LS) estimate of the transmitted signal vector without ordered detection

(Section 4.5.3) (curve 7).

The first case is presented for reference. The fourth case corresponds to the current BLAST

system [47] [55].

4.5.4.1 Interferer at the same data rate as desired signal

We examine the case ofT = 1, � = 1, � = 1=2, and the nonsingular temporal interference

correlation matrix shown in (4.30). Figs. 4.2 to 4.4 show the average SERs for training

lengths2Nt, 4Nt and6Nt, respectively. Independent Rayleigh fading is assumed for the
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desired user. Comparing the LS detection (curve 7) with other methods, as expected, much

lower symbol error rates can be achieved by using ordered MMSE detection.

Comparing curves 5 and 6, we observe that for training lengths4Nt and6Nt, gains can

be obtained by estimating spatial interference correlation. However, fora short training

length, for example,2Nt, due to inaccurate estimates of spatial interference correlation, it

is better to estimate only the channel matrix and assume spatially white interference. The

performance gap between curves 5 and 6 increases as the training lengths increase due to

better estimates of interference spatial correlation obtained with longer training lengths.

By examining curves 3 and 5, we observe that the improvement in taking temporal

interference correlation into account inchannel estimationis not significant, and this im-

provement decreases as the training length increases. This phenomenon can be explained

as follows: in estimating channel and temporal interference correlationmatrices for tempo-

rally colored interference, the received signal vectors first undergo a transformation which

temporally whitens the interference vectors as discussed in Section 4.3.3.Since the tempo-

ral correlation in (4.30) drops quickly to zero after one time lag, the benefit in the temporal

whitening of interference vectors is not significant, especially for long training lengths.

By comparing curves 3 and 4, there is a slight improvement of two-vector-symbol over

one-vector-symbol detection. This implies that not much gain can be achieved by taking

temporal interference correlation into account indata detectionowing to the low temporal

correlation. Due to better estimates of channel and interference spatial correlation matri-

ces obtained with a longer training length, the performance gap between curves 3 and 4

increases as the training length increases.

In Fig. 4.3, for training length4Nt, by comparing curves 4 and 6, we observe a total of

1.5dB gain in SIR by estimating spatial interference correlation and takingexplicit advan-

tage of known temporal interference correlation in channel estimation and data detection.

75



0 2 4 6 8 10 12 14 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SIR (dB)

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e

perfect known H&R, one−vector−symbol (1)
perfect known H&R, two−vector−symbol (2)
est. H&R, spatial & tempo. color. interf., one−vector−symbol (3)
est. H&R, spatial & tempo. color. interf., two−vector−symbol (4)
est. H&R, spatial color. & tempo. white interf. (5)
est. H, spatial & tempo. white interf. (6)
LS data detection (7)

Figure 4.2. Average symbol error rate vs. SIR withNt=Nr =5, L= 6, and training length2Nt. Independent Rayleigh fading is assumed for the desired user. Both the desired and

interfering users are at the same data rate.

About 1dB of the gain is due to the estimation of spatial interference correlation,and the

remaining 0.5dB gain is due to exploiting temporal interference correlation in channel es-

timation and data detection. We also observe that training length4Nt achieves most of the

performance gain.

4.5.4.2 Interferer at a lower data rate than desired signal

We examine the case ofTI = 2T , T = 1, � = 1, � = 0:25 and the temporal interference

correlation matrix for training length 8 shown in (4.32). Recall that the temporal correla-

tion matrix in the lower-data-rate-interferer case is singular. Toavoid the singularity, the

diagonal elements of���N are increased by a small amount; hence, the temporal correla-

tion matrix used for channel estimation may be modified to���N + �IN within the proposed

framework. In our simulation, we chose� = 0:01.
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Figure 4.3. Average symbol error rate vs. SIR withNt=Nr =5, L= 6, and training length4Nt. Independent Rayleigh fading is assumed for the desired user. Both the desired and

interfering users are at the same data rate.
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Figure 4.4. Average symbol error rate vs. SIR withNt=Nr =5, L= 6, and training length6Nt. Independent Rayleigh fading is assumed for the desired user. Both the desired and

interfering users are at the same data rate.
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The same set of average SER curves as in the same-data-rate-interferer case are simu-

lated. Figs. 4.5 to 4.7 show the SERs for different training lengths. Independent Rayleigh

fading is assumed for the desired user. As in the case of the same-data-rate interferer, curve

7 illustrates the poor performance without ordered detection. Curves 5 and 6 suggestthat

for short training lengths it is better to estimate only the channel matrix and assume spa-

tially white interference in data detection; however, for moderately longtraining lengths,

gains can be obtained by estimating spatial interference correlation.

By examining curves 3 and 5, we observe that the improvement in taking temporal

interference correlation into account inchannel estimationis not that significant. However,

this improvement is larger than that in the same-data-rate-interferer case due to the high

temporal correlation in the lower-data-rate-interferer case.

In contrast to the same-data-rate-interferer case, curves 3 and 4 show that the im-

provement of two-vector-symbol over one-vector-symbol detection is significantdue to the

higher temporal interference correlation. This implies that significant gain can be achieved

by taking temporal interference correlation into account indata detectionfor the lower-

data-rate-interferer case.

By comparing curves 4 and 6 in Fig. 4.6, for training length4Nt, there is a total of 4dB

gain in SIR by estimating spatial interference correlation and taking advantage of known

temporal interference correlation in channel estimation and data detection. About 3.5dB

of the gain is due to exploiting temporal interference correlation in channel estimation

and data detection. Hence, when there is lower-data-rate interference,considerable perfor-

mance loss occurs if we ignore the temporal interference correlation. In addition, as in the

same-data-rate-interferer case, we observe that training length4Nt achieves most of the

performance gain.
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Figure 4.5. Average symbol error rate vs. SIR withNt = Nr = 5, L = 6, and training

length2Nt. Independent Rayleigh fading is assumed for the desired user. The data rate of

the desired user is twice that of interfering user.
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Figure 4.6. Average symbol error rate vs. SIR withNt = Nr = 5, L = 6, and training

length4Nt. Independent Rayleigh fading is assumed for the desired user. The data rate of

the desired user is twice that of interfering user.
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Figure 4.7. Average symbol error rate vs. SIR withNt = Nr = 5, L = 6, and training

length6Nt. Independent Rayleigh fading is assumed for the desired user. The data rate of

the desired user is twice that of interfering user.

4.5.4.3 Correlated channels for the desired user

As mentioned in Section 2.3, MIMO links become correlated as the angle spread decreasing

or the RiceanK factor increasing. Figs. 4.8 and 4.9 show that the SERs are improved as

the desired user's angle spread at the base station increases for both the same- and lower-

data-rate-interferer cases with SIR=10dB, training length4Nt. Correlated Rayleigh fading

(Ricean factorK = 0) is assumed for the desired user. The improvement in SER is due

to the diversity gain as the channels become uncorrelated. We observe that, for angle

spreads larger than 6 degrees, the performance is close to the case where MIMO links

are independently faded. It is also observed that as the angle spread decreases, the SER

curves obtained from channel estimates approach the curves from perfectly known channel.

Therefore, the estimates of channel and spatial interference correlationmatrices become

more accurate as the angle spread decreases.
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Figs. 4.10 and 4.11 show that SERs degrade asK-Ricean factor increases for both

the same- and lower-data-rate-interferer cases with SIR=10dB, training length4Nt. The

channel scattered components are independently faded for the desired user. The degrada-

tion in SERs is due to the loss of diversity gain as channels become correlated.Hence,

the line-of-sight component does not improve the SERs of a MIMO system, which agrees

with the degradation of information capacity observed in [30]. However, if asingle data

stream is transmitted simultaneously from the multiple antennas with properly selected

transmit beamforming weights, we would expect that the SER would improve as theK-

Ricean factor increases [31]. In Figs. 4.10 and 4.11, we also observe that as the Ricean

factor increases, the SER curves obtained from channel estimates approach the curves from

perfectly known channel. Therefore, the estimates of channel and spatial interference cor-

relation matrices become more accurate asK increases.

4.5.4.4 Validity of the decoupled structure of interference statistics in the presence

of noise

In the presence of noise, for temporally white interference, the Kronecker productstruc-

ture of interference statistics still holds; however, for temporally colored interference, the

interference statistics can only be approximated by the Kronecker product. Hence, it is of

interest to examine the effect of this approximation. We model the thermal noise as a zero-

mean circularly symmetric complex Gaussian vector with covariancematrix�2INr , i.e, the

thermal noise is independent from antenna to antenna, and the noise power on each antenna

is �2. We define interference-to-noise-power-ratio INR= 10logPI=�2, wherePI = 1 in

the simulation. Assume independent Rayleigh fading for the desired user, training length4Nt and SIR=10dB. For the case of the same-data-rate interferer, referring to curves 3 and

5 in Fig. 4.12, we observe that for INRs lower than 17dB (noise higher than a certain
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Figure 4.8. Average symbol error rate vs. angle spread withNt = Nr = 5, L = 6,

SIR=10dB, and training length4Nt. Correlated Rayleigh fading (Ricean factorK = 0)

is assumed for the desired user. Both the desired and interfering users areat the same data

rate.

82



2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

Angle Spread

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e

perfect known H&R, one−vector−symbol (1)
perfect known H&R, two−vector−symbol (2)
est. H&R, spatial & tempo. color. interf., one−vector−symbol (3)
est. H&R, spatial & tempo. color. interf., two−vector−symbol (4)
est. H&R, spatial color. & tempo. white interf. (5)
est. H, spatial & tempo. white interf. (6)
LS data detection (7)

Figure 4.9. Average symbol error rate vs. angle spread withNt = Nr = 5, L = 6,

SIR=10dB, and training length4Nt. Correlated Rayleigh fading (Ricean factorK = 0)

is assumed for the desired user. The data rate of the desired user is twice that of interfering

user.
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Figure 4.10. Average symbol error rate vs.K-Ricean factor withNt = Nr = 5, L =6, SIR=10dB, training length4Nt. The channel scattered components are independently

faded for the desired user. Both the desired and interfering users are at thesame data rate.
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Figure 4.11. Average symbol error rate vs.K-Ricean factor withNt = Nr = 5, L = 6,

SIR=10dB, and training length4Nt. The channel scattered components are independently

faded for the desired user. The data rate of the desired user is twice that of interfering user.
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Figure 4.12. Average symbol error rate vs. INR withNt =Nr = 5, L= 6, SIR=10dB, and

training length4Nt. Independent Rayleigh fading is assumed for the desired user. Both the

desired and interfering users are at the same data rate.

level), ignoring interference temporal correlation leads to smaller SERs compared to the

case of assuming interference temporal correlation of (4.30). This suggests that the decou-

pled interference statistics with temporal correlation of (4.30) is an accurate approximation

for INRs higher than 17dB. Similarly, Fig. 4.13 shows that, in the case of the lower-data-

rate interferer, the decoupled structure of interference statistics isa valid approximation for

INRs higher than 12dB.

4.5.4.5 Effect of exploiting knowledge of spatial interference-plus-noise correlation

Since the temporal interference correlation is hard to know in practice, it is of interest

to assess the improvement of estimating the spatial correlation of interference-plus-noise

over the case of assuming the interference-plus-noise to be spatially white. With the total

interference power fixed, Fig. 4.14 compares the average SER for one (solid line) and two
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Figure 4.13. Average symbol error rate vs. INR withNt =Nr = 5, L= 6, SIR=10dB, and

training length4Nt. Independent Rayleigh fading is assumed for the desired user. The data

rate of the desired user is twice that of interfering user.

(broken line) interferers. In the case of two interferers, the interferers have the same power

and are asynchronous due to random delays. Both the desired and interfering users employ

a (5;5) MIMO link, the total-interference-to-noise-ratio is 12dB, and the traininglength is4Nt. It is assumed that both the desired and interfering users operate at the same data rate.

Fig. 4.14 shows that for one interferer, there is 1.2dB gain over a wide range of SINRs

by estimating the spatial correlation of interference-plus-noise; while for two interferers,

the corresponding gain in SINR is negligible as the two curves are nearly superimposed.

Thus, with a(5;5) MIMO link and two interferers, the interference is accurately modelled

as spatially white.
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Figure 4.14. The improvement of estimating spatial correlation of interference-plus-noise

in practical systems. With total interference power fixed, the solid lines are for one inter-

ferer, and the broken lines are for two interferers. Both the desired and interfering users

employ a(5;5) MIMO link, the same data rate, total-interference-to-noise-ratio of 12dB,

and training length of4Nt.
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4.5.4.6 Confidence intervals

To obtain an accurate estimate of the actual SER in simulations, it is necessary to ensure

that a sufficient number of data symbols have been processed. The number of symbols

required can be determined from the confidence interval4 for the estimated SER.

Let SE and ŜE denote the true and estimated SER values andNs the number of data

symbols processed in the simulation, an approximateq% confidence interval for̂SE can be

computed as [29, p. 564]0@ŜE�QsŜE(1� ŜE)Ns ; ŜE+QsŜE(1� ŜE)Ns 1A (4.34)

where the value ofQ depends onq as shown in Table 4.1. In (4.34), the width of the

confidence interval is W = 2Qs ŜE(1� ŜE)Ns : (4.35)

From (4.35), we have Ns = 4ŜE(1� ŜE)Q2W 2 : (4.36)

This gives the number of symbols required to obtain the desired confidence interval width.

For example, witĥSE = 10�3, W = 2�10�4 and a95% confidence interval, from (4.36),

we need to simulate about 384000 symbols. With five transmitter antennas in the MIMO

link, 76800 vector symbols are required. In the simulations, we have simulated a sufficient

number of data symbols for a95% confidence interval and the confidence interval width

equal to20% of ŜE .

4For an estimation of SER, we can compute aq% confidence interval. If we compute theq% confidence

interval for a large number of estimations of SER,q% of the obtained confidence intervals will include the

true SER.
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q 90% 95% 99%Q 1.65 1.96 2.58

Table 4.1. Corresponding values ofQ for various confidence levels.

4.6 Conclusions

In this chapter, by modelling interference statistics as being approximately temporally and

spatially separable, we have proposed an algorithm to jointly estimate channel and spa-

tial interference correlation matrices. By exploiting the temporal interference correlation,

one-vector-symbol detection has been extended to a two-vector-symbol version. Inaddi-

tion, multi-vector-symbol detection with more than two vector symbols is possible. In the

case of one interferer, we have shown that the interference statistics is indeed temporally

and spatially separable, and that the temporal interference correlation may be caused by

the intersymbol interference of the interferer. The impact of temporal and spatial interfer-

ence correlation on channel estimation and data detection was assessed. Ourresults show

that much lower SERs can be achieved by estimating the channel matrix and interference

statistics. For moderately long training lengths, for example, four to six times the number

of transmitting antennas, gains are obtained by estimating spatial interference correlation;

however, for much shorter training lengths, it is better to estimate only thechannel matrix

and assume spatially white interference in data detection due to poor estimates of the spatial

interference correlation matrix. We have investigated the situation where high temporal in-

terference correlation results from a cochannel interferer operating at alower data rate. The

benefit of taking temporal interference correlation into account inchannel estimationis not

significant for both same- and lower-data-rate interference cases due to the sharply reduced

temporal correlation after one time lag. In the case of lower-data-rateinterference, much
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improvement can be achieved by taking account of the temporal interference correlation in

data detection. For a(5;5) MIMO link with independent Rayleigh fading, by exploiting

temporal interference correlation in channel estimation and data detection, we obtain 0.5dB

and 3.5dB gains in SIR for same- and lower-data-rate interference cases,respectively. Our

results show that a training length equal to four times the number of transmittingantennas

achieves most of the performance gain. We also observe that for angle spreads larger than

6 degrees, the SER performance is close to the case where MIMO links are independently

faded.
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Chapter 5

Information Capacity of MIMO Systems with

Spatially and Temporally Colored Interference

5.1 Introduction

In Chapter 4, we focused on the processing at the receiver while we assume thatno knowl-

edge of the channel matrix and interference statistics is available at thetransmitter (inde-

pendent data streams with uniform power allocation across the transmitting antennas). In

this chapter, we consider the benefit of knowing channel matrix and interference statistics

at the transmitter. We address this problem from the view point of information theory.

Current work on information capacity of MIMO systems focuses on temporally white

interference. Channel capacity under both spatially and temporally white interference was

studied in [35, 62, 103, 114]. In [30], the capacity was studied for spatially colored and

temporally white interference; capacity expressions were derived for different degrees of

knowledge of the channel matrix and interference statistics at the transmitter. As we have

shown in Section 4.5, in cellular systems the interference can be not only spatially but also

temporally colored. Therefore in this chapter, assuming the receiver has perfect knowl-

edge of the channel matrix and interference statistics, we investigate the MIMO capacity
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with different degrees of knowledge of the channel matrix and interference statistics at the

transmitter under both spatially and temporally colored interference.

This chapter is organized as follows. The capacity in the case of full knowledgeof

channel matrix and interference statistics at the transmitter is derived in Section 5.2. In

Section 5.3, channel capacities in the cases of partial knowledge of the channel matrix and

interference statistics at the transmitter are discussed. Simulation results are presented in

Section 5.4.

5.2 Channel Capacity: General Case

Consider a single-user link consisting ofNt transmitting andNr receiving antennas. TheNr-dimensional received signal vector at theith time instant is

yi = Hxi+ni; i= 0;1; : : : ;N�1 (5.1)

wherexi is the transmitted signal,ni is zero-mean circularly symmetric complex Gaussian

interference vector, andH is anNr�Nt quasi-static flat fading channel matrix. As shown

in Section 4.5, the interference could be both spatially and temporally coloredwith sepa-

rable temporal and spatial correlation. Here we assume that the interference is temporally

stationary. Therefore, the interference covariance matrix can be modelled as a Kronecker

product of temporal and spatial correlations where the temporal correlation matrix is sym-

metric Toeplitz. We remark that we are studying a channel with memory. Moreover, this

channel is information-stable with additive stationary ergodic noise [28].

Concatenating�yN = [yT0 � � �yTN�1]T , �xN = [xT0 � � �xTN�1]T and�nN = [nT0 � � �nTN�1]T , we

rewrite (5.1) as �yN = �HN�xN +�nN (5.2)
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where �HN = IN 
H. The covariance matrix of�nN is �RN = ���N 
R where theN �N
symmetric Toeplitz matrix���N and theNr�Nr matrixR capture the temporal and spatial

interference correlations, respectively. In addition, we assume that thecorrelation matrices���N andR are nonsingular, and that the signal vector�xN is independent of the interference

vector�nN .

Assume that the receiver has the knowledge of both channel matrixH and interference

statistics. Since the channel in (5.2) is information-stable, the channel capacity is expressed

as [28] C = limN!1 1N max
tr(����xN )�N �PsI (�xN ;�yN ;H; �RN) (5.3)

whereI(�; �) denotes mutual information,Ps is the constrained transmit power, and����xN =Ef�xN�xyNg. Note that we considerH and�RN as channel outputs.

The mutual information term in (5.3) can be expanded asI (�xN ;�yN ;H; �RN)= H(�yN ;H; �RN)�H(�yN ;H; �RNj�xN)= H(�yN jH; �RN)+H(H; �RN )�H(�yN j�xN ;H; �RN)�H(H; �RN j�xN )= H(�yN jH; �RN)�H(�nN j�xN ;H; �RN) (5.4)= H(�yN jH; �RN)�H(�nN j�RN ) (5.5)= H(�yN jH; �RN)� log2det(�e�RN) (5.6)

whereH(�) denotes entropy; (5.4) comes from the fact thatH(H; �RN j�xN ) = H(H; �RN)
since�xN is independent ofH and �RN ; (5.5) is due to the fact that�nN is independent of

H and �xN ; (5.6) follows the fact that the differential entropy of a circularly symmetric

complex Gaussian random vector with covariance matrixQ is log2det(�eQ).
In (5.6), to maximize the mutual informationI (�xN ;�yN ;H; �RN), we have to find the

distribution of�xN which maximizesH(�yN jH; �RN). Note that if�xN satisfies the power
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constraint tr(����xN ) � N �Ps, so does�xN �E f�xNg; hence we can restrict our attention to

zero-mean�xN and����xN becomes the covariance matrix of�xN . As a result,�yN has covari-

ance matrix�HN����xN �HyN + �RN . Since circularly symmetric complex Gaussian distribution

is entropy maximizer [114],H(�yN jH; �RN) is maximized when�yN is circularly symmetric

complex Gaussian and the maximum value islog2deth�e��HN����xN �HyN + �RN�i. Clearly,

zero-mean circularly symmetric complex Gaussian vector�xN maximizes the mutual infor-

mation.

From (5.6), we haveI (�xN ;�yN ;H; �RN)� log2deth�e��HN����xN �HyN + �RN�i� log2det(�e�RN)= log2det� �HN����xN �HyN + �RN�+log2det��R�1N � (5.7)= log2det�IN �Nr + �HN����xN �HyN �R�1N � (5.8)= log2det�IN �Nt+����xN �HyN �R�1N �HN� (5.9)= log2dethIN �Nt+����xN (IN 
H)y(���N 
R)�1(IN 
H)i= log2dethIN �Nt+����xN �����1N 
HyR�1H�i (5.10)

where (5.7) is due todet(A�1) = det(A)�1 for a nonsingular matrixA [75]; (5.8) follows

fromdet(AB) = det(A)det(B) [75]; (5.9) is due to the identitydet(I +AB) = det(I +BA)
which is proved in Appendix D; (5.10) is due to the properties of Kronecker product in

(2.18), (2.19) and (2.17). Substituting (5.10) into (5.3), the channel capacity becomesC = limN!1 1N max
tr(����xN )�N �Ps log2dethIN �Nt +����xN �����1N 
HyR�1H�i (5.11)

To find����xN that maximizes the mutual information in (5.10), we use eigenvalue de-

composition and express the Hermitian matrixHyR�1H as

HyR�1H = VHRDHRVyHR; DHR = diag(d1HR; : : : ; dNtHR) (5.12)
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whered1HR; : : : ; dNtHR are eigenvalues ofHyR�1H, andVHR is a unitary matrix consisting

of eigenvectors ofHyR�1H. Similarly, we eigenvalue-decompose the Hermitian matrix���N as ���N = U�ND�NUy�N ; D�N = diag(d1�N ; : : : ; dN�N); (5.13)

hence ����1N = U�ND�1�NUy�N ; D�1�N = diag(1=d1�N ; : : : ;1=dN�N ): (5.14)

Note that����1N 
HyR�1H is Hermitian. Using eigenvalue decomposition, we have����1N 
HyR�1H = VNDNVyN ; DN = diag(d1N ; : : : ; dN �NtN ): (5.15)

According to the Kronecker product property (2.21), the diagonal matrixDN = D�1�N 

DHR and the unitary matrixVN =U�N
VHR. More specifically, we express the elements

in DN as d(i�1)N+jN = diHRdj�N ; i= 1; : : : ;Nt; j = 1; : : : ;N: (5.16)

Assuming that the transmitter knows the channel matrix and interference statistics (both

temporal and spatial correlations), the mutual information in (5.10) is maximized when����xN = VNPNVyN with VN shown in (5.15) andPN = diag(p1N ; : : : ; pN �NtN ) [114]. The

mutual information in (5.10) becomesI (�xN ;�yN ;H; �RN) = N �NtXi=1 log2(1+piNdiN ): (5.17)

To find p1N ; : : : ; pN �NtN that maximize (5.17) with power constraint
PN �Nti=1 piN = NPs, we

use Lagrange multipliers. We form the Lagrangian functionJ(p1N ; : : : ; pN �NtN ;�) = N �NtXi=1 log2(1+piNdiN )+� N �NtXi=1 piN! :
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By setting@J=@pi = 0, we have diN1+piNdiN 1ln2 +�= 0
and piN + 1diN =� 1� ln2 4= �:
SincepiN has to be positive, we havepiN =��� 1diN�+
where(x)+ denotes the larger of 0 andx, and� is chosen such thatN �NtXi=1 piN = NXj=1 NtXi=1 �� dj�NdiHR!+ =NPs:
Substituting (5.17) into (5.3), the capacity is expressed asCHR� = limN!1 1N NXj=1 NtXi=1 log2(1+ �� dj�NdiHR!+ diHRdj�N )
where the subscript indicates that the transmitter has the knowledge of channel matrix and

both temporal and spatial interference correlations.

As N !1, the eigenvalues of Toeplitz matrix���N approach the DFT of the first row

of ���N , i.e., the power spectrum of interference,N(f), 0� f < 1 [25]. Therefore,CHR� = NtXi=1 Z 10 log2 �1+��� N(f)diHR �+ diHRN(f)� df (5.18)

where� is chosen such thatNtXi=1 Z 10 ���N(f)diHR �+ df = Ps: (5.19)

This implies joint water-filling in both spatial and frequency domain as in thecase of fre-

quency selective fading [90].
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In the special case of temporally white interference,N(f) = 1, the capacity in (5.18) is

equivalent to the capacity in [30], i.e.,CHR;�=I = NtXi=1 log2�1+��� 1diHR�+diHR� (5.20)

where� is chosen such that NtXi=1��� 1diHR�+ = Ps (5.21)

and water-filling is applied in spatial domain only.

5.3 Special Cases

5.3.1 Transmitter knows channel and spatial interference correlation

matrices

Without knowledge of temporal interference correlation, the transmitter assumes that the

interference is temporally white with���N = IN . As a result, the water-filling is applied only

in spatial domain according toH andR. The optimal transmit covariance matrix is����xN = IN 
VHRPVyHR (5.22)

with VHR in (5.12) andP= diag(p1; : : : ; pNt). The elements in matrixP are obtained by

water-filling in spatial domain pi =��� 1diHR�+
(5.23)

wherediHR is the eigenvalue ofHyR�1H as shown in (5.12), and� is chosen such thatNtXi=1 pi = Ps: (5.24)
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Substituting (5.22) into (5.11), we obtainCHR = limN!1 1N log2dethIN �Nt+�IN 
VHRPVyHR������1N 
HyR�1H�i= limN!1 1N log2dethIN �Nt+����1N 
VHRP���HRVyHR| {z }
B

i: (5.25)

It can be shown that matrixB is Hermitian and the eigenvalues of matrixB arepidiHR=dj�N ,i= 1; : : : ;Nt, j = 1; : : : ;N . Hence, (5.25) becomesCHR = limN!1 1N NXj=1 NtXi=1 log2 1+ pidiHRdj�N != NtXi=1 Z 10 log2 �1+ pidiHRN(f) � df (5.26)

wherepi is determined by (5.23) and (5.24).

5.3.2 Transmitter knows channel matrix

The transmitter assumes that the interference is both temporally and spatially white with���N = IN andR = INr . Hence, the water-filling is applied in spatial domain according to

H only. Using eigenvalue decomposition, we express

HyH = UHDHUyH; DH = diag(d1H ; : : : ; dNtH ):
The optimal transmit covariance matrix is����xN = IN 
UHPUyH (5.27)

whereP = diag(p1; : : : ; pNt). The elements in matrixP are obtained by water-filling in

spatial domain according toH pi =��� 1diH�+
(5.28)
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where� is chosen such that NtXi=1 pi = Ps: (5.29)

Substituting (5.27) into (5.11), we haveCH = limN!1 1N log2dethIN �Nt+�IN 
UHPUyH������1N 
HyR�1H�i= limN!1 1N log2dethIN �Nt+�IN 
UHP1=2��IN 
P1=2UyH������1N 
HyR�1H�i= limN!1 1N log2dethIN �Nt+�IN 
P1=2UyH������1N 
HyR�1H��IN 
UHP1=2�i= limN!1 1N log2dethIN �Nt+����1N 
P1=2UyHHyR�1HUHP1=2| {z }
A

i:
Note that matrixA is Hermitian and can be eigenvalue decomposed. Denoting the eigen-

values of matrixA asd1A; : : : ; dNtA , together with the eigenvalues of����1N in (5.14), we have

the capacity CH = limN!1 1N NXj=1 NtXi=1 log2 1+ diAdj�N!= NtXi=1 Z 10 log2 �1+ diAN(f)� df: (5.30)

5.3.3 Transmitter has no knowledge of channel and interference

Uniform power allocation is used at the transmitter, i.e., the optimal covariance matrix of

the input is ����xN = IN 
 PsNt INt: (5.31)

Substituting (5.31) into (5.11), we obtain the capacityCno info = limN!1 1N log2dethIN �Nt+�IN 
 PsNt INt������1N 
HyR�1H�i= limN!1 1N log2det�IN �Nt+����1N 
 PsNtHyR�1H� :
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The eigenvalues of Hermitian matrix����1N 
HyR�1H are shown in (5.16). Thus, we haveCno info = limN!1 1N NXj=1 NtXi=1 log2 1+ PsNt diHRdj�N != NtXi=1 Z 10 log2�1+ PsNt diHRN(f)� df: (5.32)

5.4 Numerical Results

We use the system model in Section 4.5.1 and assume that the desired and interfering

users transmit at the same data rate. From (4.28) in Section 4.5.2, the spatial interference

correlation matrix isR= PIL HIHyI wherePI is the interference power,L is the number of

interfering transmitting antennas, andHI is the interferer's channel matrix. We assume that

the rolloff factor of the raised-cosine pulse shaping� = 1. For the interferer delay0:4T
where1=T is the data rate, the elements of the temporal interference correlation matrix can

be obtained by numerical calculation of (4.27) as���i;j;�=0:4 =8>>>><>>>>: 0:5477 i= j0:2261 ji� jj= 10 otherwise

for 0 � i; j �N �1: (5.33)

If there is no delay between the desired user and the interferer, the elements of the temporal

correlation matrix are���i;j;�=0 =8><>: 1 i= j0 otherwise
for 0 � i; j �N �1:

Hence, the interference is temporally white for a synchronized interferer.Note that the

interference power is smaller in the case of an asynchronous interferer.

As in Section 4.5.4, both independent and correlated MIMO links are considered for

the desired user, and independent Rayleigh fading is assumed for the interferer.The same
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geometry of antenna arrays as in Section 4.5.4 is assumed for the desired user.Both the

desired and interfering users are equipped with(4;4) MIMO links, i.e.,Nt =Nr = L= 4.

For slow fading channels and applications with decoding delay constraints, an impor-

tant performance measure is the capacity at a given outage probability [12, 85]. Inthese

circumstances, the transmission duration of a codeword (this duration is long enoughto

accommodate a very long codeword) may be much smaller than the coherence time of the

fading channel, and the channel is almost fixed during the transmission of the codeword.

Hence, the channel capacity is viewed as a random entity as it depends on the instantaneous

random channel parameters. The definition and operational meaning of outage capacity can

be found in [18]. In this section, we consider 10% outage capacity, denoted asC0:1, wherePr(C < C0:1) = 10%.

Monte Carlo simulation is used to assess the 10% outage capacity for differentassump-

tions of knowledge of channel matrix and interference statistics at the transmitter. We use

(5.18), (5.26), (5.30) or (5.32) to calculate the capacity for a particular realization of the

desired and interfering users' channel matrices. From the empirical distribution [86], we

find outC0:1. In the simulations, we letPs = 100 and define SIR (dB)
4= 10log10Ps=PI .

We point out that all water-filling results depend not only on SIR but also on values ofPs
andPI since water-filling is a nonlinear operation.

Fig. 5.1 shows the outage capacity versus SIR for spatially and temporally colored in-

terference (the interferer delay is0:4T ). Independent Rayleigh fading is assumed for the

desired user. We observe that knowledge of the channel matrix offers a small gain in ca-

pacity, which is consistent with [104]. This is due to the independent fading of the desired

user. If the elements in channel matrixH are i.i.d. zero-mean complex Gaussians, water-

filling power allocation does not significantly outperform uniform power allocationin that

the disparity among the eigenvalues ofHyH is not large [104]. Fig. 5.1 also shows that,
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as interference becomes weak (from low to high SIR), the benefit of knowing interference

spatial correlation at the transmitter diminishes. Moreover, it is observed in Fig. 5.1 that

lack of knowledge of temporal correlation of the interference at the transmitter causes a

small capacity reduction. This can be explained by the low interference temporal correla-

tion in (5.33) as the correlation drops quickly to zero if the time difference islarger than

one.

Fig. 5.2 shows the outage capacity for temporally white but spatially colored interfer-

ence (the interferer delay is zero). Independent Rayleigh fading is assumed forthe desired

user. Comparing Figs. 5.1 and 5.2, we observe that temporally colored interference (asyn-

chronous interferer) gives higher capacity. This is partially due to the smaller interference

power in the case of asynchronous interferer, and partially due to the fact that temporal cor-

relation in interference increases capacities. To see how the temporal correlation increases

the capacity, let us consider an extreme case where the temporal interference correlation is

unity for all time differences, i.e., interference vectors are the same at all sampling times.

With the knowledge of channel matrix and interference statistics available at the receiver,

the interference can be easily determined by the receiver if the transmitter sends one train-

ing vector symbol. Therefore, after the first training vector symbol, the channelcan be

considered as interference-free, and we can transmit unlimited amounts ofinformation

over the channel within our assumption of interference-limited environment.

Fig. 5.3 shows the effect of Ricean factorK assuming the scattered components of the

desired user's channel are independently faded. AsK increases, the rank of the channel

matrix approaches one, and the disparity among the eigenvalues ofHyH increases. There-

fore, water-filling power allocation achieves much higher capacities than uniform power

allocation does. In Fig. 5.3, as expected, the gain achieved by knowing the channel matrix

increases asK grows. Due to the rank reduction of the channel matrix, we observe that
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Figure 5.1. 10% outage capacity versus SIR for temporally and spatially colored inter-

ference (interferer delay0:4T ) with Nt = Nr = L = 4. Independent Rayleigh fading is

assumed for the desired user.
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Figure 5.2. 10% outage capacity versus SIR for spatially colored interference (synchronous

interferer) withNt =Nr = L= 4. Independent Rayleigh fading is assumed for the desired

user.
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Figure 5.3. 10% outage capacity versusK-Ricean factor for temporally and spatially col-

ored interference (interferer delay0:4T ) with Nt = Nr = L = 4 and SIR=10dB. The scat-

tered component of the desired user's channel is independently faded.

capacities decrease asK increases.

Fig. 5.4 shows the effect of angle spread at the base station antenna array assuming

Ricean factorK = 0. As angle spread decreases, the MIMO links become more and more

correlated, and the rank of the channel matrix is reduced to one at zero angle spread. Hence,

similar to the case of increasing Ricean factorK, Fig. 5.4 shows that the capacity gain

achieved by knowing channel matrix decreases as angle spread increases. Asexpected,

it is observed that capacities increase as the angle spread increases. However, capacities

are not improved significantly when angle spread is larger than 6 degrees. Hence, the

MIMO channel links can be considered to be faded independently with angle spreads larger

than 6 degrees. Figs. 5.3 and 5.4 also show that the knowledge of interference temporal

correlation does not offer significant capacity gains.
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Figure 5.4. 10% outage capacity versus angle spread for temporally and spatially col-

ored interference (interferer delay0:4T ) with Nt =Nr = L= 4 and SIR=10dB. Correlated

Rayleigh fading (Ricean factorK = 0) is assumed for the desired user.

5.5 Conclusions

In this chapter, we have derived the channel capacities of MIMO systems under spatially

and temporally correlated interference. Assuming that the receiver knows the channel ma-

trix and interference statistics, channel capacities have been investigated for different de-

grees of knowledge of the channel matrix and interference statistics at the transmitter. It is

shown that if the interference spatial and temporal correlation is available at the transmitter,

water-filling power allocation in both spatial and frequency domain should be applied. With

the temporal interference correlation of the same-data-rate interference case in Chapter 4,

the results show that the knowledge of interference temporal correlation at thetransmit-

ter does not offer significant capacity improvement. As the MIMO channel links become
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more correlated, knowing the channel matrix at the transmitter provides significant capac-

ity gains. It is observed that the MIMO links can be considered to be faded independently

if the angle spread at the base station antenna array is larger than 6 degrees.
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Chapter 6

Adaptive Modulation for MIMO Systems

6.1 Introduction

In Chapter 4, we considered channel estimation and data detection at the receiver. In Chap-

ter 5, we showed that, for continuous input signals, with knowledge of the channel matrix

and interference statistics at the transmitter, there are gains to be achieved in information

capacity via water-filling power allocation at the transmitter. In this chapter, we will con-

sider joint processing at the transmitter and receiver. With the channel estimates in Chapter

4, we will investigate how to implement the water-filling power allocation at the transmitter

in practical systems with finite alphabet input signals.

Studies for continuous input signals suggest that, if both transmitter and receiver have

perfect knowledge of the channel gain matrix and interference statistics, to achieve the

capacity, we can decompose the MIMO channel into independent subchannels and apply

optimum water-filling on these subchannels [30], i.e., we allocate more power to subchan-

nels with high channel gains. However, for finite alphabet input signals, power allocation
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alone may not be an efficient way to maximize capacity. This is due to the different rela-

tionship between channel capacity and SNR for continuous-input signals versus discrete-

input signals. Consider a single-input single-output (SISO) channel, for continuous inputs,

the channel capacity increases without bound as SNR increases; while for discrete inputs,

assuming the transmitted signal is drawn from anM -point constellation with equal prob-

ability, the channel capacity saturates atlog2M bits/channel use at high SNR. Therefore,

for discrete inputs, to boost data throughput, we need to apply not only power allocation,

but also other techniques, including varying the size of signal constellations. Thatis, for

good subchannels, we allocate more power and use higher-level modulation. As a result,

data rates are higher on good subchannels. In the following, joint adaptation of power and

modulation level is referred to as adaptive modulation [49,119].

Adaptive modulation for MIMO systems maximizing information rate has been consid-

ered for flat and frequency selective fading channels in [66,90,95,97,98] assuming perfect

channel knowledge at both the transmitter and receiver. In practical systems, the channel

transfer matrix and interference statistics are estimated by the receiver, for example, from

training symbol sequences. Hence, perfect channel knowledge may not be obtainable.

On the other hand, to enable adaptive modulation, channel knowledge is required at the

transmitter. In frequency division duplex (FDD) systems, this requires the receiver to feed

channel information back to the transmitter. In practical systems, due to limited feedback

channel bandwidth, low-resolution quantized channel information is fed back [84]. There-

fore, the transmitter and receiver may not have the identical channel information due to

quantization error. The performance of adaptive modulation based on channel mean feed-

back was presented in [128]. In this chapter, we will investigate the impact of imperfect

channel knowledge and feedback quantization error on adaptive modulation in MIMO sys-

tems. The channel estimates from Chapter 4 is used. Rate-distortion theory is involved in
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our work to assess the achievable performance of feedback quantization. Since theresults

in Chapters 4 and 5 show that taking temporal interference correlation into account neither

increases the channel capacity nor improves the symbol error rates, in this chapter, we will

focus on temporally white interference.

To apply adaptive modulation, the MIMO channel has to be decomposed into subchan-

nels. In Section 6.2, MIMO channel diagonalization is described for both temporally white

and colored interference. The adaptive modulation algorithm is described in Section 6.3.

The effects of imperfect channel estimates and feedback quantization errorfor temporally

white interference are investigated in Sections 6.4 and 6.5, respectively.

6.2 Diagonalization of MIMO Channels

6.2.1 Temporally white interference

Fig. 6.1 shows how to decompose a MIMO channel into independent single-input single-

output (SISO) subchannels for temporally white interference. Assume that the channel

matrix H is quasi-static, and that the interference vectorn is zero-mean circularly sym-

metric complex Gaussian with covariance matrixR. In Fig. 6.1, at the transmitter side,

the signal to be conveyed,s, is multiplied by a pre-processing matrixVHR. Note that the

entries insare independent and could have different signal constellation sizes and powers.

At the receiver side, a post-processing matrixUyHRR�1=2 is applied. The unitary matrices

VHR andUHR are obtained via singular value decomposition (SVD) of

R�1=2H = UHR���HRVyHR: (6.1)

Since the pre-processing matrixVHR is a unitary matrix, the power of the transmitted

signal, x = VHRs, is the same as that ofs. As a result, the soft output in Fig. 6.1 is
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expressed as

r = UyHRR�1=2(HVHRs+n)= UyHRR�1=2HVHRs+UyHRR�1=2n| {z }
n0= ���HRs+n0

where it can be shown thatEnn0ny0o = I . Since���HR is a diagonal matrix, the MIMO

channel is transformed into independent SISO subchannels. The inputs of subchannels are

elements ofs; the channel gains are equal to the singular values ofR�1=2H; the interference

on each subchannel is zero-mean Gaussian with unit variance; the number of effective

subchannels (subchannels with non-zero gains) is determined by the number of non-zero

singular values ofR�1=2H. Hence, by linear transformations at the transmitter and receiver,

the MIMO channel is decomposed into several SISO channels. The signal constellation

sizes and powers of signals inswill be determined by the adaptive modulation algorithm in

Section 6.3. We remark that the pre-processing matrixVHR constitutes a form of transmit

beamforming.

The post-processing matrixUyHRR�1=2 can also be interpreted as follows. The received

signal vectory in Fig. 6.1 is first filtered byR�1=2 to spatially whiten the interference. Then

the unitary transformationUyHR is applied to complete the diagonalization of the composite

channelR�1=2H.

6.2.2 Temporally colored interference

To maximize the information transmission rate, block transmission is employed so that the

temporally colored interference is taken into account. Assume that a block ofN data vec-

tors is transmitted. By stacking theN received signal vectors, the system can be modelled

as (5.2) with augmented channel matrix�HN = IN 
H and interference covariance matrix
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Figure 6.1. Diagonization of an MIMO channel under temporally white interference.�RN = ���N 
R. Similar to the case of temporally white interference, we decompose the

composite channel as�R�1=2N �HN = (���N 
R)�1=2 (IN 
H)= �����1=2N 
R�1=2�(IN 
H) (6.2)= ����1=2N 
R�1=2H= �
U�ND�1=2�N Uy�N�
�UHR���HRVyHR� (6.3)= (U�N 
UHR)�D�1=2�N 
���HR�(U�N 
VHR)y

where in (6.2) it can be shown that(���N 
R)�1=2 =����1=2N 
R�1=2 ; (6.3) is due to SVDs

in (5.13) and (6.1). If the SVD of�R�1=2N �HN = UN���NVyN ; (6.4)

we have

UN = U�N 
UHR; VN = U�N 
VHR and ���N = D�1=2�N 
���HR:
Fig. 6.2 shows the diagonalization of the MIMO channel with temporally colored in-

terference. At the transmitter, powers and signal constellations of signals in the block

sN = (s1;1; : : : ; s1;N ; : : : ; sNt;1; : : : ; sNt;N ) are determined from���N in (6.4) by an adaptive

modulation algorithm. At the receiver, after collecting all signals during the block, ZF

detection is applied.
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Figure 6.2. Diagonization of an MIMO channel under temporally colored interference.

6.3 Adaptive Modulation

Similar adaptive modulation algorithms that are used for orthogonal frequency division

multiplexing (OFDM) systems can be adapted and applied to MIMO systems. Two al-

gorithms are of practical importance: the Hughes-Hartogs algorithm which maximizes

data throughput with a target bit error rate (BER) [13], and Chow-Cioffi-Bingham algo-

rithm [24] along with its improved version [33] which transmits a fixed datarate with low-

est error rate possible. Note that the latter algorithm will use up all the available transmit

power, while the former one may not since the power increment from a low level modu-

lation to a higher level is discrete. In our work, we choose the Hughes-Hartogs algorithm

due to two reasons. First, most applications, such as voice and video transmission, have

target BERs. Second, in wireless systems, we may want to use as littletransmit power as

possible to minimize the interference to other users. In addition, in our work, werestrict

the modulation schemes to BPSK, QPSK, 16-square QAM and 64-square QAM.

The spectral efficiency of a MIMO system is expressed in terms of data rate per unit

bandwidth in bits/sec/Hz. If we sendk bits/vector symbol, the data rate isk=Ts bits/sec

whereTs is the symbol duration. With Nyquist pulses, we can assume that the signal

bandwidth is1=Ts. Therefore, the data rate per unit bandwidth isk bits/sec/Hz.
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6.3.1 Adaptive modulation algorithm

We define an ordered list of possible modulation schemes as Q=fBPSK,QPSK,16QAM,

64QAMg, i.e.,Q1 =BPSK and so on. To facilitate adaptive modulation, given subchannel

gains, we first calculate an incremental power matrixPincr, where the(m;n)th elementPincr;m;n = Pm;n �Pm�1;n, 1 � m � 4, andPm;n denotes the required transmit power

for the nth subchannel to support modulation schemeQm at some target BER. Clearly,P0;n = 0.

To maximize the data throughput with a transmit power constraintPtotal, each time we

choose the subchannel that requires the least incremental power. The algorithm is summa-

rized as follows [13]:

Step 1 i= 1, Pused= 0, andP(i)
incr = Pincr.

Step 2 Search the first row ofP(i)
incr for the smallest element. If the(1;n)th element is the

smallest andP(i)
incr;1;n =Pincr;j;n, thenth subchannel requires the smallest incremen-

tal power from modulation levelQj�1 toQj.
Step 3 IfPused+Pincr;j;n � Ptotal, the modulation level on thenth subchannel is increased

to Qj, andPused( Pused+Pincr;j;n; otherwise, the adaptive modulation is com-

pleted and exit the algorithm.

Step 4 ObtainP(i+1)
incr by P(i+1)

incr;l;n = P(i)
incr;l+1;n, l = 1;2;3, andP(i+1)

incr;4;n = Ptotal. That is, we

move the elements in thenth column ofP(i)
incr up one place, and set the last element

asPtotal.

Step 5 i= i+1, and go to Step 2.

To make sure that the modulation levels on subchannels are upper-bounded by 64QAM, in

updatingP(i)
incr, we set the last element asPtotal.
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Figure 6.3. QPSK signal constellation with Gray code mapping.

6.3.2 Bit error rate of modulation schemes

To build up the incremental power matrixPincr, we need to know the required SNR for

a modulation scheme to achieve the target BER. With Gray code bit mapping for QPSK,

16QAM and 64QAM as shown in Figs. 6.3 to 6.5, the BERs in AWGN can be expressed

as [23,89,126] Pb;BPSK= 12erfc(p
); (6.5)Pb;QPSK= 12erfc

�r
2� ; (6.6)Pb;16QAM = 18�3erfc

�r 
10�+2erfc

�3r 
10��erfc

�5r 
10�� ; (6.7)

and Pb;64QAM = 124(7erfc

�r 
42�+6erfc

�3r 
42��erfc

�5r 
42�+erfc

�9r 
42��erfc

�13r 
42�) (6.8)

where
 is SNR per symbol, and the complementary error function erfc(�) is defined as

erfc(z) = 2p� R1z e�x2dx. The BERs of BPSK, QPSK, 16-square QAM and 64-square
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I-channel

Q-channel

1111 1101 0101 0111

1110 1100 0100 0110

1010 1000 0000 0010

1011 1001 0001 0011

Figure 6.4. 16-square QAM signal constellation with Gray code mapping.

QAM are shown in Fig. 6.6. We use Gray mapping due to the closed-form BER ex-

pressions. According to Fig. 6.6, required SNRs to achieve a predefined target BER are

summarized in Table 6.1.
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I-channel

Q-channel

111111 111101 110101 110111 010111 010101 011101 011111

111110 111100 110100 110110 010110 010100 011100 011110

111010 111000 110000 110010 010010 010000 011000 011010

111011 111001 110001 110011 010011 010001 011001 011011

101011 101001 100001 100011 000011 000001 001001 001011

101010 101000 100000 100010 000010 000000 001000 001010

101110 101100 100100 100110 000110 000100 001100 001110

101111 101101 100101 100111 000111 000101 001101 001111

Figure 6.5. 64-square QAM signal constellation with Gray code mapping.
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16-square QAM and 64-square QAM.

117



target BER BPSK QPSK 16QAM 64QAM10�2 4.3203 7.2235 13.9286 19.804110�3 6.7396 9.7811 16.4862 22.50005�10�6 10.0922 13.0415 19.7696 25.852510�8 12.1198 14.9770 21.8894 28.1567

Table 6.1. Required SNRs in dB for a predefined target BER.

6.4 Effect of Imperfect Channel Estimates

In practical systems, the receiver estimates the channel matrix and interference statistics

and feeds them back to the transmitter so that adaptive modulation can be applied at the

transmitter. In practice, we usually have neither perfect channel estimates nor perfect feed-

back paths. In this section, to focus on the effect of imperfect channel estimates from

training sequences, we assume a perfect feedback path from the receiver totransmitter and

temporally white interference.

6.4.1 System model

Consider a MIMO link withNt transmitting andNr receiving antennas. The received

signal is

yi = Hxi+rPIL HIbi+wi| {z }
ni

wherexi is the transmitted vector symbol with power constraintPs, H is theNr �Nt
quasi-static channel matrix of the desired user, andni is the interference-plus-noise vector.

We assume that interference comes fromL transmitters which could belong to one or more

interferers. The total interference power isPI , theNr�LmatrixHI consists of quasi-static
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Figure 6.7. Adaptive modulation with imperfect channel estimates.

interfering users' channel gains,bi consists ofL i.i.d. zero-mean interfering signals each

with unit variance andwi is the additive white Gaussian noise vector with zero-mean and

covariance matrix�2INr . Note that each interfering transmitter has the same transmitted

power. It can be shown that the covariance matrix of interference plus noiseis

R= PIL HIHyI+�2INr :
With temporally white interference and noise, during the training period ofN vector

symbols, the estimates of the desired user's channel matrix and the spatial interference

correlation matrix,̂H andR̂, can be obtained by (4.17) and (4.18), respectively.

During the data transmission period, as shown in Fig. 6.7, the transmitter and receiver

calculate the pre- and post-processing matricesV̂HR andÛyHRR̂�1=2, respectively, via SVD

of R̂�1=2Ĥ = ÛHR�̂��HRV̂yHR. The power and modulation level for each transmitted signal

in s are determined from̂���HR by the adaptive modulation algorithm. To demodulate the

transmitted signals, the receiver scales the appropriate constellationsby the power coeffi-

cient obtained from the adaptive modulation algorithm.

119



6.4.2 Simulation results

We consider a desired user with a(4;4) MIMO link andL= 5 interfering transmitters. The

interfering users are assumed to experience i.i.d. Rayleigh fading. For the desired user,

both independent and correlated MIMO links are considered, and the same antenna array

geometry as in Section 4.5.4 is assumed. Monte Carlo simulation is used to evaluate the

average system performance over different channel realizations. In the simulation, we set

the total interference powerPI = 1, and interference-to-noise power ratio INR=20 dB.

In Figs. 6.8 and 6.9, we compare the performance of adaptive modulation with non-

adaptive case assuming perfect knowledge of channel and spatial interference correlation

matrices at the transmitter. The desired user is assumed to experiencei.i.d. Rayleigh fad-

ing. For the adaptive modulation, the target bit error rate is10�3. For the non-adaptive

case, QPSK is assumed for each transmitter and uniform power allocationis applied among

transmitting antennas; ordered MMSE detection is used at the receiver toestimate the trans-

mitted symbols. As expected, for the adaptive case, the system operates at thetarget BER

for all values of SIR. The data throughput increases significantly with SIR and eventu-

ally saturates at 24 bits/sec/Hz since the modulation on each subchannel is restricted to 64

QAM. For the non-adaptive case, the data throughput is fixed at 8 bits/sec/Hz for all val-

ues of SIR, and the BER improves significantly as SIR increases. At low SIR, the adaptive

modulation sacrifices spectral efficiency to obtain low BERs; while at high SIR, it sacrifices

the unnecessarily low BERs to achieve high data rate. We point out that in the non-adaptive

case, the transmitters use up all the available power, while in the adaptive case, at high SIR,

only part of the transmit power is consumed. Therefore, for applications with target BERs,

adaptive modulation achieves a higher spectral efficiency.

For data throughput 8 bits/sec/Hz and BER10�3, we observe that the adaptive scheme

requires SIR 9 dB from Fig. 6.8, and the non-adaptive scheme requires SIR 15 dB from
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Figure 6.8. The number of bits transmitted per Hz per sec for adaptive modulation and

non-adaptive scheme assuming perfect channel knowledge at the transmitter. The target

BER in adaptive modulation is10�3,Nt =Nr = 4, andL=5. The desired user is assumed

to experience i.i.d. Rayleigh fading.

Fig. 6.9. Therefore, there are 6 dB SIR saving by using adaptive modulation.

When channel and spatial interference correlation matrices are estimated from training

sequences, with target BER10�3, Fig. 6.10 shows the actual achieved bit error rate versus

training length. We observe that even for moderately long training lengths, e.g.,six times

the number of transmitting antennas, the actual achieved BER is much higher than the

target BER. Hence, with estimated channel and spatial interference correlation matrices,

we have to set the target BER much lower than the actual BER. After experiments, it is

found that to make the actual BER be10�3 for training length6Nt and4Nt, we have to set

the target BER to be5�10�6 and10�8, respectively. The required SNRs for target BERs5�10�6 and10�8 are shown in Table 6.1.

Fig. 6.11 shows the spectral efficiency for adaptive modulation with channel estimates
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Figure 6.10. The achieved bit error rate versus training length of adaptive modulation with

target BER10�3. It is assumed thatNt =Nr = 4, andL= 5. The desired user is assumed

to experience i.i.d. Rayleigh fading.

where the actual BERs achieve10�3. As expected, the throughput improves as channel

estimates become accurate. Compared to the case of perfectly known channel, about 3

bits/sec/Hz degradation occurs with training length4Nt. For example, at SIR 15 dB, with

perfectly known channel we can transmit 13 bits/vector symbol, and with training length4Nt we transmit 10 bits/vector symbol.

The spectral efficiency shown in Fig. 6.11 does not take the training overhead into

account. Although a longer training length yields a higher throughput for data transmission

period (after training period), it requires more overhead. Therefore, we are interested in

overall spectral efficiency which takes the training overhead into account. Assume that the

data is transmitted frame by frame, and that the channel is estimated atthe beginning of

each frame. For a certain frame length, we would like to find out a good training length

which maximizes the overall spectral efficiency. For example, at SIR 15dB, Fig. 6.11
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Figure 6.11. The number of bits transmitted per Hz per sec versus SIR for adaptive mod-

ulation withNt = Nr = 4, L = 5. The actual achieved BER is10�3. The desired user is

assumed to experience i.i.d. Rayleigh fading.

shows that for training length4Nt and6Nt, we can transmit 10 bits/vector symbol and

11 bits/vector symbol, respectively. If we haveNt = 4 transmitting antennas and a frame

lengthM , for training length4Nt and6Nt, the overall spectral efficiency is(M�4�Nt)�10=M bits/sec/Hz and(M�6�Nt)�11=M bits/sec/Hz, respectively. It can be shown that

if the frame length is more than 104 vector symbols, it is worth using training length6Nt.
To investigate the effect of a LOS component in the desired user's channel, Fig. 6.12

shows the spectral efficiency of adaptive modulation for different Ricean factors where

the actual achieved BER is10�3. We fix SIR to be 10 dB. The scattered components

of the desired user's MIMO links are assumed to be independently faded. Recall that asK increases, the rank of the MIMO channel matrix reduces. In Fig. 6.12, as the LOS

component becomes more prominent, the number of subchannels is reduced, hence data

throughput decreases. We observe that asK increases, the loss in spectral efficiency due
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Figure 6.12. The number of bits transmitted per Hz per sec versus Ricean factorK for

adaptive modulation withNt = Nr = 4, L = 5, SIR=10 dB. The actual achieved BER is10�3. The scattered components of the desired user's channel are assumed to be indepen-

dently faded.

to imperfect channel estimates diminishes. This can be explained by the factthat for a

fixed training length, the channel estimates become accurate at large valuesof K, as we

mentioned in Section 4.5.4.3.

To investigate the effect of correlated fading among the desired user's channel links,

Fig. 6.13 shows data throughputs for different angle spreads at the base station antenna

array with SIR 10 dB. For training length4Nt and6Nt, the actual achieved BER is10�3.
We assume correlated Rayleigh fading (K = 0) for the desired user. Recall that as the

angle spread increases, MIMO links become more and more uncorrelated. Fig. 6.13 shows

improvements in data throughput as angle spread increases due to the increased rank of the

MIMO channel matrix. It is shown that as the angle spread increases, the lossin spectral

efficiency due to imperfect channel estimates slightly increases. This can be explained by
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Figure 6.13. The number of bits transmitted per Hz per sec versus angle spread for adaptive

modulation withNt = Nr = 4, L = 5, SIR=10 dB. The actual achieved BER is10�3. The

desired user is assumed to experience correlated Rayleigh fading (K = 0).

the fact that for a fixed training length, the channel estimates become less accurate for a

large angle spread, as we mentioned in Section 4.5.4.3. We also observe that whenthe

angle spread is larger than 4 degrees, system performance is invariant to angle spread.

6.5 Effect of Feedback Quantization

To enable adaptive modulation at the transmitter, the receiver has to feedthe channel in-

formation back to the transmitter. In some practical systems, the information that needs to

be fed back is represented by anNq-bit description via some quantization process. This

scenario arises when a digital channel with limited bandwidth is allocated for feedback. As

a result, transmitter and receiver may not have the same channel information due to quanti-

zation error. In practice, we have both imperfect feedback and imperfectchannel estimates.
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To separate the impact of imperfect feedback from that of imperfect channel estimates and

for the purpose of analysis, in this section, we assume perfect channel knowledge at the

receiver and focus on the effect of feedback quantization. Investigation of thecombined

impact of imperfect channel estimates and imperfect feedback is left forfuture work.

6.5.1 Analysis of quantization error

We assess the achievable quantization error by rate distortion theory [84]. Toenable the

analysis, we consider a noise-limited environment with negligible interference and spatially

white Gaussian noise. Independent Rayleigh fading is assumed for the desired userwhere

channel matrixH hasNr �Nt i.i.d. zero-mean circularly symmetric complex Gaussian

components with unit variance. Equivalently, with real and imaginary parts,H has2NrNt
i.i.d. zero-mean real Gaussian random variables each with variance�2H = 1=2.

Vector quantization is employed to transmit knowledge ofH from the receiver to trans-

mitter. We useNq bits to describe the2NrNt real elements ofH. Letting ~H be the recon-

struction of the quantizedH, we consider vector quantization that minimizes mean squared

error [84] �2� = 12NrNt NrXi=1 NtXj=1 Xk2freal,imaggE h(Hijk� ~Hijk)2i
whereHijk and ~Hijk denote the real-valued elements of matrixH and ~H, respectively.

Since the real and imaginary components inH are i.i.d. Gaussian, the mean squared error

can be lower-bounded by the corresponding distortion-rate function [25], i.e.,�2� �D(Rq) = �2H2�2Rq = 122�2Rq (6.9)

whereRq =Nq=(2NrNt) is the number of descriptive bits per real component ofH. For a

fixedRq, this lower bound can be approached arbitrarily closely as2NrNt goes to infinity.
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For a very large2NrNt, this lower bound is achieved when the quantization error���=H� ~H
is a zero-mean complex Gaussian random matrix, independent of~H, with i.i.d. real and

imaginary parts each having varianceD(Rq). More specifically, for�ijk = Hijk � ~Hijk,

the lower bound of quantization error is achieved when~Hijk �N (0;�2H �D(Rq)), �ij �N (0;D(Rq)), and ~Hijk is independent of�ijk. SinceHijk = ~Hijk + �ijk, Hijk and ~Hijk
are jointly Gaussian random variables with covariance

cov(Hijk; ~Hijk) = E[Hijk ~Hijk]= E[( ~Hijk+ �ijk) ~Hijk]= �2H�D(Rq)
where the last equality comes from the fact that�ijk and ~Hijk are zero-mean and indepen-

dent.

Fig. 6.14 shows the adaptive modulation with quantized feedback. The transmitter

determines the unitary pre-processing matrix and adaptive modulation accordingto the

SVD of the quantized channel matrix~H = ~UH ~���H ~VyH . The receiver uses the SVD of the

perfectly known channel matrixH = UH���HVyH to determine the post-processing matrix

and scale the signal constellations for data detection.

6.5.2 Simulation results

Monte Carlo simulation is used to evaluate the effect of feedback quantization on the perfor-

mance of adaptive modulation. To simulate matricesH and~H, i.i.d. pairs of(Hijk; ~Hijk); i=1; : : : ;Nr; j = 1; : : : ;Nt; k 2 freal,imagg are generated. For each pair,Hijk and ~Hijk are

jointly real Gaussian random variables with0B@ Hijk~Hijk 1CA�N0B@0;264 0:5 0:5�D(Rq)0:5�D(Rq) 0:5�D(Rq) 3751CA
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Figure 6.14. Adaptive modulation with feedback quantization.

whereD(Rq) is shown in (6.9).

We consider a(4;4) MIMO system with SNR 15 dB. Figs. 6.15 and 6.16 show the

upper bounds of system performance (best possible performance) versus quantization level

with target BER10�2. In Fig. 6.15, we observe that the BER improves significantly as

the quantization level increases, and eventually reaches the target BER.In Fig. 6.16, we

observe that the spectral efficiency increases as the transmitter obtainsmore accurate chan-

nel information. Both figures suggest that, to achieve target performance, 15 bits/complex

channel gain should be used for the feedback quantization. Figs. 6.17 and 6.18 show the

performance for target BER10�3. We observe that 22 bits/complex channel gain should be

used for the feedback quantization. Hence, for a(4;4) MIMO link, with target BER10�3,
we need22� 16 = 352 bits to quantize the channel matrix. Since the receiver has four

antennas, ignoring channel coding and assuming that each antenna uses QPSK, we need352=(4�2) = 44 vector symbols for the feedback of channel matrix.

To see how much overhead requires due to the feedback of channel matrix, we consider
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Figure 6.15. Average bit error rate versus quantization level of feedback withNt =Nr = 4,

SNR=15 dB and target BER10�2.
a system operating at a carrier frequency of 1.9 GHz and symbol rate 24.3 ksymbol/sec in a

bandwidth of 30 kHz [47]. If the mobile is moving atv = 5 m/sec (18 km/hour), the maxi-

mum Doppler shiftfm = v=�= 31:7 Hz where� is the wavelength at the carrier frequency.

The normalized Doppler spreadfm=symbol rate= 0:13%. The normalized Doppler spread

can also be interpreted as the ratio of symbol duration to channel coherence timesince the

coherence time is inversely proportional to the maximum Doppler shift [91]. Coherence

time is the time duration over which the channel is essentially invariant. Assuming that the

frame length is 200 vector symbols (the assumption of quasi-static channel holds for nor-

malized Doppler spread 0.13%), for the(4;4) MIMO link and target BER10�3 discussed

above, the overhead for feedback is44=200 = 22%.
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Figure 6.16. The number of bits transmitted per Hz per sec versus quantization level of

feedback withNt =Nr = 4, SNR=15dB and target BER10�2.
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Figure 6.17. Average bit error rate versus quantization level of feedback withNt =Nr = 4,

SNR=15 dB and target BER10�3.
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Figure 6.18. The number of bits transmitted per Hz per sec versus quantization level of

feedback withNt =Nr = 4, SNR=15dB and target BER10�3.
6.6 Conclusion

In this chapter, we have investigated the effects of imperfect channel estimates and feedback

quantization error on adaptive modulation for MIMO systems. We show that for applica-

tions with target BERs, adaptive modulation achieves higher spectral efficiency compared

to the non-adaptive scheme. In studying the effect of imperfect channel estimates, we as-

sume a perfect feedback path from the receiver to transmitter. The ML estimates of channel

and spatial interference correlation matrices in Chapter 4 are employed.Compared to the

case of perfectly known channel, for a(4;4) MIMO system, 3 bits/sec/Hz degradation in

spectral efficiency occurs for a training length equal to four times the number of transmit-

ting antennas and the actual achieved BER10�3. When the angle spread at base station

antenna array is larger than 4 degrees, the system performance is close to thecase where
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MIMO links are independently faded. In analyzing the effect of feedback quantization er-

ror, we assume perfect channel knowledge at the receiver and a noise-limitedenvironment.

Rate distortion theory is used to assess the achievable quantization error.It is shown that

for a (4;4) MIMO link with independent Rayleigh fading, to achieve target BER10�3,
22 bits/complex channel gain should be used for the feedback quantization, which may be

translated into the required overhead for feedback.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the major contributions in this thesis and suggestseveral

topics for future research.

7.1 Conclusions

In this thesis, we have studied the impact of spatially and temporally colored interference

on the performance of MIMO systems.

In Chapter 3, outage performances of several diversity schemes have been analytically

compared for an interference-limited environment in a Rayleigh fading channel. The three

diversity schemes are equal gain combining (EGC), selection combining (SC)and channel-

matched combining (CMC), a practical variation of maximal ratio combining(MRC) that

does not require SNRs at different antennas. An exact outage probability expression was

derived for EGC by accurately calculating the interference power at the output of the com-

biner. With this exact analysis, we show that the existing method, which calculates the in-

terference power approximately, may lead to optimistic outage probability estimates. With

four receiving antennas, the existing method may overestimate the output SIR of EGC com-

biner by as much as 1.5dB. The comparisons for diversity schemes show that CMC has a
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lower outage probability than that of EGC, and that CMC has no greater outage probability

than that of SC. The relative outage performance between EGC and SC, however, depends

on the number of interferers and interferer power distribution.

In Chapter 4, we investigated algorithms of channel estimation and data detection for

MIMO systems under spatially and temporally colored interference. By modelling inter-

ference statistics as being approximately temporally and spatially separable, we have pro-

posed an algorithm to jointly estimate channel and spatial interference correlation matrices.

By exploiting the temporal interference correlation, one-vector-symbol detection has been

extended to a multi-vector-symbol version. In the case of one interferer, we have shown

that the interference statistics is indeed temporally and spatially separable, and that the

temporal interference correlation may be caused by the intersymbol interference of the in-

terferer. The impact of temporal and spatial interference correlation onchannel estimation

and data detection was assessed. We also investigated the situation where high temporal

interference correlation results from a cochannel interferer operating ata lower data rate.

The results show that the benefit of taking temporal interference correlation into account in

channel estimation is not significant for both same- and lower-data-rate interference cases.

In the case of lower-data-rate interference, much improvement can be achieved by taking

account of the temporal interference correlation in data detection. For a(5;5) MIMO link

with independent Rayleigh fading, by exploiting temporal interference correlationin chan-

nel estimation and data detection, we obtain 0.5dB and 3.5dB gains in SIR for same- and

lower-data-rate interference cases, respectively.

In Chapter 5, with spatially and temporally colored interference, we assessed the ben-

efit of knowing channel matrix and interference statistics at the transmitter from the view

point of information theory. Assuming that the receiver knows the channel matrix and in-

terference statistics, we derived the channel capacities of MIMO systems with different
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assumptions of knowledge of channel matrix and interference statistics at the transmitter.

It is shown that, with interference spatial and temporal correlation available at the transmit-

ter, water-filling power allocation in both spatial and frequency domains should be applied.

With the temporal interference correlation of the same-data-rate interference case in Chap-

ter 4, the results show that knowledge of interference temporal correlation atthe transmitter

does not offer significant capacity improvement.

In Chapter 6, we proposed an adaptive modulation scheme using the channel matrix

and interference statistics estimated by the receiver. We investigated the effects of imper-

fect channel estimates and feedback quantization error on adaptive modulation for MIMO

system. In studying the effect of imperfect channel estimates, we assume aperfect feed-

back path from the receiver to transmitter and use the ML estimates of channel and spatial

interference correlation matrices presented in Chapter 4. Compared to the case of perfectly

known channel, for a(4;4) MIMO system, it is shown that 3 bits/sec/Hz degradation in

spectral efficiency occurs for a training length equal to four times the number of trans-

mitting antennas and the actual achieved BER10�3. In analyzing the effect of feedback

quantization error, we assume perfect channel knowledge at the receiver and a noise-limited

environment. Rate distortion theory was used to assess the achievable quantization error

for independently Rayleigh faded MIMO links. It is shown that, for a(4;4) link, to achieve

the target BER10�3, 22 bits/complex channel gain should be used for the feedback quan-

tization, which may be used to calculate the required overhead for feedback.

The results in this thesis also show that a training length equal to four timesthe number

of transmitting antennas achieves most of the performance gain. It is observed that for

angle spreads larger than 5 degrees, the system performance is close to the case where

MIMO links are independently faded.
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7.2 Future Work

Here are some suggestions for future work.� In Chapter 3, we analytically compared the performance of diversity systemsin a

Rayleigh fading environment. One may compare the performance of these diversity

systems in Nakagami fading. However, it may not be easy to conduct an analytical

comparison.� The results in Chapter 4 show that in the case of interference from lower-data-rate

users, much improvement can be achieved by taking account of the temporal inter-

ference correlation in multi-vector-symbol data detection. It is therefore of interest

to investigate how to estimate an interferer's delay so that the temporal interference

correlation can be estimated.� In Chapter 6, we considered the effects of imperfect channel estimates and feedback

error on adaptive modulation separately. It would be useful to evaluate the perfor-

mance degradation caused by both impairments. An alternative model of feedback

error as in [84] may be used.� The adaptive modulation scheme in Chapter 6 requires the whole channel matrix to

be fed back from receiver to transmitter. When the number of antennas in the system

becomes large, the amount of feedback information would be impractically large.It

is of interest to investigate transmission schemes which requires a reduced amount

of feedback information.
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Appendix A

Variance of zi[n]
In this appendix, we show that the variance ofzi[n] in (3.3) is1��=4. We haveE�jzi[n]j2	 = E fzi[n]z�i [n]g= 1Xm=�1E�g2(nT �mT � �i)	 (A.1)= 1Xk=�1E �g2(kT � �i)	 (A.2)= 1T 1Xk=�1Z T0 g2(kT � � )d�= 1T 1Xk=�1Z kT(k�1)T g2(t)dt (A.3)= 1T Z 1�1 g2(t)dt= 1T Z 1�1jG(f)j2df (A.4)

where (A.1) follows from the assumption that the data symbols of theith interferer are

independent and with unit variance; (A.2) follows from the substitutionk = n�m; (A.3)

follows from the substitutiont = kT � � ; (A.4) follows from Parseval's theorem whereG(f) is the Fourier transform ofg(t). Sinceg(t) is a Nyquist pulse with a raised cosine
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spectrum and rolloff factor�, we have [89]G(f) =8>>>><>>>>: T 0 � jf j � 1��2TT2 n1+cosh�T� �jf j� 1��2T �io 1��2T � jf j � 1+�2T0 jf j > 1+�2T
Hence, we have1T Z 11 jG(f)j2df = 1��+ T2 Z 1+�2T1��2T �1+cos��T� �f � 1��2T ���2 df= 1��+ �2 Z 10 (1+cos�u)2du= 1� �4
Hence, the variance ofzi[n] is 1��=4.
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Appendix B

Circular Symmetry of cyscijcsj
In this appendix, we show thatvi 4= cyscijcsj in (3.23) is a circularly symmetric complex Gaus-

sian RV with zero-mean and unit variance. Note thatcs andci are independent zero-mean

circularly symmetric complex Gaussian random vectors each with covariance matrixINr .

Let cs= cs;R+jcs;I andci= ci;R+jci;I wherecs;R, cs;I , ci;R andci;I are real Gaussian

vectors. Hence,vi = vi;R+ jvi;I where the real and imaginary parts arevi;R = cTs;Rci;R+cTs;Ici;Ijcsj
and vi;I = cTs;Rci;I�cTs;Ici;Rjcsj :
For a givencs, vi;R andvi;I are zero-mean joint Gaussians since they are linear transfor-

mation of zero-mean joint Gaussians[cTi;R cTi;I]T . The variance ofvi;R conditioned oncs
is

var
�vi;Rjcs�= E �v2i;Rjcs�= E hvi;RvTi;Rjcsi
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= E24�cTs;Rci;R+cTs;Ici;I��cTi;Rcs;R+cTi;Ics;I�jcsj2 �����cs35= cTs;RE hci;RcTi;Rics;R+cTs;IE hci;IcTi;Rics;R+cTs;RE hci;RcTi;Iics;I +cTs;IE hci;IcTi;Iics;Ijcsj2= 12 cTs;Rcs;R+cTs;Ics;Ijcsj2= 12
whereE hci;RcTi;Ri = E hci;IcTi;Ii = 12 INr andE hci;IcTi;Ri = E hci;RcTi;Ii = 0. Similarly,

the variance ofvi;I conditioned oncs is

var
�vi;Ijcs�= E �v2i;Ijcs�= 12 :

The covariance ofvi;R andvi;I conditioned oncs is

cov
�vi;R; vi;Ijcs�= E �vi;Rvi;Ijcs�= E hvi;RvTi;Ijcsi= E24�cTs;Rci;R+cTs;Ici;I��cTi;Ics;R�cTi;Rcs;I�jcsj2 �����cs35= 12 cTs;Ics;R�cTs;Rcs;Ijcsj2= 0:

Hence, givencs, vi is a circularly symmetric zero-mean complex Gaussian with unit vari-

ance, and its PDF is fvi(vijcs) = ��1e�jvij2:
Sincefvi(vijcs) is independent ofcs, it is clear thatvi is independent ofcs. Hence,vi is a

circularly symmetric zero-mean complex Gaussian with unit variance (without condition-

ing oncs).
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Appendix C

Alternative derivation of Ĥ and R̂

To find the value of(H;R) that minimizesf(H;R) in (4.7), we set@f(H;R)=@R= 0. Using

the identities of matrix derivative in (4.13) and (4.14), we obtain

R̂= 1N N�1Xi=0 N�1Xj=0 �i;j (yi�Hxi) (yj�Hxj)y : (C.1)

SubstitutingR̂ into (4.7), we note that the estimate ofH is determined by minimizing the

determinant f1(H) = det8<: 1N N�1Xi=0 N�1Xj=0 �i;j (yi�Hxi) (yj�Hxj)y9=; : (C.2)

With the weighted sample correlation matrices defined in (4.9)-(4.11), the matrix in

(C.2), denoted asF, can be expressed as

F = 1N N�1Xi=0 N�1Xj=0 �i;j (yi�Hxi) (yj�Hxj)y (C.3)= �
H� ~Ryxy ~R�1xx� ~Rxx�H� ~Ryxy~R�1xx�y+ ~Ryy� ~Ryxy ~R�1xx ~Rxy: (C.4)

Now we show that both
�

H� ~Ryxy~R�1xx� ~Rxx�H� ~Ryxy ~R�1xx�y and ~Ryy � ~Ryxy ~R�1xx ~Rxy
are positive semidefinite.

Lemma 3 Matrix B1 = ~Ryy� ~Ryxy ~R�1xx ~Rxy is positive semidefinite.
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Proof: Notice that matrixB1 is equal to matrixF in (C.3) if H = ~Ryxy ~R�1xx . We define

matrixA as

A = hy0� ~Ryxy~R�1xxx0 : : : yN�1� ~Ryxy ~R�1xx xN�1i ;
and matrixB1 can be re-expressed as

B1 = 1NA����1N Ay
where����1N is defined in (4.5). For anyNr�1 complex vectorw,

wyB1w= 1NwyA����1N Ayw= 1N by1����1N b1
where theN �1 vectorb1 = Ayw. Since���N is positive definite,����1N is positive definite as

well. Hence,wyB1w� 0 for anyw, and matrixB1 is positive semidefinite.

Lemma 4 Matrix B2 = �H� ~Ryxy~R�1xx� ~Rxx�H� ~Ryxy~R�1xx�y is positive semidefinite.

Proof: Define matrix

X = [x0 � � � xN�1]
and rewrite~Rxx in (4.11) as ~Rxx = 1NX����1N Xy:
For anyNr�1 complex vectorw, we have

wyB2w= 1Nwy�H� ~Ryxy~R�1xx�X����1N Xy�H� ~Ryxy~R�1xx�yw= 1N by2����1N b2
where theN � 1 vectorb2 = Xy�H� ~Ryxy~R�1xx�yw. Again, since����1N is positive definite,

wyB2w� 0 for anyw, and matrixB2 is positive semidefinite.
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To find the value ofH that maximizesdet(F) in (C.4), we introduce the following

lemma [75].

Lemma 5 If matricesA (m�m) andB (m�m) are positive semidefinite, thendet(A+B)� det(A)+det(B):
Notice that, in (C.4),~Ryy� ~Ryxy ~R�1xx ~Rxy is independent ofH. By applying Lemma 3, it

is easy to see thatdet(F) is minimized by choosing

Ĥ = ~Ryxy ~R�1xx : (C.5)

Substituting (C.5) into (C.1), we obtain

R̂= ~Ryy� Ĥ ~Rxy: (C.6)
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Appendix D

Proof of det(I +AB)=det(I +BA)
The matrix identitydet(I +AB) = det(I +BA) has been used extensively in the work of

channel capacity of MIMO systems [30, 104, 114]. However, the author has not seen a

proof of this identity in the literature. In this appendix, we will prove this identity.

Lemma 6 If A is anm�n matrix,B is ann�m matrix, andm� n, we havedet(Im+AB) = det(In+BA) : (D.1)

Proof: Theorem 1.3.20 in [75] states thatBA has the same eigenvalues asAB, to-

gether with an additionaln�m zero eigenvalues; that is,pBA(t) = tn�mpAB(t), where the

characteristic polynomial ofAB is defined aspAB(t) = det(tI �AB). Therefore, we havepBA(t) = tn�mpAB(t)=) det(tIn�BA) = tn�mdet(tIm�AB)=) (�1)ndet(BA� tIn) = tn�m(�1)mdet(AB� tIm): (D.2)

Letting t=�1 in (D.2) yields (D.1).
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