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Visual objects are perceived correctly only if their features are identified and then bound together. 
Illusory conjunctions result when feature identification is correct but an error occurs during feature 
binding. A new model is proposed that assumes feature binding errors occur because of uncertainty 
about the location of visual features. This model accounted for data from 2 new experiments better 
than a model derived from A. M. Treisman and H. Schmidt's (1982) feature integration theory. 
The traditional method for detecting the occurrence of true illusory conjunctions is shown to be 
fundamentally flawed. A reexamination of 2 previous studies provided new insights into the role of 
attention and location information in object perception and a reinterpretation of the deficits in 
patients who exhibit attentional disorders. 

A description of visual object identification in terms of register- 
ing visual stimulus features has a long history (see Boring, 1950). 
This description of identification is implicit in many popular 
models, including the pandemonium model of Selfridge (1959), 
the recognition-by-components model of Biederman (1987), and 
models based on spatial frequency analysis (e.g., DeValois & De- 
Valois, 1988; see also Prinzmetal & Keysar, 1989; Wolford & 
Shum, 1980). Formal models of visual feature analysis have been 
developed by many investigators (e.g., Ashby & Perrin, 1988; 
Ashby & Townsend, 1986; Graham, 1989; Thomas & Olzak, 
1992; Wickens & Olzak, 1992; Townsend & Ashby, 1982). 

In the normal environment, however, observers are not con- 
fronted with single objects. Hence, the registration of features may 
not be sufficient for veridical object recognition. When several 
different objects are presented, not only must features be correctly 
registered, they also must be combined correctly (Treisman & 
Gelade, 1980). Treisman and her colleagues have shown that un- 
der limited exposure conditions, observers will report illusory con- 
junctions--percepts in which visual features are identified cor- 
rectly but combined incorrectly (Treisman & Schmidt, 1982). 
The problem of correctly combining or integrating features has 
been called the binding problem (e.g., Crick, 1984). 

Treisman and Schmidt (1982) found that the illusory conjunc- 
tion of features occurred in whole report, partial report, detection, 
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and same-different tasks. In these experiments, participants were 
briefly presented multielement displays of colored letters. Partici- 
pants sometimes perceived the colors and letters correctly but in 
the wrong combination. For example, a participant might briefly 
be presented a display consisting of a blue N and a green T but 
occasionally perceive the N as being green. Illusory conjunctions 
between the dimensions of color and shape have been found in 
many studies (e.g., Cohen & Ivry, 1989; Ivry & Prinzmetal, 1991; 
Keele, Cohen, Ivry, Liotti, & Yee, 1988; Prinzmetal, 1992; Prinz- 
metal, Hoffman, & Vest, 1991; Prinzmetal & Keysar, 1989; Prinz- 
metal & Mills-Wright, 1984; Rapp, 1992; Seidenberg, 1987). In 
addition, illusory conjunctions have been obtained with other 
stimulus dimensions ( e.g., Butl~ Mewhort, & Browse, 1991; Prinz- 
metal, 1981; Gallant & Garner, 1988; Lasaga & Hecht, 1991; 
Treisman & Paterson, 1984; Treisman & Schmidt, 1982). For ex- 
ample, Prinzmetal ( 1981 ) found that participants sometimes per- 
ceived illusory plus signs when presented with nonoverlapping ver- 
tical and horizontal line segments (see also Maddox, Prinzmetal, 
Ivry, & Ashby, 1994). 

At present, there are no formal theories of the feature binding 
process. 1 This study develops and tests such a theory. In addition 
to the benefits provided by any new theory, a formal approach has 
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t There have been two previous formal accounts of illusory conjunc- 
tionlike phenomena. Wolford (1975) and Maddox et al. (1994) devel- 
oped models of the incorrect combination of shape features, such as 
vertical and horizontal lines. Wolford ( 1975 ) modeled whole-report let- 
ter identification experiments by assuming that features of letters were 
extracted with some probability. Feature location "perturbated" with 
time until a central processor could read out display features. Thus, 
errors resulted both from failures in feature extraction and feature per- 
turbation. Maddox et al. proposed a model for detection tasks in which 
feature location may be incorrectly registered. The Maddox et al. and 
Wolford models share the assumptions that performance is related to 
both feature registration and location. They differ in that Wolford's 
model assumes location information decays with time, whereas Mad- 
dox et al. assumed feature locations may be incorrectly registered. 
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at least three extra advantages. First, a formal theory forces one to 
make assumptions explicit. For example, in previous studies, er- 
rors of feature binding were detected by operational methods 
based on feature error rates for color, shape, or both (e.g., Cohen 
& Ivry, 1989; Prinzmetal & Mills-Wright, 1984; Treisman & 
Schmidt, 1982). As we will see, a formal analysis indicates that 
the logic behind such methods is often murky or incorrect. 

Second, formal models allow us to compare various theoreti- 
cal approaches to feature binding. For example, we will propose 
that one cause of illusory conjunctions is the perceptual mislo- 
cation of visual features (see also Maddox et al., 1994). On the 
other hand, Treisman and Schmidt's (1982) theory does not 
embody this assumption. If a formal theory of feature binding 
that attributes illusory conjunctions to poor location informa- 
tion provides a better account of  data than one that does not, it 
would strengthen our belief in the psychological validity of the 
location uncertainty theory. 

Third, a formal account of  feature binding permits the esti- 
mation of underlying psychological parameters from overt be- 
havior. For example, in signal detection theory the psychological 
parameters of sensitivity and bias are estimated from hit and 
false-alarm rates (Green & Swets, 1966). In experiments on 
feature binding, we would like to estimate the probability of 
correctly perceiving the various features and the probability of 
correctly binding the features. 

This article develops a formal theory of  feature binding for 
conventional illusory conjunction tasks involving the dimen- 
sions of color and shape. This new theory, which we call location 
uncertainty theory, is developed in the next two sections. As 
noted earlier, location uncertainty theory assumes that illusory 
conjunctions occur because of uncertainty about the location 
of visual features. In the fourth section, a set of multinomial 
models are developed to account for the effects of guessing in 
illusory conjunction experiments. The fifth section develops a 
formal model, called the random binding model, that is consis- 
tent with Treisman and Schmidt's (1982) feature integration 
theory. The sixth and seventh sections describe the results of 
two new experiments. A model based on location uncertainty 
theory is shown to account for the data from both experiments 
significantly better than the random binding model and two 
models that assume illusory conjunction reports are always due 
to guessing. Also, it is shown that the traditional method for 
detecting the occurrence of true illusory conjunctions is funda- 
mentally flawed. The eighth section reexamines two previous 
studies of illusory conjunctions and demonstrates how our 
modeling approach can provide new insights into the role of 
attention and location information in object perception, as well 
as a reinterpretation of  the deficits in patients who exhibit at- 
tentional disorders. Finally, we discuss limitations of  our ap- 
proach, and we compare it with another popular method for 
studying attention that uses a visual search task. 

Distance and Similarity Effects on Il lusory 
Conjunct ions  

Treisman and Schmidt (1982) proposed that the different 
features of an object are identified automatically (i.e., without 
attention) and in parallel. Object recognition, therefore, is a 
process of correctly binding or conjoining the various features 

that have been identified. This feature binding stage is assumed 
to require focused attention and to be performed in a serial 
fashion. If attention is not focused, features that were identified 
correctly may be combined incorrectly to form illusory 
conjunctions. 

Treisman and Schmidt (1982) found that the distance or sim- 
ilarity between items had little effect on the likelihood of an 
illusory conjunction. As a result, they postulated that without 
focused attention, features are completely free-floating and may 
combine with any feature that has been identified. Further, they 
argued that "the internal representation on which conscious ex- 
perience depends contains discrete labels of values on each di- 
mension separately. The whole object must be resynthesized 
from a set of these feature labels" (p. 139). According to this 
interpretation, the continuous nature of the information avail- 
able in the physical stimulus is lost very early in perceptual pro- 
cessing. As a result, decision processes in perception are as- 
sumed to operate on a set of discrete feature values. 

At the time Treisman and Schmidt (1982) developed their 
feature integration theory, the available data indicated that nei- 
ther interitem distance nor similarity affects the probability of 
an illusory conjunction. Subsequently, a number of studies have 
challenged this position. First, a number of  investigators found 
that illusory conjunctions are more likely between items that 
are close together than between items that are far apart (e.g., 
Chastain, 1982; Cohen & Ivry, 1989; Ivry & Prinzmetal, 1991; 
Prinzmetal & Keysar, 1989; Prinzmetal & Mills-Wright, 1984; 
Prinzmetal, Treiman, & Rho, 1986; Wolford & Shum, 1980). 
Second, Ivry and Prinzmetal ( 1991 ) found that illusory con- 
junctions occurred more often between letters that were similar 
in color than between letters that were dissimilar in color. Thus, 
the internal representation does not seem to depend on discrete 
labels of values. Rather, there is abundant evidence that dis- 
tance is an important variable in the formation of illusory con- 
junctions and that similarity also may be important. 

Locat ion  Uncer ta in ty  Theory  

One well-documented phenomenon that might account for 
the effects of distance on feature binding errors is uncertainty 
about the true location of a perceived stimulus feature. There 
is good evidence for trial-by-trial variability in the perceived 
location of  visual features (e.g., Chastain, 1982; Estes, 1975; 
Klein & Levi, 1987; Levi & Klein, 1989; Wolford & Shum, 
1980). For example, Wolford and Shum (1980) briefly pre- 
sented squares with a tick mark in the middle of one side. When 
asked to report the location of  the tick mark, participants fre- 
quently reported that the tick marks had migrated to adjacent 
squares. 

To see how location uncertainty could lead to an illusory con- 
junction, consider a task in which two colored letters are pre- 
sented on each trial, one of which is designated as the target 
and the other as the nontarget. If there is independent location 
uncertainty about form and color, then an ambiguous percept 
might be formed, even on trials when the target and nontarget 
identities are correctly identified. In this case, the percept would 
be of two letters and two colors, but the colors and letters would 
not necessarily be perceived in their veridical locations. The 
perceptual system must now decide which color belongs with 
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the target letter. An obvious decision rule is to choose the color 
that appears closest to the target letter location. An illusory con- 
junction occurs when location uncertainty makes the target let- 
ter appear closer to the nontarget color than to the target color. 

Location uncertainty theory depends critically on the as- 
sumption that uncertainty about form location is largely inde- 
pendent of  uncertainty about color location. There is a large 
physiological literature relevant to this issue. First, there is 
abundant evidence that the tasks of  identifying the shape and 
color of  a target letter are largely performed by separate visual 
systems (Lennie, 1984; Livingstone & Hubel, 1984; Zrenner 
et al., 1990). The most important pathway in color perception 
appears to pass through the interlaminar layers of  lateral genic- 
ulate nucleus (LGN),  then through the "blobs" of area V l, the 
thin stripes in area V2, and into area V4. In contrast, the most 
important pathway in form perception apparently passes 
through the parvocellular layers of  LGN, then through the in- 
terblobs of  area VI and the interstripes of  area V2. 

Although there is good evidence for separate form and color 
systems, they clearly are not independent. For example, the color 
system clearly passes information about form (e.g., DeValois & 
DeValois, 1988). Even so, the best evidence indicates that in tra- 
ditional illusory conjunction experiments, where the target and 
nontarget letters are small and displayed peripherally, the color sys- 
tem would be of little help in identifying the target letter. With 
foveal presentation, the form ( i.e., luminance sensitive) system re- 
sponds to spatial frequencies about three times higher than the 
color (i.e., chromatic sensitive) system ( Mullen, 1985; Sekiguchi, 
Williams, & Brainard, 1993a, 1993b). With peripheral displays, 
the upper limits for both systems are lowered considerably. Thus, 
with small letters and peripheral displays, the color system is likely 
to be blind to target letter identity. In this case, therefore, loca- 
tion uncertainty in the two systems should be approximately 
independent. 

One advantage of this location uncertainty theory of feature 
binding is that much is known about the neural mechanisms re- 
sponsible for location uncertainty and about experimental vari- 
ables that might increase or decrease such uncertainty. A cell, say 
in the LGN, will fire if any rod or cone in its receptive field is 
stimulated. Thus, with respect to that cell, location uncertainty is 
equal to the size of its receptive field. It is well known that receptive 
field size increases with eccentricity (e.g., Fiorentini, Baumgart- 
ner, Magnussen, Schiller, & Thomas, 1990), so there should be 
a corresponding increase in location uncertainty with eccen- 
tricity. As a result, illusory conjunctions should be more likely 
with peripheral presentation than with foveal presentation. 

Of course, the visual system uses more than one cell to deter- 
mine object location. Location uncertainty can be reduced sig- 
nificantly if many cells with overlapping but nonidentical recep- 
tive fields fire in the presence of  a feature. If  every cell contain- 
ing the stimulus in its receptive field fires, then the stimulus 
must necessarily have fallen on the retinal location correspond- 
ing to the intersection of the receptive fields of all active cells. 
With brief exposure, however, only some of  the cortical cells 
will fire, and there is no guarantee that the intersection of their 
receptive fields will mark the true retinal location of  the stimu- 
lus. Thus, another prediction of location uncertainty theory is 
that as exposure duration decreases, location uncertainty will 
increase, and hence illusory conjunctions will become more 

likely. We know of no direct tests of  this hypothesis, but with 
unlimited exposure duration and foveal viewing, illusory con- 
junctions do not seem to occur. 

A third factor that can affect the size of  receptive fields is at- 
tention (Colby, 1991 ). In particular, there is evidence that re- 
ceptive fields may shrink around an attended stimulus (Moran 
& Desimone, 1985 ). If  so, then location uncertainty theory pre- 
dicts that illusory conjunctions are more likely if attention is 
focused elsewhere. In addition to affecting location uncertainty, 
however, attention may influence feature binding by affecting 
perceptual organization (e.g., Gogel & Sharkey, 1989; Hoch- 
berg & Peterson, 1987; Tsal & Kolbet, 1985; Wong & Weisstein, 
1982 ). For example, Prinzmetal and Keysar (1989) presented 
participants with an evenly spaced matrix of  items. The percep- 
tual organization of  the matrix into rows or columns was deter- 
mined by whether participants were attending to digits that 
were horizontally or vertically aligned with respect to the ma- 
trix. The resulting perceptual organization affected the pattern 
of illusory conjunctions obtained. Hence, attention may oper- 
ate in several ways to affect feature binding and help prevent the 
occurrence of  illusory conjunctions. 

The effects of  location uncertainty on feature binding can be 
modeled in a straightforward manner. Consider the task de- 
scribed earlier in which the relevant display consists of  a target 
and a nontarget letter (see Figure 5 for some examples). Sup- 
pose the subject's task is to report the identity and color of  the 
target letter. Because the stimuli are displayed on a two-dimen- 
sional surface (e.g., a computer monitor), we assume the only 
relevant location uncertainty is in the two-dimensional frontal 
plane. Let the vector XrL = [XxL, YXL]' denote the coordinates 
in this plane of the perceived location of  the target letter (where 
the prime denotes matrix transpose). Similarly, let XTC and 
XNc denote the coordinates of  the perceived locations of  the 
target and nontarget colors, respectively. Location uncertainty 
theory assumes that illusory conjunctions occur because the 
perceived locations of the target and nontarget features vary 
from trial to trial. We can model this trial-by-trial variability by 
assuming that XTL, Xrc, and XNc vary probabilistically across 
trials. On each trial in which all features in the display are cor- 
rectly identified, the participant is assumed to bind the target 
letter to the nearer of  the two colors. Let DTL.TC be the distance 
between the perceived locations of  the target letter and target 
color and DTL.NC be the distance between the perceived locations 
of  the target letter and the nontarget color. Then the participant 
will solve the binding problem correctly with probability, 

P(correct binding) = P(DTL,TC < DTL,NC). ( 1 ) 

A few more assumptions are needed before we can actually 
compute the Equation 1 probability. First, we assume that the 
perceived location of  a feature is normally distributed across 
trials in both the vertical and horizontal dimensions. As a result, 
XTL, XTC, and XNc each have a bivariate normal distribution. 2 

2 Although location uncertainty theory does not stand on the assump- 
tion of a bivariate normal distribution, we conducted a pilot study that 
makes us feel this is a reasonable assumption. In the pilot study, a small 
target was presented briefly in the periphery, and the participant's task 
was to indicate where he or she thought the stimulus appeared by mov- 
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Second, the mean perceived locations of the target letter and 
target color are assumed to be equal. Let ddenote the perceived 
distance between the mean perceived target location and the 
mean perceived location of the nontarget color. Third, the vari- 
ability in perceived location is assumed to be the same for all 
features and directions. Call this common variance g2  The Ap- 
pendix establishes an efficient method for computing the Equa- 
tion 1 probability, given these three assumptions. It also shows 
that the probability of correct binding depends only on the ratio 
d/a, or in other words, only on the standardized distance be- 
tween the mean perceived locations of the target and nontarget 
letters. 

A conceptual illustration of this model is given in Figure I. 
The plane illustrated in Figure 1 is the frontal plane in which 
the target and nontarget features are perceived (when the stim- 
uli are presented on a display such as a computer screen). The 
three circles represent the distributions of perceived locations 
of the target letter, the target color, and the nontarget color. The 
center of each circle is the mean perceived location of that fea- 
ture. Thus, the two superimposed circles that are centered at 
(0, 0) represent the distributions of  perceived locations of the 
target letter and target color. The circle centered at ( d, 0) repre- 
sents the distribution of perceived locations of the nontarget 
color. Each point on a circle is an equal number of standard 
deviation units away from the mean. As a consequence, the re- 
sulting circles are contours of equal variability. They are circles 
because of the assumption that variability is equal in all 
directions. 

According to location uncertainty theory, the processes the 
participant uses to solve the binding problem can be mimicked 
in the following way. First, a random sample is drawn from each 
of the three distributions illustrated in Figure 1. This process 
provides a perceived location for each of the three relevant fea- 
tures. In Figure 1, these three samples are indicated by the dots 
labeled TC, TL, and NC, for the target color, target letter, and 
nontarget color, respectively. Thus, in the Figure 1 example, the 
target letter is registered between the two colors. Next, two dis- 
tances are computed. The first is between the sample from the 
target letter distribution and the sample from the target color 
distribution (i.e., between the TL and TC points), and the sec- 
ond is between the samples from the target letter distribution 
and the nontarget color distribution (i.e., between the TL and 
NC points). The participant correctly binds the target letter to 
the target color if the first distance is less than the second. 

Two parameters of the Figure 1 model will have a large effect 
on whether the participant correctly solves the binding prob- 
lem. First, illusory conjunctions will decrease as the distance, d, 
between the target and nontarget letters increases, because as d 
increases, it becomes less likely that a sample from the non- 
target color distribution will be closer than a sample from the 
target color distribution to a sample from the target letter distri- 
bution. Thus, the model naturally predicts distance effects in 
illusory conjunction experiments. Second, illusory conjunc- 
tions increase with a 2, the variance or uncertainty in location 
information. As the variances increase in the Figure 1 distribu- 

ing a cursor to the stimulus location. Over trials, the distribution of 
perceived locations was well fit by a bivariate normal distribution. 

target 
color 
N~/ target nontarget 

l e t t e ~  color 

C~TL "d 

• " o 

Figure 1. Contours of equal variability for the location uncertainty 
distributions of the target letter, target color, and nontarget color as pre- 
dicted by the location uncertainty model. The points labeled TC, TL, 
and NC represent hypothetical random samples from the target color, 
target letter, and nontarget color distributions, respectively. 

tions, the probability that the participant will correctly solve the 
binding problem decreases. As discussed earlier, the variance, 
g2, should increase with eccentricity and decrease with 
exposure duration and attention. 

The model illustrated in Figure 1 assumes equal location un- 
certainty for color and shape and in both the horizontal and 
vertical directions (the only uncertainty parameter is g2). Al- 
ternative versions of  the model could be constructed that relax 
this assumption. For example, in principle, the model could be 
used to test whether there is more location uncertainty for color 
than for shape. For the applications described in this article, 
however, the assumption of equal location uncertainty works 
well. This is because, in the experiments we consider, moderate 
differences in location uncertainty, across features or directions, 
would cause only small changes in the observed response pro- 
portions. Thus, although the model allows for tests of  whether 
there are location uncertainty differences across features or di- 
rections, the experimental designs focused on in this article do 
not address this issue. 

Our choice of a (bivariate) normal distribution with a mean 
equal to the true feature position to model the participant's percep- 
tion of feature location assumes no systematic bias in feature local- 
ization. A number of studies suggest this assumption may not be 
true in general. In particular; memory for target location is system- 
atically affected by boundaries or reference points near the target 
(Holyoak & Mah, 1982; Sadalla, Burroughs, & Staplin, 1980; 
Thorndyke, 1981 ). For example, systematic biases occur when par- 
ticipants are asked to report the location of a single dot, when it is 
always presented within a circle (Huttenlochet; Hedges, & Duncan, 
1991; Nelson & Chaiklin, 1980). In traditional illusory conjunction 
experiments, the only features that might play the role of a reference 
point or boundary are the fixation point and the edge of the screen 
on which the stimuli are displayed. In most such experiments, in- 
cluding those described in this article, the targe~ location is several 
degrees of visual angle from either the fixation point or the edge of 
the screen. In such cases, the effect of the reference point or bound- 
ary is negligible (Huttenlocher et al., 1991 ). 

If one attempts to test the Equation l prediction of location 
uncertainty theory, a problem is immediately encountered. An 
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error in feature binding leads to an illusory conjunction and an 
observable response that we call a conjunction response. Unfor- 
tunately, however, the observed proportion of  conjunction re- 
sponses is not a good estimate of the probability of  a feature 
binding error. This is because conjunction responses can occur 
frequently by guessing. The next section considers this problem 
in more detail and suggests a method that corrects for guessing 
in standard illusory conjunction experiments. 

The  Role o f  Guess ing  in I l lusory  C o n j u n c t i o n  
E x p e r i m e n t s  

In a typical illusory conjunction experiment, the participant 
must report the identity and color of a target letter that is pre- 
sented simultaneously with distractors that are also colored let- 
ters. In such a task, the participant can make a number of  pos- 
sible responses. These are described in Table 1. A true illusory 
conjunction, that is, a trial on which the participant perceives 
an identity and a color but incorrectly combines these two fea- 
tures, will always lead to a conjunction response. Unfortunately, 
however, conjunction responses can also occur by guessing, so 
the proportion of conjunction responses is usually not a good 
estimate of  the probability of  an illusory conjunction. 

The significant contribution of  guessing to conjunction re- 
sponses can be seen by considering an experimental design typ- 
ical of those used to investigate feature binding. For example, 
in our Experiment 1 (reported later), two colored letters were 
presented on every trial. The target letter was always a T or an 
X, and the nontarget letter was always a C or an S. The two 
colors displayed on each trial were sampled randomly and with- 
out replacement from a set of  three colors (i.e,, red, yellow, and 
blue). Participants were asked to report the identity and color 
of  the target letter. (See Figure 5 for examples of  the stimulus 
display.) In this design, a conjunction response could occur for 

Table 1 
Some Response Categories in Illusory 
Conjunction Experiments 

Response Participant's response on Participant's response on 
category target identity target color 

C Correct Correct 
CR Correct Names a color appearing 

elsewhere in the display 
CR Names a letter appearing Correct 

elsewhere in the display 
CF Conect Names a color not appearing 

in the display 
LF Names a letter not Correct 

appearing in the 
display 

LFCR Names a letter not Names a color appearing 
appearing in the elsewhere in the display 
display 

CLF Names a letter not Names a color not appearing 
appearing in the in the display 
display 

Note. C = correct response; CR = conjunction response; CF = color 
feature error; LF = letter feature error; LFCR = letter feature error, 
conjunction response; CLF = color-letter feature error. 

any of  the following reasons: (a) because of  a true illusory con- 
junction; (b) because the participant correctly identified the 
target letter, failed to identify the target color, and happened to 
guess the color of the nontarget letter; and (c) because the par- 
ticipant was unable to identify any colors or letters in the display 
and happened to guess the correct identity of  the target and the 
color of the nontarget. Because of the small number of possible 
target identities (i.e., 2) and colors (i.e., 3), these guessing prob- 
abilities are significant. With other designs (e.g., whole report),  
there are even more possibilities that guessing will cause a con- 
junction response. 

Before one can formulate and test theories of the feature 
binding process, it is necessary to account for the significant 
effect of  guessing in illusory conjunction experiments. The most 
widely known methods of correcting for guessing are based on 
the assumption that information gain is all-or-none (e.g., Link, 
1982; Lord & Novick, 1968). For example, consider a multiple- 
choice test in which the student must choose among four al- 
ternative answers to every question. The classical method used 
to correct for guessing assumes the student either knows the cor- 
rect answer or guesses randomly among the four alternatives. If 
the student knows the correct answer with probability p, then 
the probability of a correct response equals 

P(correct)  = p + ( 1 - p)1/4. (2) 

An estimate of  the probability that the student knows the cor- 
rect answer is readily obtained by solving Equation 2 forp. This 
model assumes no partial information, so it is almost surely an 
oversimplification. Even so, it provides a useful estimate of the 
student's true state of  knowledge. 

A generalization of  this all-or-none guessing model can be de- 
veloped for the illusory conjunction experiment described ear- 
lier. An especially simple guessing model assumes the partici- 
pant gains all-or-none information about the identity of the 
target and about the target color and that feature binding is al- 
ways perfect. The model also assumes that the participant treats 
the identity and color information independently. Let TL and 
Tc denote the probabilities that the participant perfectly 
perceives 3 the target identity and target color, respectively. The 
model is most easily described by the tree diagram illustrated in 
Figure 2. The outcome of  every trial is represented by a path 
from the node at the top to a response category listed at the 
bottom. The probability that the participant will follow a par- 
ticular path equals the product of  all probabilities found on that 
path. The first bifurcation specifies whether the participant per- 
ceives the identity of  the target letter. With probability TL, the 
participant perfectly perceives the target identity and the left 
branch is taken; with probability 1 - TL, no information about 
target identity is obtained and the right branch is taken. The 
second bifurcation specifies whether the color of  the target letter 
is perceived perfectly (left branch) or whether no color infor- 
mation is obtained (right branch).  The first two bifurcations 
lead to four possible paths. The leftmost of  these corresponds to 

3 The word perceives is used somewhat loosely in this article. Because 
we expect decision processes also to be involved, it would be more ac- 
curate to say "the participant perfectly identifies the target letter and 
target color, respectively." 
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C C CR CF C LF C CR CFLF LF CLF 

CR 

Figure 2. Tree diagram of the simple null model. (Tc = probability of perceiving the target color; T L = 

probability of perceiving the target letter; C = correct response; CR = conjunction response; CF = color 
feature error; LF = letter feature error; CLF = color-letter feature error; LFCR = letter feature error, 
conjunction response.) 

trials on which the participant perceives the target identity and 
color perfectly. On these trials a correct response is inevitable 
because the model assumes that feature binding is always per- 
fect. The next path corresponds to trials on which the target 
identity is perceived perfectly but no color information is ob- 
tained. As a consequence, the participant must guess a color 
response. The three possible guesses (i.e., red, yellow, or blue) 
lead to three different response categories: correct (C),  con- 
junction response (CR),  or color feature error (CF).  The third 
path corresponds to trials on which the color is perceived per- 
fectly but the participant has no letter identity information and 
so must guess the target identity (i.e., either a T or an X) .  This 
path does not necessarily assume that the participant perceives 
an amorphous color. Rather, a more reasonable assumption 
might be that the participant perceives a smudge of color but is 
unable to identify the shape of the smudge. Finally, the right- 
most path corresponds to trials on which the participant has 
no information about target identity or color, so both must be 
guessed. 

The overall probability of  a particular response category is 
just the sum of the probabilities associated with each branch 
leading to that response. For example, in the Figure 2 model the 
probability o fa  CR equals the following: 

P(CR) = I/3TL(I -- Tc)d-(1/2)(1/3)(1 - TL)(1 -- Tc). (3) 

Tree models like those in Figure 2 are called multinomial 
models (e.g., Riefer & Batchelder, 1988; Batchelder & Riefer, 
1990). Their statistical properties are well understood (e.g., 
Bishop, Fienberg, & Holland, 1975; Riefer & Batchelder, 1988). 
For example, a straightforward algorithm, called the E M  
(expectation maximization) algorithm (e.g., Bishop et al., 
1975), can be used to find maximum likelihood estimates of 
the unknown parameters (in the Figure 2 model, the unknown 
parameters are TL and Tc). 

We call the model described in Figure 2 the simple null model 

because it represents a null hypothesis that feature binding er- 
rors do not occur. Nonetheless, it contains two paths that termi- 
nate in a CR. For both paths, the CR is assumed to be the result 
of guessing that follows the failure to perceive one or more target 
features. 

Figure 2 shows the decision about the identity of  the target 
letter preceding the decision about the target's color. A model 
with these two stages in reverse order makes exactly the same 
predictions, so multinomial models cannot be used to order 
processing stages. In fact, it probably makes the most sense to 
think that the features are identified in parallel. 

The simple null model illustrated in Figure 2 assumes that 
the participant guesses in a naive fashion. Alternative versions 
of the model can be constructed that assume sophisticated 
guessing. For example, suppose the participant sees the target 
letter but not the target color. According to the simple null 
model, the participant guesses among the three alternative col- 
ors in this situation. However, suppose the participant had also 
seen the nontarget letter and color. The simple null model as- 
sumes no location uncertainty, so the participant would know 
that the nontarget color could be ruled out as an alternative for 
the target color (because the target and nontarget colors are al- 
ways different). As a consequence, rather than guess the target 
color among all three color alternatives, a sophisticated subject 
would guess only between the two remaining colors. This is an 
"exclusionary" guessing strategy because the nontarget color 
was excluded from the guessing set. Exclusionary guessing was 
optimal because the target and nontarget were always different 
colors in our experiments. 

The tree diagram for the null model with sophisticated guess- 
ing is illustrated in Figure 3. It assumes that the participant 
makes use of both the nontarget letter and the nontarget color, 
so it has two more free parameters than the simple null model: 
(a)  the probability that the nontarget letter will be identified 
correctly, denoted by ArE; and (b)  the probability that the non- 
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Figure 3. Tree diagram of the sophisticated null model. (Tc = probability of perceiving the target color; 
TL = probability of perceiving the target letter; Nc = probability of perceiving the nontarget color; C = 
correct response; CR = conjunction response; CF = color feature error; LF = letter feature error; CLF = 
color-letter feature error; LFCR = letter feature error, conjunction response.) 
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target color will be identified correctly, denoted by Arc. It also 
assumes that if the nontarget color is the only feature perceived 
by the participant, then he or she will respond with that color. 
This state of  affairs occurs in the sophisticated null model on 
the branch 1 - TL, 1 -- Tc, Arc, 1 - ArE. As Figure 3 indicates, 
on such trials the participant responds with a CR if the target 
letter is guessed correctly or with a simultaneous letter feature 
error and conjunction response (LFCR)  if the target letter is 
guessed incorrectly. The exclusionary guessing assumption of 
the sophisticated null model is tested in Experiment 2. 

If the target letter and target color are both perceived (the 
TL, Tc branch),  the sophisticated and simple null models both 
predict that a correct response will be made. If  the target letter 
is perceived but not the target color, then according to the so- 
phisticated null model the guessing strategy depends on whether 
the nontarget color is perceived. If  it was (the TL, 1 -- Tc, Nc 
branch), then the nontarget color is excluded as a possibility 
and the participant guesses between the two remaining colors. 
If the nontarget color is not perceived (the TL, 1 -- Tc, 1 - Arc 
branch),  the participant guesses among all three colors (as in 
the simple null model).  

If the target color is perceived but not the target letter, then 
the sophisticated guessing strategy depends on what nontarget 
information was perceived. If the nontarget letter and color are 
both perceived (the 1 - TL, Tc, Arc, NL branch),  then the color 
corresponding to the target will appear in a different location 
from the nontarget letter. Thus, the participant will know that 
this color could not be from the nontarget. As a result, the par- 
ticipant need only guess the identity of the target letter. However, 
if the nontarget color is perceived but not the nontarget letter 
(the 1 - TL, Tc, Nc, 1 - NL branch),  the participant has no 
way of  knowing which of  the two colors was associated with the 
target. As a result, the participant is forced to guess between the 
two display colors and between the two possible target letters 
(resulting in four possible outcomes). Finally, suppose the non- 

target color is not perceived (the 1 - TL, Tc, 1 - Arc branch).  
There are two possibilities, and both lead to the same two out- 
comes. If the nontarget letter is perceived, then the target color 
will appear in a different location from the nontarget letter, so 
the participant will know that the single perceived color is from 
the target. As a consequence, only the target letter must be 
guessed. If the nontarget letter is not perceived, then the partic- 
ipant will not know whether the single color perceived is from 
the target or nontarget. However, because there is no other in- 
formation available, the optimal strategy is to guess the color 
that was seen (which, in this case, is the correct choice). 

I l lusory  C o n j u n c t i o n  Mode l s  

Both the simple and sophisticated null models assume partic- 
ipants incorrectly combine features only because of  guessing. 
True illusory conjunctions never occur. It is straightforward, 
however, to augment the models to allow illusory conjunctions. 
This augmentation can be done in many different ways. This 
article generalizes the sophisticated null model in two ways. 
First, we develop a model that is consistent with the feature in- 
tegration theory proposed by Treisman and Schmidt (1982). 
Second, we develop a model consistent with location uncer- 
tainty theory. 

According to Treisman and Schmidt (1982), attention is re- 
quired to solve the feature binding problem. If attention is un- 
available, expectations may be used to bind features together. 
For example, we expect clouds to be white and trees to be green, 
so even when our attention is directed elsewhere, we rarely see 
green clouds and white trees. In the experiments reported later, 
however, the stimulus features (i.e., color and shape) co-occur 
independently, so the participant has no idea of  what stimulus 
to expect. In this case, Treisman and Schmidt say that if atten- 
tion is unavailable "some of the features d e t e c t e d . . ,  may be 
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randomly conjoined" (p. 111 ) and that "illusory conjunctions 
will be g e n e r a t e d . . ,  by random couplings" (p. 111 ). 

A strict interpretation of the statement that features are ran- 
domly conjoined is that, on trials when all features are per- 
ceived, any letter identity is equally likely to bind to any color, 
and thus illusory conjunctions should be just as likely as correct 
perceptions. This prediction is not supported by the data, so 
an alternative interpretation of "random feature conjoining" is 
required. Another possibility, which seems consistent with 
Treisman and Schmidt's ideas, is that on trials when binding 
does occur, features are bound correctly with some probability 

and are bound incorrectly with probability l - a. Feature 
binding of this type is random in the sense that it does not de- 
pend on any physical or perceptual characteristics of  the stimu- 
lus display. 

Figure 4 shows a simple generalization of the sophisticated 
null model that incorporates this notion of random feature 
binding. The branches that are different from the sophisticated 
null model are highlighted. This new model, which we call the 
random binding model, assumes that a true illusory conjunc- 
tion occurs on trials when the target letter and the nontarget 
color are perceived and incorrect binding occurs (i.e., as on the 
TL, Tc, Arc, 1 - t~ branch or the TL, 1 -- Tc, Arc, 1 - a branch). 
The random binding model has five free parameters ( TL, Tc, 
Nc, NL, and a).  The sophisticated null model occurs as a special 
case in which a = 1. 

The location uncertainty model is identical to the random 
binding model except that correct binding is assumed to occur 
with the probability specified in Equation 1 rather than accord- 
ing to some fixed probability a. The location uncertainty model 
also has five free parameters ( TL, Tc, Nc, NL, and or, or alterna- 
tively, d~ a), and the sophisticated null model occurs as a special 
case in which tr = 0. 

For any fixed distance between the target and nontarget let- 
ters, the random binding and location uncertainty models make 
identical predictions. Exact equivalence occurs if a = P(DrL,TC 
< DTL,NC). However, suppose the random binding model is fit 
separately to data collected from a number of  experimental 
conditions in which the distance between the target and non- 
target letters is varied. If location uncertainty theory is correct, 
the resulting alpha estimates (computed separately for each 
distance) should increase with distance. In contrast, if Treisman 
and Schmidt's (1982) feature integration theory is correct, the 
alpha estimates should be invariant with distance. 

Thus, when fit to data from a single experimental condition, 
the random binding model is fairly atheoretical. For example, 
it no longer allows a test of  the assumption of random feature 
binding. Consequently, when the random binding model is fit to 
data from a single experimental condition, we will refer to it 
simply as the alpha model (after the name of  its binding 
parameter). The alpha model, or something like it, could be 
used to estimate the probability of  correct feature binding, re- 
gardless of whether one considers feature binding errors a fail- 
ure of attention (i.e., Treisman, 1988), poor temporal linking 
(Crick, 1984; Strong & Whitehead, 1989), or inaccurate loca- 
tion information (Cohen & Ivry, 1989; Maddox et al., 1994; 
Prinzmetal & Keysar, 1989). Recently, Prinzmetal, Henderson, 
and Ivry (1995) used this model to compare the probability of  

correctly binding features in a variety of circumstances, such as 
with and without diverting attention. 

The modeling approach proposed here has a number of ad- 
vantages over the methods traditionally used to analyze data 
from illusory conjunction experiments. First, unlike previous 
methods, the probability o f  correctly binding features (i.e., a )  
can be estimated independently of  the probability of correctly 
perceiving the features (i.e., TL, Tc, NL, and Arc). Second, the 
models provide a rigorous method to assess whether illusory 
conjunctions actually occur. For the partial report design used 
in our Experiment 1 (i.e., 3 possible colors and a 2-object 
display), the accepted criterion for the occurrence of  illusory 
conjunctions is that CRs are more frequent than color feature 
errors (CF; e.g., Cohen & Ivry, 1989 ). If there are no true illu- 
sory conjunctions, then on trials when the participant fails to 
perceive the target color, any of  the possible colors should be 
reported with equal probability. In the present design, there are 
three colors, two of which are presented on a trial. Suppose the 
participant identifies the target letter but not the target color. 
One of  the colors must be selected as the report of the target 
color. If  the subject guesses randomly, one third of the trials will 
result in a correct response. On the remaining two thirds of the 
trials, the participant will make an incorrect color response. If 
the nontarget color is reported, the response will be recorded as 
a conjunction response. If the color that is not included in the 
display is reported, the response will be recorded as a color fea- 
ture error. If the data indicate significantly more conjunction 
responses than color feature errors, then it was thought that 
some mechanism other than chance must be at work. Feature 
binding errors seemed the most likely candidate. 

This intuition is justified theoretically by the simple null 
model. Figure 2 indicates that in the simple null model CR and 
CF terminal nodes are always paired, so the simple null model 
always predicts P(CR) = P(CF).  Thus, if the simple null model 
accurately describes participants' guessing strategies, then data 
with significantly more conjunction responses than color fea- 
ture errors can safely be interpreted as indicative of  true illusory 
conjunctions. In other words, the accepted criterion for the oc- 
currence of illusory conjunctions would be valid. The simple 
null model of Figure 2, then, can be viewed as a formalization 
of  the guessing strategy implicitly assumed in the literature. On 
the other hand, an examination ofFigure 3 indicates that in the 
sophisticated null model, the pairing of  conjunction responses 
and color feature errors is broken, and as a result it is unclear 
whether the current test is valid if the participant adopts a so- 
phisticated guessing strategy. 

The alpha model can be used to answer this question. When 
binding is perfect (i.e., ~ = 1 ), the alpha model reduces to the 
sophisticated null model, and conjunction responses occur only 
by guessing. If the prevailing method of  testing for illusory con- 
junctions is valid, then regardless of the values of  TL, Tc, Nc, 
and ArE, it should be true that P(CR) < P(CF) whenever a = 1 
and P(CR)  > P(CF) whenever a < 1. We tested this hypothesis 
by computing predicted P(CR)  and P(CF) values from the al- 
pha model for a number of  different parameter settings. (We 
did not systematically search the parameter space.) A few of 
these results are shown in Table 2. First, consider the results 
when a = 1. In this case, traditional logic predicts that P(CR)  
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< P ( C F  ). In the Table 2 examples, this prediction is supported 
only when letter perception is better than color perception (i.e., 
when TL and NL are greater than Tc and Nc) .  When color per- 
ception is better, conjunct ion responses are more common than 
color feature errors, even though all conjunct ion responses are 

by guessing (because a = 1 ). When true illusory conjunct ions 
are occurring (i.e., when a = 0.9), traditional logic predicts 
P ( C R )  > P ( C F ) .  In  Table 2, this prediction is t rue when color 
perception is better than letter perception and false when letter 
perception is better than color perception. 

A 

.-No 

1-(z  a l  l l - a  

1 1  
2 2 

I! ,i, / 
C CR C CRO: C G: CR C CR CF 

B 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 j 3  3 3 

CFLF LFC~.F 

Figure 4. Tree diagram of the random binding model (called the alpha model when fit to data from a 
single experimental condition). The TL half of the tree is given in Figure 4a and the 1 - TL half is given in 
4b. The branches not in bold are identical to those appearing in the sophisticated null model. (Tc = proba- 
bility of perceiving the target color; T L  = probability of perceiving the target letter; Nc = probability of 
perceiving the nontarget color; NL = probability of perceiving the nontarget letter; C = correct response; 
CR = conjunction response; CF = color feature error; LF = letter feature error; LFCR = letter feature 
error, conjunction response; CLF = color-letter feature error.) 



174 ASHBY, PRINZMETAL, IVRY, AND MADDOX 

The results in Table 2 emphasize the importance o f  the as- 
sumptions about guessing strategy that underlie the currently 
popular test for assessing whether illusory conjunctions occur. 
Table 2 indicates that the test is valid only if  participants adopt 
the naive guessing strategies embodied  in the simple null model.  
If  participants use more sophisticated strategies whereby they 
make use of  information from the nontarget object, then the 
standard test is inadequate. In particular, with sophisticated 
guessing the test is susceptible to two kinds of  errors: (a)  to a 
conclusion of  no illusory conjunctions when illusory conjunc- 
tions did occur and (b) to a conclusion that illusory conjunc- 
tions occurred when all conjunction responses were by guess- 
ing. Because of  this problem, it is impor tant  to determine what 
type of  guessing strategies participants use in typical illusory 
conjunction experiments. If  they are found to use sophisticated 
strategies, the currently popular test for the occurrence of  illu- 
sory conjunctions should not be used. In any case, we recom- 
mend replacing the current  illusory conjunctions test with a 
model-based analysis of  the sort described here. 

With other experimental  designs, different tests for the occur- 
rence of  true illusory conjunctions have been proposed. For ex- 
ample, in the case of  a full report  design, Treisman and Schmidt  
(1982, Experiment  1) argued that t rue illusory conjunctions 
occur i f  the proportion of  conjunction responses exceeds the 
proportion of  color feature errors plus letter feature errors. It is 
straightforward to show that this test implicitly assumes the na- 
ive guessing strategy of  the simple null model. 4 As such, its va- 
lidity must also be questioned if  participants adopt a sophisti- 
cated guessing strategy. 

E x p e r i m e n t  1 

In Experiment  1, participants were briefly presented with a 
display that contained two colored letters: a target and a non- 
target. The distance between the target and nontarget letters var- 
ied across trials. The task was to indicate which target was pres- 
ent and to indicate its color (e.g., red X) .  The participant did 
not  report either the identity or the color of  the nontarget letter. 
Unlike a full report  task, memory  requirements  are min imized  
in this experiment (see Estes & Taylor, 1964). In contrast to 
Wolford's (1975) study, Exper iment  1 was not  concerned with 
the loss of  position information in memory  but instead with 
inaccurate feature identification and combination.  

Table 2 
Probabilities o f  Conjunction Responses (CRs) and Color 
Feature Errors (CFs) as Predicted by the Alpha Model for 
Various Parameter Values 

$ C T $  $X C$  

$S X$ ST  S$ 

Figure 5. Four possible stimulus displays used in Experiment 1 
(without the colors). TorX = target letter set; Cor S = nontarget letter 
set. 

M e t h o d  

Procedure. Each trial consisted of the following sequence of events. 
First, an asterisk, serving as both a fixation point and warning signal, 
appeared at the center of a large white rectangle. The white rectangle 
covered most of the black background of the monitor. After 1 s, the 
asterisk and white rectangle were replaced by the stimulus display. This 
display consisted of four characters: two colored letters surrounded by 
two achromatic dollar signs ($). An example of four possible displays is 
illustrated in Figure 5 (without the colors). The colored letters were 
flanked with dollar signs because Treisman ( 1982, Experiment 4) found 
that such an arrangement increased the number of illusory conjunc- 
tions. The four characters were located either above or below the fixation 
point (see Figure 5 ). There were four possible interletter distances. The 
two colors were selected from a set of three colors: red, yellow, or blue. 
One of the letters was selected from a target letter set ( T or X), and the 
other letter was selected from a nontarget letter set ( C or S). The stimu- 
lus was briefly presented and was followed by a white masking rectangle. 

The participant's task was to report the color and identity of the target 
letter (e.g., red X). Responses were made on the computer keyboard. 
The participant typed in the target color using the 1, 2, and 3 keys to 
indicate red, yellow, and blue, respectively. The participant then indi- 
cated the target identity by typing a 1 or a 2 for T or X, respectively. 
The following feedback was provided. A high-pitch tone ( 1,000 Hz) was 
played for 150 ms if the color response was incorrect. A low-pitch tone 
(200 Hz) was played for 150 ms if the letter response was incorrect. If 
both responses were incorrect, both tones were played with a 100-ms 
intertone interval. No feedback was given following correct responses. 
The fixation point, indicating the onset of the next trial, was displayed 
immediately after correct responses and 500 ms after the last tone on 
incorrect trials. 

Seven participants were tested. For two of the participants 
(Participants 1 and 2), the viewing distance was approximately 90 cm. 
For the other participants, a chin rest was used to fix the viewing dis- 
tance at 70 cm. Each participant completed three sessions. At the be- 
ginning of the first session, a series of short practice blocks were run to 
establish the exposure duration for the stimulus displays. Each practice 

a TL=NL T c = N c  P(CR) P(CF) 

1.0 .9 .6 .053 .164 
1.0 .6 .9 .042 .035 
0.9 .9 .6 .121 .164 
0.9 .6 .9 .110 .035 

Note. TL = target letter; NL = nontarget letter; Tc = target color; Arc = 
nontarget color. 

4 The proof that the Treisman and Schmidt (1982) whole-report test 
for illusory conjunctions is based on the same assumptions as the simple 
null model involves the following steps. First, the assumptions embod- 
ied in the simple null model (shown in Figure 2) are used to construct 
a model of the Treisman and Schmidt whole-report task. Second, this 
model is used to derive equations for the predicted probabilities of CR, 
CF, and LF responses. Finally, it is shown that P(CR) = P(CF) + 
P(LF). 
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block consisted of 16 trials, with 2 trials for each of the eight conditions 
(top or bottom × 4 interletter distances). 

The exposure duration was set to 500 ms for the first practice block 
to familiarize the participants with the task and displays. The exposure 
durations for the next five practice blocks were fixed at 300 ms, 200 
ms, 143 ms, 86 ms, and 57 ms. Following the sixth practice block, the 
exposure duration was adjusted according to the performance of each 
participant. If the participant was correct on 13 or more of the 16 trials, 
the exposure duration was reduced by i tick of the vertical raster 
(approximately 14.3 ms). If the participant was correct on 11 or fewer 
of the trials, the exposure duration was increased by 1 tick. No change 
in exposure duration was made if the participant was correct on 12 of 
the 16 trials. The minimum exposure duration in both practice and test 
blocks was 2 ticks (approximately 29 ms). The session began after one 
practice block at the minimum speed or after the participant had had 
two practice blocks in which the speed required no further adjustment. 

Each test block consisted of 80 trials (10 trials for each of 8 
conditions). The exposure duration for the first test block was equal to 
that of the last practice block. Following each test block, an adjustment 
was made on the basis of the following criteria: If the participant was 
correct on 80% or more of the trials, the exposure duration was lowered 
(if  not at the minimum duration ); if the participant was correct on 65% 
or less of the trials, the exposure duration was increased. 

Each test session consisted of 10 blocks. Three sessions were com- 
pleted within a l-week period, yielding a total of 2,400 trials per partic- 
ipant for the data analyses. Participants completed two practice blocks 
to begin Sessions 2 and 3 beginning with the exposure duration from the 
last test block on the preceding session and using the same adjustment 
criteria. The exposure durations ranged from a high of 4 ticks (57 ms) 
to a low of 2 ticks (29 ms). The median duration was 2 ticks for 5 ofthe 
participants and 3 ticks for the other 2 participants. 

Participants were paid a base rate of $5 per session plus a monetary 
bonus based on their performance. The bonus was calculated by adding 
$.01 for each correct response and subtracting $.02 for each incorrect 
response. On average, participants earned an additional $2.50 in bonus 
payment for each session. 

Apparatus and stimuli. The stimuli were presented on a Sony 
Multi-Scan HG monitor (ZCM-1490) controlled by a C 2 386 PC 
equipped with VGA graphics. The width and height of the letters, dollar 
signs, and fixation asterisk spanned 0.8 and 1.0 cm, respectively. The 
stimulus string (2 colored letters flanked on each side by the dollar 
signs) was located on either the upper or lower side of a 9-cm square 
centered around the fixation point. The white masking rectangle ex- 
tended beyond this region, measuring 20 cm × 13.5 cm. The edge-to- 
edge distance between the dollar sign and its adjacent colored letter was 
fixed at 0.4 cm. This spacing was used to keep any lateral masking effect 
from the dollar signs fairly constant. Because the spacing between the 
two colored letters was varied, the distance between the two dollar signs 
varied in a correlated manner. 

As noted earlier, 2 of the participants were situated 90 cm from the 
monitor and 5 were situated 70 cm from the monitor. For the former 
group, the four interletter distances were 1.6 mm, 7.6 mm, 13.7 mm, 
and 19.8 mm. These corresponded to visual angles of approximately 6', 
29', 52', and 76' (1.3") of arc, respectively. At 90 cm, the colored letters 
subtended visual angles of approximately 30' × 38' in the horizontal 
and vertical directions, and the distance from the center of the fixation 
point to the center of the colored letters ranged from 2.9* to 5.3*. 

The viewing distance and interletter distances were adjusted for the 
second group of 5 participants to yield a larger range of performance. 
The four distances were 3.8 mm, 7.6 mm, 15.2 mm, and 22.8 mm. At 
a viewing distance of 70 cm, these correspond to visual angles of 19', 
44', 75' (1.25"), and 112' ( 1.87*) of arc, respectively. The visual angles 
subtended by the colored letters was 39' × 49', and the distance from 
the fixation marker to the colored letters ranged from 3.7* to 7. l*. 

The stimuli were viewed under normal lighting. The CIE coordinates 
(measured with a Minolta Chroma meter, Model CS100) of the red, 
yellow, and blue stimuli were x = .499, y = .340; x = .437, y = .472; and 
x = .  196, y = .  165, respectively. The luminance values were 27.5 cd/m 2 
(red), 67:5 cd/m 2 (yellow), and 29.2 cd/m 2 (blue). The luminance of 
the white mask and dollar signs was 127.0 cd/m 2, and the luminance of 
the black fixation marker and background was 6.0 cd/m 2. 

The stimulus display was set according to the following constraints. 
On half of the trials the stimulus string was located above the fixation 
mark; on the other half, the string was below the fixation mark. The 
letters could appear at any position along the selected side as long as 
those positions fell within the boundaries just described. For each side, 
the four interletter distances were used on an equal number of trials. 
The left-right order of the target and distractor letters was randomly 
determined. The colors for each letter were randomly selected with the 
constraint that different colors were assigned to the target and distractor 
on each trial. 

Participants. Four female and 3 male students selected from the un- 
dergraduate and graduate population at University of California, Berke- 
ley were tested. All had normal or corrected-to-normal vision. On the 
basis of self-report, all had normal color vision. 

Results 

Response categories. The mean  response proportions (across 
part icipants)  are shown in Table 3 for each distance and  response 
category. The  proport ion of  all types o f  errors decreased as the 
distance increased. This  effect was especially clear for conjunct ion 
responses (CRs) ,  which reliably decreased as the distance between 
the target and  nontarget increased, F (  3, 18 ) -- 66.08, p < .01. The 
effect of  distance on color feature errors ( CFs ), letter feature errors 
(LFs) ,  and simultaneous letter feature errors and  conjunct ion re- 
sponses (LFCRs) ,  though smaller; was also reliable, F (  3, 18) = 
6.29, 3.43, and  4.95, respectively; all p s  < .05. The position o f  the 
letter string (above or below the fixation poin t )  did not  signifi- 
cantly affect any of  the response measures, and there was no  sig- 
nificant interaction between distance and position. 

W h e n  collapsed over distance,  the  responses  o f  each part ici-  
pan t  showed a higher  p ropor t ion  o f  CRs  t h a n  CFs (0.113 vs. 
0.049, t ( 6  ) = 9.269, p < .001, two-tai led) .  This  f inding is inter-  
esting because the s imple null  model  (F igure  2)  predicts  P ( C R )  
= P ( C F ) .  As no ted  earlier, several investigators have used the 
violat ion of  this  predic t ion  as an  indica t ion  o f  feature  b inding  
errors  (e.g., Cohen  & Ivry, 1989; C o h e n  & Rafal,  1991 ). 

Table 3 
Mean Response Proportions From Experiment I 

Distance 
Response 
category 1 2 3 4 M 

C .67 .75 .81 .83 .77 
CR .17 .13 .08 .07 .11 
CF .06 .05 .04 .04 .05 
LF .04 .03 .03 .03 .03 
LFCR .04 .03 .03 .02 .03 
CLF .01 .01 .01 .01 .01 

Note. C = correct response; CR = conjunction response; CF = color 
feature error; LF = letter feature error;, LFCR = letter feature error, 
conjunction response; CLF = color-letter feature error. 
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Table 4 
Goodness-of-Fit Values ("A" Information Criter ion) for Experiment I 

Model 

Location 
uncertainty 

Simple Sophisticated Random Location with spreading 
Participant null null binding uncertainty attention 

1 4,665 4,559 4,498 4,422 4,424 
2 4,236 4,167 4,113 4,079 4,074 
3 4,583 4,511 4,421 4,393 4,374 
4 3,824 3,791 3,679 3,700 3,659 
5 4,835 4,811 4,697 4,727 4,672 
6 3,126 3,121 3,061 2,972 2,970 
7 4,717 4,679 4,553 4,533 4,512 
M 4,284 4,234 4,146 4,118 4,098 

Theoretical analysis. Each of the four models described 
earlier were fit separately to the data collected from each of the 
7 participants. For each model, maximum likelihood estimates 
of the free parameters were obtained using an iterative search 
procedure. I f f  is the observed response frequency in cell i of 
the data matrix, and Pi is the probability of  this type of  response 
as predicted by the model in question, then the maximum like- 
lihood estimates (e.g., Ashby, 1992; Wickens, 1982) are those 
values of the unknown parameters that minimize 

L = - ~  f logPi .  (4) 
i 

In Experiment l, there were four target-to-nontarget distances, 
two target positions (above or below fixation), and six response 
categories, so there were 48 cells in the data matrix for each 
participant (4 × 2 × 6 ) and 40 degrees of freedom. None of the 
models had more than six free parameters, so after parameter 
estimation, there were still at least 34 degrees of freedom to test 
the validity of the models. To compare models with different 
numbers of free parameters, we used the A Information Crite- 
rion (AIC) statistic (Akaike, 1974; Takane & Shibayama, 
1992): 

AIC = L + 2v, (5) 

where v is the number of free parameters. The AIC statistic pe- 
nalizes a model for extra free parameters in such a way that 
the smaller the AIC, the closer a model is to the "true model," 
regardless of the number of free parameters. Thus, to find the 
best model among a given set of  competitors, one simply com- 
putes an AIC value for each model and chooses the model asso- 
ciated with the smallest AIC value. 

The AIC values for each participant under the four models 
are shown in Table 4. (Ignore the last column for now.) Three 
conclusions stand out. First, for every participant, the worst fit 
is provided by the simple null model. Apparently, participants 
do use information from the nontarget letter to aid their identi- 
fication of the target. As discussed in the introduction, this 
finding raises serious questions about the validity of the cur- 
rently popular test for illusory conjunctions. Second, the sophis- 
ticated null model always fits worse than either the random 

binding or location uncertainty models. The sophisticated null 
model assumes feature binding is perfect on every trial, whereas 
both the random binding and location uncertainty models as- 
sume at least some errors in the feature binding process. Thus, 
the poor performance of the sophisticated null model supports 
the hypothesis that at least some errors in feature binding did 
occur. Third, the location uncertainty model fits better than the 
random binding model for 5 of  the 7 participants. The superior 
performance of  the location uncertainty model is not surprising 
given the strong effect of distance on the frequency of  conjunc- 
tion responses. Finally, although it is not apparent from Table 
4, the absolute fits of  the location uncertainty model are excel- 
lent. 5 For each participant, the location uncertainty model ac- 
counts for about 99% of the variance in the data. 

Table 5 shows the parameter estimates from the best-fitting 
versions of  each model. There is strong agreement among all 
models on the value of TL. Although agreement is also good on 
the value of  Tc, some model-specific differences are apparent. 
First, the simple null model predicts the lowest value of  Tc for 
every participant. Presumably, these estimates are artificially 
low because this is the only way the simple null model can ac- 
count for the high proportion of conjunction responses. To see 
this, note from Figure 2 that only two branches lead to conjunc- 
tion responses (CRs) in the simple null model. Both of these 
require a misperception of the target color. The sophisticated 
null model produces larger estimates of Tc, but in every case, 
these estimates are smaller than predicted by either the random 
binding or location uncertainty models. Figure 3 indicates that 
conjunction responses can occur in the sophisticated null model 
on trials when the target color is correctly perceived (through 
the l - TL, Tc, 1 - NL, Nc branch),  but the majority of paths 
that terminate in a CR require misperception of  the target color. 
The random binding and location uncertainty models agree al- 
most perfectly on the value of  Tc. 

5 It is important to note that a perfect fit does not result in an AIC 
value of 0. For example, for the random binding and location uncer- 
tainty models, a perfect fit to the data of Participant 7 would yield an 
AIC of 4,409. The fit for the location uncertainty model for this partic- 
ipant is 4,533, an increase of only 124, or 2.8%. 
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Table 5 
Parameter Estimates From Best Fitting Models for Experiment I 

Participant 

Parameter/model t 2 3 4 5 6 7 

TL 
Simple null 0.82 0.84 0.81 0.86 0.84 0.94 0.85 
Sophisticated null 0.80 0.83 0.78 0.84 0.83 0.94 0.83 
Random binding 0.82 0.84 0.81 0.86 0.84 0.94 0.85 
Location uncertainty 0.82 0.84 0.80 0.84 0.83 0.94 0.84 

Tc 
Simple null 0.67 0.71 0.69 0.77 0.63 0.78 0.64 
Sophisticated null 0.73 0.74 0.74 0.79 0.64 0.78 0.66 
Random binding 0.83 0.84 0.86 0.92 0.82 0.89 0.83 
Location uncertainty 0.83 0.84 0.86 0.92 0.82 0.91 0.84 

Nc 
Sophisticated null 0.44 0.35 0.36 0.23 0.17 0.11 0.24 
Random binding 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Location uncertainty 0.77 0.65 0.79 0.63 0.72 0.63 0.69 

NL 
Sophisticated null 0 0 0 0 0 0 0 
Random binding 0.45 0.49 0.55 0.61 0.62 0.53 0.46 
Location uncertainty 0.29 0.17 0.37 0.20 0.39 0.29 0.22 

o~ 
Random binding 0.91 0.91 0.89 0.91 0.86 0.92 0.87 

tr 
Location uncertainty 12.4 I 1.5 13.2 12.1 16.0 12.3 15.5 

Note. TL = probability of perceiving the target letter; Tc = probability of perceiving the target color; Nc = 
probability of perceiving the nontarget color; NL = probability of perceiving the nontarget letter. 
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In contrast, there is strong disagreement among all the 
models on the values of  Arc and NL. In fact, only the location 
uncertainty model produces plausible estimates of  these pa- 
rameters. According to the random binding model, Nc is always 
1. This seems extremely unlikely, given that the largest Tc esti- 
mate is .92 and we expect Tc to be larger than Nc.  On the other 
hand, the sophisticated null model predicts that NL is always 
zero. Intuition predicts that ArE should be smaller than TL, but 
it seems unlikely that the participant would never correctly per- 
ceive the identity of  the nontarget letter. 

According to the location uncertainty model, Arc and espe- 
cially NL are significantly smaller than Tc and TL. At first this 
might seem implausible, but the low Arc and NL estimates are 
consistent with the hypothesis that participants dynamically al- 
located their attention to the target location (e.g., Eriksen & 
Hoffman, 1972; Eriksen & Rohrbaugh, 1970; Wolfe, Cave, & 
Franzel, 1989). In other words, as the processing of shape in- 
formation makes clear which object is the target, the participant 
may narrow attention to this object, facilitating the identifica- 
tion of  both target features at the expense of  accuracy on the 
nontarget features. The fact that the location uncertainty model 
estimates Of NL are much lower than Arc also makes sense. The 
nontarget letter provides no information about either target fea- 
ture (i.e., letter or color), but the nontarget color eliminates one 
of the three target color alternatives. Thus, an optimal strategy 
might be to allocate some attention to the nontarget color but 
no attention to the nontarget letter. 

Physiological evidence of  such narrowing of  attention has 
been found. Chelazzi, Miller, Duncan, and Desimone (1993) 
recorded from cells in the inferotemporal cortex of  two mon- 

keys while the animals performed a simplified version of  our 
Experiment I. The monkeys were first shown a target cue (e.g., 
a square or triangle) and then, after a delay of  1.5 to 3 s, a pe- 
ripheral display containing the target and a distractor in an un- 
known location. The animals then made an eye movement to 
the target location to obtain a reward. Chelazzi et al. found that 
when the target and distractor were first displayed, cells tuned 
to the target and cells tuned to the distractor both responded 
strongly. About 200 ms after display onset, however, and still 
100 ms before eye movement, the activity of  cells tuned to the 
distractor was suppressed, whereas activity of  cells tuned to the 
target was unaffected. Thus, 100 ms before a response was ini- 
tiated, attention was narrowed from the full display to the target 
location only. Activity in the cells tuned to the target was main- 
tained during the delay between presentation of  the cue and 
target-distractor display, so it is plausible that the short display 
durations used in our Experiment 1 would not prevent such 
narrowing of attention. On the other hand, it is unknown 
whether this sort of  focusing of attention can occur before iden- 
tification of the target features has been completed. 

To get an even clearer understanding of these data, we also fit 
the simple null, sophisticated null, and alpha models separately 
to the data collected from each target-to-nontarget distance. A 
number of  interesting findings emerged. First, for every partici- 
pant, the sophisticated null model fit better than the simple null 
model at the farthest distance. In other words, even when par- 
ticipants are not making illusory conjunctions, the simple null 
model does not provide a very good account of the data. This 
finding turns out not to depend critically on specific details of 
the sophisticated null model. We tried several versions of  the 
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sophisticated null model, including versions with and without 
the exclusionary guessing assumption and with and without the 
parameter NL. The results were always the same. At the farthest 
distance, any sophisticated null model with a parameter repre- 
senting nontarget color information always fit better than the 
simple null model. We saw earlier that the logic of  the currently 
popular test of whether illusory conjunctions occur, that is, 
comparing P(CR) with P(CF),  depends critically on the valid- 
ity of the simple null model. Therefore, our results indicate that 
the traditional practice of  focusing exclusively on conjunction 
responses and color feature errors is fundamentally flawed. 

When the alpha model is fit separately to the data from each 
distance, the resulting a estimates provide an atheoretical esti- 
mate of the probability of correct binding at each distance. 
Treisman and Schmidt's (1982) feature integration theory (and 
the random binding model) predicts these probabilities will be 
invariant with distance, whereas location uncertainty theory 
predicts they will increase according to Equation 1. Figure 6 
shows these estimated probabilities of correct binding as a func- 
tion of  distance for 4 of the 7 participants. Also shown are the 
predicted probabilities according to the location uncertainty 
model for two different values of ~. The plots for the other 3 
participants followed a similar pattern. Three conclusions stand 
out. First, as expected, the probability of  correct binding in- 
creases with distance for all participants. Second, the primary 
effect of increasing a is to decrease the predicted probability 
of correct binding by a uniform amount at all but the largest 
distances. Third, the observed probability of correct binding 
versus distance functions were shallower than predicted by the 
location uncertainty model. The flattest functions are from Par- 
ticipants 4 and 5. For both of  these participants, a better fit is 

provided by a flat function (as predicted by the random binding 
model) than by any function predicted by the location uncer- 
tainty model. 

According to the location uncertainty model, the probability 
of correct binding is completely determined by d/,r, where d is 
the perceived distance between the target and nontarget and a is 
a measure of location uncertainty. In the present application, 
we assumed d equals physical distance and a is invariant with 
distance. The model could be made to predict shallower proba- 
bility of correct binding versus distance functions if either d in- 
creases more slowly than physical distance or a increases with 
physical distance. Under certain conditions, both of these pos- 
sibilities seem plausible. For example, it makes sense that cr in- 
creases with physical distance because attention must be spread 
over a larger and larger region of visual space as the distance 
between target and nontarget increases. We argued earlier that 
any factor that spreads attention should increase location un- 
certainty (and hence ~). Let ~d be the location uncertainty 
when the target-to-nontarget distance is d. There are many pos- 
sible models relating ad to d. One plausible alternative is that 

ad = ~d ~, (6) 

where ~ is the location uncertainty when the distance equals one 
unit and 3' is some arbitrary constant. This spreading attention 
location uncertainty model has one more parameter than the 
simple location uncertainty model (i.e., 3'). 

When fit to the data of Experiment 1, the location uncer- 
tainty model with spreading attention produces the AIC values 
shown in the last column of  Table 4. In six of seven cases, adding 
the assumption of  spreading attention significantly improves 
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the fit of  the location uncertainty model. The only exception is 
Participant 1. Figure 6 indicates that for this participant, the 
probability of  correct binding increases with distance at about 
the same rate as predicted by the original location uncertainty 
model (i.e., when a = 12.4). With spreading attention, the lo- 
cation uncertainty model always fits better than the random 
binding model. 

Discussion 

The theoretical analysis compared models that assumed all 
of the observed conjunction responses in the experiment were 
due to guessing (the simple and sophisticated null models) with 
models that assumed participants sometimes incorrectly com- 
bine features (the random binding and location uncertainty 
models). The latter class significantly outperformed the former. 
Second, we compared a model that assumed feature binding 
errors were due to uncertainty in the perceptual location of fea- 
tures (the location uncertainty model) with a model that did 
not make this assumption (the random binding model).  The 
success of  the location uncertainty model supports the hypoth- 
esis that feature-binding errors are, in part, due to errors in the 
perceptual location of features. 

Although the location uncertainty model fit the data well, es- 
pecially when it incorporated the notion of spreading attention, 
it systematically mispredicted some aspects of  the data. For ex- 
ample, the location uncertainty model does not predict a dis- 
tance effect in the response categories LF (letter feature error),  
LFCR (simultaneous letter feature error and conjunction 
response), and CF (color feature error) because it assumes 
these categories do not involve feature binding. Nevertheless, 
performance improved with distance for all response categories 
(see Table 3 ). There is good reason to believe that this improve- 
ment was due to a decrease in lateral masking at the letter level 
as the distance between target and nontarget increased (Banks, 
Larson, & Prinzmetal, 1979; Bouma, 1973; Woodworth, 
1938 ). In the models considered earlier, this could be handled 
by assuming a different value for TL for each distance, although 
this solution would not be parsimonious. A more attractive so- 
lution is suggested by Wolford's ( 1975 ) hypothesis that lateral 
masking is the result of  feature perturbations from adjacent let- 
ters. If Wolford's explanation is correct, then perhaps the lateral 
masking at the letter level could be modeled by a mechanism 
similar to one used by the location uncertainty model to ac- 
count for feature-binding errors. 

Despite the success of  the location uncertainty model, the de- 
sign of Experiment 1 has fundamental limitations. In particu- 
lar, the design is not suited to studying the participants'  percep- 
tion of the nontarget letter. The tree diagram in Figure 3 indi- 
cates that in the sophisticated null model, the branches 
involving Nc and NL tend to make a relatively small contribu- 
tion to the predicted response probabilities. To explore this is- 
sue further, we examined the stability of the model fits by com- 
puting changes in goodness of  fit (i.e., in AIC) for the location 
uncertainty model with spreading attention when the parame- 
ter estimates were increased or decreased by 0.15 (0.50 for the 
a parameter).  As an example, for Participant 5, changes in the 
TL, Tc, a, and ~, parameter estimates caused the AIC statistic 
to increase by an average of418, 183, 284, and 436, respectively, 

whereas changes in the Nc and NL estimates caused average in- 
creases in AIC of  only 5 and 4, respectively. This pattern was 
found in all cases tested. Thus, the partial report design of  Ex- 
periment 1 places tight constraints on the parameter estimates 
for TL, Tc, a, and -/, and only weak constraints on the estimates 
of Nc and NL. 

E x p e r i m e n t  2 

Experiment 2 was identical to Experiment 1 in every respect 
except that in addition to identifying the target letter and color, 
participants also identified the nontarget color. As in Experi- 
ment 1, they were not required to identify the nontarget letter. 
Participants 1, 2, 6, and 7 from Experiment 1 participated in 
Experiment 2. 

Experiment 2 had'two goals. First, having participants report 
both the target and nontarget colors allows a direct test of  the 
exclusionary guessing strategy assumed by the sophisticated 
null, random binding, and location uncertainty models. In par- 
ticular, we can observe how frequently participants give the 
same response for both the target and nontarget colors. If the 
exclusionary assumption is correct, color repetition responses 
should be rare. Second, Experiment 2 tests the generality of our 
theoretical approach to modeling illusory conjunctions. Be- 
cause there are more response categories in Experiment 2 than 
Experiment 1, the models developed for Experiment 1 must be 
modified. Even so, the same strategy used to develop the Exper- 
iment 1 models can be applied in a straightforward fashion to 
develop models for the Experiment 2 task. If  our approach is 
valid, the results of  fitting the revised models to the Experiment 
2 data should be similar to the results for Experiment 1. 

Method 

The displays in Experiment 2 were the same as in Experiment 1. A 
pair of colored letters framed within two achromatic dollar signs was 
presented on each trial. The stimuli were located either above or below 
a fixation point, and the distance between the two letters was varied. 
The only change in Experiment 2 was in the participants' responses. 
After reporting the target color and target letter, the participants were 
required to make a third response indicating the nontarget color. The 
same keys ( 1, 2, or 3) used to report the target color were used for the 
nontarget color. No feedback was provided regarding accuracy on the 
nontarget color responses. Changes in the exposure duration were based 
on the accuracy in reporting the color and letter of the target object, 
and bonus payments were calculated solely from performance on these 
features. In this manner, we sought to ensure that the main require- 
ments of the task were identical to those of Experiment I. 

Experiment 2 consisted of two sessions of 800 trials each. Participants 
6 and 7 from Experiment 1 participated in these sessions within a cou- 
ple of days of completing Experiment 1. The other two participants had 
also been in Experiment I (Participants 1 and 2) but had completed 
that experiment a few months earlier. These participants were tested on 
one session exactly as in Experiment 1 before completing the two ses- 
sions for Experiment 2. The distances between the colored letters were 
identical to those used in Experiment 1. For Participants 6 and 7, this 
range was 6' to 76' of arc; for Participants 1 and 2, this range was 19' to 
112' of arc. 

Results 

Response categories. There were two response alternatives 
for the identity of  the target letter ( T or X) ,  three for the identity 
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of the target color (red, yellow, or blue), and three for the iden- 
tity of the nontarget color (red, yellow, or blue). Thus, there 
were a total of  18 different response categories (2 X 3 X 3 ). The 
data consisted of  these 18 response categories at four different 
distances and two display conditions (top vs. bottom). The total 
number of  trials (i.e., the total response frequency) was there- 
fore distributed across 144 different ceils ( 18 x 4 x 2). To in- 
crease the sample size in each cell, the data were averaged across 
display position. Thus, the basic data consisted of  an 18 x 4 
matrix of response proportions for each of  the four participants 
(with 68 degrees of freedom). The mean of  these four matrices 
is shown in Table 6. Each response category is identified by a 
three-letter code. The first letter describes the participant 's re- 
sponse on the identity of the target letter (C for correct and E 
for error). The second letter describes the iarget color response, 
and the third letter describes the nontarget color response. In 
both cases, a T indicates the participant responded with the 
target color, an N indicates the response was of the nontarget 
color, and an O indicates the participant responded with the 
color not present in the display. Thus, CTN indicates that all 
three responses were correct, and CNT is a classic conjunction 
response. 

As in Experiment 1, there were strong effects of  distance on 
the proportion of correct responses (CTN) and on the propor- 
tion of conjunction responses (CNT).  In fact, the distance effect 
on conjunction responses appears to be even greater in Experi- 
ment 2 than it was in Experiment 1. However, unlike Experi- 
ment 1, the proportion of letter feature errors (ETN, ETT, and 
ETO) did not decrease with distance, nor did color feature er- 
rors on the nontarget letter (CTO). Table 6 also provides pre- 
liminary support for the assumption of exclusionary guessing 

Table 6 
Mean Response Proportions for Experiment 2 

Distance 
Response 
category I 2 3 4 M 

CTN .14 .16 .17 .18 .17 
CTT .00 .00 .00 .00 .00 
CTO .03 .03 .03 .03 .03 
CNN .00 .00 .00 .00 .00 
CNT .03 .02 .01 .01 .02 
CNO .01 .01 .01 .01 .01 
CON .01 .01 .01 .01 .01 
COT .00 .00 .00 .00 .00 
COO .00 .00 .00 .00 .00 
ETN .01 .00 .01 .01 .01 
ETT .00 .00 .00 .00 .00 
ETO .00 .00 .00 .00 .00 
ENN .00 .00 .00 .00 .00 
ENT .01 .00 .01 .00 .0 i 
ENO .00 .00 .00 .00 .00 
EON .00 .00 .00 .00 .00 
EOT .00 .00 .00 .00 .00 
EOO .00 .00 .00 .00 .00 

Note. Response category code is as follows. First position in the acro- 
nym describes response on target identity (C = correct, E = error). Sec- 
ond position describes response on target color (T = target color, ?T = 
nontarget color, O = other color). Third position describes response on 
nontarget color (N = nontarget color, T = target color, O = other color). 

made by the Experiment 1 models. Six of  the 18 response cate- 
gories violate exclusionary guessing (CTT, CNN, COO, ETT, 
ENN, and EOO). The mean proportions of  each of these re- 
sponse types was less than .004, indicating that participants had 
a strong bias against color-repetition responses. 

Theoretical analysis. Our first step in the theoretical analysis 
was to check the reliability of the modeling that was done on the 
Experiment 1 data. We did this by ignoring the nontarget color 
reports in Experiment 2. In this way the 18 × 4 matrix of response 
frequencies collapses into a 6 x 4 matrix of exactly the same type6 
as in Table 3. The sophisticated null model, the random binding 
model, and the location uncertainty model (with and without 
spreading attention) were fit to the collapsed 6 × 4 matrices sepa- 
rately for each of the 4 participants. The simple null model was 
not included because the Experiment I results proved it to be psy- 
chologically implausible. The AIC values for the best-fitting ver- 
sions of each model are shown in Table 7. 

Table 7 has an especially simple form because the four 
models are ordered in the same way for every participant. The 
location uncertainty model with spreading attention always fits 
better than the simple location uncertainty model, which al- 
ways fits better than the random binding model, which always 
fits better than the sophisticated null model. This ordering is 
consistent with the Experiment 1 results. In absolute terms, the 
fits were again impressive. The location uncertainty model with 
spreading attention accounted for 98.5%, 96.8%, 99.8%, and 
98.3% of  the variance in the data for Participants 1, 2, 6, and 7, 
respectively. 

The estimated parameter values for all four models also were 
similar to those obtained in Experiment 1. For the location un- 
certainty model, the estimates of  TL were high, ranging from .77 
to .98. The estimated values for Tc were also high (ranging from 
.80 to .94), indicating that participants were generally accurate 
in perceiving the target features. The Nc estimates were lower 
(ranging from .38 to .81 ), so as in Experiment 1, the best fits 
were obtained by assuming that the participants were poorer in 
perceiving the nontarget color than the target color. 

In the second analysis, we generalized the Experiment 1 
models to make predictions on the full set of 18 response cate- 
gories that result when participants simultaneously report the 
target letter, target color, and nontarget color. For the most part, 
this was a straightforward process of  translating the response 
categories from Experiment I into the three letter codes used to 
describe the 18 response categories of  Experiment 2. For exam- 
ple, Figure 7 shows the TL half of  the tree diagram that charac- 
terizes the two-color report version of the random binding 
model. A comparison with Figure 4 (the Experiment 1 version 
of  the random binding model) indicates that the first two termi- 
nal nodes of the two trees are identical, except that the C and 
CR response category labels are replaced in Figure 7 with the 
labels CTN and CNT, respectively. 

The most important case in which simple translation of the 
response codes fails is with response categories that involve 

6 Collapsing the data across nontarget color reports increases the sam- 
ple size in each cell. As a result, for these analyses we did not average 
over display position (i.e., top vs. bottom). Thus, as in Experiment 1, 
the models were fit to separate 6 X 4 matrices for the top and bottom 
display positions. 
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Table 7 
Goodness-of-Fit Values (".4" Information Criterion) for Experiment 2 When the Models Were 
Fit to Target Letter and Target Color Data Only 

Model 

Location uncertainty 
Sophisticated Random Location with spreading 

Participant null binding uncertainty attention 

1 3,349 3,315 3,279 3,273 
2 2,901 2,858 2,854 2,838 
6 1,257 1,243 1,221 1,212 
7 3,278 3,235 3,220 3,206 
M 2,696 2,663 2,644 2,632 

color repetitions. Because of its exclusionary guessing assump- 
tion, the one-color report version of the random binding model 
(Figure 4) assumed that color repetitions never occur. The two- 
color report version of the random binding model shown in Fig- 
ure 7 assumes that the participant guesses that the second color 
is identical to the first with some probability equal to g. The 
exclusionary guessing assumption is that g = 0. The two-color 
report models also assume that the participant guesses each of 
the colors that are different from the first color reported with 
probability b = ( 1 - g)/2. The two-color report version of the 
sophisticated null model was generated by setting a = l, and the 

location uncertainty models were generated by replacing a with 
the probability specified by Equation I. 

Two-color report versions of the sophisticated null model, the 
random binding model, and the location uncertainty models 
were fit separately to the 18 × 4 response matrix collected from 
each participant in Experiment 2. The results are described in 
Table 8. As in Experiment 1, the random binding model always 
outperforms the sophisticated null model, thus suggesting that 
feature binding was not perfect. The strong distance effect ob- 
served in Table 6 for CNT responses suggests that feature bind- 
ing may have improved with distance. This hypothesis is sup- 
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Figure 7. Tree diagram of the TL half of the two-color report version of the alpha model. (NL = probability 
of perceiving the nontarget letter; Tc = probability of perceiving the target color; TL = probability of 
perceiving the target letter; Nc = probability of perceiving the nontarget color; C = correct response; CR = 
conjunction response; CF = color feature error; LF = letter feature error; CLF = color-letter feature error; 
g = probability of perceiving the second color identical to the first; b = probability of perceiving colors 
different than the first; C = correct; T = target color; N = nontarget color; O = other color.) 
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Table 8 
Goodness-of-Fit Values ("A'" Information Criterion) When the Two-Color Report Models Were 
Fit to the Complete Experiment 2 Data Set 

Mo~I 

Location uncertainty 
Sophisticated Random Location with spreading 

Participant null binding uncertainty attention 

1 5,531 5,519 5,484 5,486 
2 4,182 4,104 4,103 4,081 
6 2,325 2,218 2,182 2,174 
7 5,318 5,311 5,289 5,291 
M 4,339 4,288 4,265 4,258 

ported by the fact that the location uncertainty model provided 
better fits than the random binding model for all participants. 
Finally, when the notion of spreading attention is incorporated 
into the location uncertainty model, the fit is significantly im- 
proved for 2 of the 4 participants. This model accounts for 

98.4%, 99.4%, 99.9%, and 98.6% of the variance in the data of 
Participants 1, 2, 6, and 7, respectively. 

Table 9 shows parameter estimates of the best-fitting versions 
of the various models. First, note the uniformly small estimates 
ofg. The largest estimate is only .04. To appreciate this value, 

Table 9 
Parameter Estimates From Best-Fitting Two-Color Report Models for Experiment 2 

Participant 

Parameter/Model 1 2 6 7 

TL 
Sophisticated null 0.74 0.79 0.93 0.77 
Random binding 0.76 0.86 0.98 0.79 
Location uncertainty 0.77 0.85 0.98 0.79 
Location unce~ainty with SA 0.77 0.86 0.98 0.79 

Tc 
Sophisticated null 0.71 0.76 0.92 0.69 
Random binding 0.73 0.79 0.94 0.71 
Location uncertainty 0.73 0.78 0.94 0.71 
Location uncertainty with SA 0.73 0.79 0.94 0.71 

Nc 
Sophisticated null 0.49 0.79 0.85 0.51 
Random binding 0.51 0.80 0.85 0.52 
Location uncertainty 0.51 0.80 0.85 0.53 
Location uncertainty with SA 0.52 0.80 0.85 0.53 

NL 
Sophisticated null 0.02 0 0 0 
Random binding 0.17 0.25 0.96 0.02 
Location uncertainty 0.22 0.15 0.52 0.05 
Location uncertainty with SA 0.23 0.27 0.97 0.05 

Sophisticated null 0.04 0.01 0.04 0.02 
Random binding 0.04 0.01 0.04 0.03 
Location uncertainty 0.04 0.01 0.04 0.03 
Location uncertainty with SA 0.04 0.01 0.04 0.03 

17/ 

Random binding 0.95 0.91 0.95 0.96 
~r 

Location uncertainty 
Location uncertainty with SA 

Location uncertainty with SA 

9.4 10.7 9.6 9,5 
5.1 1.4 2.1 9.5 

0.96 0.99 0.43 0 

Note. SA = Spreading attention; TL = probability of perceiving the target letter; Tc = probability of 
perceiving the target color; NL = probability of perceiving the nontarget letter; Nc = probability of perceiving 
the nontarget color. 
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consider a trial on which the participant saw nothing. Suppose 
he or she guessed the target color to be red. Then i fg  is .04, the 
participant will guess the nontarget color to be red with proba- 
bility .04, to be yellow with probability .48, and to be blue with 
probability 0.48. This is very close to an exclusionary guessing 
strategy. 

All four models strongly agree as to their estimates of  TL, Tc, 
Nc, and g. In particular, all models agree there were individual 
differences in the perception of  the nontarget color. For Partici- 
pants 1, 6, and 7, the probability of  perceiving the nontarget 
color is considerably lower than the probability of  perceiving the 
target color. Participant 2 appears to be equally proficient in 
perceiving the two colors, perhaps because of  a strategy differ- 
ence. Participants 1, 6, and 7 may have narrowed attention rap- 
idly to the target location, thereby reducing the likelihood of  
correctly perceiving the nontarget color. In contrast, Participant 
2 may have adopted a strategy in which attention was distrib- 
uted more evenly over the display. It should be possible in future 
experiments to explore these hypotheses by varying the impor- 
tance of  perceiving the nontarget color. 

There is major disagreement among the models only about 
the value Of NL. The disagreement could result from the failed 
attempt of  invalid models to fit the data. However, even for the 
best model--the location uncertainty model with spreading at- 
t en t ion- the  estimates of  NL are highly variable. In fact, they 
seem more variable than one would expect on the basis of  indi- 
vidual difference. A second possibility is that the data just do 
not constrain the ArE parameter enough. This was the problem 
in Experiment 1 for both the ArE and Nc parameters. To test this 
hypothesis, we again examined the effects on AIC of  separately 
incrementing and decrementing each parameter in the location 
uncertainty model with spreading attention by .  15 (.50 for ~r). 
These modest changes in the NL parameter estimates had al- 
most no effect on AIC (AIC increased an average of  2 or 3 
points), which confirms the hypothesis that the data do not 
sufficiently constrain this parameter. Changes in all other pa- 
rameters caused large increases in AIC. For example, for Par- 
ticipant 2, changing Nc b y .  15 caused an average increase in 
AIC of 130. For Participant 7, the average increase was 51. 

The results of  Experiments 1 and 2 indicate that data from 
partial report designs are sufficiently rich to allow precise esti- 
mation of all parameters describing the participant's perceptual 
experience with stimulus features that must be reported 
(assuming, of course, that one uses a valid model). In Experi- 
ment 1 this included only the identity of the target letter and its 
color. In Experiment 2 this included the identity of  the target 
letter and the target and nontarget colors. Partial report data do 
not appear rich enough to allow accurate estimation of  param- 
eters describing the participant's experience with features that 
are not reported (e.g., the identity of the nontarget letter ). This 
suggests that when modeling partial report data, simplifying as- 
sumptions can be made about these latter parameters (e.g., ArE 
= 0), with only a minor penalty in goodness of  fit. An alterna- 
tive might be to constrain the values of parameters correspond- 
ing to nonreported features to equal that of  corresponding re- 
ported features (e.g., NL = TL). 

Previous Research 

Experiments 1 and 2 demonstrate the efficacy ofmultinomial 
models at accounting for the complex guessing strategies par- 

ticipants adopt in the partial report designs used to study fea- 
ture binding. In addition, the experiments support the basic as- 
sumptions of  location uncertainty theory over the notion of  ran- 
dom binding. This section demonstrates the potency of  our 
approach by reexamining published data from two studies. In 
both examples, formal modeling provides insights that go be- 
yond those available from traditional methods of  analysis. 

Cohen and Ivry (1989) 

Cohen and Ivry (1989) were interested in the effects ofinteri- 
tern distance and attention on feature binding. In their Experi- 
ments 3 and 4, which we focus on here, they hypothesized that 
the effect of  distance would be modulated by attention, so that 
(a) within the span of  spatial attention there would be no effect 
of  interitem distance and (b) feature binding errors would oc- 
cur only between items that were both within the span of  
attention. 

The basic paradigm used by Cohen and Ivry (1989) was the 
same as in our Experiment 1: Two colored letters were presented 
on each trial, and the participants had to report the color and 
identity of a target letter with no report required of  the non- 
target features. The locations of  the colored letters were varied 
across trials, although one letter was always presented to the left 
of  fixation, and one letter was always presented to the right. The 
possible letter locations are shown by the boxes in Figure 8. One 
letter was always presented in position P1, P2, or P3, and the 
second letter appeared in position/4, Ps, or P6. In addition to 
the colored letters, two digits were presented on each trial, and 
the participants had to report the identity of  the two digits be- 
fore describing the target letter. In an effort to manipulate the 
span of  attention, two conditions were run. In the "small spot- 
light" condition, the digits were separated by 3.3 ° and flanked 
the two center locations (the location of  the SSs in Figure 8 ). In 
the "large spotlight" condition, the digits were separated by 6.6" 
(the LSs in Figure 8). Cohen and Ivry only collected about 10 
trials per condition per participant, so the data they presented 
were averaged across participants and left-right symmetrical 
pairs (e.g., data from pairs P2-P4 and P3-P5 were averaged). 

We fit a number of  models to these data (i,e., to the data re- 
ported in their Tables 3 and 4), including the random binding 
and location uncertainty models. The data from the small spot- 
light and large spotlight conditions were fit separately, and all 
data were modeled, including conditions that were within and 
outside the spotlight. In both experiments, the location uncer- 
tainty model (without spreading attention) provided much bet- 
ter fits than the random binding model for both the small and 
large spotlight conditions (the smallest AIC difference was 
211 ). Thus, these data provide another example of  distance 
effects on illusory conjunctions. 

The parameter estimates from the location uncertainty 
model showed several interesting attentional effects. First, a was 
much greater in the large than in the small spotlight condition. 
The average a estimate across experiments was 0.53 ° (of  visual 
angle) in the small spotlight condition and 1.01" in the large 
spotlight condition. Thus, as expected, there is more location 
uncertainty when attention is distributed over a larger area, and 
consequently, there are more feature binding errors. This result 
supports the notion of  spreading attention that we incorporated 
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Figure 8. Display conditions of Experiments 3 and 4 of Cohen and Ivry (1989). Pi = position i; LS = 
location of digits in large spotlight condition; SS = location of digits in small spotlight condition. 

into the location uncertainty model through Equation 6. In ad- 
dition, attention not only affected the probability of binding but 
also the probability of feature perception. The average estimates 
of TL were .65 and .53 for the small and large spotlight condi- 
tions, respectively. For Tc, the values were .51 and .45. These 
differences suggest there is a cost to spreading attention over a 
large area. In addition to increased location uncertainty, feature 
perception also suffers. One of the advantages of a formal mod- 
eling approach is that the simultaneous effects of  an indepen- 
dent variable, such as attention, can be examined on both fea- 
ture perception and feature binding. In fact, our approach 
makes it impossible to analyze feature binding without taking 
into account feature perception. 

Cohen and Ivry (1989) might question our model-fitting pro- 
cedure because we simultaneously fit data from letter pairs that 
were both within and outside the spotlight of attention. They 
might argue that the real issue is whether there is a distance 
effect within the spotlight. Specifically, they argued that there is 
not. This claim was also made by Treisman and Schmidt (1982) 
using a paradigm with similar requirements for a secondary 
digit-report task. To test this hypothesis, we fit the random bind- 
ing and location uncertainty models to the data from the letter 
pairs that fell within the large spotlight (i.e., Pairs 3-4, 2-5, 2-  
4, and 3-5).  The location uncertainty model provided much 
better fits in both experiments (AIC values were 3,836 and 
3,689 in Experiment 3 and 3,719 and 3,574 in Experiment 4 for 
the random binding and location uncertainty models, 
respectively). Thus, there does seem to be a distance effect, even 
within the spread of  attention. 

Cohen and Rafal (1991) 

Cohen and Rafal ( 1991 ) tested a woman with a mild atten- 
tion disorder on an illusory conjunction task. This patient had 
suffered a stroke 12 years before testing, and the resulting lesion 
encompassed a large portion of  the left parietal lobe. The pa- 
tient still showed mild signs of extinction under laboratory test- 
ing conditions; in particular, she was slow to detect a stimulus 
in the contralesional hemifield when a competing stimulus was 
presented simultaneously in the ipsilesional hemifield. The pa- 
rietal lobe has been implicated in visual attention (e.g., Posner, 
Walker, Friedrich, & Rafal, 1984), and Treisman has claimed 

that attention is necessary for feature binding (Treisman & Gel- 
ade, 1980; Treisman & Schmidt, 1982). Hence, Cohen and Ra- 
fal predicted that the patient would make more illusory con- 
junctions for stimuli presented in the contralesional hemifield 
relative to stimuli presented in the ipsilesional hemifield. Fur- 
thermore, because Treisman claimed that feature perception is 
a preattentive process, Cohen and Rafal expected that the pa- 
tient would be as adept in perceiving features presented to either 
hemifield. 

The method used by Cohen and Rafal (1991) was similar to 
that used in our Experiment 1. Two colored letters were pre- 
sented on each trial, and the participant had to report the color 
and identity of the target letter. There were two possible target 
letters and four possible colors. The colored letters were always 
presented to a single hemifield. The letters were vertically 
aligned and were separated by visual angles of  approximately 
0.5* (near condition) or 4.0* (far condition). Two digits of 
different sizes were also presented at the center of the display. 
The participant was required to report  the identity of the larger 
of  the two digits (in size). This secondary task was included 
to increase the processing demands and to ensure the patient 
maintained fixation at the center of  the display. 

Cohen and Rafal's ( 1991 ) data are reproduced in Table 10. 
We fit the alpha model separately to the data from each experi- 
mental condition. To reduce the number of free parameters, 7 
we set NL = TL. For the far conditions, the best fit was with a = 
.95 on the contralesional side and a = .92 on the ipsilesional 
side. Thus, feature binding was accurate in both hemifields. 

The most interesting data came from the near conditions. Co- 
hen and Rafal ( 1991 ) made two claims. First, they argued that 
feature integration errors were more numerous on the con- 
tralesional side than the ipsilesional side. Our a estimates sup- 
ported this conclusion. For the contralesional hemifield, the es- 
timated value of  a was only .55, indicating the patient was only 
slightly better than chance at binding the target letter to the 
target color. In contrast, on the ipsilesional side, the a estimate 
was .90, indicating accurate binding. These results appear to 

7 The NL = TL version of the alpha model had a lower AIC value than 
the version with NL free, for all four conditions. 
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Table 10 
Response Proportions From Cohen and Rafal (1991) 

Response category 

Hemifield Condition C CR LF CF CLF LFCR 

Ipsilesional Near .35 .34 . 12 .03 .01 .13 
Contralesional Near .70 .10 .06 .10 .03 .03 
Ipsilesional Far .39 .20 .09 .08 .07 .07 
Contralesional Far .68 .09 .09 .11 .02 .02 

Note. C = correct response; CR = conjunction response; CF = color 
feature error; LF = letter feature error; CLF = color-letter feature error; 
LFCR = letter feature error, conjunction response. 

support the claim that the patient has a contralesional binding 
deficit, but we will present an alternative explanation shortly. 

The second claim, motivated by Treisman's theory, was that 
the patient should be equally adept at identifying features in 
the ipsilesional and contralesional hemifields. Cohen and Rafal 
( 1991 ) claimed that, whereas the patient was impaired in iden- 
tifying the letter when the stimuli were presented in the con- 
tralesional hemifield, there was no hemispheric difference in 
color perception. To the contrary, our analysis indicated that 
both color and letter feature perception differed in the two hem- 
ifields but in a rather surprising way. In support of  the Cohen 
and Rafal claim, the model fits indicated that the probability of 
detecting the target letter (TL) in the ipsilesional hemifield was 
higher than in the contralesional f ield-- .78 versus .47. However, 
the estimates of Tc were actually higher in the contralesional 
than in the ipsilesional f ield-- .86 versus .71. Thus, in the near 
condition, the alpha model indicates that the patient's color per- 
ception was actually better in the contralesional hemifield! 

A direct examination of the Cohen and Rafal (1991 ) data 
(i.e., Table 10) supports these conclusions about the accuracy 
of the participant 's feature reports. If  the participant really was 
poorer at identifying contralesional than ipsilesional targets, 
then the total number of  trials on which an incorrect letter re- 
sponse was made should be higher on the contralesional side. 
The total number of letter errors can be computed by adding 
the frequencies of  LF (letter feature error),  CLF (color-letter 
feature error), and LFCR ( simultaneous letter feature error and 
conjunction response) responses. These sums indicate there 
were significantly more errors in the contralesional field than in 
the ipsilesional field, x 2( l,  N = 306) = 25.24, p < .0 I. We also 
computed the total errors on which participants responded with 
a color that was not part of the display (the sum of  CF and CLF 
response frequencies). In agreement with our Tc estimates, the 
participant was significantly more accurate in the contralesio- 
nal field, x2( 1, N = 325) = 19.76,p < .01. 

The fits of the alpha model provide converging evidence that 
the patient's deficit is most pronounced on tasks requiring fea- 
ture binding rather than feature perception. However, we were 
quite surprised by the finding in both the raw data and in the 
parameter estimates that suggested the patient may have better 
color perception in the lesioned hemifield. It is easy to un- 
derstand why letter perception is worse in the contralesional 
field, but it is curious why color perception should be better in 
the contralesional field. This counterintuitive result led us to 

consider an alternative model to account for the patient's 
performance. 

Our alternative model was inspired by the phenomenon of  
simultaneous extinction--perhaps the most characteristic 
symptom of  this type of lesion. When presented with more than 
one object simultaneously, extinction occurs if the patient is un- 
able to perceive one of  the objects (Bender, 1945). A simple 
model that assumes extinction is illustrated in Figure 9. The 
model assumes that the patient never perceives the same fea- 
tures from both stimulus letters. For example, the patient may 
either perceive a single color (from either the target or nontarget 
letter) or no colors. Similarly, the patient will either perceivea 
single letter or no letters. The extinction model has only three 
free parameters. The parameter TL represents the probability 
that the patient perceives a single letter and that it is the target 
letter. Thus, 1 - TL is the probability that the patient perceives 
only the nontarget letter or that no letter is perceived. The pa- 
rameter Pc represents the probability the patient perceives one 
color, and 1 - Pc is the probability that no colors are perceived. 
Finally, Tc is the probability that the one color perceived is from 
the target letter, and 1 - Tc is the probability that it is from the 
nontarget letter. The model assumes that whenever a letter and 
a color are perceived, they will bind together, regardless of 
whether the two features are from the same object. 

For the data from the contralesional hemifield (near condition), 
the extinction model provided a slightly better fit than did the al- 
pha model (AIC = 918 vs. 920). Thus, here are two strikingly 
different interpretations of the Cohen and Rafal ( 1991 ) data. Ac- 
cording to the alpha model, there were many failures of feature 
binding in the contralesional hemifield (a  = .55 ), whereas accord- 
ing to the extinction model, the many conjunction responses in 
this condition are really a result of the extinction phenomenon. 
Because of extinction, there will be many trials in which the non- 
target color is the only color seen by the patient. Consequently, the 
nontarget color will be reported more frequently than colors not 
present in the display, and as a result, more conjunction responses 
will occur. Moreover, because the perceived color is reported, be it 
from the target or nontarget letter, the participant will make few 
feature errors on the contralesional side in comparison with the 
ipsilesional side. The modeling results provide at least as much 
support for the extinction hypothesis as for the failure of feature 
binding hypothesis. 

The parameter estimates from the extinction model were TL 
= .47, Pc = .93, and Tc = .51. The color parameters suggest that 
the patient was very good at perceiving at least one color on each 
trial (Pc = .93), and the color she perceived was equally likely 
from the target or nontarget ( Tc = .51 ). TL is slightly smaller 
than Tc, but this may be because TL is the probability that the 
patient perceives a single letter and that it is the target letter. The 
analogous probability for color-- that  is, the probability that she 
perceives a single color and that it is the target color-- is  equal 
to the product of Pc and Tc. It is interesting that Pc × Tc = .47, 
exactly the TL estimate. The data, therefore, do not contradict 
the hypothesis that the patient was as equally likely to see one 
letter as to see one color and that, on trials when she did perceive 
a single letter, it was equally likely to be the target or nontarget. 
Finally, it should be noted that the extinction model provides 
a poor fit of  the data from our Experiment 1. Thus, it is not 
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Figure 9. Tree diagram of an alternative interpretation of the Cohen and Rafal ( 1991 ) data that assumes 
conjunction responses are due to simultaneous extinction (i.e., the extinction model). (TL = probability of 
perceiving one letter and it is the target letter; Pc = probability of perceiving one color; Tc = probability 
that the one color perceived is from the target letter; C = correct responses; CR = conjunction response; CF 
= color feature error; LF = letter feature error; LFCR = letter feature error, conjunction response; CLF = 
color-letter feature error.) 

appropriate for modeling data from participants with normal 
feature perception. 

The extinction model and the resulting parameter estimates 
seem to match nicely the clinical description of simultaneous 
extinction. When simultaneously presented with more than one 
object, the patient is unable to perceive all of the information. 
Although the typical extinction paradigm has involved the si- 
multaneous presentation ofipsi- and contralesional stimuli, the 
current results suggest that extinction may also occur when 
more than one stimulus is presented contralesionally. Moreover, 
the results imply that extinction may occur within a dimension 
(e.g., color) rather than for whole objects. Baylis, Driver, and 
Rafal (1993) have also recently found evidence that extinction 
may operate more strongly within a dimension (e.g., as when a 
color extinguishes a similar color) than between dimensions 
(e.g., as when a color extinguishes a letter). 

Cohen and Rafal ( 1991 ) claimed that the patient had intact 
feature perception in the contralesional hemifield and a deficit 
in feature binding. The modeling work leads to new insights 
into what is meant by a deficit in feature binding. By traditional 
interpretations, one would infer that the patient has perceived 
the feature information in a normal manner, but that she is un- 
able to bind together those features that emanate from the same 
object. However, we propose an alternative interpretation in 
which the emphasis returns to a problem in feature perception. 
By our account, the patient's primary problem is that she is 
unable to perceive more than one feature within each dimen- 
sion on a given trial. Illusory conjunctions for this patient are 
not the result of jumbling up a set of colors and letters but rather 
result from the fact that the patient appears to respond with the 
limited information available to her. s 

Genera l  Discussion 

Assumptions of the Multinomial Modeling Approach 
All models described in this article rest on two key assump- 

tions that cannot be expected to hold in general. The first is that 

feature perception is all or none; the second is an assumption of 
feature-sampling independence--namely, that the simulta- 
neous perception of different features occurs in a statistically 
independent fashion. These two assumptions have a long history 
in the pattern perception literature, and a good deal is known 
about the conditions under which they might be valid. 

The models assume feature perception is all or none because 
each major fork in the trees that describe the models has only 
two branches. For example, consider the TL versus 1 - TL forks. 
The TL branch assumes the target letter is perceived perfectly, 
whereas the 1 - TL branch assumes there is no target letter in- 
formation at all. No branches in any models allow partial fea- 
ture information. 

All-or-none models of pattern perception were first formally 
tested about 25 years ago (Townsend, 1971 ). A decade later 
they were rejected as a complete description of human pattern 
perception (Smith, 1980; Townsend & Ashby, 1982). There is 
abundant evidence that partial information is frequently avail- 
able, even in the most impoverished viewing conditions (e.g., 
Townsend & Ashby, 1982; see also Kinchla, 1994). In fact, the 
best current models of pattern identification assume some in- 
formation is obtained on every trial (at least with foveal display; 
e.g., Ashby & Lee, 1991 ). Nevertheless, under certain condi- 
tions, all-or-none models can provide reasonably good fits to 
data. Specifically, all-or-none models can fit well if the compet- 
ing stimulus features are highly dissimilar, because in this case 

s Arguin, Cavanagh, and Joanette (1994) recently tested several pa- 
tients with clinical neglect in a presence-absence task, in which partic- 
ipants were to respond present only when the display contained a target 
defined by a color and a form (e.g., red circle). They found a large 
number of false positives when displays presented in the contralesional 
hemifield contained the target color in one element and the target shape 
in another (e.g., red square and green circle). We are now developing 
models of the presence-absence task, which should make it possible to 
compare random binding and extinction interpretations of this 
phenomenon. 



FEATURE BINDING 187 

partial information will likely lead to the correct response 
(Townsend, 1971; Townsend & Ashby, 1982 ). For example, in 
Experiment l, the target letter was always a T or an X. If the 
participant perceives any evidence ofhorizontalness or vertical- 
ness, the target was almost certainly a T, whereas any evidence 
ofdiagonality strongly implicates an X. Thus, any partial infor- 
mation leads to a correct response, so it seems reasonable to 
assume that letter feature errors in Experiment 1 occur only on 
trials when the participant has no information available about 
the identity of  the target letter. As a consequence, the TL param- 
eter might more appropriately be interpreted as the probability 
that at least some target letter information is perceived. 

In experiments where the similarity among the alternative 
feature values is high, the all-or-none assumption will not be 
valid. In this case, the treelike structure of  the location uncer- 
tainty model might be retained, but the model will require con- 
siderable generalization. For example, suppose we replicate Ex- 
periment 1, but instead of using Tand X for the target letters we 
use B and D. In this case, l - TL and its associated branches 
could have exactly the same meaning as before--namely, the 
probability of  no target letter information of  any kind. However, 
TL could now equal the probability that at least some informa- 
tion about the target letter was obtained. Two new branches 
would sprout from the TL branch. The first would correspond 
to the probability that the target is identified as a B, and the 
second would correspond to the probability the target is identi- 
fied as a D (where the two probabilities add to 1 ). The compu- 
tation of  these two probabilities would differ depending on 
whether the display contained a B or a D. Ideally they would 
be derived from some underlying similarity-based identification 
model (e.g., Ashby & Perrin, 1988). 

One consequence of  substituting the letters B and D for the 
letters T and Xis that many more letter feature errors would be 
expected. If we had also replaced the colors red, yellow, and blue 
with red, yellow, and orange, then we would also expect more 
conjunction responses. For example, on a trial when the target 
was an orange T and the nontarget was yellow, the participant 
might misidentify the color of  the target as yellow. This would 
lead to a CR, but the CR would not be the result of  incorrectly 
combining features. Rather, the CR would be the result of  mis- 
perceiving the features. A formal modeling approach has the 
potential to separate the effects of  similarity on feature percep- 
tion from the effects of  similarity on feature binding (see Ivry & 
Prinzmetal, 1991, for a different solution to this problem). 

The models developed in this article all assume feature-sam- 
pling independence because the probability of  following two 
successive branches is assumed to be the product of  the proba- 
bilities associated with each single branch. In general, the per- 
ception of  multiple stimulus features does not satisfy feature- 
sampling independence (Ashby & Townsend, 1986; Townsend 
& Ashby, 1982; Townsend, Hu, & Ashby, 1981 ). Nevertheless, 
with some features the assumption may be valid. Ashby and 
Townsend (1986) showed that feature-sampling independence 
will hold if the separate features are perceived independently 
and if the participant makes separate decisions about the level 
of the various features. Because there is growing evidence that 
shape and color perception occur in different visual systems, at 
least with small targets and peripheral displays (e.g., Lennie, 
1984; Livingstone & Hubel, 1984; Zrenner et al., 1990), it 

seems reasonable to assume that in our experiments, shape and 
color were perceived independently. 

The assumption that participants make separate decisions 
about the level of  each stimulus feature seems reasonable, but it 
is not guaranteed to be optimal (i.e., maximize overall response 
accuracy), even if perceptual independence holds (Ashby & 
Gott, 1988 ). Ashby and Maddox (1994) showed that two other 
properties are critically important. First, the stimulus features 
must also be perceptually separable--that is, the perception of  
one must be unaffected by the level of the other (Ashby & Town- 
send, 1986). Second, the stimulus ensemble must contain all 
possible combinations of  the levels of  the various features (i.e., a 
factorial design). Under these conditions, the optimal response 
strategy is to make separate decisions about the level of  each 
feature. 9 Both of  these conditions were satisfied in the present 
experiments. First, hue and shape are known to be perceptually 
separable (e.g., Garner, 1974; Handel & Imai, 1972; Imai & 
Garner, 1965); second, six possible targets were created by fac- 
torially crossing two levels of  shape ( T or X) with three levels of  
hue (red, yellow, or blue). Thus, the multinomial models pre- 
sented here might reasonably be interpreted as maximum like- 
lihood models: Given the processed information available from 
a display, the participant computes the likelihood of  each possi- 
ble stimulus display and chooses the alternative associated with 
the largest likelihOod. 

It is not difficult to imagine experiments, however, where the 
feature-sampling independence assumption would almost 
surely be invalid. For example, consider a version of  Experi- 
ment 1 in which the target and nontarget were both colored 
squares that varied across trials in hue and brightness. Suppose 
the target was red or green and the nontarget was always blue 
and, furthermore, the target and nontarget brightnesses were 
sampled (without replacement) from three different brightness 
levels (e.g., dim, moderate, bright). The participant's task is to 
name the target color and identify the level of  the target bright- 
ness. The location uncertainty model could be fit, without al- 
teration, to the results of  such an experiment, but it might not 
fit well. Perceptual interactions between hue and brightness are 
well known (e.g., Garner & Felfoldy, 1970; Hyman & Well, 
1968), so it is likely that feature-sampling independence would 
fail. If  so, then the probability of  perceiving a particular hue and 
brightness would not equal the probability of  perceiving that 
hue times the probability of  perceiving that brightness. 

In the absence of feature-sampling independence, the simulta- 
neous perception of  different features must be modeled as a single 
event, not as a sequence of independent events, as is possible if 
feature-sampling independence holds. One possibility is to assume 
that the participant perceives the target as a gestalt, with values on 
different perceptual dimensions that may covary over trials and 
that the decision about the level of a particular feature may depend 
on the values along several perceptual dimensions. Exactly such a 
model is currently popular in the pattern identification literature 
(Ashby&Lee, 1991;Lee & Ashby, 1995). 

If  feature-sampling independence holds for form and color, 

9 The Ashby and Maddox (1994) proof also assumed that the per- 
cepts have a trial-by-trial multivariate normal distribution, but this con- 
dition is much less important than perceptual independence, perceptual 
separability, and a factorial stimulus design. 
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then perception of  the target letter will be independent of  per- 
ception of the target color. Even in this case, however, it might 
be unreasonable to expect the simultaneous perception of  the 
target and nontarget colors to be independent. How would the 
possible failure of  feature-sampling independence for the target 
and nontarget colors affect the analyses reported in this article? 
To answer this question, we simulated a number of data sets 
from a generalization of  the alpha model in which a dependence 
was introduced between the perception of  the target and non- 
target colors (using the Ashby & Townsend, 1986, model of  per- 
ceptual dependence). We then fit each data set using the stan- 
dard alpha model (i.e., the version assuming independence). 
When the perceptual dependence was moderately strong, the 
standard alpha model was unable to estimate Tc and Nc accu- 
rately. However, the standard model was able to estimate a ac- 
curately. Thus, our conclusions about feature binding are rela- 
tively unaffected by a possible perceptual dependence between 
the target and nontarget colors. 

Relations to the Visual Search Literature 

Another popular method for studying attention uses a visual 
search task, in which participants search for either a target de- 
fined by the conjunction of features (e.g., red X) or defined by 
a single unique feature (e.g., any red letter). These two tasks are 
called conjunction and feature search, respectively. The original 
finding was that response time (RT) for feature search is almost 
unaffected by display size (i.e., by the number of distractors), 
a result that is highly suggestive of  massive parallel processing 
(Treisman & Gelade, 1980). In contrast, it was found that RT 
for conjunction targets increases sharply with display size. 
Treisman has argued that feature search requires only feature 
perception, whereas conjunction search also requires feature 
binding (Treisman, 1982, 1991; Treisman & Gelade, 1980; 
Treisman & Gormican, 1988; Treisman & Sato, 1990). Loca- 
tion uncertainty theory assumes that feature binding is required 
for the correct perception of  multielement displays, so in this 
respect, we agree with Treisman. 

A number of recent empirical findings have seriously compli- 
cated this story. First, for feature search, mean RT almost al- 
ways increases with display size to some extent. For example, 
Cavanagh, Arguin, and Treisman (1990) examined feature 
search for a number of stimulus attributes. In 9 of l0 cases, 
mean RT increased with display size (i.e., Tables l, 2, and 3, 
positive trials). Second, it has been known for a long time that 
visual search RT increases with target-distractor similarity 
(e.g., Estes, 1972). In fact, if the stimuli are confusable, the dis- 
play-size effect can be quite large, even for feature search (e.g., 
Duncan & Humphreys, 1989; Nagy & Sanchez, 1990). Third, 
under certain conditions, search time for conjunctions is mini- 
mally affected by display size (Cohen & Ivry, 199 l; McLeod, 
Driver, & Crisp, 1988; Nakayama & Silverman, 1986; Stein- 
man, 1987; Treisman & Sato, 1990; Wolfe et al., 1989). 

Although the study of visual search behavior is important in 
its own right, as a paradigm for the study of feature binding, it 
is problematic. Because both feature search and conjunction 
search can yield either large or small display-size effects, a par- 
ticular data set is not diagnostic as to whether the limits in per- 
formance are due to feature perception, feature binding, or 

both. For example, feature binding is not logically necessary for 
feature search, but this does not imply that feature binding does 
not occur. To complicate matters more, there is convincing evi- 
dence that other processes are also involved. For example, deci- 
sion processes become more complex as display size increases 
(e.g., Palmer, Ames, & Lindsey, 1993). Unfortunately, no 
method has been proposed to separate the contributions of 
these various components. In contrast, within the context of  the 
partial report paradigm, the models developed in this article 
allow us to estimate separately the effects of  feature perception 
and feature binding on human performance. Thus, we believe 
that partial report is a better paradigm than visual search if one 
is interested in studying the feature binding process. 

Conclusions  

The formal modeling approach described in this article has a 
number of  important advantages over past methods of data analy- 
sis in feature binding experiments. The problem with traditional 
methods of data analysis has always been that many of the re- 
sponses labeled CRs are errors due to guessing rather than to in- 
correct feature binding. This has made it difficult to test competing 
theories of feature binding and even to decide whether feature 
binding errors have occurred. The muitinomial modeling ap- 
proach described in this article solves both of these problems. In 
particular, it allowed us to formalize the assumptions made by 
previous investigators. The resulting simple null model provided a 
poor account of our data, even in those conditions where partici- 
pants did not make illusory conjunctions. Our analyses indicated 
that, in contrast to traditional assumptions, participants make use 
of information from the nontarget letter; even when they are asked 
only to identify features of the target letter. 

Another advantage of the formal modeling approach is that it 
provides estimates of a number of  psychologically meaningful 
quantities. For example, the alpha model provides simultaneous 
estimates that feature binding is successful (i.e., a) and that each 
stimulus feature in the display is identified correctly (i.e., TL, Tc, 
Nc, and NL). This allows us to study feature perception and fea- 
ture binding within the same model. An examination of these pa- 
rameter estimates from two separate experiments indicated that 
(a) when the target and nontarget letters were sufficiently close 
together, true illusory conjunctions did occur, and (b) contrary to 
the feature integration theory of Treisman and Schmidt (1982), 
the probability of correct binding increased with interitem dis- 
tance. We proposed a location uncertainty model that accounted 
for both of these phenomena and that fit the data from two exper- 
iments better than a model consistent with Treisman and 
Schmidt's (1982) feature integration theory (i.e., the random 
binding model). 

A formal modeling approach also can provide new insights into 
old data. For example, our reanalysis of the Cohen and Ivry 
(1989) data confirmed some of their conjectures but disconfirmed 
others. Perhaps most important, our reanalysis indicated that 
there was a distance effect on illusory conjunctions within the spot- 
light of attention, in contradiction to the claims of both Cohen and 
Ivry (1989) and Treisman and Schmidt (1982). 

Finally, the models developed in this article are easy to mod- 
ify. As such, the same basic approach can be used to formalize 
other ideas about illusory conjunction experiments. For exam- 
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pie, we were able to formulate and test an alternative account 
of the performance of a patient with parietal lobe damage that 
assumed the large number  of  conjunct ion responses she pro- 
duced were the result of  simultaneous extinction rather than a 
failure of  feature binding. It is the very general and flexible na- 
ture of  the mult inomial  modeling approach that is perhaps its 
greatest asset. We believe that the formulation and testing of  
models of  the type introduced here will lead to a rapid increase 
in our understanding of  the psychological phenomena underly- 
ing object perception. 
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Appendix 

Computing the Probabil i ty  of  Correct  Binding in the Location Uncerta inty  Model 

This appendix derives an efficient method for computing the proba- 
bility of correct binding according to location uncertainty theory. From 
Equation 1, 

P(correct binding) = P(DTL,TC < DXL,NC) 

2 2 = P(Dax.rc < DTL,NC) 

= eI(XrL - Xrc)'(Xr, - Xrc) 

< (XTL -- XNC)'(XTL -- XNC)]. (A1) 

By assumption, XrL, Xrc, and XNc are all mutually independent, and 
each has a bivariate normal distribution with variance-covariance ma- 
trix equal to tr2L where I is the identity matrix. The coordinate system 
in the perceived plane can be set arbitrarily, so without loss of generality 
we assume the point (0, 0) corresponds to the coordinates of the mean 
perceived location of the target letter. We can also arbitrarily set the 
coordinates of the mean perceived location of the nontarget letter to (d, 
0), where dis the perceived distance between target and nontarget. As a 
consequence, the means of the three random vectors are 

E(XTL)=[~],E(XTc)=[~I, and E(XNc)=[0d].  (A2) 

Now let k'T = XrL -- Xrc and let VN = Xax - XNc. Next define the 4 × 
l dimensional random vector, 

Vr] (A3) 
Y= VN" 

Note that Y has a multivariate normal distribution with mean vector 

and variance-covariance matrix equal to 

/ g y  = and 2;v [ a2I 2cr2I] u2 21 ' 

where I is a 2 × 2 identity matrix. Therefore, 

P(correct binding) = P( Vr'Vr < VN'VN ) 

= P(Vr 'Vr-  VN'VN < 0) 

= P(Y'JY<O),  

where 

°i] 

(A4) 

(A5) 

(Appendix continues on next page) 
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Because Y has a mult ivariate normal  dis tr ibut ion,  Y ' J Y  is a qua- 
dratic funct ion of  normal  variables. Unfortunately,  however, the en- 
tries in Y are not  mutual ly independent .  To proceed, we must  rotate  
the variables to achieve independence.  

To begin, let A be the unique lower t r iangular  mat r ix  with the prop- 
erty that  AA' = ~l, (e.g., Ashby, 1992; Graybill ,  1976). Now define 
W = A - l (  Y - t-v). Note  tha t  W has a mult ivariate z dis t r ibut ion 
(i.e., multivariate normal  with mean  0 and var iance-covar iance  ma-  
trix equal to the identi ty)  and that  Y = AW +/~v. Therefore,  

P(cor rec t  binding)  = P( Y ' J Y  < O) 

= P[ (AW + Iiv) 'J(AW + ~v)  < 0] 

= P[ (AW + AA -It*v)'  J (AW + AA-It~v) < 0] 

= P[ (  W + A -lt*v)'A'JA( W + A-it*v) < 0] .  

(A6)  

Next, let P denote the matrix whose columns are the eigenvectors of 
A'JA, and let D denote the diagonal matrix whose entries on the main  
diagonal are the corresponding eigenvalues of  A'JA. Therefore, A 'JA = 
PDP'. Finally, define Z = P'tE. Note that  Z also has a multivariate z 
distribution and that  W = PZ. The probability of  correct binding can 
now be written as 

P(correct binding) = P[(PZ + A --l~y )'A'JA (PZ + A--It* v ) < 0] 

= P[(PZ + PP'A-It,v)'A'JA(PZ + PP'A -tt~v) < 0] 

= P[(Z  + P'A-tt ,v) 'P'A'JAP(Z + P'A-~t*v) < 0] 

= P[(Z  + P'A - t t , v ) 'D(Z  + P'A -It*y) < 0] .  

(A7) 

Denote the ith entry of the Z vector by zi. Now if we perform all the 
matrix operations specified in Equation A7, the probability of  correct 
binding reduces to 

P(correct  binding) 

= P [ ( z l  " 2 1 ~ 3 d ) 2 - ( z 2 - ' 7 8 8 r 7 d ) 2 + z ~ - z ~ < O  ] 

= P [ ( z ,  "2113d)2+ z~ < (  z2-'7887d'2±a } - z4j2] 

= p[x2'(2,61) < X2'(2,62)] 

- P [ ~ <  1] = P [F" (2 ,2 ,6 , , 62 )<  1], (A8) 

where ×z'(2,6~ ) and x2'(2,62) are independent random variables with 
noncentral chi-squared distributions with two degrees of freedom each 
and noncentrality parameters 61 = (.2113 d~ cr ) 2 and 62 = (. 7887 d~ a ) 2, 
respectively. Their ratio defines a random variable F"(2,2,6t,62) that 
has a doubly noncentral F distribution (e.g., Johnson & Kotz, 1970). 
Thus, the probability of correct binding is equal to the probability that  
a random variable with a doubly noncentral F distribution is less 
than 1. 

Unfortunately, there is no closed form expression for the cumulative 
doubly noncentral  F distribution function. Using a result of Imhof ' s  
( 1961 ), Ennis and Johnson ( 1993 ) showed that  
P[F"(2,2,6662) < 1] 

• r ( 6 ,  - 62)x1 r +  2)x 2] 
s'nL jexp L 1+4x2 J 

(A9) 

Thus, the probability of  correct binding can be computed exactly as a 
single integral. The integral can be evaluated numerically using a 
method such as Simpson's rule (e.g., Press, Flannery, Teukolsky, & Vet- 
terling, 1988). 

Several approximations to the doubly noncentral  F distribution func- 
tion are available. The simplest of these is a normal  approximation due 
to Patnaik ( 1949; see also Zinnes & Griggs, 1974). Let ri = 2 + 6i and 
let bi = 6i/(2 + 60, for i = 1 and 2. Then Patnaik showed that  

Ui = [X2'(2,6i)/ri] 113 (AI0 )  

is approximately normally distributed with mean 

2{1  + b i ]  
# i = 1 - 9 ~  ri ] ( A l l )  

and variance 

Now 

2{l+bi~ 
a~ = 9 \ ri ]"  ( A I 2 )  

P[F"(2,2,81,62) < 1] = P [  x2"(2,St)[x2'(2,62) < 1 ] 

= pJ'[×~'(2,6,)/r,]'"~ < (~] ''~ 
[Lx2"(2,82)lr21 \r, s 

=/u, 

= P( U1 < CU2) 

= P(U1 - CUE < 0),  ( A I 3 )  

where C = [(2 + 62)/(2 + 61)] 1/3. From Patnaik's result, UI - CU2 is 
approximately normally distributed with mean #t - C~2 and variance 
at  2 + C2~rz 2. Therefore, 

c ~ , ,  - t* ,  ] 
PIF"(2,2,6, ,62)< 11 = P  Z <.!/~r~ + C2~r~ ] , (A14)  

where Z has a z distribution (i.e., normal  with mean 0 and variance 1 ). 
Several excellent approximations to the cumulative z distribution are 
available (e.g., see Ashby, 1992 ). 
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