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Abstract—Clouds have become an attractive computing 

platform which offers on-demand computing power and 

storage capacity. Its dynamic scalability enables users to 

quickly scale up and scale down underlying infrastructure in 

response to business volume, performance desire and other 

dynamic behaviors. However, challenges arise when 

considering computing instance non-deterministic acquisition 

time, multiple VM instance types, unique cloud billing models 

and user budget constraints. Planning enough computing 

resources for user desired performance with less cost, which 

can also automatically adapt to workload changes, is not a 

trivial problem. In this paper, we present a cloud auto-scaling 

mechanism to automatically scale computing instances based 

on workload information and performance desire. Our 

mechanism schedules VM instance startup and shut-down 

activities. It enables cloud applications to finish submitted jobs 

within the deadline by controlling underlying instance 

numbers and reduces user cost by choosing appropriate 

instance types. We have implemented our mechanism in 

Windows Azure platform, and evaluated it using both 

simulations and a real scientific cloud application. Results 

show that our cloud auto-scaling mechanism can meet user 

specified performance goal with less cost. 

Keywords-cloud computing; auto-scaling; dynamic 

scalability; integer programming  

I.  INTRODUCTION 

Clouds have become an attractive computing platform 
which offers on-demand computing power and storage 
capacity. Its dynamic scalability enables users to scale up 
and scale down the underlying infrastructure in response to 
business volume, performance desire and other dynamic 
behaviors. To offload cloud administrators’ burden and 
automate scaling activities, cloud computing platforms have 
also offered mechanisms to automatically scale up and down 
VM capacity based on user defined policy, such as AWS 
auto-scaling [1]. Using auto-scaling, users can define triggers 
by specifying the performance metrics and thresholds. 
Whenever the observed performance metric is above or 
below the threshold, a predefined number of instances will 
be added to or removed from the application. For example, a 
user can define a trigger like “Add 2 instances when CPU 
usage is above 60% for 5 minutes”.  

Such automation largely enhances the cloud dynamic 
scalability benefits. It transparently adds more resources to 
handle increasing workload and shuts down unnecessary 
machines to save cost. In this way, users do not have to 
worry about capacity planning. The underlying resource 

capacity can be adaptive to the application real-time 
workload. However, challenges arise when people look 
deeper into the mechanisms. 

In cloud auto-scaling mechanisms, performance metrics 
normally include CPU utilization, disk operation and 
bandwidth usage, etc. Such infrastructure level performance 
metrics are good indicators for system utilization information. 
But it cannot clearly reflect the quality of service a cloud 
application is providing or tell whether the performance 
meets user’s expectation.  Choosing appropriate performance 
metric and finding precise threshold is not a straightforward 
task, and cases become more complicated if the workload 
pattern is continuously changing. Moreover, considering 
individual utilization information only may not robust to 
scale [9]. For example, a cluster going from 1 to 2 instances 
can increase capacity by 100%, while going from 100 to 101 
instances can only increase capacity by 1%. Current simple 
auto-scaling mechanisms normally ignore such non-constant 
effects when adding a fixed number of resources. 

Another factor such auto-scaling mechanisms overlook is 
the time lag to boot a VM instance. Though instance 
acquisition requests can be made at any time, they are not 
immediately available to users. Such instance startup lag 
typically involves finding the right spot for the requested 
instances in cloud data center, downloading specified OS 
image, booting the virtual machine, and finishing network 
setup, etc. Based on our experiences and research [5], it 
could take as long as 10 min to start an instance in Windows 
Azure, and such startup lag can change over time. In other 
words, it’s very likely that users may request instances late if 
they do not consider instance startup time factor. 

Cost is also an issue worth careful consideration when 
using cloud. Cloud computing instances are charged by 
hours. A fraction of an hour is counted as a whole hour. 
Therefore, it could be a waste of money for machines shut 
down before a whole hour operation. In addition to noticing 
the full hour principal, clouds now usually offers various 
instance types, such as high-CPU and high I/O instances. 
Choosing appropriate instance types based on the application 
workload can further save user money and improve 
performance. We believe cloud scaling activities can be done 
better by considering using different instance types than just 
manipulating instance numbers. 

In this paper, we present a cloud dynamic scaling 
mechanism, which could automatically scale up and scale 
down underlying cloud infrastructures to accommodate 
changing workload based on application level performance 
metric – job deadline. During the scaling activities, the 
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mechanism tries to form a cheap VM startup plan by 
choosing appropriate instance types, which could save more 
cost compared to only considering one instance type. 

The rest of this paper is organized as following. Section 
II introduces the related work. Section III identifies cloud 
scaling characteristics and describes application performance 
model. Section IV formalizes the problem and details our 
implementation architecture in Windows Azure platform. 
Section V evaluates our mechanism using both simulations 
and a real scientific application. Section VI concludes the 
paper and describes future works. 

II. RELATED WORK 

There have been a number works on dynamic resource 
provisioning in virtualized computing environment 
[9][10][12][4]. Feedback control theory has been applied in 
these works to create autonomic resource management 
systems. In [9][10], target range is proposed to solve the 
control stability issue. Further in [9], it focuses on control 
system design. It points out that resizing instances is a coarse 
grained actuator when applying control theory in cloud 
environment and proposed proportional threasholding to fix 
the non-constant effect problem. These works use 
infrastructure level performance metrics and mainly focus on 
control theory application in cloud environment. They do not 
consider various VM types or total running cost. In [8], 
dynamic scaling is explored for cloud web applications. 
They considered web server specific scaling indicators, such 
as the number of current users and the number of current 
connections. The work uses simple triggers and thresholds to 
determine instance number and does not consider VM type 
information and budget constraints as well. In [4], they 
considered extending computing capacity using cloud 
instances and compared the incurred cost of different policies. 

Particularly in cloud computing, dynamic scalability 
becomes more attractive and practical because of the 
unlimited resource pool. Most cloud providers offer cloud 
management API to enable users to control their purchased 
computing infrastructure programmatically, but few of them 
directly offers a complete solution for automatic scalability 
activities in cloud. Amazon web service auto-scaling service 
is one of them. AWS auto-scaling is a mechanism to 
automatically scale up and down virtual machine instances 
based on user defined triggers [1]. Triggers describe the 
thresholds of observed performance metric, which include 
CPU utilization, network usage and disk operations. 
Whenever the monitored metric is above the upper limit, a 
predefined number of instances will be started, and when it is 
below the lower limit, a predefined number of instances will 
be shut down. Another work worth mentioning here is 
RightScale [3]. It works as a broker between users and cloud 
providers by providing unified interfaces. Users can interact 
with multiple cloud providers on one screen. The nicely 
designed user interface, highly customized OS images and 
many predefined utility scripts enable users to deploy and 
manage their cloud applications quickly and conveniently. In 
dynamic scaling, they borrow the idea of “triggers and 
thresholds” but extend scaling indicator choices broadly. 
Including system utilization metrics, they further support 

some popular middle-ware performance metrics, such as 
Mysql connections, Apache http server requests and DNS 
queries. However, these scaling indicators may not be able to 
support all application types and not all of them can directly 
reflect quality of service requirements. Also, they do not 
consider cost explicitly. To the best of our knowledge, our 
work is the first auto-scaling mechanism which addresses 
both performance and budget constraint in cloud. 

III. CLOUD SCALING 

A. Cloud Scaling Characteristics and Analysis 

As a computing platform, clouds own distinct 
characteristics compared to utility computing and grid 
computing. We have identified the following characteristics 
which can largely affect the way people use cloud platforms, 
especially in cloud scaling activities. 

Unlimited resources limited budget. Clouds offer users 
unlimited computing power and storage capacity. Though by 
default the resource capacity is capped to some number, e.g., 
20 computing units per account in Windows Azure, such 
usage cap is not a hard constraint. Cloud providers allow 
users to negotiate for more resources. Unlimited resource 
enables applications to scale to extremely large size. On the 
other hand, these unlimited resources are not free. Every 
cycle used and byte transferred are going to appear on the 
bill. Budget cap is a necessary constraint for users to 
consider whey they deploy applications in clouds. Therefore, 
a cloud auto-scaling mechanism should explicitly consider 
user budget constraints when acquiring resources. 

Non-ignorable VM instance acquisition time. Though 
cloud instance acquisition requests can be made at any time 
and computing power can be scaled up to extremely large, it 
does not mean cloud scales fast. Based on our previous 
experiences and research [5], it could take around 10 more 
minutes from an instance acquisition request until it is ready 
to use. Moreover, such instance startup lag could keep 
changing over the time. On the other side, VM shutting 
down time is quite stable, around 2-3 minutes in Windows 
Azure. This implies that users have to consider two issues in 
cloud dynamic scaling activities. First, count in the 
computing power of pending instances. If an instance is in 
pending status, it means it is going to be ready soon. 
Ignoring pending instances may result in booting more 
instances than necessary, therefore waste money. Second, 
count how long the pending instance has been acquired and 
how long further it needs to be ready to use. If the startup 
time delay can be well observed and predicted, application 
admin can acquire machines in advance and prepare early for 
workload surges. 

Full hour billing model. The pay-as-you-go billing 
model is attractive, because it saves money when users shut 
down machines. However, VM instances are always billed 
by hours. Fraction consumption of an instance-hour is 
counted as a full hour. In other words, 10 minute and 60 
minute usage are both billed as 1 hour usage and if an 
instance is started and shut down twice in an hour, users will 
be charged for two instance hours. The shutting down time 
therefore can greatly affect cloud cost. If cloud auto-scaling 



mechanisms do not consider this factor, it could be easily 
tricked by fluctuate workloads. Therefore, a reasonable 
policy is that whenever an instance is started, it is better to be 
shut down when approaching full hour operation. 

Multiple instance types. Instead offering one suit-for-all 
instance type, clouds now normally offer various instance 
types for users to choose. Users can start different types of 
instances based on their applications and performance 
requirement. For example, EC2 instances are grouped into 
three families, standard, high-CPU and high-memory. 
Standard instances are suitable for all general purpose 
applications. High-CPU instances are well suited for 
computing intensive application, like image processing. 
High-memory instances are more suitable for I/O intensive 
application, like database systems and memory caching 
applications. One important thing is that instances are 
charged differently and not necessarily proportional to its 
computing power. For example, in EC2, c1.medium costs 
twice as much as m1.small. But it offers 5 times more 
compute power than m1.small. Thus for computing heavy 
jobs it is cheaper to use c1.medium instead of the least 
expensive m1.small. Therefore, users need to choose 
instance type wisely. Choosing cost-effective instance types 
can both improve performance and save cost. 

B. Cloud Application Performance Model 

In this paper, we consider the problem of controlling 
cloud application performance by automatically 
manipulating the running instance types and instance 
numbers. Instead of using infrastructure level performance 
metrics, we target application level performance metric, the 
response time of a submitted job. We believe a direct 
performance metric can better reflect users’ performance 
requirements, therefore can better instruct cloud scaling 
mechanisms for precise VM scheduling. At the same time, 
we introduce cost as the other goal in our cloud scaling 
mechanism as well. Our problem statement is how to enable 
cloud applications to finish all the submitted jobs before user 
specified deadline with as little money as possible. To keep 
the cloud application performance model general and simple, 
we consider a single queue model as shown in Fig. 1. Also, 
we make following assumptions. 

• Workload is considered as non-dependent jobs 
submitted in the job queue. Users don’t have 
knowledge about incoming workload in advance. 

• Jobs are served in FCFS manner and they are fairly 
distributed among the running instances. Every 
instance can only process a single job at one time. 

• All the jobs have the same performance goal, e.g. 1 
hour response time deadline (from submission to 
finish). Deadline can be dynamically changed 

• VM instances acquisition requests can be made at 
any time, but it may take a while for newly requested 
pending instance to be ready to use. We call such 
time VM startup delay. 

• There could be different classes of jobs, such as 
computing intensive jobs and I/O intensive jobs. A 
job class may have different processing time on 
different instance types. For example, a computing 

intensive job can run faster on high-CPU machines 
than high-I/O machines. 

• The job queue is large enough to hold all 
unprocessed jobs and its performance scales well 
with increasing number of instances. 
 

 
Figure 1.  Cloud application performance model 

IV. SOLUTION & ARCHITECTURE 

Based on the problem description in previous section, we 
formalize the problem in this section and present our 
implementation architecture in Windows Azure. 

A. Solution 

One of the key insights to this problem is that, to finish 
the all submitted jobs before the deadline, auto-scaling 
mechanism needs to ensure that the computing power of all 
acquired VM instances is large enough to handle the 
workload. We summarize the key variables in the Table. I. 

TABLE I.  KEY VARIABLES USED IN CLOUD PERFORMANCE MODEL 

Variables Meaning 

jJ  the jth job class 

jn  the number of 
j

J submitted in the queue 

V the VM type 

iI  the ith instance (running or pending) 

v
c

 
the cost per hour of VM type V 

vd  average startup delay of VM type V  

is
 

the time already spent in pending status of
iI  

,j v
t  average processing time of running job 

jJ on  V 

D deadline (e.g. 1 hour or 100 seconds) 
C budget constraint (dollars/hour) 
W Workload – jobs need to be finished 
P computing power – jobs can be finished 

 
Using the above notations, we define the system 

workload as a vector W. For each job class
j

J , there are 
jn  

submitted jobs. 

( , )j jW J n=  

The computing power of instance 
iI  can be represented 

as a vector
iP . The idea is to calculate how many jobs can be 

finished for each job class before the deadline on instance 

i
I .We use deadline and individual completion time (assume 

all the jobs are finished by that instance) ratio to approximate 
the number of jobs that can be finished. 
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For instance whose status is pending, its computing 

power can be represented as following, where
i

s  is the time 

already spent in starting the instance. 
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Therefore, the total computing power of current instance 

can be represented as 
ii

P∑ . Clearly if W > P, we need to 

start more instances '
i

P  ( ' means new instances) to handle 

the increased workload. The problem becomes finding a VM 
instance combination plan��

�, in which 

'
ii

P W P≥ −∑  

At the same, we also want to minimize the cost we spend 
for these newly added instances. 

 
( ')( )

itype Ii
Min c∑  

In the cases where there are insufficient budget, the idea 
to generate as much computing power as possible within the 
budget constraints 

( ')
i

Max P∑  

( ') ( )i itype I type Ii i
c C c≤ −∑ ∑

 
When one instance 

s
I is approaching full hour operation, 

we need to decide whether to shut-down the machine or not. 
In this case, we can calculate the computing power without 
instance

sI , and compare with the workload. If the 

computing power is still big enough to handle the workload, 
we can remove the instance. 

i si
P P W− ≥∑  

To better explain the problem, we can go through a 

simple example. Assume we have three job classes ( 1j , 2j ,

3j ) and three VM types ( 1V , 2V , 3V ). Currently, the 

workload in the system is [60, 60, 60] and there are two 

running instances 1I  and 2I . Our goal is to find a VM type 

combination [
1 'n ,

2 'n ,
3 'n ], whose computer power is 

greater than or equal to target computing power and their 
cost is minimal among all the possible VM type 
combinations. 
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From the above analysis, our cloud auto-scaling 
mechanism is reduced to several integer programming 
problems. We try to minimize the cost or maximize the 
computing power with either computing power constraints or 
budget constraints. There are quite a few standard 
approaches to solve integer programming problems, such as 
cutting-plane and branch-and-bound methods [13] [14]. We 
will not duplicate the details here. 

In addition to determining the number and type of VM 
instances, there are some other cases like admission control 
and deadline miss handling which are also interested to think 
about in cloud auto-scaling mechanisms. However, our 
work’s intension is not to create a hard real-time cloud 
system which all jobs’ deadline are guaranteed, we focus on 
automatic resource provisioning based on both performance 
goals and budget constraints. Deadline is just the metric we 
choose, because it can better reflect users’ performance 
desire. Therefore, in real practice we believe these are more 
like policy questions. Users can choose their own policies 
based on their applications. For example, to maintain service 
availability and basic computing power, users can decide the 
minimum number of running instances. In other words, even 
there is no workload, a cloud application will always have at 
least 1 running instance. For admission control cases, when 
there’s insufficient budget, auto-scaling mechanism could 
either accept the job and try to run with maximum 
computing power within the user budget constraints or users 
can simply deny the job. In either case, users may want to get 
notification from the mechanism. For deadline miss handling, 
users can either leave it alone or allow auto-scaling 
mechanism to increase as many instances as possible to 
speed up the remaining processing. In our implementation, 
we have implemented these policies and let user to configure 
which policy is most appropriate for their cases, and users 
are allowed to implement their own policies as well. 

B. Architecture 

We have designed and implemented our cloud auto-
scaling mechanism in Windows Azure [3]. Figure 2 shows 
the architecture of our implementation. The implementation 
includes four components. They are performance monitor, 
history repository, auto-scaling decider and VM manager. 
Performance monitor observes the current workload in the 
system, collects actual job processing time and arrival 
pattern information, and updates the history repository. VM 
manager works as the adapter between our auto-scaling 
mechanism and cloud providers. It monitors all pending and 
ready VM instances, and updates history repository with 
actual startup time of different VM types. Moreover, it 
executes VM startup plan generated by auto-scaling decider 
and directly invokes cloud provider resource provisioning 
APIs. In our case, it is Windows Azure management API. 
Our intention is that VM manager hides all cloud provider 
details and can be easily replaced with other cloud adapters. 
Such information hiding enhances the reusability and 



customizability of our implementation when working with 
different cloud providers. History repository contains two 
data structures. One is the configuration file, which includes 
application deadline, budget constraint, monitor execution 
interval information, etc. As shown in Fig. 2, application 
administrators can dynamically control the behavior of cloud 
auto-scaling mechanism by changing the configuration file. 
The other data structure is historical data table, which 
records the historical job processing time and arrival pattern 
information provided by performance monitor, and instance 
startup delay information provided by VM manager. By 
maintaining historical data, the repository improves the input 
parameter preciseness and also helps decider to prepare for 
possible workload surges early. Decider is the core of our 
cloud auto-scaling mechanism. Relying on real-time 
workload and VM status information from performance 
monitor and VM manager, as well as configuration 
parameters and historical records from history repository, it 
solves the integer programming problem we formalized in 
the previous section and generates a VM startup plan for VM 
manager to execute. The VM startup plan could be empty 
because the workload may be well handled by exiting 
instances or it can contain instance type and number pairs to 
notify VM manager acquire enough computing power. In our 
current implementation, we use Microsoft Solver Foundation 
[11] to solve the integer programming problem. Acquiring 
instance actions are initialed by decider. After every sleep 
interval, it invokes the logic to determine the VM startup 
plan. On the other side, releasing instance actions are 
initialed by VM manager because it monitors which instance 
is approaching full hour operation and could be the potential 
shut-down targets. But it has to ask decider to see whether 
remaining computing power is large enough to handle the 
workload. We have published our current implementation as 
a library and plug it in MODIS application [7]. The 
evaluation of our mechanism in this real scientific 
application can be found in the next section. 

( ')( )
itype Ii

Min c∑ '
jj

P W P> −∑

 
Figure 2.  Architecture of Cloud auto-scaling in Azure 

V. EVALUATION 

In this section, we evaluate our mechanism using both 
simulations and a real scientific application (MODIS) 
running in Windows Azure. Through simulation framework, 

we can easily control the input parameters, such as workload 
pattern and job processing time, which helps to identify the 
key factors in our mechanism. Moreover, using simulation 
extensively reduces the evaluation time and cost. The 
scientific application tests our mechanism’s performance in 
real environment. 

In our evaluation, we simulated three types of jobs. They 
are mix, computing intensive and I/O intensive. At the same 
time, we simulated three types of machines. They are 
General, High-CPU and High-I/O machines. We summarize 
their simulation parameters in Table II. The simulation data 
is derived from pricing tables and instance descriptions of 
EC2. For example, in EC2, c1.medium instance costs twice 
as much as m1.small. But it offers 5 times more compute 
power than m1.small [1]. In our case, we assume mix jobs 
are half computation and half I/O. The speedup factor of 
powerful machines is 4-5. 

TABLE II.  AVAREAGE PROCESSING TIME 

 Mix 
Avg 30 jobs/hour 
STD 5 jobs/hour 

Computing 
Intensive 

Avg 30 jobs/hour 
STD 5 jobs/hour 

I/O Intensive 
Avg 30 jobs/hour 
STD 5 jobs/hour 

General 
0.085$/hour 
Delay 600s 

Average 300s 
STD 50s 

Average 300s 
STD 50s 

Average 300s 
STD 50s 

High-CPU 
0.17$/hour 
Delay 720s 

Average 210s 
STD 25s 

Average 75s 
STD 15s 

Average 300s 
STD 50s 

High-IO 
0.17$/hour 
Delay 720s 

Average 210s 
STD 25s 

Average 300s 
STD 50s 

Average 75s 
STD 15s 

A. Deadline 

For deadline performance goal, we consider two cases. 1) 
Stable workload with changing deadline. We generate the 
workload using Table II and plot the job response time in Fig. 
3. Every data point in the graph reflects the job response time 
in every 5 minutes and we record average, minimum and 
maximum response time for all the jobs finished in that 
interval. The deadline is first set as 3600s, then changed to 
5400s and finally switched back. The purpose is to evaluate 
our mechanism’s reaction to dynamic user performance 
requirement change. Fig. 3 shows that more than 95% of 
jobs are finished within the deadline and most of the misses 
happen at the second deadline change. This is mainly 
because our auto-scaling mechanism runs every 5 minutes 
and VM instances can only be ready 10-12 minutes later 
after acquisition requests. Besides, we also calculate the 
instantaneous instance utilization rate. Job processing is 
considered as utilized while all the other cases, such as 
pending and idling, are considered as unutilized. The high 
utilization rate (average 94%) shows that our mechanism 
does not aggressively acquire instances to guarantee the 
deadline, and 6% of time is spent on VM startups. 

2) Changing workload with fixed deadline. In this test, 
we fix the deadline to 3600s and create three workload peaks. 
Base workload is 30 mix jobs per hour. The first workload 
peak adds another 300 mix jobs per hour. The second peak 
adds 300 computing intensive jobs per hour, and the third 
one adds 300 I/O intensive jobs per hour. The purpose of this 



test is to evaluate our mechanism’s reaction to sudden 
increasing workload and job type changes. Such workload 
pattern is normally seen in large volume data processing 
applications, in which data computation and analysis is 
performed in day time, and data backups and movements are 
performed in nights and holidays. From Fig. 4, we can see 
that the deadline goal is well met for all three workload 
peaks. When workload goes back to normal, the over 
acquired instances during peak moments quickly reduce job 
response time. As more and more unnecessary instances are 
shut down (approaching full hour operation), the response 
time goes back to average.  
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Figure 3.  Stable workload with changing deadline 
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Figure 4.  Changing workload with fixed deadline 

B. Cost 

Using the same evaluation as we did for changing 
workload fixed deadline, we compare the cost of using 
different types of VM instance. The VM type combinations 
are illustrated in Table III. Fig. 5 shows the comparison 
result. 

TABLE III.  INSTANCE TYPE 

 VM Types Total Cost ($) 
% more than optimal 

Choice #1 General 98.52$ (43%) 

Choice #2 High-CPU 128.86$ (87%) 

Choice #3 High-IO 129.71$ (88%) 

Choice #4 General, High-CPU, High-IO 78.62$ (14%) 

Optimal General, High-CPU, High-IO 68.85$  

To evaluate the performance of our mechanism, in 
addition to the four choices, we also calculate the possible 
optimal cost for the same workload and compare our solution 
with it. The optimal solution can be obtained because we 
know the workload in advance and we assume we can 
always put a job to the most cost-effective machines, e.g., 
put computing intensive jobs on High-CPU instances for 
processing. From Fig. 5, we can see that by considering all 
available instance types (Choice #4), our mechanism can 
adapt to the workload changes and choose cost-effective 
instances. In this way, the real-time cost is always close to 
the optimal cost. On the other side, General instances always 
performs on average for all three workload peaks, while 
High-CPU and High-IO can only save cost on its preferred 
workload surges. Fig. 6 shows the accumulated cost. Choice 
#4 incurs 14% more cost than the optimal solution and saves 
20% cost compared to General instance choice, 45% 
compared to High-CPU and High-IO. Because of symmetry, 
High-CPU and High-IO instances end up with almost the 
same cost. General instances has lower cost on average, 
therefore, in the long run, it outperforms High-CPU and 
High-IO cases. By choosing appropriate instance types, 
choice #4 can incur less cost in all three workload peaks like 
the optimal solution, hence, it outperforms all the other cases. 
There are two reasons why our solution cannot make the 
optimal decision. Auto-scaling decider does not know the 
future workload and can only make decisions locally. Second, 
it cannot control the running instance for processing a job. 
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Figure 5.  Instantaneous cost of changing workload & fixed deadline 
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Figure 6.  Accumulated cost of changing workload & fixed deadline 



C. MODIS 

In addition to simulations, we also have applied our 
approach to a real scientific cloud application MODIS [7]. 
MODIS is a cloud application built in Windows Azure 
platform for large volume biophysical data processing. It 
integrates data from ground-based sensors with the Moderate 
Resolution Imaging Spectroradiometer satellite data. It is 
now used by biometeorology lab, UC Berkeley. We first 
introduce MODIS workload and some configuration 
parameters applied. MODIS workload can be understood in 
the following way. 200X indicates the year, Terra and Aqua 
represent satellite images, and (x-y) represents the period 
from day x to day y. For all our tests, we use all available 15 
tile images in MODIS system for a single day data 
processing. For example, Terra 2004 (10-12) means 
processing all 15 tiles of Terra images from 2004 Jan 10th to 
Jan 12th. This implies that totally 45 (15⨯3) jobs are 
submitted at once. In our evaluation, we find the actual job 
processing times range from 10 sec to 13 min with average 5 
min and jobs are processed most cost-effectively in small 
instance types. We set the performance monitor interval as 1 
min, decider interval as 5 min, initial average VM delay as 
15min and we only notify the users when deadline is missed. 

In MODIS evaluation, we run both moderate scale (up to 
20 instances) and large scale (up to 90 instances) tests. In 
moderate scale evaluation, two test cases are randomly 
selected. One is Terra satellite 2004 (10-12) and the other 
one is Aqua 2008 (30-32). We record the test results in Table 
IV, including both performance and instance hours 
consumed (or cost). The table shows that 2 and 3 hour 
deadline goals are better met than 1 hour deadline for same 
workloads. After investigating the VM instance startup 
history, we find this is largely because instance startup delay 
is out of our expectation. For example, in 1 hour deadline 
tests, the average startup delay is around 22 minutes. Some 
instances even took 50 minutes to be ready. There is little 
time left for our mechanism to react in such cases. On the 
contrary, in longer deadline tests, our mechanism acquired 
fewer instances and hence the result is less affected by the 
startup delay variances. In both test cases, the theoretical 
computing power needed is 4 instance hours (all jobs are 
processed by a single instance).  All tests actually acquired 
more than this, e.g.  9 or 10 instances hours for 1 hour 
deadline test cases. This is caused by VM startup delay make 
up and impreciseness of initial job processing time 
configuration. With longer deadlines, such over acquisition 
is corrected because fewer instances are acquired and job 
processing time is also updated by the historical table. 
Therefore, longer deadline test cases also incur less cost. 

TABLE IV.  MODIS MODERATE SCALE EVALUATOIN 

 1hour deadline 2hour deadline 3hour deadline 

Terra 2004(10-12) 
Total 45 jobs 

4 C.H.* or 0.48$  

18 min late 8 min early 20 min early 

9 C.H.or 1.08$ 6 C.H or 0.72$ 5 C.H.or 0.6$ 

Aqua 2008(30-32) 
Total 45 jobs 

4 C.H. or 0.48$ 

15min late 20 min early 29 min early 

10 C.H or 1.2$ 7 C.H.or 0.84$ 5 C.H.or 0.6$ 

* C.H. – computing hour  1C.H. = 0.12$ in Windows Azure 

For large scale (up to 90 instances) MODIS evaluations, 
we performed two tests and recorded the results in Table V. 
Similar to moderate scale evaluations, longer deadline tests 
show better results. Again, unexpected VM startup delay is 
the dominating factor. We find Windows Azure has longer 
VM startup delay and larger variances in large size instance 
acquisition cases. For example, in Terra & Aqua 2006 (1-75) 
2 hour deadline test, the average VM startup delay is 40 
minutes and there’s one instance which is still not ready 2 
hours later. For 2006 (1-125) 2 hour deadline test, our 
decider calculation shows 95 instances are needed, which is 
beyond our resource limit. This job is successfully identified 
and denied.  

TABLE V.  MODIS LARGE SCALE EVALUATOIN 

 2 hour deadline 4 hour deadline 

Terra & Aqua 2006(1-75) 
Total 1125 jobs 

93 C.H. or 11.16$ 

20min late 
170 C.H. or 20.4$ 

6 min early 
132 C.H. or 15.84$ 

Terra & Aqua 2006(1-150) 
Total 2250 jobs 

185 C.H. or 22.2$ 

Admission Denied 22 min early 
243 C.H. or 29.16$ 

 
To better demonstrate our mechanism working details, 

we present instance acquisition and release information for 
test case Terra & Aqua 2006 (1-75) 4 hour deadline in Fig. 7. 
This test totally includes 1125 jobs and is submitted at time 0. 
As shown in the figure, after around 4 minutes, the decider 
started 34 instances (instance 1 - 34) to handle the workload. 
The real instance acquisition time took much longer than we 
configured. Therefore, around 1.5 hours later, the decider 
started another 6 instances (instance 35 - 40) to make up for 
such unexpected startup delay. After approaching 2 full hour 
operation, these 6 instances were shut down due to decreased 
workload. After all jobs are finished, instance 1 to instance 
34 were shut down when they approached 4 hour operation. 
At that time, only instance 0 was kept alive to maintain 
service availability. In this case, the theoretical job 
processing times needed is 93 hours. The real instance hours 
consumed is 132 hours with 36 hours spent on VM startup. 
Both moderate and large scale tests show that longer 
deadline has better performance and incurs less cost. This is 
because longer deadline tests are less affected by VM startup 
delay and have more chances to use the updated job 
processing time. 
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Figure 7.  Instance acquistion and release 



VI. CONCLUSION & FUTURE WORKS 

In this paper, we present a mechanism to dynamically 
scale cloud computing instances based on deadline and 
budget information. The mechanism automatically scales up 
and scales down VM instances by considering two aspects of 
a cloud application - performance and budget. From 
performance perspective, our cloud auto-scaling mechanism 
enables cloud applications to finish all submitted jobs within 
the desired deadline by acquiring enough VM instances. 
From cost perspective, it reduces user cost by acquiring 
appropriate instance types which incurs less money and shuts 
down unnecessary instances when they approach full hour 
operation. We interpreted the instance startup plan 
generation as an optimization problem and used integer 
programming to solve it. We have designed and 
implemented our mechanism in Windows Azure platform, 
and have evaluated it using both simulations and a real 
scientific application MODIS. Evaluation results show that 
our mechanism can provision enough instances to meet user 
deadline performance goals. Even in the cases of dynamic 
deadline change or sudden workload surge, it can well adapt 
to the outside behaviors. More than 90% percent of 
submitted jobs can meet the deadline. In our solution, integer 
programming is used to identify the most cost-effective 
instance types based on the job composition information of 
incoming workload, and therefore, our approach can incur 
less cost compared to fixed instance type choices. The cost 
comparison shows that choosing appropriate instance type 
can save 20% - 45% compared to fixed instance types and 
incur 15% more compared to the optimal cost. MODIS 
evaluation shows that VM startup delay plays quite an 
important role in cloud auto-scaling mechanisms. Long 
unexpected VM startup delay could not only affect the 
performance, but can also dominate the utilization rate, and 
therefore the cost, especially for short deadline cases. 
Workload and job processing time are also very important 
factors in our mechanism, because these two directly affect 
the number and type of provisioned instances. We use 
history repository to improve their preciseness in our 
implementation. 

In the future, one extension of our work is to support job 
class level deadlines and extend cloud application 
performance model into multi-tier architecture. By 
considering job class individually and controlling its 
execution instance, better performance can be achieved 
through running jobs on the most cost-effective instance 
types and save more money than fair job distribution. 
Currently, we are trying to use multiple queues to submit 
jobs by class. In multi-tier application environment, the 
amount of resources needed to achieve their QoS goals might 
be different at each tier and may also depend on availability 
of resources in other tiers. In both cases, a global view of the 
application is needed to generate optimized resource 
provisioning plans. Second, including on-demand pay-as-
you-go instances, clouds now offer other types of instances 
as well, such as spot instances and reserved instances. Spot 
instances cost around 1/3 of regular instance prices, e.g., the 
average price of a m1.small spot instance is 3 cents an hour. 

It costs 8.5 cents an hour for the same type of on demand 
instance. The cheaper cost comes from that cloud providers 
can automatically shutdown users’ spot instances if the spot 
price is above predefined bid price.  Reserved instances are 
even cheaper in the long run by paying a contract fee in 
advance. Complexities are added if cloud auto-scaling 
consider these cheaper instances. Because based on our 
experiences, spot instances take even longer and more non-
deterministic time to start. Auto-scaling controller needs to 
consider all these factors to make a VM instance scheduling 
decision. To maintain service availability, reserved instances 
can be considered as the always running instances. The other 
direction we are working on is workflow execution in Cloud. 
In this paper, we model the workload as submitted jobs in a 
queue. The cost-saving VM startup plan can only be 
considered during an interval instead of globally, because 
users can never know the future workload in advance. In 
workflow context, however, it is different. Users can foresee 
all the jobs and their decencies; therefore, a globally 
optimized VM startup plan can be generated. Besides, data 
movement cost could make it a more interesting problem. 
We also consider extending our evaluations to other real 
applications, like well-known internet workload traces, to see 
how our mechanism works in different workload contexts. 
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