
Cloud Auto-Scaling with Deadline and Budget Constraints

Ming Mao，Jie Li，Marty Humphrey

Department of Computer Science
University of Virginia

Charlottesville, VA, USA 22904
{ming, jl3yh, humphrey}@cs.virginia.edu

Abstract—Clouds have become an attractive computing

platform which offers on-demand computing power and

storage capacity. Its dynamic scalability enables users to

quickly scale up and scale down underlying infrastructure in

response to business volume, performance desire and other

dynamic behaviors. However, challenges arise when

considering computing instance non-deterministic acquisition

time, multiple VM instance types, unique cloud billing models

and user budget constraints. Planning enough computing

resources for user desired performance with less cost, which

can also automatically adapt to workload changes, is not a

trivial problem. In this paper, we present a cloud auto-scaling

mechanism to automatically scale computing instances based

on workload information and performance desire. Our

mechanism schedules VM instance startup and shut-down

activities. It enables cloud applications to finish submitted jobs

within the deadline by controlling underlying instance

numbers and reduces user cost by choosing appropriate

instance types. We have implemented our mechanism in

Windows Azure platform, and evaluated it using both

simulations and a real scientific cloud application. Results

show that our cloud auto-scaling mechanism can meet user

specified performance goal with less cost.

Keywords-cloud computing; auto-scaling; dynamic

scalability; integer programming

I. INTRODUCTION

Clouds have become an attractive computing platform
which offers on-demand computing power and storage
capacity. Its dynamic scalability enables users to scale up
and scale down the underlying infrastructure in response to
business volume, performance desire and other dynamic
behaviors. To offload cloud administrators’ burden and
automate scaling activities, cloud computing platforms have
also offered mechanisms to automatically scale up and down
VM capacity based on user defined policy, such as AWS
auto-scaling [1]. Using auto-scaling, users can define triggers
by specifying the performance metrics and thresholds.
Whenever the observed performance metric is above or
below the threshold, a predefined number of instances will
be added to or removed from the application. For example, a
user can define a trigger like “Add 2 instances when CPU
usage is above 60% for 5 minutes”.

Such automation largely enhances the cloud dynamic
scalability benefits. It transparently adds more resources to
handle increasing workload and shuts down unnecessary
machines to save cost. In this way, users do not have to
worry about capacity planning. The underlying resource

capacity can be adaptive to the application real-time
workload. However, challenges arise when people look
deeper into the mechanisms.

In cloud auto-scaling mechanisms, performance metrics
normally include CPU utilization, disk operation and
bandwidth usage, etc. Such infrastructure level performance
metrics are good indicators for system utilization information.
But it cannot clearly reflect the quality of service a cloud
application is providing or tell whether the performance
meets user’s expectation. Choosing appropriate performance
metric and finding precise threshold is not a straightforward
task, and cases become more complicated if the workload
pattern is continuously changing. Moreover, considering
individual utilization information only may not robust to
scale [9]. For example, a cluster going from 1 to 2 instances
can increase capacity by 100%, while going from 100 to 101
instances can only increase capacity by 1%. Current simple
auto-scaling mechanisms normally ignore such non-constant
effects when adding a fixed number of resources.

Another factor such auto-scaling mechanisms overlook is
the time lag to boot a VM instance. Though instance
acquisition requests can be made at any time, they are not
immediately available to users. Such instance startup lag
typically involves finding the right spot for the requested
instances in cloud data center, downloading specified OS
image, booting the virtual machine, and finishing network
setup, etc. Based on our experiences and research [5], it
could take as long as 10 min to start an instance in Windows
Azure, and such startup lag can change over time. In other
words, it’s very likely that users may request instances late if
they do not consider instance startup time factor.

Cost is also an issue worth careful consideration when
using cloud. Cloud computing instances are charged by
hours. A fraction of an hour is counted as a whole hour.
Therefore, it could be a waste of money for machines shut
down before a whole hour operation. In addition to noticing
the full hour principal, clouds now usually offers various
instance types, such as high-CPU and high I/O instances.
Choosing appropriate instance types based on the application
workload can further save user money and improve
performance. We believe cloud scaling activities can be done
better by considering using different instance types than just
manipulating instance numbers.

In this paper, we present a cloud dynamic scaling
mechanism, which could automatically scale up and scale
down underlying cloud infrastructures to accommodate
changing workload based on application level performance
metric – job deadline. During the scaling activities, the

Preliminary version. Final version appears In Proceedings of 11th ACM/IEEE International
Conference on Grid Computing (Grid 2010). Oct 25-28, 2010. Brussels, Belgium.

mechanism tries to form a cheap VM startup plan by
choosing appropriate instance types, which could save more
cost compared to only considering one instance type.

The rest of this paper is organized as following. Section
II introduces the related work. Section III identifies cloud
scaling characteristics and describes application performance
model. Section IV formalizes the problem and details our
implementation architecture in Windows Azure platform.
Section V evaluates our mechanism using both simulations
and a real scientific application. Section VI concludes the
paper and describes future works.

II. RELATED WORK

There have been a number works on dynamic resource
provisioning in virtualized computing environment
[9][10][12][4]. Feedback control theory has been applied in
these works to create autonomic resource management
systems. In [9][10], target range is proposed to solve the
control stability issue. Further in [9], it focuses on control
system design. It points out that resizing instances is a coarse
grained actuator when applying control theory in cloud
environment and proposed proportional threasholding to fix
the non-constant effect problem. These works use
infrastructure level performance metrics and mainly focus on
control theory application in cloud environment. They do not
consider various VM types or total running cost. In [8],
dynamic scaling is explored for cloud web applications.
They considered web server specific scaling indicators, such
as the number of current users and the number of current
connections. The work uses simple triggers and thresholds to
determine instance number and does not consider VM type
information and budget constraints as well. In [4], they
considered extending computing capacity using cloud
instances and compared the incurred cost of different policies.

Particularly in cloud computing, dynamic scalability
becomes more attractive and practical because of the
unlimited resource pool. Most cloud providers offer cloud
management API to enable users to control their purchased
computing infrastructure programmatically, but few of them
directly offers a complete solution for automatic scalability
activities in cloud. Amazon web service auto-scaling service
is one of them. AWS auto-scaling is a mechanism to
automatically scale up and down virtual machine instances
based on user defined triggers [1]. Triggers describe the
thresholds of observed performance metric, which include
CPU utilization, network usage and disk operations.
Whenever the monitored metric is above the upper limit, a
predefined number of instances will be started, and when it is
below the lower limit, a predefined number of instances will
be shut down. Another work worth mentioning here is
RightScale [3]. It works as a broker between users and cloud
providers by providing unified interfaces. Users can interact
with multiple cloud providers on one screen. The nicely
designed user interface, highly customized OS images and
many predefined utility scripts enable users to deploy and
manage their cloud applications quickly and conveniently. In
dynamic scaling, they borrow the idea of “triggers and
thresholds” but extend scaling indicator choices broadly.
Including system utilization metrics, they further support

some popular middle-ware performance metrics, such as
Mysql connections, Apache http server requests and DNS
queries. However, these scaling indicators may not be able to
support all application types and not all of them can directly
reflect quality of service requirements. Also, they do not
consider cost explicitly. To the best of our knowledge, our
work is the first auto-scaling mechanism which addresses
both performance and budget constraint in cloud.

III. CLOUD SCALING

A. Cloud Scaling Characteristics and Analysis

As a computing platform, clouds own distinct
characteristics compared to utility computing and grid
computing. We have identified the following characteristics
which can largely affect the way people use cloud platforms,
especially in cloud scaling activities.

Unlimited resources limited budget. Clouds offer users
unlimited computing power and storage capacity. Though by
default the resource capacity is capped to some number, e.g.,
20 computing units per account in Windows Azure, such
usage cap is not a hard constraint. Cloud providers allow
users to negotiate for more resources. Unlimited resource
enables applications to scale to extremely large size. On the
other hand, these unlimited resources are not free. Every
cycle used and byte transferred are going to appear on the
bill. Budget cap is a necessary constraint for users to
consider whey they deploy applications in clouds. Therefore,
a cloud auto-scaling mechanism should explicitly consider
user budget constraints when acquiring resources.

Non-ignorable VM instance acquisition time. Though
cloud instance acquisition requests can be made at any time
and computing power can be scaled up to extremely large, it
does not mean cloud scales fast. Based on our previous
experiences and research [5], it could take around 10 more
minutes from an instance acquisition request until it is ready
to use. Moreover, such instance startup lag could keep
changing over the time. On the other side, VM shutting
down time is quite stable, around 2-3 minutes in Windows
Azure. This implies that users have to consider two issues in
cloud dynamic scaling activities. First, count in the
computing power of pending instances. If an instance is in
pending status, it means it is going to be ready soon.
Ignoring pending instances may result in booting more
instances than necessary, therefore waste money. Second,
count how long the pending instance has been acquired and
how long further it needs to be ready to use. If the startup
time delay can be well observed and predicted, application
admin can acquire machines in advance and prepare early for
workload surges.

Full hour billing model. The pay-as-you-go billing
model is attractive, because it saves money when users shut
down machines. However, VM instances are always billed
by hours. Fraction consumption of an instance-hour is
counted as a full hour. In other words, 10 minute and 60
minute usage are both billed as 1 hour usage and if an
instance is started and shut down twice in an hour, users will
be charged for two instance hours. The shutting down time
therefore can greatly affect cloud cost. If cloud auto-scaling

mechanisms do not consider this factor, it could be easily
tricked by fluctuate workloads. Therefore, a reasonable
policy is that whenever an instance is started, it is better to be
shut down when approaching full hour operation.

Multiple instance types. Instead offering one suit-for-all
instance type, clouds now normally offer various instance
types for users to choose. Users can start different types of
instances based on their applications and performance
requirement. For example, EC2 instances are grouped into
three families, standard, high-CPU and high-memory.
Standard instances are suitable for all general purpose
applications. High-CPU instances are well suited for
computing intensive application, like image processing.
High-memory instances are more suitable for I/O intensive
application, like database systems and memory caching
applications. One important thing is that instances are
charged differently and not necessarily proportional to its
computing power. For example, in EC2, c1.medium costs
twice as much as m1.small. But it offers 5 times more
compute power than m1.small. Thus for computing heavy
jobs it is cheaper to use c1.medium instead of the least
expensive m1.small. Therefore, users need to choose
instance type wisely. Choosing cost-effective instance types
can both improve performance and save cost.

B. Cloud Application Performance Model

In this paper, we consider the problem of controlling
cloud application performance by automatically
manipulating the running instance types and instance
numbers. Instead of using infrastructure level performance
metrics, we target application level performance metric, the
response time of a submitted job. We believe a direct
performance metric can better reflect users’ performance
requirements, therefore can better instruct cloud scaling
mechanisms for precise VM scheduling. At the same time,
we introduce cost as the other goal in our cloud scaling
mechanism as well. Our problem statement is how to enable
cloud applications to finish all the submitted jobs before user
specified deadline with as little money as possible. To keep
the cloud application performance model general and simple,
we consider a single queue model as shown in Fig. 1. Also,
we make following assumptions.

• Workload is considered as non-dependent jobs
submitted in the job queue. Users don’t have
knowledge about incoming workload in advance.

• Jobs are served in FCFS manner and they are fairly
distributed among the running instances. Every
instance can only process a single job at one time.

• All the jobs have the same performance goal, e.g. 1
hour response time deadline (from submission to
finish). Deadline can be dynamically changed

• VM instances acquisition requests can be made at
any time, but it may take a while for newly requested
pending instance to be ready to use. We call such
time VM startup delay.

• There could be different classes of jobs, such as
computing intensive jobs and I/O intensive jobs. A
job class may have different processing time on
different instance types. For example, a computing

intensive job can run faster on high-CPU machines
than high-I/O machines.

• The job queue is large enough to hold all
unprocessed jobs and its performance scales well
with increasing number of instances.

Figure 1. Cloud application performance model

IV. SOLUTION & ARCHITECTURE

Based on the problem description in previous section, we
formalize the problem in this section and present our
implementation architecture in Windows Azure.

A. Solution

One of the key insights to this problem is that, to finish
the all submitted jobs before the deadline, auto-scaling
mechanism needs to ensure that the computing power of all
acquired VM instances is large enough to handle the
workload. We summarize the key variables in the Table. I.

TABLE I. KEY VARIABLES USED IN CLOUD PERFORMANCE MODEL

Variables Meaning

jJ the jth job class

jn the number of
j

J submitted in the queue

V the VM type

iI the ith instance (running or pending)

v
c

the cost per hour of VM type V

vd average startup delay of VM type V

is

the time already spent in pending status of
iI

,j v
t average processing time of running job

jJ on V

D deadline (e.g. 1 hour or 100 seconds)
C budget constraint (dollars/hour)
W Workload – jobs need to be finished
P computing power – jobs can be finished

Using the above notations, we define the system

workload as a vector W. For each job class
j

J , there are
jn

submitted jobs.

(,)j jW J n=

The computing power of instance
iI can be represented

as a vector
iP . The idea is to calculate how many jobs can be

finished for each job class before the deadline on instance

i
I .We use deadline and individual completion time (assume

all the jobs are finished by that instance) ratio to approximate
the number of jobs that can be finished.

, ()

(,)

i

j

i j

j type I jj

D n
P J

t n

×

=

∑

For instance whose status is pending, its computing

power can be represented as following, where
i

s is the time

already spent in starting the instance.

()

, ()

(())
(,)i

i

type I i j

i j

j type I jj

D d s n
P J

t n

− − ×

=

∑

Therefore, the total computing power of current instance

can be represented as
ii

P∑ . Clearly if W > P, we need to

start more instances '
i

P (' means new instances) to handle

the increased workload. The problem becomes finding a VM
instance combination plan��

�, in which

'
ii

P W P≥ −∑

At the same, we also want to minimize the cost we spend
for these newly added instances.

(')()

itype Ii
Min c∑

In the cases where there are insufficient budget, the idea
to generate as much computing power as possible within the
budget constraints

(')
i

Max P∑

(') ()i itype I type Ii i
c C c≤ −∑ ∑

When one instance

s
I is approaching full hour operation,

we need to decide whether to shut-down the machine or not.
In this case, we can calculate the computing power without
instance

sI , and compare with the workload. If the

computing power is still big enough to handle the workload,
we can remove the instance.

i si
P P W− ≥∑

To better explain the problem, we can go through a

simple example. Assume we have three job classes (1j , 2j ,

3j) and three VM types (1V , 2V , 3V). Currently, the

workload in the system is [60, 60, 60] and there are two

running instances 1I and 2I . Our goal is to find a VM type

combination [
1 'n ,

2 'n ,
3 'n], whose computer power is

greater than or equal to target computing power and their
cost is minimal among all the possible VM type
combinations.

{ { { {

1

2

3

21

: 60 10 10 40

: 60 5 20 35

: 60 20 5 35

'

j x

j y

j z

W I IP

         
         

≥ − − =         
                  

∑

{ { { {

1

2 1 2 3

3

1 2 3

: 10 10 10 45

: ' 5 ' 20 ' 10 35

: 20 5 10 35

'

j x

j n n n y

j z

V V V P

         
         

+ + = ≥         
                  

∑

 1 1 2 2 3 3(' ' ')Min c n c n c n+ +

Where

1 21 1 2 2 3 3 () ()' ' '
type I type I

c n c n c n c c C+ + + + ≤

From the above analysis, our cloud auto-scaling
mechanism is reduced to several integer programming
problems. We try to minimize the cost or maximize the
computing power with either computing power constraints or
budget constraints. There are quite a few standard
approaches to solve integer programming problems, such as
cutting-plane and branch-and-bound methods [13] [14]. We
will not duplicate the details here.

In addition to determining the number and type of VM
instances, there are some other cases like admission control
and deadline miss handling which are also interested to think
about in cloud auto-scaling mechanisms. However, our
work’s intension is not to create a hard real-time cloud
system which all jobs’ deadline are guaranteed, we focus on
automatic resource provisioning based on both performance
goals and budget constraints. Deadline is just the metric we
choose, because it can better reflect users’ performance
desire. Therefore, in real practice we believe these are more
like policy questions. Users can choose their own policies
based on their applications. For example, to maintain service
availability and basic computing power, users can decide the
minimum number of running instances. In other words, even
there is no workload, a cloud application will always have at
least 1 running instance. For admission control cases, when
there’s insufficient budget, auto-scaling mechanism could
either accept the job and try to run with maximum
computing power within the user budget constraints or users
can simply deny the job. In either case, users may want to get
notification from the mechanism. For deadline miss handling,
users can either leave it alone or allow auto-scaling
mechanism to increase as many instances as possible to
speed up the remaining processing. In our implementation,
we have implemented these policies and let user to configure
which policy is most appropriate for their cases, and users
are allowed to implement their own policies as well.

B. Architecture

We have designed and implemented our cloud auto-
scaling mechanism in Windows Azure [3]. Figure 2 shows
the architecture of our implementation. The implementation
includes four components. They are performance monitor,
history repository, auto-scaling decider and VM manager.
Performance monitor observes the current workload in the
system, collects actual job processing time and arrival
pattern information, and updates the history repository. VM
manager works as the adapter between our auto-scaling
mechanism and cloud providers. It monitors all pending and
ready VM instances, and updates history repository with
actual startup time of different VM types. Moreover, it
executes VM startup plan generated by auto-scaling decider
and directly invokes cloud provider resource provisioning
APIs. In our case, it is Windows Azure management API.
Our intention is that VM manager hides all cloud provider
details and can be easily replaced with other cloud adapters.
Such information hiding enhances the reusability and

customizability of our implementation when working with
different cloud providers. History repository contains two
data structures. One is the configuration file, which includes
application deadline, budget constraint, monitor execution
interval information, etc. As shown in Fig. 2, application
administrators can dynamically control the behavior of cloud
auto-scaling mechanism by changing the configuration file.
The other data structure is historical data table, which
records the historical job processing time and arrival pattern
information provided by performance monitor, and instance
startup delay information provided by VM manager. By
maintaining historical data, the repository improves the input
parameter preciseness and also helps decider to prepare for
possible workload surges early. Decider is the core of our
cloud auto-scaling mechanism. Relying on real-time
workload and VM status information from performance
monitor and VM manager, as well as configuration
parameters and historical records from history repository, it
solves the integer programming problem we formalized in
the previous section and generates a VM startup plan for VM
manager to execute. The VM startup plan could be empty
because the workload may be well handled by exiting
instances or it can contain instance type and number pairs to
notify VM manager acquire enough computing power. In our
current implementation, we use Microsoft Solver Foundation
[11] to solve the integer programming problem. Acquiring
instance actions are initialed by decider. After every sleep
interval, it invokes the logic to determine the VM startup
plan. On the other side, releasing instance actions are
initialed by VM manager because it monitors which instance
is approaching full hour operation and could be the potential
shut-down targets. But it has to ask decider to see whether
remaining computing power is large enough to handle the
workload. We have published our current implementation as
a library and plug it in MODIS application [7]. The
evaluation of our mechanism in this real scientific
application can be found in the next section.

(')()
itype Ii

Min c∑ '
jj

P W P> −∑

Figure 2. Architecture of Cloud auto-scaling in Azure

V. EVALUATION

In this section, we evaluate our mechanism using both
simulations and a real scientific application (MODIS)
running in Windows Azure. Through simulation framework,

we can easily control the input parameters, such as workload
pattern and job processing time, which helps to identify the
key factors in our mechanism. Moreover, using simulation
extensively reduces the evaluation time and cost. The
scientific application tests our mechanism’s performance in
real environment.

In our evaluation, we simulated three types of jobs. They
are mix, computing intensive and I/O intensive. At the same
time, we simulated three types of machines. They are
General, High-CPU and High-I/O machines. We summarize
their simulation parameters in Table II. The simulation data
is derived from pricing tables and instance descriptions of
EC2. For example, in EC2, c1.medium instance costs twice
as much as m1.small. But it offers 5 times more compute
power than m1.small [1]. In our case, we assume mix jobs
are half computation and half I/O. The speedup factor of
powerful machines is 4-5.

TABLE II. AVAREAGE PROCESSING TIME

 Mix
Avg 30 jobs/hour
STD 5 jobs/hour

Computing
Intensive

Avg 30 jobs/hour
STD 5 jobs/hour

I/O Intensive
Avg 30 jobs/hour
STD 5 jobs/hour

General
0.085$/hour
Delay 600s

Average 300s
STD 50s

Average 300s
STD 50s

Average 300s
STD 50s

High-CPU
0.17$/hour
Delay 720s

Average 210s
STD 25s

Average 75s
STD 15s

Average 300s
STD 50s

High-IO
0.17$/hour
Delay 720s

Average 210s
STD 25s

Average 300s
STD 50s

Average 75s
STD 15s

A. Deadline

For deadline performance goal, we consider two cases. 1)
Stable workload with changing deadline. We generate the
workload using Table II and plot the job response time in Fig.
3. Every data point in the graph reflects the job response time
in every 5 minutes and we record average, minimum and
maximum response time for all the jobs finished in that
interval. The deadline is first set as 3600s, then changed to
5400s and finally switched back. The purpose is to evaluate
our mechanism’s reaction to dynamic user performance
requirement change. Fig. 3 shows that more than 95% of
jobs are finished within the deadline and most of the misses
happen at the second deadline change. This is mainly
because our auto-scaling mechanism runs every 5 minutes
and VM instances can only be ready 10-12 minutes later
after acquisition requests. Besides, we also calculate the
instantaneous instance utilization rate. Job processing is
considered as utilized while all the other cases, such as
pending and idling, are considered as unutilized. The high
utilization rate (average 94%) shows that our mechanism
does not aggressively acquire instances to guarantee the
deadline, and 6% of time is spent on VM startups.

2) Changing workload with fixed deadline. In this test,
we fix the deadline to 3600s and create three workload peaks.
Base workload is 30 mix jobs per hour. The first workload
peak adds another 300 mix jobs per hour. The second peak
adds 300 computing intensive jobs per hour, and the third
one adds 300 I/O intensive jobs per hour. The purpose of this

test is to evaluate our mechanism’s reaction to sudden
increasing workload and job type changes. Such workload
pattern is normally seen in large volume data processing
applications, in which data computation and analysis is
performed in day time, and data backups and movements are
performed in nights and holidays. From Fig. 4, we can see
that the deadline goal is well met for all three workload
peaks. When workload goes back to normal, the over
acquired instances during peak moments quickly reduce job
response time. As more and more unnecessary instances are
shut down (approaching full hour operation), the response
time goes back to average.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

Utilization (%)Response (sec)

Time (hour)

Stable Workload & Changing Deadline

utilization deadline avg max min

Figure 3. Stable workload with changing deadline

0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80

Worload (job/h)Response (sec)

Time (hour)

Changing Workload & Fixed Deadline

deadline avg max min workload

Figure 4. Changing workload with fixed deadline

B. Cost

Using the same evaluation as we did for changing
workload fixed deadline, we compare the cost of using
different types of VM instance. The VM type combinations
are illustrated in Table III. Fig. 5 shows the comparison
result.

TABLE III. INSTANCE TYPE

 VM Types Total Cost ($)
% more than optimal

Choice #1 General 98.52$ (43%)

Choice #2 High-CPU 128.86$ (87%)

Choice #3 High-IO 129.71$ (88%)

Choice #4 General, High-CPU, High-IO 78.62$ (14%)

Optimal General, High-CPU, High-IO 68.85$

To evaluate the performance of our mechanism, in
addition to the four choices, we also calculate the possible
optimal cost for the same workload and compare our solution
with it. The optimal solution can be obtained because we
know the workload in advance and we assume we can
always put a job to the most cost-effective machines, e.g.,
put computing intensive jobs on High-CPU instances for
processing. From Fig. 5, we can see that by considering all
available instance types (Choice #4), our mechanism can
adapt to the workload changes and choose cost-effective
instances. In this way, the real-time cost is always close to
the optimal cost. On the other side, General instances always
performs on average for all three workload peaks, while
High-CPU and High-IO can only save cost on its preferred
workload surges. Fig. 6 shows the accumulated cost. Choice
#4 incurs 14% more cost than the optimal solution and saves
20% cost compared to General instance choice, 45%
compared to High-CPU and High-IO. Because of symmetry,
High-CPU and High-IO instances end up with almost the
same cost. General instances has lower cost on average,
therefore, in the long run, it outperforms High-CPU and
High-IO cases. By choosing appropriate instance types,
choice #4 can incur less cost in all three workload peaks like
the optimal solution, hence, it outperforms all the other cases.
There are two reasons why our solution cannot make the
optimal decision. Auto-scaling decider does not know the
future workload and can only make decisions locally. Second,
it cannot control the running instance for processing a job.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

C
o

st
 (

D
o

ll
a

r
/h

o
u

r)

Time (hour)

Instantaneous Cost

Choice #1 Choice #2 Choice #3 Choice #4 Optimal

Figure 5. Instantaneous cost of changing workload & fixed deadline

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80

C
o

st
 (

D
o

ll
a

r)

Time (hour)

Accumulated Cost

Choice #1 Choice #2 Choice #3 Choice #4 Optimal

Figure 6. Accumulated cost of changing workload & fixed deadline

C. MODIS

In addition to simulations, we also have applied our
approach to a real scientific cloud application MODIS [7].
MODIS is a cloud application built in Windows Azure
platform for large volume biophysical data processing. It
integrates data from ground-based sensors with the Moderate
Resolution Imaging Spectroradiometer satellite data. It is
now used by biometeorology lab, UC Berkeley. We first
introduce MODIS workload and some configuration
parameters applied. MODIS workload can be understood in
the following way. 200X indicates the year, Terra and Aqua
represent satellite images, and (x-y) represents the period
from day x to day y. For all our tests, we use all available 15
tile images in MODIS system for a single day data
processing. For example, Terra 2004 (10-12) means
processing all 15 tiles of Terra images from 2004 Jan 10th to
Jan 12th. This implies that totally 45 (15⨯3) jobs are
submitted at once. In our evaluation, we find the actual job
processing times range from 10 sec to 13 min with average 5
min and jobs are processed most cost-effectively in small
instance types. We set the performance monitor interval as 1
min, decider interval as 5 min, initial average VM delay as
15min and we only notify the users when deadline is missed.

In MODIS evaluation, we run both moderate scale (up to
20 instances) and large scale (up to 90 instances) tests. In
moderate scale evaluation, two test cases are randomly
selected. One is Terra satellite 2004 (10-12) and the other
one is Aqua 2008 (30-32). We record the test results in Table
IV, including both performance and instance hours
consumed (or cost). The table shows that 2 and 3 hour
deadline goals are better met than 1 hour deadline for same
workloads. After investigating the VM instance startup
history, we find this is largely because instance startup delay
is out of our expectation. For example, in 1 hour deadline
tests, the average startup delay is around 22 minutes. Some
instances even took 50 minutes to be ready. There is little
time left for our mechanism to react in such cases. On the
contrary, in longer deadline tests, our mechanism acquired
fewer instances and hence the result is less affected by the
startup delay variances. In both test cases, the theoretical
computing power needed is 4 instance hours (all jobs are
processed by a single instance). All tests actually acquired
more than this, e.g. 9 or 10 instances hours for 1 hour
deadline test cases. This is caused by VM startup delay make
up and impreciseness of initial job processing time
configuration. With longer deadlines, such over acquisition
is corrected because fewer instances are acquired and job
processing time is also updated by the historical table.
Therefore, longer deadline test cases also incur less cost.

TABLE IV. MODIS MODERATE SCALE EVALUATOIN

 1hour deadline 2hour deadline 3hour deadline

Terra 2004(10-12)
Total 45 jobs

4 C.H.* or 0.48$

18 min late 8 min early 20 min early

9 C.H.or 1.08$ 6 C.H or 0.72$ 5 C.H.or 0.6$

Aqua 2008(30-32)
Total 45 jobs

4 C.H. or 0.48$

15min late 20 min early 29 min early

10 C.H or 1.2$ 7 C.H.or 0.84$ 5 C.H.or 0.6$

* C.H. – computing hour 1C.H. = 0.12$ in Windows Azure

For large scale (up to 90 instances) MODIS evaluations,
we performed two tests and recorded the results in Table V.
Similar to moderate scale evaluations, longer deadline tests
show better results. Again, unexpected VM startup delay is
the dominating factor. We find Windows Azure has longer
VM startup delay and larger variances in large size instance
acquisition cases. For example, in Terra & Aqua 2006 (1-75)
2 hour deadline test, the average VM startup delay is 40
minutes and there’s one instance which is still not ready 2
hours later. For 2006 (1-125) 2 hour deadline test, our
decider calculation shows 95 instances are needed, which is
beyond our resource limit. This job is successfully identified
and denied.

TABLE V. MODIS LARGE SCALE EVALUATOIN

 2 hour deadline 4 hour deadline

Terra & Aqua 2006(1-75)
Total 1125 jobs

93 C.H. or 11.16$

20min late
170 C.H. or 20.4$

6 min early
132 C.H. or 15.84$

Terra & Aqua 2006(1-150)
Total 2250 jobs

185 C.H. or 22.2$

Admission Denied 22 min early
243 C.H. or 29.16$

To better demonstrate our mechanism working details,

we present instance acquisition and release information for
test case Terra & Aqua 2006 (1-75) 4 hour deadline in Fig. 7.
This test totally includes 1125 jobs and is submitted at time 0.
As shown in the figure, after around 4 minutes, the decider
started 34 instances (instance 1 - 34) to handle the workload.
The real instance acquisition time took much longer than we
configured. Therefore, around 1.5 hours later, the decider
started another 6 instances (instance 35 - 40) to make up for
such unexpected startup delay. After approaching 2 full hour
operation, these 6 instances were shut down due to decreased
workload. After all jobs are finished, instance 1 to instance
34 were shut down when they approached 4 hour operation.
At that time, only instance 0 was kept alive to maintain
service availability. In this case, the theoretical job
processing times needed is 93 hours. The real instance hours
consumed is 132 hours with 36 hours spent on VM startup.
Both moderate and large scale tests show that longer
deadline has better performance and incurs less cost. This is
because longer deadline tests are less affected by VM startup
delay and have more chances to use the updated job
processing time.

0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Time (hour)

In
st

a
n

ce
 N

u
m

b
er

Instance Acquisition and Release

Released Acquiring Ready

Figure 7. Instance acquistion and release

VI. CONCLUSION & FUTURE WORKS

In this paper, we present a mechanism to dynamically
scale cloud computing instances based on deadline and
budget information. The mechanism automatically scales up
and scales down VM instances by considering two aspects of
a cloud application - performance and budget. From
performance perspective, our cloud auto-scaling mechanism
enables cloud applications to finish all submitted jobs within
the desired deadline by acquiring enough VM instances.
From cost perspective, it reduces user cost by acquiring
appropriate instance types which incurs less money and shuts
down unnecessary instances when they approach full hour
operation. We interpreted the instance startup plan
generation as an optimization problem and used integer
programming to solve it. We have designed and
implemented our mechanism in Windows Azure platform,
and have evaluated it using both simulations and a real
scientific application MODIS. Evaluation results show that
our mechanism can provision enough instances to meet user
deadline performance goals. Even in the cases of dynamic
deadline change or sudden workload surge, it can well adapt
to the outside behaviors. More than 90% percent of
submitted jobs can meet the deadline. In our solution, integer
programming is used to identify the most cost-effective
instance types based on the job composition information of
incoming workload, and therefore, our approach can incur
less cost compared to fixed instance type choices. The cost
comparison shows that choosing appropriate instance type
can save 20% - 45% compared to fixed instance types and
incur 15% more compared to the optimal cost. MODIS
evaluation shows that VM startup delay plays quite an
important role in cloud auto-scaling mechanisms. Long
unexpected VM startup delay could not only affect the
performance, but can also dominate the utilization rate, and
therefore the cost, especially for short deadline cases.
Workload and job processing time are also very important
factors in our mechanism, because these two directly affect
the number and type of provisioned instances. We use
history repository to improve their preciseness in our
implementation.

In the future, one extension of our work is to support job
class level deadlines and extend cloud application
performance model into multi-tier architecture. By
considering job class individually and controlling its
execution instance, better performance can be achieved
through running jobs on the most cost-effective instance
types and save more money than fair job distribution.
Currently, we are trying to use multiple queues to submit
jobs by class. In multi-tier application environment, the
amount of resources needed to achieve their QoS goals might
be different at each tier and may also depend on availability
of resources in other tiers. In both cases, a global view of the
application is needed to generate optimized resource
provisioning plans. Second, including on-demand pay-as-
you-go instances, clouds now offer other types of instances
as well, such as spot instances and reserved instances. Spot
instances cost around 1/3 of regular instance prices, e.g., the
average price of a m1.small spot instance is 3 cents an hour.

It costs 8.5 cents an hour for the same type of on demand
instance. The cheaper cost comes from that cloud providers
can automatically shutdown users’ spot instances if the spot
price is above predefined bid price. Reserved instances are
even cheaper in the long run by paying a contract fee in
advance. Complexities are added if cloud auto-scaling
consider these cheaper instances. Because based on our
experiences, spot instances take even longer and more non-
deterministic time to start. Auto-scaling controller needs to
consider all these factors to make a VM instance scheduling
decision. To maintain service availability, reserved instances
can be considered as the always running instances. The other
direction we are working on is workflow execution in Cloud.
In this paper, we model the workload as submitted jobs in a
queue. The cost-saving VM startup plan can only be
considered during an interval instead of globally, because
users can never know the future workload in advance. In
workflow context, however, it is different. Users can foresee
all the jobs and their decencies; therefore, a globally
optimized VM startup plan can be generated. Besides, data
movement cost could make it a more interesting problem.
We also consider extending our evaluations to other real
applications, like well-known internet workload traces, to see
how our mechanism works in different workload contexts.

REFERENCES

[1] AWS auto-scaling. http://aws.amazon.com/autoscaling/

[2] Windows Azure. http://www.microsoft.com/windowsazure/

[3] RightScale. http://www.rightscale.com

[4] M. Assuncao et al., Evaluating the Cost-Benefit of Using Cloud
Computing to Extend the Capacity of Clusters, 18th ACM
International Symposium on High performance Distributed
Computing (HPDC 2009), pp. 141-150.

[5] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, Early
Observations on the Performance of Windows Azure, 1st workshop
on Scientific Cloud Computing, 2010.

[6] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat, Model-Based
Resource Provisioning in a Web Service Utility, in Proceedings of the
USENIX Symposium on Internet Technologies and Systems, 2003.

[7] J. Li, D. Agarwal, M. Humphrey, C. Ingen, K. Jackson, Y. Ryu,
eScience in the Cloud: A MODIS Satellite Data Reprojection and
Reduction Pipeline in Windows Azure Platform, IPDPS, 2010

[8] Trieu C. Chieu, Ajay Mohindra, Alexei A. Karve, Alla Segal:
Dynamic Scaling of Web Applications in a Virtualized Cloud
Computing Environment. ICEBE 2009: 281-286

[9] H. Lim, S. Babu, J. Chase, and S. Parekh. Automated Control in
Cloud Computing: Challenges and Opportunities. In 1st Workshop on
Automated Control for Datacenters and Clouds, June 2009.

[10] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, and K. Salem. Adaptive Control of Virtualized Resources
in Utility Computing Environments. EuroSys, 2007

[11] Microsoft Solver Foundation. http://code.msdn.microsoft.com/solver

foundation

[12] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic
provisioning of multi-tier internet applications. ICAC, 2005.

[13] B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. Supinski, and M.
Schulz, Bounding energy consumption in large-scale mpi programs.
SC 2007, November 10-16, 2007.

[14] V Swaminathan. and K. Chakrabarty. Real-time task scheduling for
energy-aware embedded systems. In IEEE Real-Time Systems
Symposium, November 2000.

