
Department of Computing
Imperial College London

A high-level framework for efficient
computation of performance–energy trade-offs

in Markov population models

Anton Stefanek

Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy
in the Department of Computing of Imperial College London

20th January 2014

1

Declaration of originality

I declare that this thesis was composed by myself, and that the work it presents is my own, except

where otherwise stated.

Copyright declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or

transmit the thesis on the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any reuse or redistribution,

researchers must make clear to others the licence terms of this work

2

Abstract

Internet scale applications such as search engines and social networks run their services on

large-scale data centres consisting of tens of thousands of servers. These systems have to cope

with explosive and highly variable user demand and maintain a high level of performance. At

the same time, the energy consumption of a data centre is one of the major contributors to its

operational cost.

This embodies the performance-energy trade-off problem. We need to find configurations which

minimise the energy consumed in running important applications in complex environments, but

which also allow those applications to run reliably and fast.

In this thesis, we develop a general performance–energy analysis framework that can be used to

express complex behaviour in communicating systems and provide a rapid analysis of performance

and energy goals. It is intended that this framework can be used both at design time to predict

long-run performance and energy consumption of an application in a large execution environment;

and at run time to make short-term predictions given current conditions of the environment. In

both cases the rapid model analysis permits detailed what-if scenarios to be tested without the

need for expensive experiments or time-consuming simulations.

The major contributions of this thesis are:

(i) development of the Population Continuous-Time Markov Chain (PCTMC) representation as

a low-level abstraction for very large performance models,

(ii) development of rapid ODE analysis techniques to compute performance-based Service Level

Agreements (SLA) and reward-based energy metrics in PCTMCs,

(iii) hybrid extension of PCTMCs that allows models to incorporate continuous variables such as

temperature and that permits the specification of systems with time-varying workloads

(iv) an extension of the GPEPA process algebra that can support session-based synchronisation

between agents and that can be mapped to PCTMCs, thus giving access to the rapid ODE

analysis.

We support the framework with a software tool GPA, which implements all the described formal-

isms and analysis techniques.

3

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my supervisor Dr. Jeremy

Bradley. Jeremy has continuously provided me with his invaluable advice and support throughout

the past four years. I greatly enjoyed our meetings, always leaving with new insights a unique

boost to my motivation. I would also like to thank Jeremy for providing me with financial support

through the EPSRC project AMPS on which he was the principal investigator.

Secondly, my thanks go to Dr. Richard Hayden for his willingness to explain many of the

theoretical concepts I required to understand in order to develop the contributions in this thesis.

I will always highly regard the breadth and depth of his knowledge and ability to clearly convey

even the most complicated ideas. None of the contributions in this thesis would be possible

without collaboration with Richard and Jeremy.

I would like to thank the following people who have further contributed to the work in this

thesis: Dr. William Knottenbelt, my second supervisor and an investigator on the AMPS project

for his insightful comments and encouragement; Chris Guenther for the productive collaboration

on the GPA tool; Dr. Nigel Thomas for his advice and collaboration on applying the framework

of this thesis to the HTCondor system at Newcastle University and Matt Forshaw for giving

me efficient access to system logs from HTCondor and for collaboration on analysing the data;

Dr. Uli Harder for his ever-present advice and help with energy measurement experiments I

performed during my PhD; Gareth Jones for reading a draft of this thesis and for writing hundreds

of Wikipedia articles on performance analysis and probability that I have encountered in my

research; members of the AESOP research group in the Department of Computing for a pleasant

working environment.

I would not be able to pursue my PhD and the studies leading to it without the material and

spiritual support from my parents and my sister. I cannot thank them enough for their patience,

generosity and encouraging phone conversations. I also want to thank the rest of my family

and my friends for their support, especially to Bando for providing me with a comfortable living

environment during the final years of my PhD.

Finally, I want to thank Mimi for her love, emotional support and for making the last couple of

years so enjoyable.

4

Contents

1 Introduction 13

1.1 Motivation and objectives . 13

1.1.1 Markov population models . 15

1.2 Contributions and thesis outline . 17

1.3 Statement of originality and related publications 18

2 Background 22

2.1 Continuous-Time Markov Chains . 23

2.1.1 Analysis techniques . 24

2.1.2 Tackling large state spaces . 24

2.1.3 Process algebras . 25

2.1.4 PEPA process algebra . 25

2.1.5 Client–server model . 26

2.2 Population models . 28

2.2.1 Analysis techniques . 29

2.2.2 Process algebras for population models 31

2.2.3 Grouped PEPA . 32

2.2.4 Transaction-based interactions . 33

2.3 Reward models . 33

2.3.1 Passage times and completion times . 35

2.3.2 Performance–energy trade-offs . 35

2.4 Hybrid models . 36

2.5 Software tools for population models . 38

3 Population Continuous-Time Markov Chains 40

3.1 PCTMCs . 41

3.2 Examples . 42

3.2.1 Peer-to-peer model . 42

3.2.2 PCTMC semantics of GPEPA . 43

3.2.3 GPEPA client–server model . 44

3.3 Simulation . 45

3.4 ODE analysis of PCTMCs . 45

3.4.1 Mean-field analysis . 47

3.4.2 Moment closures . 48

3.4.3 Normal closure for PCTMCs with polynomial rates 50

3.4.4 Numerical solutions of mean-field and moment ODEs 52

CONTENTS 5

3.5 Efficient computation of passage times . 53

3.5.1 Agent state transition graphs . 53

3.5.2 Probed client–server model . 54

3.5.3 Individual passage time . 55

3.5.4 Global passage time . 56

3.6 Convergence . 57

3.6.1 Convergence of mean approximations 58

3.6.2 Convergence of variance approximation 58

3.7 Conclusion . 60

4 Improving accuracy of ODE analysis of PCTMCs 61

4.1 Introduction . 61

4.2 Switch-point analysis in PCTMC models with minimum rates 62

4.2.1 Numerical investigation: GPEPA client–server model 63

4.2.2 Discussion . 66

4.3 First improvement: combining ODE analysis and simulation 68

4.3.1 First-order hybrid analysis . 70

4.3.2 Second-order hybrid analysis . 70

4.3.3 Effects of interval length . 71

4.4 Normal moment closure for minimum rates . 72

4.5 Closure comparison . 74

4.5.1 Evaluation framework . 75

4.5.2 Numerical results . 77

4.6 Conclusion . 79

5 PCTMCs with accumulated rewards 81

5.1 Introduction . 81

5.1.1 Accumulated rewards . 82

5.2 Accumulated rewards expressed in terms of populations 85

5.2.1 Steady state normalised rewards . 86

5.2.2 Impulse rewards . 86

5.3 Approximating moments of continuously accumulated rewards via ODEs 87

5.3.1 Mean ODEs . 87

5.3.2 Higher-order moment ODEs . 88

5.3.3 Accumulations of products of populations 91

5.3.4 Completion times . 92

5.3.5 Convergence of ODE approximations . 93

5.3.6 Computational cost . 94

5.4 Numerical examples . 94

5.5 Trade-off between energy consumption and performance 96

5.5.1 Client–server model with server hibernation 98

5.5.2 Global optimisation . 100

5.6 Estimating power consumption rates . 101

5.7 Conclusion . 102

CONTENTS 6

6 Hybrid PCTMCs 104

6.1 Introduction . 104

6.2 Hybrid PCTMCs . 106

6.2.1 Definition . 106

6.2.2 Regularity conditions . 107

6.3 ODE analysis . 108

6.3.1 Mean-field approximations . 109

6.3.2 Higher-order moments . 110

6.3.3 Relationship with accumulated populations 111

6.4 Convergence properties . 112

6.4.1 First-order convergence . 113

6.4.2 Second-order convergence . 114

6.4.3 Normal approximations . 116

6.4.4 Limitations – speed of convergence . 118

6.5 Worked example . 119

6.6 Time-inhomogeneous models . 121

6.6.1 Dynamic SLA verification . 123

6.6.2 Worked Example . 124

6.7 Conclusion . 127

7 High-level specification of transactions 129

7.1 Introduction . 129

7.2 GPEPAc – GPEPA with channels . 131

7.2.1 Extended syntax of PEPA agents . 131

7.2.2 Extended syntax of GPEPA models . 133

7.3 PCTMC semantics of GPEPAc . 134

7.3.1 Algorithm to compute the set of all transactions and transition classes . . 135

7.3.2 Computing the final PCTMC . 142

7.4 Case study: A large scale computing cluster . 144

7.4.1 The model . 145

7.4.2 Resulting PCTMC . 147

7.4.3 Numerical examples . 150

7.4.4 Optimising the cluster configuration . 151

7.5 Conclusion . 154

8 GPA – a tool for rapid analysis of PCTMCs 156

8.1 Introduction . 156

8.2 Model syntax . 157

8.2.1 Plain PCTMC . 158

8.2.2 GPEPA . 159

8.2.3 Spatial process algebra . 159

8.2.4 hPCTMC continuous variables . 160

8.2.5 Variables and pattern matching . 160

8.3 Model analysis – Core solvers . 161

CONTENTS 7

8.3.1 ODE analysis . 161

8.3.2 Simulation . 162

8.4 Experiments – Secondary solvers . 164

8.4.1 Parameter exploration . 164

8.4.2 Unified Stochastic Probes for GPEPA . 164

8.4.3 Distribution computation . 165

8.5 Implementation details . 166

8.6 Conclusion . 167

9 Conclusion 168

9.1 Summary of achievements . 168

9.2 Applications . 169

9.2.1 Distributed high-throughput cycle-stealing system 170

9.2.2 GPEPAc model of HTCondor . 170

9.2.3 Analysis using the collected data . 171

9.3 Future work . 174

9.3.1 Practical advances . 174

9.3.2 Theoretical advances . 175

Related Publications 177

Bibliography 179

A Chapter 3 193

A.1 ODE systems . 193

A.1.1 First-order moments . 193

A.1.2 Second-order moments . 193

B Chapter 5 195

B.1 ODE systems . 195

B.1.1 Second-order accumulated moments . 195

B.2 Proofs . 195

C Chapter 6 197

C.1 Proofs . 197

D Chapter 8 199

D.1 GPA Syntax . 199

E GPEPAc model of HTCondor 202

8

List of Figures

2.1 Overview of the background and contributions of this thesis. 22

2.2 CTMC semantics of PEPA. 27

2.3 Simple client–server model. 27

2.4 Rate and impulse accumulated rewards, B(t), as the underlying process, X(t),

evolves. 34

3.1 PCTMC as an intermediate representation for Markov population formalisms. . 40

3.2 Structure of mean-field ODEs. 47

3.3 Structure of higher-order moment GPEPA ODEs. 50

3.4 Structure of moment ODEs for a PCTMC with quadratic rates closed at order n. 52

3.5 Unfolded client state graph with a new, absorbing, set of states. 54

4.1 Switch-point distance plot for the client–server model. 65

4.2 Moments of populations in the client–server model, Model A 66

4.3 Effects of scaling on normalised error and switch point distance in Model A . . . 67

4.4 Moments of populations in the client–server model, Model B 68

4.5 Influence of scaling on the normalised error and the switch point distance in Model

B . 69

4.6 Overview of the hybrid analyses. 69

4.7 Hybrid analysis approximation of the mean and variance of populations in the

client–server model. 70

4.8 Error of the hybrid analysis of client–server model (Model A). 71

4.9 Effect of the simulation length interval in hybrid analyses on the error of mean

populations. 72

4.10 Difference between approximations of the expectation of rate min(C (t),S (t)) in

the client–server model, Model A and B. 73

4.11 Structure of moment ODEs closed by the min-normal closure. 74

4.12 Moments from simulation and approximation for the client–server model. . . . 75

4.13 Effects of scaling of the client–server model on the normalised error around the

switch point events . 76

4.14 Comparison of mean-field and min-normal closures for the client–server model. 78

4.15 Effect of scaling on the accuracy of moment closures in the client–server model. 79

4.16 Comparison of closures for the peer-to-peer model. 79

4.17 Effect of scaling on the accuracy of moment closures in the peer-to-peer model. 80

5.1 Example of accumulation rates corresponding to energy consumption of a server. 83

LIST OF FIGURES 9

5.2 Total energy consumption of servers in the client–server model as an accumulated

reward. 84

5.3 Structure of the ODE system approximating moments of populations, accumula-

tions and a mixed product of the two. 90

5.4 Approximation of the rewards Aenergy(t) and Atotal(t). 95

5.5 Effects of scaling on the error of the ODE approximations of means and standard

deviations of accumulated populations. 96

5.6 Approximations of the CDF of the time of the reward Aenergy(t) reaching a target

value a = 2.0. 97

5.7 Approximations of the CDF of the time of the reward Atotal(t) reaching the target

value a = 0.0. 97

5.8 Trade-off between response time and energy consumption as the number of servers

increases. 98

5.9 Extension of the client–server GPEPA model allowing the servers to hibernate

when the client demand is low. 99

5.10 Exploration of the trade-off between response time satisfaction and minimisation

of energy consumption in the client–server model with server hibernation. . . . 99

5.11 The error of approximations of accumulated rewards and passage times in Fig-

ure 5.10. 100

6.1 The number of accesses of the World Cup 1998 website. 105

6.2 Approximation of means of populations and of the temperature variable in the

client–server model with air conditioning units. 110

6.3 Approximation of the evolution of standard deviation of populations and the

temperature variable in the client–server model. 111

6.4 Effect of scaling the system size on the first order mean-field approximation of air

conditioning units population and the temperature variable in the client–server

model. 114

6.5 Effect of scaling on the mean–field approximation of standard deviation of air

conditioning units population and of the temperature variable in the client–server

model. 115

6.6 Effect of scaling on the min-closure approximation of mean air conditioning units

population and the temperature variable. 116

6.7 Effect of scaling on the min-closure approximation of standard deviation of air

conditioning units population and the temperature variable. 117

6.8 Distribution of the number of active air conditioning units and the temperature as

the system evolves over time. 117

6.9 Effect of scaling on the mean temperature variable for the client–server model

with two thresholds. 118

6.10 Means of client–server populations and passage-time CDF in the computing cluster

model. 120

6.11 Mean population of active air conditioning units and mean temperature in the

cluster model. 120

10

6.12 Effect of varying the cooling threshold and the number of servers on the steady

state PUE metric and the number of servers in sleeping state. 122

6.13 Absolute error in the plots in Figure 6.12, as compared to stochastic simulation. 123

6.14 Client–server model with a time dependent rate of data transfer rdata(t). 123

6.15 Dynamic SLA verification in the time-inhomogeneous client–server model. . . . 124

6.16 The external arrival rate piecewise continuous λ(t) and evolution of population

means in the inhomogeneous multiserver model. 126

6.17 Temperature and multiple passage time CDFs in the inhomogeneous multiserver

model. 127

6.18 Request processing time probabilities in a large number of configurations of the

multiserver example. 128

6.19 Daily power consumption for different configurations of the multiserver system. 128

7.1 Client passage-time CDF in the two-class client–server model; comparison between

the GPEPA version and a PCTMC model with transactions. 130

7.2 Overview of the cluster model. 145

7.3 Population of different node classes and occupancies over time. 151

7.4 Response time probabilities for a low and high priority job and the rate of energy

consumption of the cluster. 152

7.5 Energy consumption and SLA satisfaction for varying cluster configurations under

different scheduling policies. 154

8.1 Overview of the architecture of GPA. 158

8.2 Example plots from the ODE analysis of the client–server model, corresponding to

plots from Figure 4.2 and Figure 4.1a. 162

8.3 Example plot of reward completion time bounds expression, corresponding to

Figure 5.6. 163

8.4 Example plot of simulation estimates, corresponding to Figure 4.10. 163

8.5 Iterate experiment, corresponding to Figure 5.10a. 164

8.6 Parameter exploration with minimisation at each combination, corresponding to

Figure 7.5c. 165

8.7 Example of a local probe in the client–server model. 165

8.8 Distribution of the temperature variable in the hPCTMC client–server model with

air-conditioning corresponding to Figure 6.9. 166

9.1 Overview of the model of HTCondor. 170

9.2 Sample trace of the number of active users during five weeks of monitoring the

system. 172

9.3 Number of active users during a representative week and the corresponding arrival

and departure rates (per hour). 172

9.4 Probability of a single hypothetical job finishing after being submitted at different

times. 173

9.5 Energy–performance trade-off under varying mean availability delay. 173

9.6 Forecast for metrics of the hypothetical batch of jobs. 174

LIST OF TABLES 11

List of Tables

4.1 Two sets of rate parameters for the client–server model. 64

4.2 An overview of the models used to compare the different closures. 76

4.3 Summary of the aggregate relative (%) error in the two example models. 80

5.1 Accumulation rate parameters in the client–server model. 94

6.1 Rate and threshold parameters used in the client–server model with air condition-

ing units. 109

6.2 Comparison between ODE systems used to calculate variance of the reward

Aenergy(t) using moments of accumulated populations and the hPCTMC framework. 112

6.3 Values of rate and initial population parameters used in the worked example. . 121

6.4 Values of rate and initial population parameters used in the time-inhomogeneous

worked example. 125

7.1 Rates used in the cluster model. 150

7.2 Values of rc,kassign,p for different scheduling policies in the case study. 153

LIST OF TABLES 12

Notation

We use the following notation in this thesis (with some exceptions):

A,B,C, . . . A random variable.

A,B,C, . . . A multivariate random variable.

E[A] Expectation of a random variable.

X(t),Y (t),Z(t), . . . A continuous-time stochastic process with state space that is a

subset of ZN+ .

(X(t), C,X0) Specification of a PCTMC with state space X(t), a set of transition

classes C and initial populations X(0).

x(t),y(t), z(t), . . . A vector function with range in RN .

h(A) Random variable specifying a moment, such as h(A) = A1 ·A2 or

h(A) = (A1 − E[A1])2.

S A positive integer constant specifying a scale of a system.

(X(S)(t), C(S),X
(S)
0) A PCTMC that is a rescaled version of (X(t), C,X0) as defined in

Section 3.6.

Ẽ[h(X(t))] An approximation to E[h(X(t))] usually obtained as a solution to

a set of ordinary differential equations such as those defined in

Section 3.4

Agent An agent state identifier in a process algebra model. When suitable

we use abbreviations such as A for convenience.

XC (t) The coordinate of a PCTMC state X(t) corresponding to the pop-

ulation of an agent C (assuming the PCTMC is derived from a

process algebra model).

Xi(t) Shorthand for the accumulated population Xi until time t, that is∫ t
0 Xi(u)du.

h(X)(t) Shorthand for the accumulated product specified by h(X) until

time t, that is
∫ t

0 h(X(u))du.

X (t),Y(t),Z(t), . . . A continuous-time stochastic process with state space that is a

subset of RM .

s, S A socket / set of sockets in the GPEPAc process algebra defined in

Chapter 7.

Agents1,...,sn A GPEPAc agent with sockets.

α, β, · · · A channel variable used in the semantics of GPEPAc

Γ A channel assignment in GPEPAc transactions.

JG : P s(Γ), . . . K GPEPAc transaction

We will often interleave presented definitions and techniques with demonstrations on an

example. The corresponding text will be highlighted in the same way as this paragraph.

Simulation plots: Unless stated otherwise, whenever we show a plot of an estimate from

stochastic simulation, we use a sufficient number of replications so that confidence intervals are

smaller than line thickness of the respective plot.

13

Chapter 1

Introduction

1.1 Motivation and objectives

Internet scale applications such as search engines and social networks run their services on

large-scale data centres consisting of tens of thousands of servers. From a simplified point of view,

providers of data centres for such applications have two goals when designing and operating

their systems:

Guarantee performance Each user query or an internal request is directed to the appropriate

service and executed as a computational task. Providers of the data centre often give a

performance guarantee in the form of a Service Level Agreement (SLA). SLAs typically assign

a minimum probability for the request to finish within a given time, such as “each request

will be completed within 0.3s at least 99% of the time” [66].

Minimise energy consumption At the same time, energy consumption of servers in a data

centre is one of the main factors in its operational cost [27]. Moreover, data centres are

becoming a major contributor to electricity consumption in developed nations and so

there are great incentives for providers to reduce their electricity bill and impact on the

environment.

There is a technically challenging trade-off to be achieved between these two goals – system

configurations which provide energy savings usually reduce the overall system performance,

while higher performance configurations tend to have greater energy demand. Therefore, to be

able to choose between different configurations of a data centre requires accurate predictions of

the resulting performance and the total energy consumption, while taking into account important

system SLAs. Ideally such predictions would be provided by a mathematical model of the data

centre. Using such model would allow the provider of a data centre to evaluate the effects of

different configurations without implementing each configuration in a testing environment and

performing time consuming and costly benchmarking experiments.

In this thesis, we present a performance analysis framework that will allow us to model

such large systems and choose configurations that achieve minimum energy consumption

while meeting critical SLAs.

The arrival patterns of requests to a data centre are highly variable and unpredictable and this

adds to the modelling challenge. A common way to guarantee an SLA is to heavily over-provision

the data centre in order to cope with anticipated peak loads [78]. For example, the total allocated

1. INTRODUCTION 14

computational capacity, such as the number of servers, might be increased by 50% above the

required capacity at the time of the heaviest load. This has a severe impact on the energy

consumption of the data centre, which is often the main component of the overall system cost.

Additionally, together with the increasing popularity of data centre based computation, over-

provisioning has significant impact on the environment, as most electrical energy used by data

centres still comes from non-renewable resources [159, 170].

Data centre architectures provide a number of ways to reduce the energy implications of over-

provisioning. These involve a combination of hardware improvements of individual servers and

sophisticated algorithms for managing servers and allocating computational tasks. We discuss

various energy–performance trade-offs inherent in the different data centre architecture aspects

below:

Energy-proportional hardware Depending on the variability of system load, servers in over-pro-

visioned systems are often not fully utilised. In fact, servers spend most of their time

at around 30% − 40% utilisation [27]. Energy-proportional hardware provides a range

of operational regimes with decreasing power consumption at the expense of decreased

computational capability. The simplest case is for two regimes – normal operation and

reduced power consumption for idle periods. Most advances in this direction have been

made in case of CPUs, where Dynamic Voltage and Frequency Scaling allows the CPU to run

at a range of reduced frequencies, thus reducing power consumption and generated heat

[105]. This saving can be as much as 70% of the peak power [27]. Similar techniques exist

for other hardware components such as RAM and disks, but these have reduced potential

power saving and also introduce performance and energy penalties for switching between

different regimes.

Dynamic provisioning At the level of a data centre, additional energy proportionality can be

achieved by dynamically turning servers on and off, according to the load on the system

[167]. In idle periods, servers can be powered down to eliminate their energy consumption.

However, in case of sudden increase in demand, there is a significant delay and energy

cost to bring the server back up. A compromise can be achieved by a range of “sleep”

states where only certain sub-systems are powered down, resulting in much reduced power

consumption but also in faster return to an operational state.

Consolidation Due to energy proportionality, servers often achieve their highest energy efficiency

when running at full power. At the same time, in order to take full advantage of dynamic

provisioning, it is necessary to maximise the number of servers that can enter a sleep state.

Often, computational tasks running on a group of servers can be consolidated and moved

onto a smaller group of servers. One example is virtualisation, where tasks run in virtual
machine (VM) environments with potentially several VMs on a single server. The VMs can

be moved between servers at the expense of temporary performance degradation.

Temperature-aware resource allocation Cooling infrastructure can contribute as much as 50%

of the total energy consumption of a data centre [160]. The energy-saving techniques

above have an impact on the temperature in a data centre and therefore also on the total

energy consumed by the cooling infrastructure. Additionally, there has been progress on

1. INTRODUCTION 15

temperature-aware allocation algorithms, which spread system load onto different racks in

the data centre in order to minimise the power consumed by cooling infrastructure [111].

Modern data centres implement most of these techniques and give data centre providers access

to a large number of different system configurations which can trade energy consumption for

performance and vice versa. The resulting system becomes extremely complex, even before

considering the details of applications running on the data centre. However, quantitative

understanding of the system as a whole is important at all stages of data centre design and

operation. For example, at the design stage, data centre providers need to choose a suitable size

of their system in order to cope with anticipated loads. Having a quantitative model of the data

centre would allow them to rapidly evaluate different configurations without running expensive

experiments. Similarly, such a model could be used to assess configuration changes and upgrades

once the data center is in operation. In this case the model can be reinforced with parameters

obtained from monitoring the real data centre.

In each case, it is essential for the model to be able to quantify the extent to which both of the

main goals – performance and energy – have been achieved. Taking all the above considerations

into account, we can formulate a number of requirements for this quantitative model:

(i) Deal with large and complex systems. We require analysis of systems with tens of

thousands of different components. Often, the number of servers is a variable in the

configuration and therefore the complexity of the analysis should not be dependent on this

number.

(ii) Allow high-level model descriptions. The modelled systems are often complex and only

possible to understand after being broken down into a number of sub-systems. We require

a behavioural language for compositional description of such systems.

(iii) Accurately capture SLA metrics. We require the ability to verify SLAs based on passage

time probabilities. These SLAs should be described in terms of the behavioural model of the

system.

(iv) Capture energy consumption metrics. We require efficient methods to compute the total

energy consumed by the modelled system.

(v) Jointly consider temperature and workload. The computed energy consumption metrics

need to be able to take into account the energy consumption of cooling infrastructure,

which depends on the environmental temperature which in turn potentially depends on the

load on the system and the current configuration.

(vi) Allow time-dependent stochastic workloads. Realistic applications need to be able to take

into account workloads which are stochastic in nature and vary over time.

1.1.1 Markov population models

Traditionally in performance analysis, a suitable tool for modelling such systems would be

a Markov chain. Although it is a mathematically very simple stochastic process, it has been

successfully applied to capture performance and behaviour in a range of systems. However,

1. INTRODUCTION 16

classical Markov chain analysis techniques rely on linear-algebraic operations with complexity

at least linear in the number of states of the system. This poses a problem as the number of

combinations of states of each of the large number of servers soon explodes beyond the limits

of these techniques. Much more suitable is the so-called Markov population model approach

which treats the system as a Markov chain, but acknowledges the presence of a large number

of similarly behaved agents and models their aggregate populations instead of considering each

agent individually. This representation allows rapid analysis with a derived system of ordinary

differential equations (ODEs) the size of which is independent of the scale of the system. For

example, in the mean-field analysis [e.g. 88, 89, 42, 31, 33] each population is approximated by

a continuous variable from the solution to a system of ODEs. Additional heuristics [e.g. 189, 186,

71, 81, 17] can improve this approximation and also provide ODEs for higher-order moments of

populations, such as the variance. Usually, the ODE approximations are related to the original

stochastic process by various convergence results [e.g. 127] which show that the approximation

becomes more accurate as the number of agents increases.

Markov population models and the related analyses originate in physics, chemistry and biology,

where the extremely large populations, e.g. of particles, molecules, cells, have always been

present. With the increased importance of distributed computation, wireless sensor networks and

further massively parallel systems, Markov population models have seen application in computer

science and the field of performance analysis [25, 33, 79]. Often, in contrast to applications in

natural sciences, the behaviour of individual components, such as servers or wireless sensors, is

known and well defined. Traditionally, this resulted in an approach where systems are described

in a behavioural language, such as a stochastic process algebra, e.g. stochastic π-calculus (sπ)[155],

PEPA [107], Stochastic Concurrent Constraint Programming (SCCP) [36] or Stochastic Petri Nets
[26]. Usually, each of these languages has a defined semantics – a translation into an underlying

Markov chain, that can be analysed with traditional explicit state space techniques. In some cases,

the resulting Markov chain from a behavioural description is equivalent to a Markov population

model, and therefore amenable to efficient ODE approximations. Sumpter et al. [171] were

one of the first to use this approach and derived a set of mean-field difference equations for a

discrete time Markov chain described in the WCCS process algebra. Further work includes the

derivation of ODEs approximating models in PEPA [108, 183], subset of sπ [48], SCCP [41].

These approaches give the set of ODEs as an alternative semantics to the Markov chain and

in some cases they go on to relate the ODE and Markov chain semantics by showing that the

ODEs would be equivalent to applying mean-field techniques to the Markov chain semantics.

Hayden and Bradley [99] introduce GPEPA, a syntactical extension of PEPA aimed at describing

population models. They consider only a single Markov chain semantics and show how to derive

ODEs for means and higher-order moments of populations in the Markov chain described by a

GPEPA model.

Several extensions to these rapid analysis techniques allow computation of further metrics, such

as passage times or rewards. However, to the best of our knowledge, none of the existing

results support analysis of SLAs, while being able to accurately capture the evolution of energy

consumption over time and simultaneously take into account the temperature of the environment.

This is the goal we have set ourselves in this thesis.

1. INTRODUCTION 17

1.2 Contributions and thesis outline

In this thesis, we develop Markov population models into a modelling framework for capturing

performance–energy trade-offs. We start with the technique of Hayden and Bradley [99],

originally derived as an efficient ODE analysis for models described in the GPEPA process

algebra. The same authors also show how to use this approach to rapidly evaluate passage

time probabilities for SLAs [4]. We generalise this approach to Markov population models and

define a common representation called Population Continuous-Time Markov Chains (PCTMC). We

incorporate various existing heuristics based on moment closures and present a new moment

closure specifically for models of computer systems. This greatly improves the accuracy of the

ODE analysis of PCTMCs. In doing this, we have a framework which satisfies requirements

(i)–(iii). We show how to derive ODEs for moments of accumulated rewards, enabling us to

compute detailed energy consumption specifications, as given in requirement (iv). A further

extension allows us to include continuous variables in the system, to capture the mutual influence

of temperature and the behavioural part of the model, requirement (v), and also allows time-

dependent rates that can represent high variability in user demand, requirement (vi). We design a

specification language capable of concise description of a number of common interaction patterns.

We implement our techniques in an efficient software tool GPA, making the framework readily

available to modellers.

Chapter 3: Population Continuous-Time Markov Chains

We summarise the main existing results concerning the analysis of Markov population models.

We define a Population Continuous-Time Markov Chain, a Markov chain where the state space

consists of integer valued populations. We show how existing mean-field and moment closure

approximations also referred to as instances of fluid or ODE analysis apply to PCTMCs. We show

how the method of Hayden et al. [4] can be used to compute passage time probabilities for SLAs

in PCTMCs. The chapter ends with an overview of first- and second-order convergence results

which justify the use of the mean-field and moment-closure approximations. We argue that

PCTMCs can be used as an intermediate representation for high-level behavioural description

languages, such as GPEPA. In the subsequent chapters, we work on the PCTMC level and therefore

make our results applicable to any formalism that can be translated to PCTMCs.

Chapter 4: Improving accuracy of ODE analysis of PCTMCs

Although mean-field analysis becomes more accurate as the system size increases, in practice we

require accurate results at arbitrary scales of the system. We investigate the accuracy of mean-field

and moment closure approximations. We show a heuristic, using so-called switch-point distance

that allows us to identify time intervals yielding low accuracy in PCTMC models derived from

GPEPA. As a first improvement, we combine the ODE analysis with stochastic simulation in places

where there is a low predicted accuracy. We introduce min-normal closure – a moment closure

for rates containing the min function based on the normal distribution. Finally, we compare the

accuracy of different closures on a large number of model parameters.

1. INTRODUCTION 18

Chapter 5: PCTMCs with accumulated rewards

We extend the ODE analysis of PCTMCs with differential equations capturing means and higher

moments of accumulated rewards in the system. Both impulse and rate rewards are supported

and the resulting framework can be used to model energy consumption as well as additional cost

functions such as the cost of switching the state of a server. Importantly, the we can simultan-

eously capture SLA metrics as well as rewards. This lets us formulate a class of optimisation

problems addressing the energy–performance trade-off. We illustrate the techniques on a larger

example of a client–server model with server hibernations.

Chapter 6: Hybrid PCTMCs

We further extend the framework by allowing accumulated rewards to be part of the state space

of PCTMC models. This enables us to model for example the temperature in a data centre,

which reacts to system load, and at the same time include scheduling algorithms which take the

temperature into account. We extend ODE analysis techniques to this case. Additionally, we

introduce time-dependent rates into the framework and thus allow models with time-varying

workload.

Chapter 7: High-level specification of transactions

PCTMC is a suitable mathematical formalism to describe very large systems. However, from user

perspective, models can often be complicated and difficult to describe manually. We introduce

GPEPAc, an extension of the GPEPA process algebra, aimed at describing systems with multi-

phase session-based communication. We give a formal definition of the language, and define a

translation to PCTMC. We demonstrate GPEPAc on an example of a heterogeneous computing

cluster, where we optimise a number of scheduling policies while taking the energy–performance

trade-off into account.

Chapter 8: GPA – a tool for rapid analysis of PCTMCs

In order to make the PCTMC framework and extensions from this thesis more accessible, we

implemented all the developed techniques in a software tool GPA. We describe the architecture

of GPA and give an overview of its main features. The tool evolved to support a range of different

specification languages, using hybrid PCTMCs as an intermediate representation. GPA also

provides a number of efficient solution techniques and its architecture allows fast prototyping of

different variations of the ODE analysis.

1.3 Statement of originality and related publications

I declare that this thesis was composed by myself, and that the work it presents is my own, except

where otherwise stated.

During the course of my PhD, I co-authored the following publications. Apart from two exceptions

[4, 5], I am the first author or joint first author in all these publications.

1. INTRODUCTION 19

Journal papers & book chapters

[4] R. A. Hayden, A. Stefanek and J. T. Bradley. Fluid computation of passage-time distri-

butions in large Markov models. In: Theoretical Computer Science 413.1 (Jan. 2012),

pp. 106–141. ISSN: 03043975. DOI: 10.1016/j.tcs.2011.07.017

This paper shows how to use the ODE analysis of GPEPA models to derive distribution

functions of a number of different types of passage times. My contribution to this paper is a

case study of a customer–service system demonstrating the techniques and implementation

in the GPA tool.

[10] A. Stefanek, R. A. Hayden and J. T. Bradley. Fluid computation of the performance-

energy trade-off in large scale Markov models. In: SIGMETRICS Perform. Eval. Rev. 39.3

(2011). DOI: 10.1145/2160803.2160872

This is a short paper where we outline the PCTMC framework and suggest the need for a

high-level specification language for session-based communication. This paper later evolved

into the work presented in Chapter 7.

[14] A. Stefanek, R. A. Hayden and J. T. Bradley. Mean-field Analysis of Large Scale Markov

Fluid Models with Fluid Dependent and Time-Inhomogeneous Rates. In: Annals of
Operations Research to appear (2013)

This is an extended work on hybrid Markov population models [15] that adds time-

dependent rates to the framework. This extended version also improves the presentation of

the original paper and is the basis for Chapter 6. I wrote the majority of the extensions and

the added case study.

[2] J. T. Bradley, M. C. Guenther, R. A. Hayden and A. Stefanek. GPA - A multiformalism,

multisolution approach to efficient analysis of large scale population models. In: The-
ory and Application of Multi-Formalism Modeling. Ed. by M. Gribaudo and M. Iaconno. IGI

Global, 2013. ISBN: 1466646594. DOI: 10.4018/978-1-4666-4659-9

In this book chapter we give an overview of the GPA tool, focusing on the so-called “multi-

formalism” features which allow a number of different formalisms to be translated into the

intermediate PCTMC representation. I contributed most of the sections concerning the GPA

tool. This work is presented in Chapter 8.

International conference & workshop papers

[8] A. Stefanek, R. A. Hayden and J. T. Bradley. A new tool for the performance analysis

of massively parallel computer systems. In: Eighth Workshop on Quantitative Aspects of
Programming Languages QAPL 2010 March 2728 2010 Paphos Cyprus. Electronic Proceedings

in Theoretical Computer Science (2010). DOI: 10.4204/EPTCS.28.11

In this paper, we present the GPA tool for the first time and use it for the so-called switch-
point analysis of GPEPA models. I implemented the tool and performed all the experiments,

including the switch-point analysis under scaling. Section 4.2 presents this work in an

improved form. Hayden contributed most of the theoretical considerations in Section 1.5

of the paper. These results are reviewed as background in Section 3.6 of this thesis.

http://dx.doi.org/10.1016/j.tcs.2011.07.017
http://dx.doi.org/10.1145/2160803.2160872
http://dx.doi.org/10.4018/978-1-4666-4659-9
http://dx.doi.org/10.4204/EPTCS.28.11

1. INTRODUCTION 20

[9] A. Stefanek, R. A. Hayden and J. T. Bradley. Fluid Analysis of Energy Consumption using

Rewards in Massively Parallel Markov Models. In: ICPE’11 - Second Joint WOSP/SIPEW
International Conference on Performance Engineering, Karlsruhe, Germany, March 14-16,
2011. ACM Press, 2011, p. 121. ISBN: 9781450305198. DOI: 10.1145/1958746.1958767

This paper shows how to compute moments of accumulated rewards in Markov population

models. I contributed the majority of the paper and implementation of the techniques

in the GPA tool. Chapter 5 presents the main results and additionally considers impulse

rewards and a new moment closure approximation.

[11] A. Stefanek, R. A. Hayden and J. T. Bradley. GPA - A Tool for Fluid Scalability Analysis

of Massively Parallel Systems. In: 2011 Eighth International Conference on Quantitative
Evaluation of SysTems. IEEE, Sept. 2011, pp. 147–148. ISBN: 978-1-4577-0973-9. DOI:

10.1109/QEST.2011.26

In this paper we present the parameter exploration and optimisation aspects of the GPA

tool. This is demonstrated in Section 8.4.1.

[15] A. Stefanek, R. A. Hayden, M. M. Gonagle and J. T. Bradley. Mean-Field Analysis of

Markov Models with Reward Feedback. In: Analytical and Stochastic Modeling Techniques
and Applications - 19th International Conference, ASMTA 2012, Grenoble, France, June 4-6,
2012. Proceedings. Springer, 2012, pp. 193–211. DOI: 10.1007/978-3-642-30782-9_14

This paper shows how to treat accumulated rewards as part of the state space of Markov

population models, allowing rates in the underlying stochastic process to depend on

rewards. This allows us to jointly capture temperature and other metrics in the system.

The extended version of this paper [14] is presented in Chapter 6. This paper also presents,

for the first time, a closure for Markov population models with rates with the minimum

function, presented in Section 4.4. I am responsible for the main part of the paper and

the related implementation in the GPA tool and the experiments used to demonstrate the

framework. Hayden contributed the paragraph on regularity conditions in Section 2.1 of

the paper and proofs of convergence theorems extended to this framework in Section 3.

These are presented in Appendix C.1 of this thesis.

[3] M. C. Guenther, A. Stefanek and J. T. Bradley. Moment closures for performance models

with highly non-linear rates. In: Computer Performance Engineering - 9th European Work-
shop, EPEW 2012, Munich, Germany, July 30, 2012, and 28th UK Workshop, UKPEW 2012,
Edinburgh, UK, July 2, 2012, Revised Selected Papers. Munich: Springer, 2012, pp. 32–47.

DOI: 10.1007/978-3-642-36781-6_3

In this paper we experiment with a number of different moment closures in Markov popula-

tion models. Section 4.5 shows a comparison of the accuracy of three different closures

on a large number of examples. Guenther contributed the implementation of a stochastic

simulation with confidence intervals and additionally a log-normal closure and an example

model in the MASSPA process algebra which are omitted in this thesis.

[5] M. Kohut, A. Stefanek, R. A. Hayden and J. T. Bradley. Specification and efficient compu-

tation of passage-time distributions in GPA. In: Proceeding QEST ’12 Proceedings of the
2012 Ninth International Conference on Quantitative Evaluation of SysTems. London, 2012,

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1109/QEST.2011.26
http://dx.doi.org/10.1007/978-3-642-30782-9_14
http://dx.doi.org/10.1007/978-3-642-36781-6_3

1. INTRODUCTION 21

pp. 199–200. DOI: 10.1109/QEST.2012.24

In this paper, I worked with the first author on adapting the architecture of the GPA tool in

order to enable an extension implementing the Unified Stochastic Probes formalism [103].

National workshop papers

[12] A. Stefanek, R. A. Hayden and J. T. Bradley. GPA - a tool for rapid analysis of very large

scale PEPA models. In: UKPEW’10, 26th UK Performance Engineering Workshop. 7-8th July,
University of Warwick. 2010, pp. 91–101

This paper presents the GPA tool.

[13] A. Stefanek, R. A. Hayden and J. T. Bradley. Hybrid analysis of large scale PEPA models.

In: 9th Workshop on Process Algebra and Stochastically Timed Activities (PASTA). 2010, p. 29

This paper combines ODE analysis of GPEPA models with stochastic simulation. We present

this approach in Section 4.3.

[6] A. Stefanek, M. C. Guenther and J. T. Bradley. Normal and inhomogeneous moment clos-

ures for stochastic process algebras. In: 10th Workshop on Process Algebra and Stochastic-
ally Timed Activities (PASTA’11). Ragusa, 2011

In this paper we explore existing moment closure approximations in the context of our

PCTMC framework.

[7] A. Stefanek, U. Harder and J. T. Bradley. Energy Consumption in the Office. In: UK-
PEW’12, 28th UK Performance Engineering Workshop, Edinburgh, UK, July 2, 2012, Revised
Selected Papers. Ed. by M. Tribastone and S. Gilmore. Vol. 7587. Lecture Notes in Computer

Science. Springer, 2012, pp. 224–236. ISBN: 978-3-642-36780-9. DOI: 10.1007/978-3-

642-36781-6_16

This paper describes an experiment in which we measured energy consumption of office

equipment. Guenther contributed the experimental results of different closures applied to a

model in the MASSPA process algebra.

[1] J. T. Bradley, M. Forshaw, A. Stefanek and N. Thomas. Time-inhomogeneous population

models of a cycle-stealing distributed system. In: UKPEW’13, The 29th UK Performance
Engineering Workshop. 2013

This paper is a preliminary application of our framework to HTCondor, a cycle-stealing

distributed system. Examples from this paper are presented in Section 9.2. Forshaw

provided a framework for obtaining the experimental data from HTCondor deployed at

Newcastle University.

http://dx.doi.org/10.1109/QEST.2012.24
http://dx.doi.org/10.1007/978-3-642-36781-6_16
http://dx.doi.org/10.1007/978-3-642-36781-6_16

22

Chapter 2

Background

This chapter provides an overview of the relevant background theory that we use and extend in

this thesis. The chapter starts with a brief overview of continuous-time Markov chains. Guided by

the considerations in Section 1.1, we focus on models that are able to represent systems consisting

of a large number of interacting agents. We provide a high-level overview of Markov population

models and associated efficient analysis techniques and postpone a detailed and unified treatment

of selected results until the next chapter. We show techniques for calculating derived metrics

from general continuous-time Markov chains, such as passage-times and accumulated rewards,

that are crucial in various applications. We review hybrid models, where continuous rewards can

influence the discrete behaviour of the Markov chain. Finally, we survey several existing tools

implementing these techniques. Figure 2.1 gives an overview of this chapter and highlights the

context of extensions developed in this thesis.

CTMC
2.1

Formalisms
2.1.3

Analyses
2.1.1

Reward
models 2.3

Analyses

Hybrid
models 4.3

Formalisms Analyses

PCTMC
2.2, 3

Formalisms
2.2.2

Analyses
2.2.1

Moment
ODEs

2.2.1, 3.4.2

Normal
closure

3.4.3

GPEPA
closure

3.4.2

Min-closure
4.4

GPEPA
2.2.3, 3.2.2

GPEPAc 7

Reward
models 5

Analyses Moment
ODEs 5.3

Hybrid
models 6

Analyses Moment
ODEs 6.3

Tools 2.5 Tools 2.5 GPA 8

Figure 2.1: Overview of the background and contributions of this thesis. The arrows denote a subclass
relationship.

2. BACKGROUND 23

2.1 Continuous-Time Markov Chains

This thesis will be concerned with stochastic processes that are continuous-time Markov chains
(CTMC), whose treatment can be found in many introductory probability textbooks, [e.g. 163,

150]. We say that a stochastic process {X(t)} indexed by a real variable t ∈ R+ and taking

values in a countable state space S is a CTMC if it satisfies the Markov property, that is if for all

t,∆t ∈ R+,

P (X(t+ ∆t) = k | X(t) = j,X(u) = x(u), 0 ≤ u < t) = P (X(t+ ∆t) = k | X(t) = j) .

One way to construct a CTMC is to consider a stochastic process with the following behaviour

every time it enters a state si ∈ S:

1. the time it stays in the state is exponentially distributed with rate vi,

2. the next state sj it enters is distributed according to a discrete distribution with probabilities

pij ,
∑

j 6=i pij = 1.

Let pij(t) = P(X(t) = j | X(0) = i). It is possible to show that this construction guarantees that

the following two limits exist:

lim
∆t→0

1− pii(∆t)
∆t

= vi, (2.1)

lim
∆t→0

pij(∆t)

∆t
= pijvi =: qij i 6= j (2.2)

and that

pij(t+ s) =
∑

i∈S
pik(t)pkj(s)

for all s, t ∈ R+.

Further manipulation yields the Kolmogorov’s forward equations, which characterise the time-

evolution of the state probabilities in the CTMC as an ordinary differential equation:

d
dt
pij(t) =

∑

k 6=j
qkjpik(t)− vjpij(t)

with initial conditions

pij(0) = 0, i 6= j

pii(0) = 1.

We can set the generator matrix Q = (qij), where qii = −vi and define the matrix P = (pij). The

above differential equation in matrix form is

d
dt
P (t) = P (t)Q, (2.3)

2. BACKGROUND 24

P (0) = I

where I is the |S| × |S| identity matrix. Usually, we are interested in the probability of X(t) being

in a state given a distribution of the state at time t = 0, with probabilities in a vector p0. We can

reduce the above equation to a single vector p:

d
dt
p(t) = p(t)Q (2.4)

p(0) = p0 (2.5)

2.1.1 Analysis techniques

Solution to Equation 2.3 can be expressed as

P (t) = exp(Qt) =
∞∑

n=0

(Qt)n

n!
.

Using this solution directly yields a numerically unstable algorithm due to both positive and

negative entries in the matrix Q. An improvement can be provided by the identity

exp (Qt) = lim
n→∞

(I +Qt/n)n .

Further improvement is provided by uniformisation of X(t) [e.g. 163]. This transforms the CTMC

into an equivalent one with additional self-transitions in each state that guarantee that the new

holding rates v′i = v are all equal to the largest vi in the original chain. The state probabilities

can be then expressed as

pij(t) =

∞∑

n=0

(
Q′
)n
ij

exp(−vt)(vt)n

n!

where Q′ = I +Q/v. Numerical evaluation of this summation is stable and provides means to

control the resulting error of the approximation.

Another possibility is to numerically integrate the set of ODEs in Equation 2.3, for example using

the Runge-Kutta algorithm. A common problem with all the presented methods is that they

explicitly represent each state of the CTMC. The computational cost therefore depends at least

linearly on the size of the state space |S|. This limits their applicability, as even simple CTMC

models can have a very large number of states.

2.1.2 Tackling large state spaces

The presented construction of a CTMC can be used in discrete event simulation. Several variants

of the Gillespie algorithm [82] can be used to generate individual simulation traces of a CTMC. It

is often possible to avoid directly evaluating the full state space and the simulation can consider

only states encountered throughout each trace. However, in order to obtain accurate estimates of

the transient state probabilities, a large number of traces have to be evaluated.

2. BACKGROUND 25

Several symbolic techniques address the problem of having to explicitly store the state-space

of the CTMC. The generator matrix of the CTMC can be efficiently stored as a Multi-terminal
Binary Decision Diagram [74, 106], used in tools such as PRISM [129] and Möbius [65]. A class

of CTMCs can be represented as a Stochastic Automata Network [153], where the generator

matrix can be efficiently derived with tensor algebra. Further implementation optimisations can

be used to tackle large state spaces, such as using disks instead of memory and parallelising

the computation [121]. However, all of these techniques still have to explicitly represent the

probability vector of the CTMC and are therefore not applicable to systems composed of a large

number of interacting agents.

2.1.3 Process algebras

In practice, CTMCs are often not described directly but through a high-level language that has a

defined translation to a CTMC. Examples include Stochastic Petri-nets [26] and stochastic process

algebras such as PEPA [107], stochastic π-calculus [155] and stochastic concurrent constraint

programming [36]. Process algebraic descriptions are attractive for modelling real systems. They

offer a user-friendly language and are thus accessible to a wider community of modellers. Perhaps

the main benefit of describing a system in a process algebra is the compositionality property – it is

possible to define a system from a number of subcomponents, which can in turn be compositions

of smaller components. This allows easy extensions and re-use of existing models. However, the

compositionality often results in a combinatorial explosion of the resulting state space as shown

in an example below.

2.1.4 PEPA process algebra

In this thesis we will use a variant of the PEPA process algebra. PEPA has a proven history of

being applied to a number of different domains, such as mobile networks [73], web servers [44]

and robot control [85]. We briefly introduce the syntax of PEPA and its CTMC semantics. We only

look at a subset of the language and ignore passive rates and action hiding. A detailed description

of PEPA can be found in the original book by Hillston [107]. The main building blocks of PEPA

models are agents defined by the following syntax:

S := (α, r).S | S + S | CS
P := P BC

L
P | (P |P) | P [n] | S | CP

The variable S stands for sequential agents and P for parallel agents. The symbol BC
L

is the

synchronisation operator and L is a set of action labels, | is a shorthand for BC
∅

and P [n] for

P | · · · |P︸ ︷︷ ︸
n

.

The label α is an action label and r ∈ R+ is a rate. Named agents can be defined in equations

of the form C
def
= P where C is an agent label. Each PEPA model consists of a number of such

definitions and one parallel agent, the system equation.

Informally, the semantics of a PEPA model can be described as:

2. BACKGROUND 26

Prefix A sequential agent (α, r).S can perform an action α and after an exponential duration

with parameter r evolve into another sequential agent S.

Choice An agent P + Q can perform all the actions of sequential agents P and Q, where the

exponentially distributed durations are raced against each other.

Constant Any reference to a named agent C stands for the definition of the agent in one of the

equations of the model.

Cooperation An agent P BC
L
Q created as a parallel composition of two agents synchronising on

a set of actions L allows both P and Q to independently perform any action that is not in L.

Actions in L must be executed simultaneously, with both agents changing state accordingly.

Formally, the semantics of a PEPA model is described as a labelled transition system in Figure 2.2.

The semantics is inductively defined on the structure of agents and gives all possible transitions

P
(α, r)−−−→ P ′ for each state P of the system equation. Each such transition represents a transition

between states P and P ′ at rate r in the resulting CTMC. The initial state corresponds to the

state representing the system equation. The semantic definition uses the concept of apparent
rate rα(P), that is the total rate at which an agent P can be seen to perform an action α. A

sequential prefix agent can be observed to perform an action α only when α is included in the

prefix. If an agent is a choice P +Q, then α can be observed either on the P or Q part and so

the apparent rate is the sum of the individual apparent rates. PEPA uses the so-called bounded

capacity semantics for cooperation, which means that the apparent rate of a cooperation agent

P BC
L
Q is the minimum of the individual apparent rates if α is in L. The full definition of the

apparent rate function rα(P) is as follows:

rα((β, r).P) :=

{
r if β = α

0 if β 6= α

rα(P +Q) := rα(P) + rα(Q)

rα(P BC
L
Q) :=

{
min(rα(P), rα(Q)) if α ∈ L
rα(P) + rα(Q) if α /∈ L

rα(C) := rα(P) if C def
= P (2.6)

The semantic rule for cooperation in Figure 2.2 defines the rate R as a fraction of the total

apparent rate rα(E BC
S
F). The motivation for this is that the total rate is split among all the

possible combinations of cooperation between a transition E and a transition in F . The term

r1/rα(E) can be thought of as the probability that the firing of α corresponds to the specific

transition E
(α, r1)−−−−→ E′.

2.1.5 Client–server model

As an example, consider a simple client–server model. The system consists of two agent types,

clients and servers. Clients can request data from servers, receive data from one of the servers

and then perform some independent action with the data. Each server, in addition to providing

2. BACKGROUND 27

Prefix:
(α, r).E

(α, r)−−−→ E

Competitive Choice: E
(α, r)−−−→ E′

E + F
(α, r)−−−→ E′

F
(α, r)−−−→ F ′

E + F
(α, r)−−−→ F ′

Cooperation:
E

(α, r)−−−→ E′ (α /∈ S)
E BC

S
F

(α, r)−−−→ E′ BC
S
F

F
(α, r)−−−→ F ′ (α /∈ S)

E BC
S
F

(α, r)−−−→ E BC
S
F ′

E
(α, r1)−−−−→ E′ F

(α, r2)−−−−→ F ′ (α ∈ S)
E BC

S
F

(α,R)−−−−→ E′ BC
S
F ′

where R = r1
rα(E)

r2
rα(F) min(rα(E), rα(F))

Constant: E
(α, r)−−−→ E′

(C
def
= E)

C
(α, r)−−−→ E′

Figure 2.2: CTMC semantics of PEPA.

the data, is susceptible to failure in which case it has to be reset. Figure 2.3 shows a diagram of

the model. The individual agent definitions in PEPA are:

Client
def
=(request , rrequest).Client_wait Server

def
=(request , rrequest).Server_get

+(break , rbreak).Server_broken

Client_wait
def
=(data, rdata).Client_think Server_get

def
=(data, rdata).Server

Client_think
def
=(think , rthink).Client Server_broken

def
=(reset , rreset).Server

The system equation of the model consists of nC ∈ Z+ client agents in parallel, cooperating on

actions request and data with a parallel composition of nS ∈ Z+ server agents:

Client [nC] BC
L

Server [nS]

where L = {request , data}.

Client

Client_wait

request

Client_think

data

think

Server

Server_get

request

data

Server_broken
break

reset

nS

nC

Figure 2.3: Simple client–server model.

2. BACKGROUND 28

For nC = nS = 1 the CTMC semantics of PEPA generates a CTMC with five states, corresponding

to agents:

Client BC
L

Server ,Client_wait BC
L

Server_get ,Client_think BC
L

Server

Client BC
L

Server_broken,Client_think BC
L

Server_broken

However, the semantics of PEPA causes the state space of this model to grow exponentially with

nC and nS ; in general, the CTMC will have at least 3min(nC ,nS) states.

2.2 Population models

The large state space in the client–server model is caused by the number of different combinations

of states of the nC individual agents and nS individual servers. It is possible to reduce the state

space if we are not interested in individual agents and instead only want to keep track of the

number of clients and servers in their respective states. The states in the original CTMC which

have the same count of agents in each of the client and server states can be aggregated into

superstates. In general, in order to proceed, the resulting aggregated stochastic process has

to satisfy a lumpability condition [117]. That is, the process has to be a CTMC, in which the

rates can be defined as functions of the aggregated state space. In case of PEPA, it is possible to

automatically derive such aggregations [84]. For the client–server model, a general state in the

aggregated CTMC is of the form

(Client [n1]|Client_wait [n2]|Client_think [n3]) BC
{request,data}

(Server [n4]|Server_get [n5]|Server_broken[n6])

where n1 + n2 + n3 = nC and n4 + n5 + n6 = nS (and additionally n2 = n5).

This CTMC belongs to a subset of CTMCs that is often referred to as Markov population models.
The analysis of such processes will be the focus of this thesis. Same as the client–server example,

each state of a population CTMC (PCTMC) is a finite, integer-valued, vector of N populations,

X(t) ∈ ZN+ . Transitions in a PCTMC are grouped into a set of transition classes C. Each class c ∈ C
specifies transitions that change a population vector X(t) into X(t) + δc where δc is the change
vector of the class c. The initial values of populations are given by a random variable X0. The

rate of c is a function of the populations, rc : ZN+ → R. We postpone a more detailed treatment of

PCTMCs until Chapter 3, and here only briefly overview some existing results.

The Kolmogorov forward differential equations, Equation 2.4, for a PCTMC can be written as:

d
dt

P(X(t) = x) =
∑

c∈C
[P(X(t) = x− δc)rc(x− δc)− P(X(t) = x)rc(x)] (2.7)

P(X(0) = x) = P(X0 = x)

2. BACKGROUND 29

2.2.1 Analysis techniques

Standard CTMC techniques can be directly applied to the population case. However, despite the

significant state space reduction, population models still suffer from the so-called state space

explosion problem. The size of state space of a PCTMC depends on the maximum reachable

values of populations in the model. For example, if there are k agent types with si states and ni
instances of each, i = 1, . . . , k, the size of the state space is at most

k∏

i=1

(
ni + si − 1

si

)
=

k∏

i=1

(ni + si − 1)(ni + si − 2) · · · (ni − 1)

si!
.

For example in the client–server model, there are 2 agent types, clients and servers, with 3

possible states each. Setting the initial populations to 100 clients and 50 servers respectively leads

to around 107 possible states in the PCTMC. Such size quickly reaches the limits of exact methods

for solving CTMCs. A large body of research, including this thesis, is interested in the behaviour

of such models under a wide range of initial conditions, for example if the number of servers and

clients grows by a constant factor S. The traditional methods would restrict the analysis to only

small values of S. In this section, we overview analysis techniques which allow analysis of such

models for arbitrary values of S. We select a number of results that we further extend in this

thesis and present them in a greater detail and in a unified notation in Chapter 3.

Moment closure methods

A very common approach is to use the numerical structure of the state space and transform the

forward differential equation for state probabilities, Equation 2.7, into a differential equation

describing the evolution of moments of populations over time [e.g. 189, 186, 83, 71, 132, 81,

142, 99, 168, 17]. For a moment function h : RN+ → R, for example h(X) = Xi specifying a mean

of the i-th population, the resulting ODE is (restated in Theorem 1 in the following chapter):

d
dt

E[h(X(t))] =
∑

c∈C
E [(h(X(t) + δc)− h(X(t))) rc(X(t))] (2.8)

The exact form of the right-hand side of this equation depends on the moment function and

the rates in the PCTMC. If the rates are linear, it is possible to derive a closed system of ODEs

for moments of any order. For example, taking all population means, specified by hi(X) = Xi

1 ≤ i ≤ N , results in a set of N ODEs that can be solved analytically. Taking all means and

second-order moments results in a closed system of N +N(N − 1)/2 ODEs describing the time

evolution of means and second-order moments.

However, in most cases the system dynamics requires non-linear rate functions. In such case

the terms E[h(X(t) + δc)− h(X(t))rc(X(t))] on the right-hand side of Equation 2.8 cannot be

expressed as functions of moments or can only be expressed as functions of moments of higher

order than the order of E[h(X(t))] and would thus result in an infinite set of ODEs. One way to

solve this problem is to assume a certain distribution of the populations and approximate each

arising non-moment expectation or higher-order moment by an expression composed of moments

of lower orders, thus resulting in a closed set of ODEs. This process is referred to as a moment

2. BACKGROUND 30

closure. Engblom [71] uses Equation 2.8 to derive a system of ODEs for means and higher-order

central moments. In order to produce a closed system of ODEs, the author sets central moments

above a chosen order to be zero. This can be considered as assuming that the distribution of

populations shares the moments above a chosen order with a multivariate normal distribution

(where the central moments of odd orders are zero). The method is defined on PCTMC models

with polynomial rates and other rates have to be dealt with by manually providing a polynomial

approximation, such as through a truncated Taylor expansion. We present a related technique

using raw moments in Section 3.4.3. A similar approach is taken by Gillespie [81] for models

with polynomial rates, later extending to rates that are rational functions of polynomials [146].

In general, we will refer to the class of analysis techniques which approximate moments of

populations by a system of differential equations as ODE analysis techniques.

Moments can be expressed as functions of lower-order moments under different closures. Singh

and Hespanha [166] present a scheme which turns out to be consistent with the populations

being jointly lognormally distributed. Krishnarajah et al. [125] use an assumption of a beta-

binomial distribution to close the higher-order moments. Ale et al. [17] use a truncated Taylor

expansion of the moment equation without further assumptions about the distribution. Hayden

and Bradley [99] show a closure specific to a class of PCTMCs with rates that contain instances

of the minimum function.

Mean-field approximations

The so-called mean-field methods originally emerged from work in the area of statistical physics

aimed at capturing the dynamics of complicated particle systems [29, 145, 30]. More recently,

the approach has also been applied to the analysis of computer and communication systems [88,

89, 24, 25]. Closely related to our work is the discrete-time mean-field framework introduced

by Le Boudec [42, 31] and the continuous-time version given by Bobbio et al. [33]. In both of

these cases, differential equations provide the limiting mean dynamics in a similar fashion to the

moment closures above. The method derives a set of ODEs approximating individual populations.

The form of the ODEs is consistent with those from Equation 2.8, under approximation which

ignores any co-variance between populations, that is

E[f(X)] ≈ f(E[X]).

As a formal justification, mean-field methods often consider a number of convergence properties.

For a so-called density dependent class of PCTMCs, it is possible to construct a sequence of PCTMCs

with growing initial populations and moment ODEs with invariant right-hand sides. Using the

results of Kurtz [127], it is possible to show that the PCTMC converges to a deterministic limit

given by the ODEs as the initial populations grow. We describe these results in greater detail in

Section 3.6.

Product-form queueing networks

There are several other efficient techniques for solving specific large PCTMCs without explicitly

evaluating the global state space. For example, the structures of Jackson [114] and BCMP [28]

queueing networks allow product form solutions for steady-state distributions of populations

2. BACKGROUND 31

(queue lengths). However, in many cases these are numerically expensive to compute. For some

product-form networks, the mean value analysis (MVA) [158] provides a cheaper alternative. The

computational cost of MVA depends on the number of jobs in the system. In the presence of

multiple job classes, the complexity of the solution grows as the product of populations in different

classes. The method of moments by Casale [49] addresses this problem and provides a solution

technique which depends linearly on the total job population in the network. Thomas and Zhao

[178] apply the MVA approach to the analysis of PEPA models. The so-called Approximate Mean
Value Analysis techniques offer a significant improvement in complexity at the expense of slightly

reduced accuracy. Popular examples include the Linearizer algorithm by Chandy and Neuse

[52] and Proportional Estimation algorithm by Schweitzer [164]; both avoid the combinatorial

explosion and give an iterative solution that only depends on the number of job classes in the

system. The accuracy and numerical properties of these algorithms have been improved in a

number of extensions [62, 187]. Unfortunately, to the best of our knowledge, these techniques

have not been successfully generalised beyond queueing networks and steady-state metrics.

Diffusion approximations

Another example of an efficient analysis of population models is the diffusion approximation [e.g.

126], which are used in many areas such as queueing networks [122, 123] or epidemic modelling

[19]. The populations are approximated by a suitably scaled and shifted Brownian motion [e.g.

72] – a continuous-time, real-valued stochastic process E(t) such that: (i) E(0) = 0 and almost

every sample path is continuous, (ii) E(t) has stationary and (iii) independent increments and

E(t)−E(s) is normally distributed with mean 0 and variance σ2(t− s) for some σ ∈ R, 0 ≤ s < t.

Brownian motion is significantly more tractable than the original stochastic process, for example

its stationary distribution has a simple closed-form expression and many transient properties can

be obtained. It can be shown that the Markov chain converges to the diffusion approximation

as the scale of model increases [128, 100]. The Brownian motion representation can be used

to derive a system of ODEs for the covariance matrix of the approximation, which in turn can

heuristically justify some of the second-order moment closures mentioned above [100]. We

review this approach in Section 3.6.2.

2.2.2 Process algebras for population models

Several process algebras have been extended to be able to conveniently describe population

models. Hillston [108] provided an alternative, continuous state space semantics for a subset of

PEPA models. This so called fluid-flow approximation can be shown to be equivalent to implicitly

generating a population model and then applying the mean-field approximation which becomes

more accurate as the scale of the system increases [183, 68, 99]. Several further papers extended

this type of analysis to a larger subset of the language [43, 68, 99, 101, 183]. Hayden and Bradley

[99] defined a variant of the PEPA language, so-called Grouped PEPA (GPEPA), which enables a

more explicit translation to a population model. The syntax of GPEPA is given in the next section

and its detailed PCTMC semantics in Section 3.2.2.

Bio-PEPA by Ciocchetta and Hillston [56] is an extension of PEPA aimed at applying the fluid flow

approximation to compositional descriptions of bio-chemical systems. The syntax combines PEPA

2. BACKGROUND 32

with chemical equations. Reactions with arbitrary stoichiometric matrices and rate functions

are supported. The semantics of Bio-PEPA generates so-called CTMC with levels, which can be

thought of as a PCTMC where the values of populations represent discrete levels of molecule

concentrations. Bio-PEPA is supported by a software tool [55] and has been applied in biology

[16, 54], epidemiology [57], crowd dynamics [140, 141] and collective systems dynamics [138,

139].

Cardelli [48] defines a continuous ODE semantics for chemical ground form, a subset of stochastic

π-calculus that is equivalent to a class of chemical equations. Models in chemical ground form

can be simulated by the SPiM tool [152]. Kwiatkowski and Stark [130] introduce continuous
π-calculus, a process algebra inspired by π-calculus, with a well defined ODE semantics.

In the stochastic concurrent constraint programming (sCCP) formalism [36], the agents com-

municate through a numerical vector valued store. Bortolussi and Policriti [41] associate a set

of ODEs to the evolution of the store variables and also provide a translation from ODEs to an

equivalent sCCP model. A later extension also derives a set of ODEs capturing variances and

covariances of the store variables [35].

2.2.3 Grouped PEPA

In general, there are multiple ways of assigning a PCTMC to a PEPA model. Hayden and Bradley

[99] address this ambiguity by a simple syntactic extension, Grouped PEPA (GPEPA), which

introduces a new layer of syntax explicitly specifying the agents and states that will be aggregated

in populations.

Formally, GPEPA replaces the system equation of PEPA models by a Grouped PEPA model, defined

as:

G := G BC
L
G | G ‖ G | Y{P ‖ · · · ‖ P}

This defines a GPEPA model to be either a PEPA cooperation between two GPEPA models G BC
L
G

(over a set of actions L), written as G ‖ G if L is empty, or alternatively a labelled grouping of

PEPA agents, P , in parallel with each other, where Y is a group label. Agents in each group are

separated by the ‖ operator, or alternatively using the [n] notation as for PEPA models. In order

to avoid confusion, we will not use the [n] notation for PEPA agents inside a GPEPA group. A

Grouped PEPA model is nothing more than a standard PEPA model with, additionally, a structure

of labels defining the agents to be aggregated in populations. We assume that labels do not repeat

within a single GPEPA model and can be thus used to uniquely identify a group in the model.

For example, the client–server model from Section 2.1.5 can be defined in GPEPA by changing

the system equation to

Clients{Client [nC]} BC
{request,data}

Servers{Server [nS]}

We show a precise translation from GPEPA models to PCTMC in Section 3.2.2.

2. BACKGROUND 33

2.2.4 Transaction-based interactions

All the population-based stochastic process algebras presented above consider only single trans-

ition interactions between individual agents. For example, when a user sends a request to a web

server, usually there is a sequence of interactions from the web-server to other subsystems (such

as a database server) before the user is served the page. Normally, the web server keeps track of

the relevant session with the given user. Such a session information is difficult to maintain in the

formalisms presented above. For example, in the client–server model, a server cannot keep track

of the specific client between the request and data actions. However, in this case it would be

straightforward to define a PCTMC of the model with additional virtual populations that would

represent a set of agents cooperating in a session, such as a pair of a client and a server.

In Chapter 7, we present a lightweight extension of GPEPA which allows a compositional

specification of session-based cooperation. We extend processes with channels which will allow

formation of transactions, in a similar fashion to stochastic π-calculus. The channel creation in

stochastic π-calculus can be directly used to model transactions. However, none of the existing

techniques for efficient analysis of π-calculus can deal with general models – in fact it is exactly

the channel creation and forwarding that is omitted from the chemical ground form subset [48].

A similar goal can be achieved by the Layered Queueing Networks formalism, which can be

analysed by fluid techniques [180]. However, this approach does not allow for the possibility

of service forwarding which is essential for example for capturing job allocation in distributed

virtualised environments.

2.3 Reward models

So far, the mentioned methods to analyse CTMCs compute properties of the transient distribution

of states in a model. Usually, CTMCs are used to evaluate a number of derived metrics. For

example, if a CTMC models a single server component (such as Server above), measures of

interest include the distribution of the total energy consumption up-to time t. This is an instance

of an accumulated reward in the system and this section gives an overview of the available analysis

techniques.

Consider a CTMC X(t) with states from a set S. An accumulated rate reward is a continuous-time

real-valued process B(t) defined as

B(t) =

∫ t

0
rX(u)du

where ri, i ∈ S are reward rates in each state. Additionally, a reward can increase by a constant

immediately after a state transition, that is

B(t) =

∫ t

0
rX(u)du+

K∑

i=0

dX(Ti),X(Ti+)

where Ti, 0 ≤ i ≤ K, are the times of state transitions, X(t+) is the state immediately after time

t and di,j i, j ∈ S, are rate constants. Such reward is referred to as an impulse reward and can, for

2. BACKGROUND 34

4 7 9 12

0

5

10

r0

r2
r1

r2

Time, t

R
ew

ar
d

B(t)

(a) Rate reward

4 7 9 12

0

5

10

r0
d0,2

r2 d2,1

r1

r2

d1,2

Time, t

R
ew

ar
d

B(t)

(b) Rate and impulse re-
ward

4 7 9 12

0

1

2

Time, t

St
at

e

X(t)

(c) Underlying stochastic
process

Figure 2.4: Rate and impulse accumulated rewards, B(t), as the underlying process, X(t), evolves.

example, model a cost associated with a transition, such as switching a server state. Figure 2.4

shows an example of the two rewards. Sometimes, further elements of reward accumulation

strategies can be considered. For example, the reward can be reset at each state transition (a

so-called preemptive restart strategy). In this thesis we only consider rewards of the above form,

that is under a so-called preemptive resume strategy, but we allow negative rewards and negative

constants ri and di,j . A good summary of reward strategies can be found in Horváth et al. [110].

The combined process (X(t),B(t)) is often referred to as a Markov reward model and there is

much prior work that analyses the transient distribution of the underlying reward. Most of

these techniques are based on numerical methods which require explicit consideration of the

entire state space of the associated CTMC. A common approach is to uniformise the CTMC and

calculate the total accumulated reward on the underlying discrete-time Markov chain [69, 149,

67, 50]. Telek and Rácz [175] describe an efficient numerically stable algorithm that can compute

moments of the accumulated reward for CTMC models with up to 106 states (on standard

hardware from 2006). Telek et al. [174] consider inhomogeneous Markov reward models. They

derive a system of partial differential equations describing the transient distribution of a given

reward, which can be reduced to a system of ordinary differential equations for moments of the

reward. Inhomogeneous models are also considered by Tijms and Veldman [179]. Horváth et al.

[110] provide an implementation of a number of these techniques.

To our best knowledge, all of the existing methods have complexity at least linearly dependent on

the number of states and transitions in the CTMC. This prevents them from being applicable to

large population models. In Chapter 5, we show an extension of the moment closure method to

calculate moments of accumulated rewards in PCTMCs. A similar approach has been suggested

in the context of physical chemistry [83]. However, it is limited only to agents of a single type

and therefore not applicable to our models where agents from different classes can be in multiple

states. Tribastone et al. [181] consider a class of rate rewards in their fluid framework for PEPA.

They show how to calculate action throughput, the rate at which an action is fired over time,

and capacity utilisation, the proportion of time an agent is used for a specified action, using

ODEs to approximate agent populations. A similar technique is used by Ding [68]. Both of

these approaches only consider average values in the steady state of the system. Hayden et al.

[103] extend the ODEs for mean populations in GPEPA with ODEs capturing means of so-called

2. BACKGROUND 35

action-counting processes. We show how this technique can be used to compute moments of

impulse rewards in PCTMCs.

2.3.1 Passage times and completion times

One of the most useful derived metrics from CTMC behaviour are so-called passage times (also

called response times). These capture the distribution of the time it takes the model to reach

a certain state or a specified sequence of states or transitions. Passage times are often used in

practice as part of Service Level Agreements (SLAs), such as “a message has to reach its destination

within 2 seconds at least 99% of the time”. In CTMCs, computation of passage-time distributions is

often performed by techniques based on Laplace transforms [93] or via uniformisation [144, 148]

where the former are usually less efficient. The uniformisation techniques obtain passage-time

distribution through a transformation of the state space. An absorbing state is added without

modifying the observable behaviour of the model. The passage-time distribution can then be

expressed in terms of transient distribution of the added state [144]. Therefore the computation

is often at least as complex as computing the transient solution of the CTMC and not applicable

to large models [45].

Hayden et al. [4] show how to compute a number of different passage-time classes in GPEPA

models. Their method modifies the state space of a model in a similar way to the uniformisation

approach above and subsequently applies the ODE analysis. Computed moments of populations

can be used to provide approximations to distributions of passage times. We describe the

technique in greater detail in Section 3.5, where we also show how it can be extended to a more

general class of PCTMCs. Additionally, Hayden et al. [103] present Unified Stochastic Probes –

a regular-expression-based formalism that allows specification of complex behaviour and state

based passage-time measures. These can be automatically translated to moment based measures

and therefore the underlying distributions efficiently computed for large models. In a related

approach, Bortolussi and Hillston [40] show how to use fluid approximations to analyse single-

agent properties described by Continuous Stochastic Logic formulae. Ding [68] and Tribastone

et al. [181] also consider passage times by applying Little’s law to the rewards mentioned above,

but they only provide mean measures and only for some types of passage time metrics.

Related to passage times in case of reward models is the so-called completion time – the time an

accumulated reward reaches a certain target value. Many of the techniques for analysing Markov

reward models also consider completion times [e.g. 174]. Horváth et al. [110] derive bounds on

the distribution of a completion time using moments of the reward. We show a similar approach

in Chapter 5, where the reward is defined alongside a large-scale PCTMC model.

2.3.2 Performance–energy trade-offs

A common application of reward models is to model energy consumption in computer systems,

where the goal is to compute system parameters that minimise the total energy consumption.

These parameters include the job placement policy in virtualised environments, CPU frequency,

rates of switching servers into a sleep state. However, usually the configurations which reduce

energy consumption result in a deterioration of the performance provided by the system. This

2. BACKGROUND 36

trade-off, an instance of a multi-objective optimisation problem [136], can be addressed in

various ways.

A common approach is to minimise a weighted sum of the mean power or energy consumption

and a mean response time, energy–response weighted sum (ERWS). Wierman et al. [191] show

how to choose an optimal dynamic speed scaling policy that minimises a combination of mean

response time and mean energy consumption. Gelenbe and Morfopoulou [80] provide a gradient-

descent algorithm to minimise a combination of mean energy consumption and response time

in a wired network. Gandhi et al. [76] argue that a more suitable metric to minimise is the

energy-response product (ERP, or energy-delay product [86]), a product of the mean energy

consumption and mean response time, which unlike ERWS does not require subjectively chosen

weight parameters. They provide optimal policies for management of a multi-server farm, taking

into account time-dependent workload and demonstrate their technique on a real trace from the

World Cup 1998 website. A similar approach is to maximise “performance per Watt”, the inverse

of a product of mean power and mean response time [77].

Riska and Smirni [162] quantify power savings in the operation of disk drives under different

workloads and give the resulting performance degradation. This allows the modeler to choose

the optimal management policy given an acceptable performance degradation. Similarly, Gandhi

et al. [78] provide a combination of a predictive and reactive provisioning in a data centre and are

able to quantify the energy impact and the number of SLA violations. Ardagna et al. [21] assign a

utility function to SLA satisfaction and violation and maximise the total gain (income minus cost)

in a virtualised environment. Slegers et al. [167] model large server farms with Markov decision

processes and evaluate the performance of heuristic allocation strategies. Clark et al. [59] model

industrial service-oriented systems described in a high level formalism. They translate high level

system descriptions into models in the PEPA process algebra and use the efficient fluid analysis

techniques to experiment with a large number of system parameter configurations.

In this thesis, we present a framework that can be used to address performance–energy trade-offs

in Markov population models, respecting SLAs based on passage time probabilities. Chapter 5

shows how to use the ODE analysis to efficiently calculate moments of rewards in PCTMCs and

thus simultaneously calculate both energy consumption and response time CDF in our models.

This results in a global optimisation problem with an embedded system of ODEs, Section 5.5,

where the objective is to minimise energy consumption and constraints are given as minimum

probabilities on passage time CDFs representing given SLAs. Although this problem is too general

to be solved analytically, the relatively cheap cost of solving the ODEs numerically leads to

efficient approximate solutions. Our approach additionally allows both the model and the SLA

response times to be specified in a high-level behavioural language.

2.4 Hybrid models

In this thesis, we consider hybrid models, a generalisation of stochastic reward models. The

state space of the underlying stochastic process is extended with continuous variables. These

usually evolve deterministically between state changes of the discrete process, according to a

system of ordinary differential equations. As opposed to pure reward models, the continuous

2. BACKGROUND 37

variables also affect the discrete behaviour and their values can be used in the corresponding

transition rates. There are two common needs for hybrid models. From modelling perspective,

continuous variables are often natural elements in the system. On the other hand, the complexity

of a population model can be greatly reduced if some of the populations (usually those occurring

in great abundance) are approximated as deterministically evolving continuous quantities.

Many of the systems to which CTMC models are applied also consist of continuous variables.

For example, in addition to server energy consumption in the client–server model that can be

represented as a reward, the servers can generate heat that will affect the overall temperature in

the data centre. This temperature is controlled by a set of air conditioning units and also can

affect placement of tasks on the servers if a temperature-aware scheduling policy is used. This is

an example of a so-called cyber-physical system. Many formalisms have been used in the past to

model such systems, where the discrete part is captured as a Markov model and the continuous

quantities evolve as ODEs over time. The resulting joint stochastic process is an instance of a

Piecewise-Deterministic Markov Process (PDMP).

Fluid models are an extension of reward models, where the rates are allowed to be negative and

the level of the fluid is allowed to influence the behaviour (rates) in the underlying CTMC. The

fluid quantity is usually bounded at zero and often additional barriers are introduced, requiring a

more sophisticated analysis than reward models. Gribaudo and Telek [90] give an overview of

different types of fluid models and the associated solution techniques.

A high-level formalism to describe a class of fluid models is the Fluid Stochastic Petri Nets (FSPNs)

framework. These are a natural extension of Stochastic Petri nets that introduce places with

continuous tokens and arcs with fluid flow [184]. A later extension by Horton et al. [109] allows

the level of fluid in continuous places to affect the discrete transitions in the model, while still

being amenable to numerical analysis. A further extension by Ciardo et al. [53] is only analysable

by discrete-event simulation. The authors describe a simulation algorithm, which is no longer a

trivial extension of the simulation of the underlying CTMC and requires approaches similar to

that of simulation of non-homogeneous Markov chains. Gribaudo et al. [91] give an automated

mapping from a stochastic Petri net with generally distributed transitions into a FSPN. Tuffin

et al. [185] provide a comparison between FSPNs and traditional hybrid systems.

There are several process algebras specialised for the modelling of hybrid systems [119]. Galpin et

al. [75] introduce HYPE, a process algebra based on PEPA where the evolution of the continuous

variables can be defined in a compositional way. Transitions of individual components apply

influences to continuous variables and the collection of all influences fully determines the evolution

of continuous variables at each time. Semantics of a HYPE model is given as a hybrid automaton

[104]. HYPE is further extended with stochastic events [37], where the semantics is given as a

PDMP.

All the mentioned hybrid modelling techniques require an explicit consideration of the discrete

state space of the model, preventing them from being applicable to scalable PCTMC models. In

Chapter 6, we show how to adapt the mean-field and moment closure techniques to augment

PCTMCs with continuous variables. The continuous variables evolve according to an explicitly

given system of ODEs involving populations in the PCTMC and the PCTMC rates can in turn

2. BACKGROUND 38

involve the continuous variables. We show how to derive ODEs capturing moments of such

continuous variables and joint moments of continuous variables and populations. Because our

approach is ODE based, we cannot enforce boundaries on the continuous variables as is the case

in fluid models or FSPNs. We only consider the continuous extension at the level of PCTMCs and

will leave a process algebraic compositional description of the continuous behaviour as future

work. Additionally, we use a continuous variable to represent time, thus allowing time-dependent

rates to be introduced in the model.

We note that hybrid models are often used as a way to deal with large state spaces in population

models. The accuracy of mean-field techniques and moment closures is often lower when some

of the populations stay small for a longer period of time. For example, in models of genetic

pathways in biology, there are often only a few instances of genes that regulate the production of

a large number of proteins. Or in the client–server model, a small number of servers can serve

a large number of clients. Instead of solving such model as a PCTMC by one of the ODE-based

techniques, it is possible to approximate large populations by a continuous variable and then

solve the resulting hybrid model exactly, explicitly treating the state space of the small population

components. Bortolussi [34] considers such approximations for sCCP models. He formally relates

the hybrid system to the PCTMC as a limit when the large populations scale. Hasenauer et al. [94]

derive a closed system of differential algebraic equations where equations for the distribution of

small populations over time are solved together with equations for moments of large populations.

We will not consider this kind of hybrid approximation in this thesis and will instead try to

improve the accuracy of moment closures even for cases with small populations.

2.5 Software tools for population models

There are many tools which support analysis of very large state spaces in performance modelling.

Two such popular tools which have good support for explicit state-space analysis are Möbius and

PRISM.

The Möbius [65] framework has perhaps the widest user base with implementations of many form-

alisms, including stochastic process algebras (SPAs), stochastic automata networks (SANs) and

generalised stochastic Petri nets (GSPNs). Möbius supports a distributed simulation environment

and numerical solvers for models of up to tens of millions of states.

PRISM [129] is a probabilistic model checker which supports low level formalisms such as DTMCs,

CTMCs and Markov Decision Processes (MDPs) with an analysis engine based on Binary Decision

Diagrams (BDDs) and Multi-Terminal Binary Decision Diagrams (MTBDDs). PRISM can analyse

models of up to 1011 states, however this can depend heavily on the model being studied and on

detailed considerations such as the exact variable ordering in the underlying MTBDD.

Performance tools that support differential-equation based analysis have been primarily designed

around stochastic process algebras such as stochastic π-calculus and PEPA. For π-calculus SPiM

[151, 152] has long been the standard tool for simulating stochastic π calculus models, but being

a simulator it suffers from scalability issues for models with very large populations of components.

A recent tool, JSPiM [169], allows for the chemical ground form subset of stochastic π-calculus to

2. BACKGROUND 39

be analysed via differential equations. The tools ipc [58, 45] and the Eclipse PEPA plug-in [182]

implement the so-called fluid translation [108] to produce sets of differential equations for the

stochastic process algebra PEPA.

In the field of biological modelling, tools such as Dizzy [156] and SPiM have been used to capture

first-order approximations to system dynamics using a combination of stochastic simulation [82]

and differential equation approximation. A recent tool by Gillespie [81] generates ODEs approx-

imating higher-order moments in models using the mass-action kinetics and described in the

Systems Biology Markup Language. Lapin et al. [131] present SHAVE, a tool that approximates

a Markov population model with polynomial rates by a hybrid stochastic process, solved by a

combination of moment-based techniques and direct solution of the Kolmogorov differential

equations.

In Chapter 8 we present GPA, a tool implementing the framework developed in this thesis. The

main focus of GPA is to provide implementation of ODE analysis and related techniques to

Markov population models. Similar to Möbius, GPA supports a number of different formalisms

and solution techniques.

40

Chapter 3

Population Continuous-Time
Markov Chains

Key contributions

Summary of ODE analysis techniques for Markov population

model

3.1

PCTMCs as an intermediate layer for process algebra models 3.2.2

This chapter bridges the background theory in Chapter 2 and contributions of this thesis in the

following chapters. We summarise a number of existing results considering continuous-time

Markov chains (CTMCs) where the state space consists of vectors of non-negative integers.

We present these in the form of a framework of Population Continuous-Time Markov Chains
(PCTMCs). A PCTMC is a CTMC where the states are vectors of numerical populations and the

transitions between states can be defined by constant changes in some of the populations, with

rates expressible as functions of populations. This definition is common to most of the approaches

mentioned in Section 2.2. We show how existing mean-field and higher-order moment ODE

analysis techniques apply to PCTMCs. For example, we show that the ODE analysis of models in

the GPEPA process algebra by Hayden and Bradley [99] can be interpreted as an application of a

moment closure technique to the PCTMC that represents a process algebraic model. Section 3.2.2

presents the semantics of a GPEPA model as an equivalent PCTMC. A similar translation can be

defined for other population-based process algebras. This separation of model description and

the underlying stochastic process, as shown in Figure 3.1, allows these results to be applied to a

range of different formalisms. In this thesis, we present extensions of the PCTMC framework. For

example Chapter 5 shows how to capture certain accumulated rewards in the models. This and

other extensions are directly applicable to any formalism that can be described by an underlying

PCTMC.

GPEPA SPN BioPEPA · · ·

PCTMC

Formalism layer

Intermediate
representation

ODE
analysisSimulation · · ·Analysis techniques

PCTMC semantics

Figure 3.1: PCTMC as an intermediate representation for Markov population formalisms.

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 41

3.1 PCTMCs

A population continuous-time Markov chain (PCTMC) is a CTMC with state space that is a finite

vector of non-negative integers, X = (X1, . . . , XN) ∈ ZN+ , with the i-th component representing

a population of an agent in a state i. The transitions in a PCTMC are described by a set of

transition classes C. Each transition class c = (rc, δc) ∈ C describes stochastic events in a state

X(t) at time t

(i) with exponentially distributed duration Dc at rate rc(X(t)) where rc : ZN+ −→ R is a rate
function and

(ii) change the current population vector according to the change vector δc.

The state after each transition from a class c is

X(t+Dc) = X(t) + δc.

We use PCTMCs to model systems with a large number of interacting agents. The agents can

belong to different types and an agent of each type can move between a finite number of distinct

states. The populations indexed by 1, . . . , N span all the possible agent – state combinations. We

will often index the state space by labels, for example C , S for clients and servers, and assume

an implicit bijective mapping between such labels and the set 1, . . . , N .

The PCTMC framework is similar to chemical reaction systems, where X(t) describes the counts

of different molecules in a chemical solution and transition classes represent chemical reactions

between the molecules, where rc is the reaction propensity function and δc the stoichiometric

vector. For clarity, we adapt a notation similar to that of chemical reactions and denote by

in1 + · · ·+ ink → out1 + · · ·+ out l at r(X) (3.1)

where 1 ≤ ini, out j ≤ N , a transition class c with change vector

δc = (#1(out)−#1(in), . . . ,#N (out)−#N (in)) ∈ ZN

where #h(v) gives the count of h in a vector v, and rate

rc(X) =

r(X) if Xi ≥ #i(in) for all i = 1, . . . , N

0 otherwise

We also allow empty left-hand side or empty right-hand side in Equation 3.1 corresponding to

transitions where populations are only increased or decreased respectively.

When defining the rate function r(X), we replace the population indexed by a label Xl by the

label l itself. For example, if the rate is r(X) = XS ·XC , we write r(X) = S · C .

It is appropriate to note here that a PCTMC can represent any CTMC with a finite state space –

each state would be assigned a population that can take values 0 and 1 and exactly one population

would be non-zero at each time. All the techniques described in this chapter and developed in

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 42

this thesis would apply to such a PCTMC. However, in most cases, there would be little or no

benefit in the presented analysis techniques compared to directly analysing the CTMC. In general,

PCTMCs are suited to models where at least some of the populations could take large values so

that the resulting combinatorial explosion would make traditional CTMC analyses too expensive.

We show several such models below and later in this thesis.

3.2 Examples

We first present several PCTMC models that will motivate the developments in this thesis. We

will show models with different transition rate functions, which influence the available analysis

techniques.

3.2.1 Peer-to-peer model

A simple and commonly used transition rate function in PCTMCs is the quadratic mass-action
kinetics, where the rate function depends on a product of two populations. This assumes that

agents interact in a homogeneous environment where they can meet uniformly at random. The

rate of interactions depends on the number of possible pairs of agents, captured by the product

of respective populations. A common example of such transitions can be found in models of

chemical reactions, predator–prey systems or epidemiology models. In performance modelling

of computer systems, such rates can be for example found in models of peer-to-peer systems

[e.g. 118]. There, the environment represents an internet-wide network and is assumed to be

approximately homogeneous. We present a PCTMC describing a simple peer-to-peer system.

The system consists of users who already own a copy of some data to be distributed. Other users

are trying to obtain the data. Additionally, to increase the speed of data distribution, the system

includes dedicated servers that can perform faster seeding. Users with data can leave the system

and potentially return.

The system contains two different agent types – users and dedicated servers. Each user can be in

three different states – in possession of the data, without the data and temporarily unavailable,

labelled by Ul ,Us ,Uf respectively. Each server can be in an on or off state, labelled by Son ,Soff

respectively. The state space consists of vectors of five populations, X = (Ul ,Us ,Uf ,Son ,Soff) ∈
Z5

+. Initially, there is a fixed number of users and servers in the off state – the initial populations

are given by a point mass (nUl
, nUs , 0, 0, nSoff

) ∈ Z5
+.

We assume that users and servers are uniformly distributed across the network and equally likely

to initiate communication with each other. This can be captured by the mass action kinetics – for

example, the rate of the event where a user seeds the data to another user without the data is

proportional to the product of the two populations, i.e. to Ul ·Us · rseed , where rseed is a constant

dependent on the data and network properties. Similarly, the rate of seeding from an active

server to a user is Son ·Ul · rseed ,s . Additionally, servers can switch between the on and off states

and clients can leave and return to the system to obtain the file again. The system behaviour can

be captured by six transition classes:

Soff → Son at Soff · ron

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 43

Son → Soff at Son · roff

Ul + Us → Us + Us at Ul ·Us · rseed

Ul + Son → Us + Son at Ul · Son · rseed ,s

Us → Uf at Us · rleave

Uf → Ul at Uf · rreturn

3.2.2 PCTMC semantics of GPEPA

We look at models that can be defined by the GPEPA process algebra. Unlike the peer-to-peer

example above, GPEPA assumes bounded capacity kinetics for cooperation between a number

of agents – the total rate of a cooperation is limited by the slowest agent. We show a simple

client–server model, using the syntax described in more detail in Section 2.2.3. We formally

define a semantics of GPEPA which translates a GPEPA model into an equivalent PCTMC.

Traditionally, the semantics of GPEPA is defined as a CTMC and further reasoning about the

symmetry of the state space can reduce the model into a PCTMC. We define an equivalent

semantics of GPEPA directly as a PCTMC. We define three functions on the structure of GPEPA

models (described in Section 2.2.3) giving the set of all possible population labels, the set of

transition classes and the initial populations in the resulting PCTMC.

Population labels Population labels in the resulting PCTMC correspond to all the possible pairs

of group labels and agent states. Function Ps(M) returns the set of all such pairs for a

GPEPA model M :

Ps(G{P1[n1]| · · · |Pm[nm]}) = {(G, P1), . . . , (G, Pm)}
Ps(M1 BC

A
M2) = Ps(M1) ∪ Ps(M2)

We assume an implicit bijection between the group – agent pairs in a model M and the set

{1, . . . , |Ps(M)|}.

Initial populations The initial populations for a model M are x0 = Init(M) where

Init(G{P1[n1]| · · · |Pm[nm]}) = {(G, P1) 7→ n1, . . . , (G, Pm) 7→ nm,

(G, P) 7→ 0, P /∈ {P1 . . . , Pm}}
Init(M1 BC

A
M2) = Init(M1) ∪ Init(M2)

Transition classes Function Trans(M) returns returns the set of all transition classes in the res-

ulting PCTMC. In order to respect synchronisation sets in a GPEPA model, we annotate each

transition class with the respective GPEPA action label. For a simple labelled GPEPA group

M = G{P1[n1]| · · · |Pm[nm]}, the PCTMC has a transition class for each PEPA transition

Pi
(α, r)−−−→ P ′i labelled with an action α. The set Trans(M) consists of

(G, Pi)→ (G, P ′i) at rate X(G,Pi) · r, label α

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 44

Let model M be a cooperation of two GPEPA models M1 BC
A
M2 and let Ci be the sets of

labelled transition classes of PCTMCs corresponding to the models Mi respectively. The set

of transition classes for the PCTMC of M , Trans(M) consists of

(i) All transition classes in C1 and C2 not labelled by an action α in the cooperation set A.

(ii) For each combination of transition classes in C1 and C2 labelled by an action α in the

cooperation set, that is

k∑

i=1

(Gi, Pi)→
k′∑

i=1

(Gi, P
′
i) at rate r1(X), label α

l∑

i=1

(Hi, Qi)→
l′∑

i=1

(Hi, Q
′
i) at rate r2(X), label α

the transition class defined as:

k∑

i=1

(Gi, Pi) +

l∑

i=1

(Hi, Qi)→
k′∑

i=1

(Gi, P
′
i) +

l′∑

i=1

(Hi, Q
′
i) at rate r(X), label α

where the rate is

r(X) =
r1(X)

rα(M1,X)

r2(X)

rα(M2,X)
·min (rα(M1,X), rα(M2,X))

where rα(Mi,X) is the GPEPA apparent rate of the action α in model Mi, defined in

Equation 2.6,

rα(Mi,X) =
∑

(rc,δc)∈Cαi

rc(X)

for Cαi the set of all transition classes in Ci labelled with α.

The resulting PCTMC for a GPEPA model M can be constructed as

(X(t),Trans(M), Init(M))

where X(t) is indexed by population labels in Ps(M).

3.2.3 GPEPA client–server model

Using the PCTMC semantics of GPEPA, we can obtain a PCTMC representing the client–server

model from Section 2.2.3. There are six group – agent pairs

Ps(M) =
{

(Clients,Client), (Clients,Client_wait), (Clients,Client_think),

(Servers,Server), (Servers,Server_get), (Servers,Server_broken)
}

We will abbreviate the individual labels and also population vectors, and write each state at time

t as (C (t),Cw (t),Ct(t),S (t),Sg(t),Sb(t)) ∈ Z6
+. The initial state given by the system equation is

Init(M) = (nC , 0, 0, nS , 0, 0).

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 45

The construction above gives five transition classes in total:

C + S → Cw + Sg at rrequest ·min(C ,S)

Cw + Sg → Ct + S at rdata ·min(Cw ,Sg)

Ct → C at rthink · Ct

S → Sb at rbreak · S
Sb → S at rreset · Sb

3.3 Simulation

A straightforward way to analyse a PCTMC is to numerically compute individual realisations

of the stochastic process. Given a PCTMC (X(t), C,X0) and a finite time tf ∈ R, the following

algorithm, often attributed to Gillespie [82], calculates a trace x(t) for 0 ≤ t ≤ tf of the PCTMC:

1. Sample an initial state x(0) according to the distribution given by X0. Set t = 0.

2. For the current state at time t, x(t), calculate the values of rate functions rc(x(t)) for each

c ∈ C. Calculate the sum of all rates r =
∑

c∈C rc(x(t)).

3. Sample the time τ until the next transition, from an exponential distribution with parameter

r.

4. Sample the next transition class i, from discrete distribution with P(i = c) = rc(x(t))/r for

each c ∈ C.

5. Set x(t+ s) = x(t) for s < τ and set the new state x(t+ τ) = x(t) + δi and t = t+ τ .

6. Repeat steps 2 to 5 until t ≥ tf .

We can repeatedly apply this algorithm to compute a large number of traces. These can be used

to obtain estimates of statistical properties of the stochastic process, such as the distribution or

moments of the population vector X(t) at some time t ≤ tf .

The computational complexity of this approach depends on the size of the state space, the time

tf and the particular form of the rate functions. In many cases, we will look at systems where the

rates linearly depend on the total number of agents. Scaling such systems by a constant factor S

decreases the number of traces required for statistically significant results. At the same time, the

frequency of transitions in the PCTMC increases roughly by a factor of S. Overall, simulation of

PCTMC models can be expensive for even a single parameter configuration in the model.

3.4 ODE analysis of PCTMCs

Simulation of PCTMCs and traditional explicit state space analysis techniques of CTMCs from

Section 2.1.1 become costly when applied to large PCTMC models. Traditional methods have to

keep track of the stochastic dependencies between individual populations by explicitly calculating

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 46

probabilities for all possible combinations of values of populations. This results in state space

explosion even if sophisticated aggregation schemes are used. On the other hand, stochastic

simulation evaluates sample paths of the process and the stochastic dependencies are only

captured by calculating statistical estimates from a large number of independently computed

paths.

In this section, we present several results concerning the so-called ODE analysis of PCTMCs. The

ODE analysis derives a deterministic, real-valued process that approximates the evolution of

populations over time. For example, the mean-field analysis defines a set of ordinary differential

equations (ODEs) that approximate the evolution of average values of populations over time.

Dependencies between populations are captured by simultaneously solving the set of ODEs for all

populations, ignoring any covariance between the individual population variables. This greatly

reduces the cost of the analysis, now not depending on initial populations in the model and not

suffering from high transition rates. Although this approximation is usually accurate, it can lead

to high errors, sometimes preventing the modeller from gaining a good understanding of the

evolution of the system. It is possible to reduce the error by accounting for covariance between

populations. The ODE system can be extended with auxiliary variables capturing higher-order

moments of populations. Usually, further approximations, referred to as moment closures, have to

be included to make the resulting system of ODEs finite. We give an overview of several moment

closures in Section 3.4.2 below and present a novel moment closure for models with minimum

rates in Section 4.4.

The following theorem gives an exact form of the ODEs describing a moment of populations in a

PCTMC [e.g. 95, 71], and serves as the basis of different variants of ODE analysis:

Theorem 1. For a PCTMC (X(t), C,X0) and a moment function h : RN+ → R, the moment

described by h evolves according to a differential equation

d
dt

E[h(X(t))] = E[fh(X(t))] (3.2)

where

fh(X(t)) =
∑

c∈C
(h(X(t) + δc)− h(X(t)))rc(X(t)) (3.3)

For example, to obtain the ODE describing the evolution of a mean of a population Xi(t), we set

h(X) = Xi and get

d
dt

E[Xi(t)] = E

 ∑

(δc,rc)∈C
δcjrc(X(t))

 (3.4)

Similarly, for higher-order moments we use a suitable moment function h(X), for example

h(X) = XiXj for the evolution of the mean of the product of populations of i and j.

Some terms on the right-hand side of an ODE from Theorem 1 do not necessarily have a known

closed form. In some cases, the expectation E[fh(X(t))] is a linear combination of additional

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 47

moments that can be captured by Theorem 1. However, in most cases, an approximation has to

be applied in order to replace the expectation by an expression involving only moments where

Theorem 1 applies. The following two cases of ODE analysis apply such approximations to

construct a closed system of ODEs that captures moments of populations in PCTMCs.

3.4.1 Mean-field analysis

Mean-field analysis constructs a system of ODEs with a solution x(t) ∈ RN+ , where each element

of x(t) corresponds to a population mean. The ODEs are obtained by applying Theorem 1 to

population means and by approximating the expectation of a rate function by evaluating the

function on expectations of its arguments:

E[r(X(t))] ≈ r(E[X(t)]) (3.5)

This gives a closed system of ODEs

d
dt
x(t) = fX(x(t)) (3.6)

x(0) = E[X0]

where

fX(x(t)) =

fh1(x(t))

· · ·
fhN (x(t))

 (3.7)

for hi(X(t)) = Xi(t) and fhi from Theorem 1.

In Section 3.6, we present a result that shows convergence between the mean-field approximation

and the means in a PCTMC. Therefore we adopt the following notation:

Ẽ[X(t)]
def
= x(t)

Ẽ[Xi(t)]
def
= xi(t) 1 ≤ i ≤ N (3.8)

where Xi(t) can be replaced by the respective population label shorthand, such as in Ẽ[C (t)] for

the approximation of mean client population in the client–server model. The general structure of

mean-field equations can be seen in Figure 3.2.

d
dt Ẽ[Xi(t)] = E[f(X1(t), . . . , Xn(t))] (First order)

≈
f(Ẽ[X1(t)], . . . , Ẽ[Xn(t)])

Figure 3.2: Structure of mean-field ODEs.

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 48

In the client–server model, the equations are

d
dt

Ẽ[C (t)] = −min(Ẽ[S (t)], Ẽ[C (t)]) · rrequest + Ẽ[Ct(t)] · rthink

d
dt

Ẽ[Cw (t)] = −min(Ẽ[Cw (t)], Ẽ[Sg(t)]) · rdata + min(Ẽ[S (t)], Ẽ[C (t)]) · rrequest

d
dt

Ẽ[Ct(t)] = −Ẽ[Ct(t)] · rthink + min(Ẽ[Cw (t)], Ẽ[Sg(t)]) · rdata

d
dt

Ẽ[S (t)] = −min(Ẽ[S (t)], Ẽ[C (t)]) · rrequest − Ẽ[S (t)] · rbreak

+ min(Ẽ[Cw (t)], Ẽ[Sg(t)]) · rdata + Ẽ[Sb(t)] · rreset

d
dt

Ẽ[Sg(t)] = −min(Ẽ[Cw (t)], Ẽ[Sg(t)]) · rdata + min(Ẽ[S (t)], Ẽ[C (t)]) · rrequest

d
dt

Ẽ[Sb(t)] = −Ẽ[Sb(t)] · rreset + Ẽ[S (t)] · rbreak

with initial conditions

Ẽ[X(0)] = (nC , 0, 0, nS , 0, 0)T

3.4.2 Moment closures

Theorem 1 can be also used to obtain ODEs that describe the evolution of higher-order moments

of populations. Structure of the resulting system of ODEs and the exact form of the right-hand

sides depend on rates used in the PCTMC transition classes.

Moment closure for GPEPA models

Transition rate functions r : RN+ → R for GPEPA models enjoy the following homogeneity property

[99]: for all y ∈ R+ and x ∈ RN+ ,

y · r(x) = r(y · x). (3.9)

This permits Equation 3.5 to be applied to right-hand sides of ODEs describing raw moments

of populations in a PCTMC X(t) that is obtained from a GPEPA model, and use the following

approximation:

E[Y · r(X(t))] = E[r(Y ·X(t))] ≈ r(Ẽ[Y ·X(t)]) (3.10)

where Y is a non-negative random variable, such as a product of populations Xi1(t) · · ·Xik(t).

This approximation can be directly applied to right-hand sides of ODEs for higher-order moments

of populations. For a raw moment of populations of order o, given by h(X) = Xi1 · · ·Xio , the

difference h(X(t) + δc)− h(X(t)) on the right-hand side of the ODE for E[h(X(t))] consists of

terms which are products of up to (o− 1) populations. By definition of the GPEPA semantics, the

rate r(X(t)) does not contain terms with any products of populations. Therefore, after applying

the approximation from Equation 3.10, the right-hand side of the approximate moment ODE for

E[h(X(t))] is an expression composed of moments of order up to o and using only addition, scalar

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 49

multiplication, applications of the minimum function and the PEPA division operator. We can

apply Theorem 1 and the approximation from Equation 3.10 to all raw moments of populations

of order up to and including o and obtain a closed system of ODEs.

For example, if we set o = 2, we get x(t) = (x1(t), . . . , xN (t), x{1,1}(t), x{1,2}(t), . . . , x{N,N}(t))T

where xi(t) approximates the mean of population i and x{i,j}(t) the joint moment E[Xi(t)Xj(t)].

We get a closed system of N +N · (N + 1)/2 ODEs:

d
dt
x(t) = fX2(x(t)) (3.11)

x(0) = (E[X0]T,E[X0,i ·X0,j] 1 ≤ i ≤ j ≤ N)T

where

fX2(x(t)) =

fh1(x(t))

· · ·
fhN (x(t))

gh{1,1}(x(t))

gh{1,2}(x(t))

· · ·
gh{N,N}(x(t))

(3.12)

for hi(X) = Xi, h{i,j}(X) = Xi · Xj . Functions fhi are derived directly from Theorem 1.

Functions gh{i,j} are obtained by applying the approximation from Equation 3.10 to the respective

functions fh{i,j} from Theorem 1 where occurrences of second-order moments E[Xk(t)Xl(t)] are

replaced by the corresponding elements x{k,l}(t) from x(t).

A similar set of ODEs can be obtained for higher-order moments of populations. We extend the

notation from Equation 3.8 and write

Ẽ[Xi1(t) · · ·Xik(t)]
def
= xi1,...,ik(t) 1 ≤ i1, . . . , ik ≤ N (3.13)

In the client–server model, there are six different populations and 21 possible second-order

moments, giving the state space X(t) ∈ Z27
+ . The approximation above gives the differential

equation for the moment Ẽ[C (t)S (t)]:

d
dt

Ẽ[C (t)S (t)] = −min(Ẽ[C (t)S (t)], Ẽ[S (t)2]) · rrequest −min(Ẽ[C (t)2], Ẽ[S (t)C (t)]) · rrequest

+ min(Ẽ[C (t)], Ẽ[S (t)]) · rrequest + Ẽ[Ct(t)S (t)] · rthink

+ Ẽ[Sb(t)C (t)] · rreset − Ẽ[S (t)C (t)] · rbreak + min(Ẽ[Cw (t)C (t)], Ẽ[Sg(t)C (t)]) · rdata

The complete system of 27 ODEs can be found in Appendix A.1.2.

The general structure of moment ODEs for a GPEPA based PCTMC can be seen in Figure 3.3.

Note that an ODE for a moment does not depend on an ODE for a higher moment. In particular,

the resulting approximation for means still ignores any covariances between populations. In

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 50

Section 4.4 we present a new moment closure which introduces this dependency and leads to

more accurate approximations.

d
dt Ẽ[Xi1(t) · · ·Xin(t)]

=
∑
m<n

C(n,m) · E[Xj1(t) · · ·Xjm(t)f(Xk1(t), . . . , Xkl(t))]

(first order)
...

(n-th order)

≈
f(Ẽ[Xj1(t) · · ·Xjm(t)Xk1(t)], . . . , Ẽ[Xj1(t) · · ·Xjm(t)Xkl(t)])

Figure 3.3: Structure of higher-order moment GPEPA ODEs.

3.4.3 Normal closure for PCTMCs with polynomial rates

For a large class of PCTMC models including the peer-to-peer model in Section 3.2.1, the rates of

transitions are defined as polynomial functions of populations: r(X(t)) =
∑m

i=0 ci
∏i
j=1Xkj (t)

for an order m ∈ Z+ and constants ci ∈ R, 0 ≤ i ≤ m. This rate occurs on the right-hand side of

an ODE for a moment of order o, given by h(X) = Xi1 · · ·Xio , and is multiplied by terms of the

form Xj1(t) · · ·Xjl(t) where l < o (these originate from the difference h(X(t) + δc) − h(X(t))

for a transition class c). Therefore the right-hand side of the ODE for E[h(X(t))] is composed

of moments of orders up to and including o − 1 + m. If m > 1, the moment ODE depends on

moments of higher orders. Although it is possible to apply Theorem 1 to those moments, doing

so would result in an infinite system of ODEs – each moment would depend on a moment of a

higher order. In the peer-to-peer model, the ODE for the moment E[Ul (t)] would contain the

moment E[Ul (t)Us(t)], the ODE for E[Ul (t)Us(t)] the moment E[Ul (t)
2Us(t)] and so on.

One way to reduce this system to a finite number of equations is to apply an approximation that

transforms the right-hand side of an ODE for a moment of order o in a way that only moments

of order up to o are included. A trivial case of this approximation is used in the mean-field

approach, where for example the term E[Ul (t)Us(t)] is reduced to E[Ul (t)] · E[Us(t)], ignoring

the covariance between Ul (t) and Us(t).

There are infinitely many possibilities for such an approximation of higher-order moments.

Often, an approximation is chosen according to an assumption about the distribution of the

populations. Probably the most common choice is the normal distribution. This is further justified

by a convergence theorem presented in Section 3.6.2 which empirically shows that the normal

distribution is a suitable choice as the scale of the system increases. If we assume that the

population vector X(t) is a multivariate normal random variable at each time t, we can use a

known theorem which expresses central moments of a multivariate normal random variable as a

linear combination of second-order moments:

Theorem 2 (Isserlis’ theorem [113]). Let X ∈ RN be a multivariate normal variable with mean

µ and covariance matrix (σij). Every joint central moment of an order greater than two, given by

E[(X1−µ1)m1 · · · (XN −µN)mN] for m ∈ ZN+ , can be expressed as a multinomial of second-order

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 51

moments:

E[(X1 − µ1)m1 · · · (XN − µN)mN] = 0, if
∑
mi is odd

E[(X1 − µ1)m1 · · · (XN − µN)mN] =
∑∏

E[(Xi − µi)(Xj − µj)] if
∑
mi is even

(3.14)

where
∑∏

sums through all the distinct partitions of 1, . . . , N into disjoint sets of pairs (i, j).

We use this theorem to obtain an approximation to a raw moment E[X1(t)m1 · · ·XN (t)mN]. We

simply expand the central moment in Equation 3.14 and subsequently re-arrange the equation to

obtain an approximation involving moments of order less than
∑
mi.

In the peer-to-peer model, instead of including an ODE for the third-order joint raw moment

E[Us(t)Ul (t)
2] we can close the expansion by using the approximation

E
[
(Us(t)− E[Us(t)])(Ul (t)− E[Ul])

2
]
≈ 0

E
[
Us(t)Ul (t)

2
]
≈ 2E[Ul (t)]E[Ul (t)Us(t)] + E[Us(t)]E[Ul (t)

2]

− 2E[Us(t)]E[Ul (t)]
2

We have a choice at which order to apply this approximation. For example, instead of

approximating the moment E[Ul (t)
2Us(t)], we can include the ODE for this moment and

approximate the fourth-order moments on its right-hand side with moments of order one,

two and three.

In general, we get a family of moment closure approximations. We can choose a maximal order

om and apply the above approximation to all moments of order above om. This leads to a closed

system of ODEs with solution approximating all moments of orders up to and including om.

The solution vector x(t) is indexed by the moments – each can be represented as a multiset of

population indices 1, . . . , N :

x(t) = (x1(t), . . . , xN (t), x{i1,...,ik}(t), k ≤ om, 1 ≤ ij ≤ N)T

d
dt
x(t) = fX,N(om)(x(t))

x(0) = (E[X0],E[X0,i1 · · ·X0,ik], k ≤ om, 1 ≤ ij ≤ N)T

where

fX,N(om)(x(t)) =

gh1(x(t))

· · ·
ghN (x(t))

gh{i1,...,ik}
(x(t)), k ≤ om, 1 ≤ ij ≤ N

(3.15)

for hi(X) = Xi, h{i1,...,ik}(X) = Xi1 · · ·Xik . The functions gh are derived from the respective

functions fh from Theorem 1, with occurrences of moments of order above om replaced by the

expression given by Theorem 2 and occurrences of moments E[Xi1(t) · · ·Xik(t)] replaced by

x{i1,...,ik}(t). Figure 3.4 shows the general structure of the resulting ODE system for a model with

quadratic rates. Each ODE for a moment of order k depends on moments of orders up to and

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 52

including k + 1. The normal approximation is applied at the order n = om where each moment

of order n+ 1 gets replaced by an expression consisting moments of orders up to n.

d
dt Ẽ[Xi1(t)] = E[Xj1(t)Xj2(t)]+ · · · (First order)

(Second order)=d
dt Ẽ[Xi1(t)Xi2(t)] E[Xj1(t)Xj2(t)Xj3(t)]+ · · ·

...

=d
dt Ẽ[Xi1(t) · · ·Xin(t)] E[Xj1(t) · · ·Xjn(t)Xjn+1(t)]+

≈ (Isserlis’ Theorem 2)
∑∏

Ẽ[Xkm(t) · · ·Xkm(t)] m ≤ n

· · ·

...

(n-th order)

Figure 3.4: Structure of moment ODEs for a PCTMC with quadratic rates closed at order n.

3.4.4 Numerical solutions of mean-field and moment ODEs

Both the mean-field and moment closure methods produce a system of ODEs which approximate

the transient evolution of a PCTMC. In most practical situations, the system of ODEs is non-linear

without a known closed-form solution. In order to solve such system for a finite interval of time,

it is often necessary to resort to numerical integration methods.

The most basic such method is the Euler method. Given an initial value for the solution to

the ODEs and a fixed step size h, the method proceeds to numerically evaluate the solution

at times equal to multiples of h. The value of h provides a trade-off between computational

cost and accuracy. Euler method, which is rarely used in practice, is the simplest in the family

of Runge-Kutta methods [e.g. 46]. Most of the examples in the remainder of this thesis were

produced using the fourth order Runge-Kutta method. It was usually sufficient to select step size

to be one tenth of the distance between two successive data points on a plot and then manually

inspect the solution as compared to stochastic simulation. A more general approach is to use a

method which automatically controls the step size based on a current estimate of the error in

the solution, such as the algorithm by Dormand and Prince [70]. We used this method when the

system of ODEs formed a part of a larger optimisation problem, such as in Section 5.5. The GPA

tool provides a number of further methods implemented by the Apache Commons Mathematics
library[61].

Usually, the computational cost of solving the ODEs is significantly smaller than that of stochastic

simulation from Section 3.3. In some cases, for example when there are transition rates at very

different orders of magnitude, the resulting system of ODEs is stiff [46] and requires a step size

which would make the numerical solution prohibitively expensive. We encountered several such

instances when solving moment closure ODEs at high orders, seventh and above and were still

able to use a suitably small step size to obtain a solution. In future, we are planning to integrate

a number of specialised solvers to deal with stiff ODEs.

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 53

3.5 Efficient computation of passage times

Knowing the distribution of populations over time or its moments can give a good understanding

of the transient evolution of a PCTMC. However, in many practical applications, system providers

are primarily interested in a number of derived metrics. Among these are so-called passage
times. These are random variables which measure the elapsed time of a specified sequence

of events. For example, in the client–server model, the server provider can be interested in

predicting the time a single client takes to obtain and process its data. Traditionally, computing

the distribution or moments of such time variables suffers from the same state-space explosion

problems as mentioned in Section 3.4. As reviewed in Section 2.3.1, it is possible to use the ODE

analysis to compute passage time metrics in PCTMCs. Unlike other approaches computing only

the mean passage time using Little’s Law [68, 181], the method of Hayden et al. [4] extends the

ODE analysis of GPEPA models to compute probability distributions of a range of passage-time

measures. In this section we show a straightforward way to translate this technique to any PCTMC

which can be related to a transition graph of individual agent states, and give an overview of the

types of passage-time measures the ODE analysis of PCTMCs can compute. Later in this thesis,

we will demonstrate the technique on several examples. Most importantly, passage times will

play a central role in the performance–energy trade-off problem in Section 5.5.

3.5.1 Agent state transition graphs

In this thesis, we will be interested in passage times derived from the behaviour of individual

agents, for example clients and servers in the client–server model. A PCTMC does not represent

the system at an agent level. The population structure is flat and there is no relationship between

the decreasing and increasing populations in a transition class. For example, in the client–server

model, the transition with a change vector represented by C + S → Cw + Sg does not specify

that an agent in the Client state moves to the Client_wait state; it only describes the changes

in respective populations. This additional information is given by the definition of PEPA agents,

resulting in a state transition graph, where each connected component corresponds to the state

space of each agent. For the client–server model this graph can be seen in Figure 2.3. Whenever

applying the passage-time analysis from this section, we require that the PCTMC is augmented

with a similar state transition graph for all the agents of interest. This graph has to agree

with the definition of transition classes: for a transition with a change vector represented by

s1 + · · ·+ sk → t1 + · · ·+ tl, there has to be a unique pairing (si, tj), 1 ≤ i ≤ k, 1 ≤ j ≤ l, such

that there is an edge from si to tj in the state graph. For example, in the peer-to-peer model, an

obvious choice for the state graph would consist of the edges Ul → Us , Us → Uf , Uf → Ul and

Soff → Son , Son → Soff .

We define passage times on this graph, which now fully describes the behaviour of individual

agents. In the peer-to-peer model, we can be interested in the time it takes a single user to obtain

the shared data for the first time. In order to apply the techniques described below, we need

to specify the passage time as a set of target states T. This set has to be absorbing, that is the

set of reachable states from T needs to be a subset of T. In case the desired set of states is not

absorbing, it is possible to modify the state graph to obtain an equivalent model where the set T

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 54

is absorbing. We can create an additional type of the user agent and remember whether a data

transition has taken place. Agent states Ul∗,Us∗,Uf ∗ correspond to the respective states without

the ∗ symbol, after the user agent already obtained the data. The resulting model becomes:

Soff → Son at Soff · ron

Son → Soff at Son · roff

Ul + Us → Us∗+ Us at Ul ·Us · rseed Ul + Us∗ → Us∗+ Us∗ at Ul ·Us∗ · rseed

Ul∗+ Us → Us∗+ Us at Ul∗ ·Us · rseed Ul∗+ Us∗ → Us∗+ Us∗ at Ul∗ ·Us∗ · rseed

Ul + Son → Us∗+ Son at Ul · Son · rseed ,s

Us → Uf at Us · rleave Us∗ → Uf ∗ at Us∗ · rleave

Uf → Ul at Us · rreturn Uf ∗ → Ul∗ at Uf ∗ · rreturn

The set T =
{

Ul∗,Us∗,Uf ∗
}

is absorbing and can be used in the techniques described below.

In the client–server model, the passage time for a single client agent to obtain and process the

data can be defined as the time the client takes to complete a full cycle of transitions from the

state Client back to itself. To obtain an absorbing set of target states, we can create an additional

copy of the client state space, with states Client∗, Client_wait∗ and Client_think∗, which the

client enters after reaching the state Client for the first time, Figure 3.5.

Client

Client_wait

Client_think

Client∗

Client_wait∗

Client_think∗

request

data

think
request

data

think

Figure 3.5: Unfolded client state graph with a new, absorbing, set of states.

After expanding the state space, the set of transition classes has to be extended with copies of

classes that involve the agents with modified state space. Additionally, rates of existing transition

classes have to be modified to account for the competition between agents in the added states

and the original states. The exact form of the new rates depends on the modelling formalism.

GPEPA naturally deals with such cases: if the same action is offered by multiple agents in one

group, the transition rates are defined as weighted proportions of the total synchronisation rate.

Moreover, in GPEPA the expanded agent states can be automatically derived from an extended

GPEPA agent and the resulting rates can be obtained by applying GPEPA semantics to the new

model. We illustrate this construction in the following section.

3.5.2 Probed client–server model

We can define the expanded state space of a client agent in Figure 3.5 directly in GPEPA syntax.

We define a GPEPA agent that “remembers” whether a think action has fired:

NotDone
def
= (think , rthink).Done

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 55

Done
def
= (think , rthink).Done

By composing this agent with a single client agent, synchronising on the think action, we obtain

a GPEPA agent with a state graph equivalent to that of Figure 3.5.

We can modify the client group, replacing a single client agent with the new tagged version:

Clients{Client [nC − 1]|(Client BC
think

NotDone)} (3.16)

The Unified Stochastic Probes formalism [103] generalises this approach and is able to automatic-

ally generate the attached agent, referred to as a probe, from a high level behavioural description

of the passage time variable. We will name this version of the client–server model the probed
client–server model.

The resulting PCTMC now contains six new populations which we label as

C D
j for Client j BC

think
Done and C ND

j for Client j BC
think

NotDone.

We can apply GPEPA semantics directly to obtain the new PCTMC. In addition to transition classes

involving only server agents, there are nine new transition classes, three for each different copy

of the client agent:

C i + S → Cw
i + Sg at rrequest ·

C i

rC (X)
·min(rC (X),S)

Cw
i + Sg → Ct

i + S at rdata ·
Cw

i

rCw (X)
·min(rCw (X),Sg)

Ct
i → C i at rthink · Ct

i

where C i ∈ {C ,C D ,C ND}, Cw
i ∈ {Cw ,Cw

D ,Cw
ND}, and

rC (X) = C + C ND + C D ,

rCw (X) = Cw + Cw
ND + Cw

D .

3.5.3 Individual passage time

We are given a single agent with state A(t) ∈ SA over time, where SA is an expanded state space

containing a target set of absorbing states T ⊆ SA. We can define an individual passage time
random variable T as the first time the agent reaches a state in T, T def

= inf{t ∈ R+ | A(t) ∈ T}.
The following identity holds because the target state set is absorbing, and can be used to express

the CDF of T in terms of expected value of the state process A(t):

P(T ≤ t) = P(A(t) ∈ T) =
∑

i∈T
P(A(t) = i) =

∑

i∈T
E[1A(t)=i] (3.17)

In a PCTMC setting, we can substitute one instance of an agent of interest with a copy uniquely

labelled with states in SA, containing an absorbing set of target states T. For example, in Equa-

tion 3.16, an instance of the Client agent is replaced with a tagged version Client BC
think

NotDone.

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 56

Then, the right-hand side of Equation 3.17 can be evaluated using population means in the

PCTMC: if the resulting PCTMC is X(t), we have

P(T ≤ t) =
∑

i∈T
E[Xi(t)].

We can use the ODE analysis from Section 3.4 to evaluate this expression, using approximations

to mean populations Ẽ[X(t)]. For example, in the client–server model, we would get

P(T ≤ t) = Ẽ
[
C D(t)

]
+ Ẽ

[
Cw

D(t)
]

+ Ẽ
[
Ct

D(t)
]
. (3.18)

3.5.4 Global passage time

For the so-called global passage times, we are given a PCTMC X(t) with population labels

containing agent states with a target absorbing subset T, target population value p ∈ Z+ and

n ∈ Z+, the total invariant population of agents capable of reaching a state in T. The global
passage time random variable is the time T at which the population of agents in the target set

reaches p for the first time, that is T def
= inf{t ∈ R+ |

∑
i∈TXi ≥ p}.

In Section 3.6 we show that under an increasing system scale, the population process of a PCTMC

converges to the deterministic mean-field approximation. Therefore, the following point-mass

approximation can be used to approximate the global passage time:

T ≈ inf
{
t ∈ R+ |

∑

i∈T
Ẽ[Xi] ≥ p

}

Another possibility is to use the moments of populations to approximate the CDF of T . For

example, the Markov inequality expresses bounds on the CDF as functions of population means:

P(T ≤ t) ≤ n−∑i∈T Ẽ[Xi(t)]

n− p

P(T ≤ t) ≥ 1−
∑

i∈T Ẽ[Xi(t)]

p+ 1

A tighter approximation can be obtained by using the Chebyshev’s inequality and second-order

moments of populations:

P(T ≤ t) ≤ Ṽar[
∑

i∈TXi(t)]

Ṽar[
∑

i∈TXi(t)] + (Ẽ[
∑

i∈TXi(t)]− p)2

P(T ≤ t) ≥ 1− Ṽar[
∑

i∈TXi(t)]

Ṽar[
∑

i∈TXi(t)] + (Ẽ[
∑

i∈TXi(t)]− p− 1)2

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 57

3.6 Convergence

Although Theorem 1 gives an exact form of moment ODEs, the mean-field and higher-order mo-

ment ODEs, Section 3.4.1 and Section 3.4.2, are obtained after applying various approximations.

The resulting moments can be numerically accurate, but there is little understanding of the total

error. One way to more formally justify the ODE analysis techniques is to show an agreement

between the exact moments and the approximation in a limit of increasing initial populations.

In case of the mean-field analysis, we present a known result that shows that population means

converge to the ODE approximation as initial populations increase (and the transition rates are

scaled appropriately). For higher-order approximations, an existing result shows that in a similar

limit of increasing initial populations, a PCTMC can be expressed as a linear combination of the

mean-field solution and a Gaussian process. This results in a stochastic differential equation, with

a set of ODEs capturing the evolution of the covariance of the Gaussian process. These ODEs

turn out to agree with Theorem 1, closed under a certain approximation, providing a heuristic

justification for the convergence of second-order moment ODE approximations from Section 3.4.2.

Moreover, the Gaussian representation justifies the use of the normal approximation given by

Theorem 2.

In order to make the desired theoretical considerations in this section, it is necessary to consider a

density dependent sequence of PCTMCs which have the same population structure and transition

rate difference vectors and differ only in their initial populations and rates of transition classes, as

defined below. We start with a PCTMC (X(t), C,x0) and define a sequence of PCTMCs indexed

by a scale factor S ∈ Z+: for each value of S, we define (X(S)(t), C(S),x
(S)
0) where

(i) the population structure of X(S)(t) is the same as that of X(t),

(ii) for each transition class c ∈ C, there is a corresponding transition class c(S) ∈ C(S) such that

rc(S)(x) = S · rc(x/S) for any population vector x,

(iii) the initial populations are scaled by S, that is x(S)
0 = S · x0.

For example, if the PCTMC X(t) corresponds to a GPEPA model, the condition (ii) holds due to

the homogeneity property from Equation 3.9.

For each X(S)(t) in the sequence, we can obtain the mean-field approximation, Equation 3.6,

approximating the evolution of E[X(S)(t)] with a real-valued vector x(S)(t), described by a system

of ODEs, Equation 3.6:

d
dt
x(S)(t) = f (S)(x(S)(t))

x(S)(0) = x
(S)
0

Because of the density dependent properties, solutions to these systems of ODEs only differ by the

scale factor S. This allows us to define a rescaled mean-field approximation, as x̄(t) = x(S)(t)/S,

independently of S. We also define a rescaled version of the stochastic process, dependent on S:

X̄(S)(t) = X(S)(t)/S.

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 58

3.6.1 Convergence of mean approximations

Hayden et al. [4] generalise a convergence result originally due to Darling and Norris [63] to

non-smooth rates in GPEPA models:

Theorem 3. In the notation introduced above, for fixed tf ≥ 0 and ε > 0, as S →∞:

P

(
sup

t∈[0,tf]

∥∥∥X̄(S)(t)− x̄(t)
∥∥∥ > ε

)
→ 0

uniformly for t ∈ [0, tf] for all deterministic initial states x0. Moreover, the convergence holds

if PCTMCs in the sequence have random initial populations X(S)
0 if for all δ > 0, P (‖X(S)

0 /S −
x

(S)
0 /S‖ > δ)→ 0 as S →∞.

3.6.2 Convergence of variance approximation

Similar to the mean convergence above, Hayden and Bradley [100] generalise a result originally

due to Kurtz [128] to GPEPA models and therefore to PCTMCs with minimum rates. This result

suggests the following approximation to a PCTMC:

X(S)(t) ≈ Sx̄(t) +
√
SE(t) (3.19)

where E(t) is a continuous state-space Gaussian process. The stochastic process E(t) is given

in the following theorem [100], which applies to a sequence of density dependent PCTMC

{XS (t)}∞S=1 and rescaled mean-field approximation x̄(t). Let K = |C|.

Theorem 4. Let tf > 0 and let T̂ be the subset of {t ∈ [0, tf)} for which f(·) is not totally

differentiable at the point x̄(t). We require that T̂ has Lebesgue measure zero. Then on all of

[0, T) \ T̂ , f(·) has a well-defined Jacobian at the point x̄(t), say Df(x̄(t)). Extend this to all

points {x̄(t) : t ∈ [0, tf)}, say by defining it to be the matrix of zeros at times in T̂ .

Then as S →∞, X
(S)(t)√
S
−
√
Sx̄(t)⇒ E(t), where:

E(t) :=

∫ t

0
Df(x̄(s)) ·E(s)ds+

∑

c∈C
Bc

(∫ t

0
rc(x̄(s))ds

)
δc

and {Bk(t)}Kk=1 are K mutually independent Brownian motions. The convergence is weak

convergence on DRN+
[0, tf), the space of RN+ -valued, right continuous with left limits, functions,

equipped with the uniform topology.

The authors note that the process E(t) is the unique solution of the following (Itō) stochastic

differential equation (SDE):

dE(t) = µ(E(t), t)dt+ σ(t)dB(t)

where µ : RN × R+ → RN and σ : R+ → RN×K are defined by:

µ(y, t)
def
= Df(x̄(t)) · y

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 59

σ(t)
def
=

(
δj,i ×

√
rj(x̄(t))

)

ij

and B(t)
def
= (B1(t), . . . , BK(t))T is a K-dimensional standard Brownian motion. This representa-

tion allows them to apply the machinery of Itō’s Lemma [e.g. 116, Theorem 17.18] to derive the

following system of ODEs, whose unique solution is exactly the covariance matrix of E(t):

d
dt

Cov[E(t),E(t)] = Cov[E(t),E(t)](Df(x̄(t)))T +Df(x̄(t))Cov[E(t),E(t)]T

+
∑

c∈C
rc(x̄(t))δc(δc)

T (3.20)

If we apply this to the client–server example for the specific variance of the Server population,

ES (t), we have:

d
dt

Cov[ES (t), ES (t)] =

− 2rrequest

(
1{x̄S (t)≤x̄C (t)}Cov[ES (t), ES (t)] + 1{x̄S (t)>x̄C (t)}Cov[ES (t), EC (t)]

)

+ 2rdata

(
1{x̄Sg (t)≤x̄Cw (t)}Cov[ES (t), ESg (t)] + 1{x̄Sg (t)>x̄Cw (t)}Cov[ES (t), ECw (t)]

)

− 2rbreak Cov[ES (t), ES (t)] + 2rresetCov[ES (t), ESb
(t)]

+ rrequest min(x̄C (t), x̄S (t)) + rdata min(x̄Cw (t), x̄Sg (t)) + rbreak x̄S (t) + rreset x̄Sb
(t) (3.21)

Note that Theorem 4 suggests the approximation:

Cov[S (t),S (t)] ≈ Cov[Sx̄S (t) +
√
SES (t), Sx̄S (t) +

√
SES (t)] = SCov[ES (t), ES (t)]

In general, Theorem 4 implies that (assuming its hypothesis), as S →∞,

1

S
Cov[X(S)(t),X(S)(t)]→ Cov[E(t),E(t)].

The system of ODEs given in Equation 3.20 yields an approximation to the covariance matrix of

the underlying PCTMC of a general GPEPA model. Furthermore, this approximation is guaranteed

by Theorem 4 to converge in the limit of large populations.

However, the covariance ODE approximation from Equation 3.11 consists of integrating a slightly

different system of ODEs. These are very similar to those of Equation 3.20 and in fact can

intuitively be regarded as a better approximation to the actual covariance matrix. This is the

basis of our conjecture that a similar convergence result also holds, and furthermore, that the

rate of convergence may well be faster for the ODEs from Equation 3.11.

Theorem 1 gives the following differential equation for Cov[S (t),S (t)]:

d
dt

Cov[S (t),S (t)] =
d
dt

E[S 2(t)]− 2E[S (t)]
d
dt

E[S (t)] =

− 2rrequest

(
E[min(C (t)S (t),S 2(t))]− E[min(C (t),S (t))]E[S (t)]

)

+ 2rdata

(
E[min(Cw (t)S (t),SgS (t))]− E[min(Cw (t),Sg(t))]E[S (t)]

)

3. POPULATION CONTINUOUS-TIME MARKOV CHAINS 60

− 2rbreak

(
E[S 2(t)]− E2[S (t)]

)
+2rreset

(
E[Sb(t)S (t)]− E[Sb(t)]E[S (t)]

)

+ rrequestE[min(C (t),S (t))] + rdataE[min(Cw (t),Sg(t))] + rbreakE[S (t)] + rresetE[Sb(t)]

(3.22)

Since the corresponding system of ODEs cannot be solved analytically or numerically due to

the presence of expectations of non-linear functions, the first-order approximations as given by

Equation 3.5 and second-order approximations given by Equation 3.10 can be applied repeatedly

as in Section 3.4.2 to deduce approximate ODEs for Cov[S (t),S (t)] and the other covariances.

This system of ODEs can then be solved numerically.

The key point to note now is that if we keep the first-order approximations the same but replace

the second-order approximations by ones of the form:

E[min(C (t)S (t),S 2(t))] ≈ 1{E[S(t)]≤E[C (t)]}E[S 2(t)] + 1{E[S(t)]>E[C (t)]}E[C (t)S (t))]

then we recover the system of ODEs of Equation 3.20. This is a reasonable approximation, but we

evaluate a minimum of second-order terms by making only first-order comparisons. Intuitively,

this is likely to be a worse approximation than the original ODE analysis approach. Therefore we

can heuristically justify that the covariance ODE approximations should converge to the actual

covariances when scaled by the scale factor S.

3.7 Conclusion

The main contribution of this chapter is the definition of Population Continuous-Time Markov

Chains (PCTMC), a unified representation for Markov population models. This representation is

separated from the behavioural description of the model. For example, we defined the semantics

of the GPEPA process algebra in terms of an underlying PCTMC. An advantage of this approach is

that all analysis techniques for PCTMCs are readily available to behavioural models that can be

translated to a PCTMC. We have shown how the rapid ODE analysis applies to PCTMCs and also

how to use the ODE analysis to obtain approximation of passage times in PCTMCs. We are now

equipped with a framework that can rapidly analyse large-scale population models, described in a

behavioural language, and provide access to passage-time metrics which are crucial in verification

of SLAs. In the rest of this thesis, we develop this framework further. We show how to extend the

analysis to compute metrics related to energy consumption and environment temperature and

thus accurately address the performance–energy trade-off outlined in Chapter 1.

61

Chapter 4

Improving accuracy of ODE analysis of
PCTMCs

Key contributions

Investigation of accuracy of ODE analysis 4.2 [8]

Hybrid simulation of PCTMC models 4.3 [13]

Normal moment closure for minimum rates 4.4 [3, 6]

Evaluation of accuracy of moment closures 4.5 [3]

4.1 Introduction

In this chapter, we investigate the accuracy of the ODE analysis of PCTMCs as described in

Section 3.4. Theorem 3 guarantees that the solution to the system of ODEs approximating means

of populations in a PCTMC X(t) converges to the exact population means of the stochastic

process as the system scale increases – the quantities Ẽ[X(S)(t)] converge to E[X(S)] as S

increases. However, in practice, modellers have to work with a range of finite system scales for

which they need to obtain accurate quantitative predictions. In such cases, the above convergence

results do not provide any guarantees about the accuracy of the ODE approximation. Several

techniques, such as that of [63], provide bounds on the distance between the stochastic process

and deterministic approximation. These bounds are often loose and not applicable in practice. A

recent result by Bortolussi and Hayden [38] provides steady-state and transient bounds on the

dynamics of a discrete-time Markov Chain and demonstrates that these can be much tighter than

the best previously known bounds.

In this chapter, we take a heuristic approach and introduce a method that can reliably predict

whether the mean and higher-order moment ODEs give a good approximation to moments in

a PCTMC with rates containing the minimum function. Based on this heuristic, we are able to

design a hybrid approach combining the ODE analysis and stochastic simulation. This, in turn,

leads to a new moment closure approximation that greatly improves the accuracy of moment

ODEs. We conclude the chapter by evaluating the approximation error over a large number of

parameters for several models.

Ultimately, the main aim of this chapter is to serve as a solid foundation for further developments

in this thesis. In later chapters, we will extend the ODE analysis with equations capturing

additional metrics and therefore it is crucial to have a good understanding of the nature of the

approximations of the core ODE system. In particular, in Chapter 6 we will introduce a new class

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 62

of reward-controlling PCTMCs, resulting in a behaviour that keeps the system in a mode that

is exactly where the heuristic method predicts a large error. We will demonstrate that only the

improved moment closure approximation makes it possible to efficiently analyse higher-order

moments in such models.

The main contributions of this chapter can be summarised as the following:

Switch-point analysis of models with minimum functions Initially, we focus on PCTMC mod-

els with rates containing occurrences of the minimum function, such as those described

by the GPEPA stochastic process algebra or queueing network models. Extending the

original work of Hayden [98], in Section 4.2 we propose a method that uses the so-called

switch-point distance in a PCTMC to identify situations where there is a likely error in

the ODE approximation. A similar approach has been used by Zhao [192], where the

author evaluates a closed form expression to estimate a parameter region where an ODE

approximation to a closed queueing networks achieves a high error.

Hybrid simulation of PCTMCs In Section 4.3 we show a first possible improvement in the

accuracy of ODE analysis by combining simulation and the ODE approximation. We use the

switch-point distance from the previous section to decide when to apply ODE analysis and

simulation respectively.

Normal moment closure for minimum rates In Section 4.4 we adapt the moment closure tech-

niques from Section 3.4.3 to work on rate functions containing the minimum function. This

results in a system of ODEs where, unlike in previous approaches [98], the equations for

means use the variance approximations, in particular to define the expected behaviour

around switch-points. This closure greatly improves the accuracy of the ODE analysis and

can be reliably used in analysing a large number of models.

Validation of accuracy of moment closures In Section 4.5 we numerically evaluate the accur-

acy of moment ODEs on a large number of different models. We compare the approxima-

tions to confidence interval estimates obtained from exact stochastic simulation.

4.2 Switch-point analysis in PCTMC models with minimum rates

The nature of the approximation of ODEs for moments of populations in a PCTMC (X(t), C,X0)

depends on the rate functions of transition classes in C. For example, the right-hand side of the

exact mean equations, Equation 3.4, consists of terms E[rc(X(t))] for each transition class c.

If the rate function rc(·) is a constant function or a linear combination of populations, we say

that the PCTMC is purely concurrent. In such cases the expectation can be expanded in terms

of population means, which have a corresponding differential equation in the system and the

resulting system of ODEs can be solved analytically and provide the exact means.

However, in general, it is not possible to exactly expand the expectation as a linear combination

of population means (or higher-order moments) and therefore an approximation has to be

introduced. In the case of GPEPA, the PCTMC semantics from Section 3.2.2 determines the form

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 63

of the transition rates. If all cooperation action sets in a model are empty, we get the purely

concurrent case above. Otherwise the transition rates are of the form

r(X(t)) = f(X(t)) ·min(r1(X(t)), r2(X(t))) (4.1)

where the functions r1 and r2 are apparent rates in smaller sub-models and f is a rational function

of transition rates and apparent rates (Section 3.2.2). In many cases the rates are less complex –

for example the split-free class of GPEPA models, introduced by Hayden and Bradley [99], allows

only one possible cooperation for each action label. For example, the client–server model from

Section 3.2.3 is an instance of a split-free model. On the other hand the probed version of the

same model in Section 3.5.2 is not, due to the multiple versions of the client agent (plain and

with an ongoing and finished probe agent) both offering the request and data actions.

The assumption of split-free models simplifies the above form so that the function f is constant.

The mean equations depend on the approximation from Equation 3.5, which in case of minimum

functions gives

E[min(r1(X(t)), r2(X(t)))] ≈ min(r1(E[X(t)]), r2(E[X(t)])).

Note that the functions r1(·) and r2(·) may also include further minimum terms themselves

and thus induce multiple further applications of the approximation not shown explicitly above.

Hayden and Bradley [99] argue that the error of this approximation is at its highest around

the points where the arguments to the minimum functions are equal, naming each such point a

switch point. The switch points occur when the total rate of cooperation between agent groups

becomes equal, that is r1(X(t)) = r2(X(t)), causing the minimum function to switch between

its arguments.

One of the main contributions of this section is to verify and further investigate this claim

empirically. We show how to use the solution to the moment ODEs to evaluate the distance of

the model from a switch point. We define the switch-point distance as the difference between

the two arguments of a minimum term in a rate function. We demonstrate that at times when

this distance is likely to be near zero, an error is introduced into the approximation. We show

how the variance of the switch-point distance obtained from moment ODEs can be used to detect

when the distance is near zero. This will be the first instance of a common theme in this chapter,

where we show different ways of using the second-order moments of populations to obtain a

more accurate approximation of the first order moments of populations.

4.2.1 Numerical investigation: GPEPA client–server model

In this section, we empirically investigate the nature of ODE moment approximations from

Section 3.4 and the nature of convergence results from Section 3.6. We will demonstrate, on an

example model, that simulation means converge to the ODE approximations as the system scale

increases, as defined in Section 3.6. We also look at higher moments to observe the second-order

convergence result from Section 3.6.2. We quantitatively examine the error of ODE approximation

at different scales of the system and evaluate the error in the context of switch-point distance.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 64

Consider the client–server model from Section 3.2.3 under two sets of parameter regimes – one

that results in the model not staying near a switch point in any long time interval (we will

informally call this the occasionally switching model, model A) and one that forces the model

to steadily stay near a switch point for a longer period of time (we will informally call this the

persistently switching model, model B).

In both cases we fix the initial client population at nC = 100 and the server population at nS = 50.

The two sets of rate parameters are shown in Table 4.1

Table 4.1: Two sets of rate parameters for the client–server model.

rrequest rbreak rthink rdata rreset

Model A 2.0 0.1 0.20 1.0 2.0
Model B 2.0 0.3 0.35 2.0 0.05

There are two possible sources of switch points in the client–server model, each corresponding

to an instance of cooperation in the model. One, the term E[min(C (t),S (t))], comes from the

cooperation when a client establishes a connection with a server. Another, E[min(Cw (t),Sg(t))],

comes from the cooperation when a client retrieves data from an available server.

For the minimum term involving populations of the Server_get and Client_wait states, the

distance between its two arguments stays at zero all the time. The two corresponding population

processes are stochastically identical and so the minimum function can be reduced to either of its

arguments.

Figure 4.1 shows the switch-point distance in these two models resulting from the minimum

term involving populations of Client and Server agents. As the time progresses, the offered

service rate by servers becomes equal to the demand rate of clients. When the means of the two

rates are equal, the system reaches a switch point. From Figure 4.1a we can see that Model A

hits one switch point at time t ' 2.1. Figure 4.1 also shows an interval of width 2.58 standard

deviations around the mean switch-point distance, representing the interval where the distance

lies with probability 0.99 under the assumption that the distribution of the switch-point distance

is approximately normal. For model A, the distance is unlikely to be near zero apart from the

time interval ≈ (1.7, 3.0). As seen in Figure 4.1b, Model B hits two switch points when t ' 2.8

and t ' 4.8 and stays within the 99% interval for a longer time interval ≈ (1.7, 12.0).

We investigate the error in the moment approximation for the above models and compare

them in the context of the shown switch-point distance plots. We look at expectation, variance

and skewness (the standardised third-order moment) of all populations for each model and

its respective versions with initial populations scaled by a factor of S = 1, 4, 16 and 64. We

investigate how the scale influences the error. For each scale, we plot the difference between

moments approximated by ODEs and their exact estimates from stochastic simulation. We relate

the error to the switch-point distance plots and suggest that a small switch-point distance can

predict an increase in the error in means and higher-order moments. In many cases, it is sufficient

to use an approximate switch-point distance from the ODE analysis itself to evaluate its accuracy.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 65

Model A: Occasionally switching model

For the combination of rate parameters in Model A, the client–server model does not stay near a

switch point for a longer period of time. We start by comparing side by side, for mean, variance

and skewness, the simulation estimate with the respective ODE approximation in Figure 4.2.

For all three moments, the ODE approximation is qualitatively close to the simulation estimates.

However, there are visible quantitative differences for variance and skewness. These are especially

noticeable for moments involving the population of Client agents, in the time interval around

the switch point from Figure 4.1.

According to Theorem 3, the error in mean populations shown in Figure 4.2 becomes negligible

as the scale of the PCTMC increases. Theorem 4 suggests a similar convergence for second-

order moments. We empirically verify these claims by plotting the errors in mean and standard

deviation in the population of client agents in a scaled version of the model with S = 1, 4, 16 and

64. The error is calculated as the difference between the moments from simulation and ODE

analysis. Additionally, we normalise the error in means and standard deviations in accordance

with Theorem 3 i.e. divide the error by S. Figure 4.3d shows the switch-point distance plot at

different scales of the system.

Figure 4.3 agrees with the statements of Theorem 3 and Theorem 4. Moreover, as shown in the

skewness plot in Figure 4.3c, a similar property might hold for third-order moments. Neither of

the convergence properties quantifies the error at different points in time. However, as discussed

in the previous section, the switch-point distance plot can give an indication of the accuracy of

the approximations. At all scales, the error is nearly zero when the switch-point distance is not

likely to be zero – the approximate 99% interval does not contain the zero value. As the system

approaches a switch point, errors start increasing. These times can be seen on the switch-point

distance plot, Figure 4.3d, as points where the shaded regions cross the time axis. The error

decreases and returns to near zero some time after the switch point distance increases.

0 2 4 6

−50

0

50

100

Time, t

Sw
it

ch
-p

oi
nt

di
st

an
ce E[C (t) · rrequest − S (t) · rrequest]

(a) Switch-point distance for
Model A

0 5 10 15
−50

0

50

100

Time, t

Sw
it

ch
-p

oi
nt

di
st

an
ce E[C (t) · rrequest − S (t) · rrequest]

(b) Switch-point distance for
Model B

Figure 4.1: Switch-point distance plot for the client–server model. The shaded region shows an
approximate 99% interval. The dotted lines show the respective mean and standard deviation intervals
obtained from 107 replications of simulation of the models.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 66

C (t) Ct(t) Cw (t) S (t) Sg(t) Sb(t)

0 2 4 6

0

50

100

Time, t

E[
·]

(a) Mean: clients

0 2 4 6

0

20

40

Time, t

Va
r[
·]

(b) Variance: clients

2 4 6

−1

0

1

Time, t

Sk
ew

[·]

(c) Skewness: clients

0 2 4 6

0

20

40

Time, t

E[
·]

(d) Mean: servers

0 2 4 6

0

10

20

Time, t

Va
r[
·]

(e) Variance: servers

2 4 6

−1

0

1

Time, t

Sk
ew

[·]

(f) Skewness: servers

Figure 4.2: Moments of populations in the client–server model, Model A. The solid lines are approx-
imations by the ODE analysis and dotted lines estimates from 107 replications of stochastic simulation.
The vertical lines correspond to the switch point from Figure 4.1a.

Model B: Persistently switching model

In case of the parameter values of Model B, the client–server model goes through a much longer

time interval with a small switch-point distance, Figure 4.1b. Figure 4.4 plots the mean and

variance of client and server populations. Both mean and variance approximations are visibly

larger than in case of Model A. The error concentrates in an interval where the switch-point

distance is relatively small.

Figure 4.5 looks at the error more closely and plots the difference between moments from

simulation and their ODE approximation for Client population, for different scales of Model B. It

can be seen that the normalised error in Figure 4.5 is higher than in the case of Model A. This is

caused by the fact that the switch-point distance stays near zero for a longer period of time. We

can confirm that the error for mean and variance seems to be going to zero in the scale limit.

Same as for Model A, the time when the error starts increasing for the first time can be predicted

from the switch-point distance plot, Figure 4.5d.

4.2.2 Discussion

The presented examples give a guideline for how to predict errors in the efficient ODE analysis of

PCTMC models with minimum rates without running computationally more expensive stochastic

simulations. We observed, for a model where the resulting differential equations are piecewise

linear, that the error is influenced by the switch-point distance. That is, how closely the model

stays near a switch point – the situation where the arguments of the minimum rate functions

are relatively close. If the model only crosses switch points at certain points of time and does

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 67

S = 1 S = 4 S = 16 S = 64

1.5 2 2.5 3 3.5

−0.5

0

Time, t

Sc
al

ed
er

ro
r

in
E[
C
(t
)]

(a) Normalised error: mean

1.5 2 2.5 3 3.5

0

0.5

Time, t

Sc
al

ed
er

ro
r

in
St

.d
ev

.[C
(t
)]

(b) Normalised error: st. dev.

1.5 2 2.5 3 3.5

0

0.5

Time, t

Sc
al

ed
er

ro
r

in
Sk

ew
[C

(t
)]

(c) Absolute error: skewness

1.5 2 2.5 3 3.5

−50

0

50

Time, t

Sw
it

ch
-p

oi
nt

di
st

an
ce

(d) Switch point distance

Figure 4.3: Effects of scaling on normalised error and switch point distance in Model A. Figure (d)
shows the scaled mean switch point distance as the thick black line, which is invariant with the scale.
The respective approximate 99% intervals are displayed as shaded regions around the mean. These
are drawn over each other as the width of the interval decreases with increasing scale.

not stay near any during the rest of the time, then the error is concentrated tightly around those

times. The general strategy is the following:

1. Solve the underlying system of ODEs for first- and second-order moments, Ẽ[Xi(t)] and

Ẽ[Xj(t)Xi(t)] respectively for 1 ≤ i, j ≤ N .

2. Identify all rates of the form min(r1(X(t)), r2(X(t))).

3. Use the first-order moments of populations to compute the mean of switch-point distance

Ẽ[d(X(t))] where d(X(t)) = r1(X(t)) − r2(X(t)) for t within the desired time interval.

Use the second-order moments to compute Ṽar[d(X(t))].

4. The first time when the interval bounded by Ẽ[d(X(t))]± 2.58 · Ṽar[d(X(t))]1/2 contains

zero is when an error of the approximation is likely. When the interval stays away from

zero for a longer period of time, it is possible that the error decreases back to zero.

This also takes into account the scale of the system. As the scale increases, standard deviation of

the switch-point distance gets relatively smaller and the 99% interval stays away from zero for

longer periods of time.

In practice, the method could be used to more reliably apply the ODE analysis in large-scale

parameter explorations. For example, in the client–server model, we can be interested in the

optimal number of servers that guarantees some derived performance metrics. For each parameter

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 68

C (t) Ct(t) Cw (t) S (t) Sg(t) Sb(t)

0 5 10 15

0

50

100

Time, t

E[
·]

(a) Mean: clients

0 5 10 15

0

50

100

Time, t

Va
r[
·]

(b) Variance: clients

5 10 15

0

20

40

60

80

Time, t

Sk
ew

[·]

(c) Skewness: clients

0 5 10 15

0

20

40

Time, t

E[
·]

(d) Mean: servers

0 5 10 15

0

10

20

Time, t

Va
r[
·]

(e) Variance: servers

5 10 15
−2

0

2

Time, t

Sk
ew

[·]

(f) Skewness: servers

Figure 4.4: Moments of populations in the client–server model, Model B. The solid lines are approx-
imations by the ODE analysis and dotted lines estimates from 106 replications of stochastic simulation.
The vertical lines correspond to the switch points from Figure 4.1b.

combination, we can first cheaply analyse the PCTMC with ODEs. We can use the switch-point

distance to predict if an error is likely. In that case, we can analyse the system exactly with

stochastic simulation. Alternatively, we can use the ODE analysis to find an optimal configuration

and then verify the derived metrics with stochastic simulation.

The main limitation is that the switch-point distance method does not improve the accuracy of the

ODE analysis. In most situations, a low switch-point distance is unavoidable. In fact, large switch-

point distance is often a sign of under-utilisation of resources and parameter configurations

achieving small switch-point distance are sought. In the next section, we provide a simple

improvement which combines the ODE analysis with simulation.

4.3 First improvement: combining ODE analysis and simulation

In the previous section, we proposed a way to detect where the ODE analysis fails to accurately

capture the evolution of moments in a PCTMC model. In such cases, it would be necessary to run

stochastic simulations to properly understand the system behaviour. In this and the following

section, we try to improve this situation by reducing, or completely eliminating, the need for

simulation.

As a first improvement, we combine the ODE analysis with stochastic simulation in a way that

gives better control over the accuracy–computational cost trade-off. The switch-point distance

heuristic can be used to suggest time intervals during which the ODE analysis is likely to be less

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 69

S = 1 S = 4 S = 16 S = 64

5 10 15

−4

−2

0

Time, t

Sc
al

ed
er

ro
r

in
E[
C
(t
)]

(a) Normalised error: mean

5 10 15

−2

0

2

Time, t

Sc
al

ed
er

ro
r

in
St

.d
ev

.[C
(t
)]

(b) Normalised error: st. dev.

5 10 15

0

20

40

Time, t

Sc
al

ed
er

ro
r

in
Sk

ew
[C

(t
)]

(c) Absolute error: skewness

5 10 15

0

100

Time, t

Sw
it

ch
-p

oi
nt

di
st

an
ce

(d) Switch point distance

Figure 4.5: Influence of scaling on the normalised error and the switch point distance in Model B.
Figure (d) shows the scaled mean switch point distance as the thick black line, which is invariant
with the scale. The respective approximate 99% intervals are displayed as shaded regions around the
mean. These are drawn over each other as the width of the interval decreases with increasing scale.

accurate. During these time intervals, stochastic simulation replaces ODEs, giving rise to a type

of hybrid analysis. Figure 4.6 shows an overview of the analysis.

Each such hybrid analysis must address several issues. It has to choose which ODEs are included

in the system. The analysis also must facilitate the transfer from ODEs to simulations at each

desired time ts and the transfer from simulation to ODEs at each time to. We describe two ways

to tackle this problem.

The efficiency of the hybrid analysis depends on the length of the simulation interval. Usually,

the cost of numerically solving the ODEs is negligible compared to running sufficiently many

replications of the simulation. The length of the simulation intervals depends on the switch

0 2 4 6
0

50

100

Time, t

Po
pu

la
ti

on

ODEs simulation ODEs

ts to

Figure 4.6: Overview of the hybrid analyses.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 70

point behaviour. For many of the examples below, this interval is only one tenth of the total time

considered, thus giving a near ten-fold improvement over analysis driven entirely by stochastic

simulation.

4.3.1 First-order hybrid analysis

The first-order hybrid analysis combines the ODEs for mean populations with stochastic simulation

to produce more accurate approximations of the mean populations denoted by Ê1[·]. At each

time ts where simulation replaces the ODEs, each replication of the simulation is restarted with

populations deterministically set to the values given by the solution to the ODEs at time ts. Note

that these can be real-valued and so the simulated stochastic process is extended accordingly.

At each time to where the analysis returns back to the ODEs after simulation, the initial values

of the mean ODEs are set to the means from the simulation at time to. Figure 4.7a shows an

example of the first-order hybrid analysis applied to the client–server model, Model A with the

switching behaviour shown in Figure 4.1a.

1.5 2 2.5 3 3.5
0

10

20

30

40

Time, t

Po
pu

la
ti

on

Ê1[C (t)]

Ê1[S (t)]

(a) First-order analysis:
means

1.5 2 2.5 3 3.5
0

10

20

30

40

Time, t

Va
ri

an
ce

V̂ar
1
[C (t)]

V̂ar
1
[S (t)]

(b) First-order analysis:
variance

1.5 2 2.5 3 3.5
0

10

20

30

40

Time, t

Va
ri

an
ce

V̂ar
2
[C (t)]

V̂ar
2
[S (t)]

(c) Second-order analysis:
variance

Figure 4.7: Hybrid analysis approximation of the mean and variance of populations in the client–server
model. The simulation replaces ODEs in the interval [1.8, 2.4]. The dotted lines are obtained from
simulation and the dashed lines are the approximations from ODEs.

It can be seen that the hybrid analysis improves accuracy of the ODE approximations of means.

However, since the instances of simulation always get started at times ts with deterministic initial

populations, the variances at times ts are equal to 0. Figure 4.7b demonstrates this problem,

addressed by the second-order hybrid analysis below.

4.3.2 Second-order hybrid analysis

The second-order hybrid analysis restarts the simulation using, in addition to the ODEs for means,

the ODEs for covariances of populations. The modification produces more accurate estimates of

mean populations and covariances Ê2[·]. At each time ts where simulation replaces the ODEs,

each replication of the simulation is started with populations drawn from a multivariate normal

distribution with mean and covariance matrix given by the respective values from the solution to

the ODEs at time ts. There are several technical issues that have to be considered.

First, in order to simulate a multivariate normal distribution, the covariance matrix has to

be positive definite. However, approximations from the ODEs at times ts may not necessarily

be positive definite. Therefore, we have implemented a sampling method of Wang and Liu

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 71

[188] which transforms the covariance matrices to have positive real eigenvalues (necessary and

sufficient condition for the matrix to be positive definite).

Second, the support of a multivariate normal distribution is the whole of R, whereas the agent

populations can only be non-negative. We have implemented a simple greedy method that

transforms a set of multivariate normal samples so that they are all positive while trying to

maintain the same mean and variances.

Figure 4.7c shows an example of variance approximation for the client–server model. In the ODEs

for moments of populations, only ODEs for the second-order moments depend on means and not

vice-versa. Therefore, the approximations of means do not take covariances into account. One

way of looking at the second-order hybrid analysis is that it feeds back second-order moments

into the mean approximations through re-sampling at the times ts. Intuitively, this should result

in an improved accuracy of means from the second-order hybrid analysis over the approximation

from the first-order analysis.

Figure 4.8 looks at the error in means and standard deviations of the two hybrid analyses and

the original ODE analysis. It plots the difference E[·]− Ê[·] for both analyses and the difference

Std[·]− Ŝtd
2
[·] for the second-order hybrid analysis. The first-order hybrid analysis slightly reduces

the error of mean approximation. The improvement provided by the second-order hybrid analysis

is more significant. The mean approximation error is an order of magnitude smaller, due to the

fact that the approximation uses second-order information.

1.5 2 2.5 3 3.5
−1

−0.5

0

Time, t

Er
ro

r

Ẽ[C (t)]

Ê1[C (t)]

Ê2[C (t)]

(a) Error: mean

1.5 2 2.5 3 3.5

0

0.5

1

Time, t

Er
ro

r

S̃td[C (t)]

Ŝtd
2
[C (t)]

(b) Error: standard deviation

Figure 4.8: Error of the hybrid analysis of client–server model (Model A) – the difference between
the means, (a), and standard deviations, (b), from simulations and the approximations from each
respective method.

4.3.3 Effects of interval length

Intuitively, increasing the length of the time interval where simulations replace the ODEs should

increase the accuracy of hybrid approximations of population means. In Figure 4.9 we vary

the length of time interval around the switch point in the client–server model and look at the

error of first- and second-order hybrid analyses. The length of the simulation interval provides a

trade-off between the computational cost and accuracy of the hybrid analysis. In practice, the

cost of simulation is significantly higher than the cost of numerically solving the moment ODEs.

Therefore the applicability of a hybrid analysis depends on the switch-point distance dynamics.

If the model maintains a small switch-point distance for most of the time, the hybrid analyses

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 72

provide only a small improvement over stochastic simulation. However, the main motivation of

this section was to demonstrate the improvement in accuracy of mean approximations when a

second-order information is used. This is further explored in the following section.

1.5 2 2.5 3 3.5

−1

−0.5

0

Time, t

Er
ro

r

Ê1[C (t)]

Ẽ[C (t)]

(a) First-order: mean

1.5 2 2.5 3 3.5

−1

−0.5

0

Time, t
Er

ro
r

Ê2[C (t)]

Ẽ[C (t)]

(b) Second-order: mean

1.5 2 2.5 3 3.5

0

0.5

1

Time, t

Er
ro

r

Ŝtd
2
[C (t)]

S̃td[C (t)]

(c) Second-order: st. dev.

Figure 4.9: Effect of the simulation length interval in hybrid analyses on the error of mean agent
populations. The dashed segments of the plots show the intervals used in the hybrid analyses. Intervals
[2.1, 2.3], [2.0, 2.4], [1.9, 2.5], [1.8, 2.6] were used. The plot without any dashed segment shows the error
of the pure ODE analysis.

4.4 Normal moment closure for minimum rates

In case of PCTMC rates with the minimum function, the ODE analysis method from Section 3.4

produces differential equations where the right-hand sides for moments depend only on moments

of the same or lower orders. In particular, the equations for means do not depend on variances

and covariances of populations. As a consequence, the approximation of terms with minimum

function is subject to error as investigated in Section 4.2.

The hybrid simulation introduced in Section 4.3 incorporates variance information into the

approximation for means. However, this is at the expense of an increased computational cost. A

better approach would be to replace the expectations of minimum terms with an expression that

would depend on higher-order moments, similar to the moment closures for polynomial rates

described in Section 3.4.2.

In this section, we extend the moment closure framework to rates that incorporate the minimum

function. Using the the result in Theorem 4, we assume that the populations in a PCTMC are

approximately distributed according to a normal random variables.

The min-normal moment closure aims to improve the approximation of expectations such as

E[min(Xi(t), Xj(t))], often arising on right-hand sides of moment ODEs for PCTMC models

coming from PEPA process algebra or stochastic Petri nets. The mean-field closure, using the

approximation min(E[Xi(t)],E[Xj(t)]), is accurate when the switch-point distance is small as

shown in Section 4.2, that is the time intervals when the two means E[Xi(t)] and E[Xj(t)] are

sufficiently distant. This depends on the variance of the two random variables and large errors

occur whenever E[Xi(t)] ≈ E[Xj(t)].

We can produce a better estimate for the minimum expression under the normal assumption. The

hybrid analysis from the previous section has shown that incorporating variance information into

the analysis of means can improve accuracy of the ODE analysis. Using a result for the moments

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 73

of a minimum of two bivariate normal random variables [47], we can obtain the following

identity for (A,B) bivariate normal:

E[min(A,B)] = E[A] · Φ
(
E[B]− E[A]

θ

)
+ E[B] · Φ

(
E[A]− E[B]

θ

)

− θ · φ
(
E[B]− E[A]

θ

)
(4.2)

where θ = (Var[A]− 2Cov[A,B] + Var[B])1/2 and Φ and φ are the CDF and PDF of a standard

normal random variable. The expression E[A]− E[B] can be seen as the expectation of a switch-

point distance and the variable θ as its standard deviation. Because A,B are normally distributed,

the switch-point distance is also normally distributed. Intuitively, Equation 4.2 weighs the

contribution of the two arguments of a minimum function to its expectation by the probabilities

of the switch-point distance being positive or negative respectively.

The right-hand side of a second-order moment ODE contains terms of the form E[C ·min(A,B)].

In that case, our experiments suggest that a good heuristic is to insert C into the above equation

in a way that captures some of the dependency between the 3 variables:

E[C ·min(A,B)] ≈ E[CA] · Φ
(
E[CB]− E[CA]

θ · C

)
+ E[CB] · Φ

(
E[CA]− E[CB]

θ · C

)

− E[C] · θ · φ
(
E[CB]− E[CA]

θ · C

)
(4.3)

Figure 4.10 demonstrates the potential improvement provided by this closure. It shows the exact

expectation E[min(C (t),S (t))] and the difference between the mean-field approximation and

the expression from Equation 4.2. The approximation no longer shows large error when the

switch-point distance approaches zero. As expected, an error is still present due to the fact that

the populations are not normally distributed.

1.5 2 2.5 3 3.5

10

15

Time, t

E[min(·, ·)]
min(E[·],E[·])
Equation 4.2

(a) Model A

5 10 15

10

15

20

Time, t

E[min(·, ·)]
min(E[·],E[·])
Equation 4.2

(b) Model B

Figure 4.10: Difference between approximations of the expectation of rate min(C (t),S (t)) in the
client–server model. All expectations are obtained from simulation.

Using Equation 4.2, we can replace all occurrences of the minimum function on the right-hand

side of the second-order moment ODEs for a PCTMC model. The general structure of the

resulting system of ODEs can be seen in Figure 4.11. Mean ODEs require second-order moments

to calculate the variable θ above. Otherwise, moment ODEs are closed at their particular order,

that is the ODEs for nth-order moments only require moments of order up-to and including n.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 74

Unlike in the case of normal closure for polynomial rates, higher-order moment ODEs generated

by the min-normal closure do not depend on moments of even higher orders and therefore the

provided approximation is the same, regardless of the maximum order n.

d
dt Ẽ[Xi1(t)] = E[min(Xj1(t), Xj2(t))]+ · · · (First order)

≈ Equation 4.2

E[Xj1(t)]Φ
(
E[Xj2

(t)]−E[Xj1
(t)]

θ

)
+ E[Xj2(t)]Φ (− · · ·) + θφ (· · ·)

(Second order)=d
dt Ẽ[Xi1(t)Xi2(t)] as below with n = 2 · · ·

...
=d

dt Ẽ[Xi1(t) · · ·Xin(t)] E[Xk1(t) · · ·Xkn−1(t) min(Xj1(t), Xj2(t))]+

≈ Equation 4.3

E[Xk1(t) · · ·Xkn−1(t)Xj1(t)]Φ

(
E[Xk1

(t)···Xkn−1
(t)Xj2

(t)]−E[Xk1
(t)···Xkn−1

(t)Xj1
(t)]

θ·E[Xk1
(t)···Xkn−1

(t)]

)

+E[Xk1(t) · · ·Xkn−1(t)Xj2(t)]Φ (− · · ·)
+E[Xk1(t) · · ·Xkn−1(t)]θφ (· · ·)

· · ·
...

(n-th order)

Figure 4.11: Structure of moment ODEs closed by the min-normal closure.

Figure 4.12 shows the improved approximation provided by the min-closure on the two versions

of the client–server model from Section 4.2.1. The error in all three shown moments, mean,

variance and skewness, is significantly reduced, especially at times with small switch-point

distance. However, the error of the min-closure approximation is still affected by the switch-point

distance. This is due to the assumption of normally distributed populations and also due to the

additional approximation introduced by Equation 4.3.

Theorem 3 no longer formally applies to ODEs closed under the min-closure. However, in

combination with Theorem 4, it gives an intuitive justification that the error of approximation

decreases as the system scale increases. In this case, the system of ODEs is no longer invariant

under scaling – this is caused by the presence of the normal CDF and PDF on the right-hand side

of the equations. Figure 4.13 demonstrates the possible convergence and compares the error at

different scales to the original approximation. As expected, the error is significantly smaller and

comparable to that of the second-order hybrid simulation from Figure 4.8.

4.5 Closure comparison

In this section we numerically compare the approximations from different moment closures for

two PCTMC models under a large number of parameter regimes. This will give greater confidence

in the use of moment closures based on the normal distribution and justify their use in the

following chapters of this thesis.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 75

1.5 2 2.5 3 3.5

10

20

30

Time, t

Po
pu

la
ti

on
E[C (t)]

E[S [(t)]

(a) Model A: mean

1.5 2 2.5 3 3.5

10

20

30

Time, t

Va
ri

an
ce

Var[C (t)]

Var[S (t)]

(b) Model A: variance

1.5 2 2.5 3 3.5

0

0.5

1

Time, t

Sk
ew

ne
ss

Skew[C (t)]

Skew[S (t)]

(c) Model A: skewness

5 10 15

20

40

Time, t

Po
pu

la
ti

on

E[C (t)]

E[S [(t)]

(d) Model B: mean

5 10 15
0

50

100

Time, t

Va
ri

an
ce

Var[C (t)]

Var[S (t)]

(e) Model B: variance

5 10 15

0

2

4

Time, t

Sk
ew

ne
ss

Skew[C (t)]

Skew[S (t)]

(f) Model B: skewness

Figure 4.12: Moments of populations in the client–server model, Model A The solid lines are
approximations by the ODE analysis and dotted lines estimates from 108 replications of stochastic
simulation. The dashed lines are the respective approximations from the original moment equations,
Figure 4.2.

4.5.1 Evaluation framework

We evaluate the error of available ODE approximations for the client–server model and the peer-

to-peer model from Section 3.2.1. The rates in the client–server model are linear and contain

minimum functions – we compare the GPEPA closure and the min-closure from Section 4.4. The

peer-to-peer model contains linear and quadratic rates. We compare the mean-field approximation

and ODE approximations closed at second and third orders respectively.

For each model, we numerically compute the approximations for a large number of parameter

combinations. For the client–server model, we start with Model A and Model B and vary the

number of servers, the server break rate and data transfer rate giving a total of 500 combinations.

Because of the size of the models, an exact computation of moments is not feasible. We use an

improved version of the stochastic simulation algorithm from Section 3.3 which also computes

confidence intervals for means and variances. For each parameter combination, we record the

maximum and average error of each approximation. Table 4.2 gives an overview. In the paper

by Guenther et al. [3] we have additionally evaluated the closures on a spatial process algebra

model of routing in wireless sensor networks where the underlying PCTMC contains third-order

rate function and also evaluated the accuracy of a moment closure based on the log-normal

distribution.

Simulation with confidence intervals

In order to allow a fair error comparison between simulations and ODE approximations, we

implemented a PCTMC simulation algorithm, which generates independent traces until a certain

confidence interval is reached for all the population moments that we are estimating. The

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 76

S = 1 S = 4 S = 16 S = 64

1.5 2 2.5 3 3.5

−4

−2

0

·10−2

Time, t

Sc
al

ed
er

ro
r

in
E[
C
(t
)]

(a) Normalised error: mean
(Model A)

1.5 2 2.5 3 3.5
−5

0

5

·10−2

Time, t

Sc
al

ed
er

ro
r

in
St

.d
ev

.[C
(t
)]

(b) Normalised error: st. dev.
(Model A)

5 10 15

−0.4

−0.2

0

0.2

Time, t

Sc
al

ed
er

ro
r

in
E[
C
(t
)]

(c) Normalised error: mean
(Model B)

5 10 15

−0.6

−0.4

−0.2

0

0.2

Time, t

Sc
al

ed
er

ro
r

in
St

.d
ev

.[C
(t
)]

(d) Normalised error: st. dev.
(Model B)

Figure 4.13: Effects of scaling of the client–server model on the normalised error around the switch
point events. The solid lines are approximations by the ODE analysis and the dashed lines are the
respective errors from the original moment equations Figure 4.3.

confidence interval for the sample statistics is computed using a Student’s t-distribution with the

degrees of freedom depending on the sample size. In order to compute the confidence interval of

variance estimates, we also keep track of the third- and fourth-order central sample moments.

As an example, in the client–server Model A we say that the simulation estimates of mean and

variance of the client population have converged if the relative half-width of the 95% confidence

interval is < 1% at any point in time. To achieve this, the model requires about 106 simulation

traces. Some parameter combinations require even more replications. We noticed that even small

parameter changes in some models can heavily impact the convergence behaviour of the accurate

simulation. Overall, the simulations used in this section required several CPU days on a standard

desktop computer.

Table 4.2: An overview of the models used to compare the different closures. The third column shows
the number N of different populations in the model. The last column shows the number of different
parameter configurations we evaluated the models on.

Rates Closures N #P

Peer-to-peer linear, quadratic Mean-field
Normal order 2, 3 5 300

Client–server linear, min of linear Min, min-normal 6 500

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 77

Computation of error

To evaluate the accuracy of different closures we compute population moments in both the

models above, under a large number of parameter configurations. For a particular model and a

set of parameters, the simulation provides a confidence interval estimate

[E[h(X(t))]L,E[h(X(t))]U]

of each moment specified by h(X(t)) at each time point t until a specified time tf . At the same

time, each closure provides an approximation Ẽ[h(X(t))]. The absolute error of the closure for

the moment h(X(t)) at time t is

eabs(h(X(t))) =

0 if E[h(X(t))]L ≤ Ẽ[h(X(t))] ≤ E[h(X(t))]U]

Ẽ[h(X(t))]− E[h(X(t))]U if Ẽ[h(X(t))] > E[h(X(t))]U

E[h(X(t))]L − Ẽ[h(X(t))] if Ẽ[h(X(t))] < E[h(X(t))]L

(4.4)

To express the relative error, we divide the absolute error by the point estimate, i.e.

erel(h(X(t))) = eabs(h(X(t))) · 2

|E[h(X(t))]L + E[h(X(t))]U |

For each model, we look at means and standard deviations of all populations when available. We

aggregate the respective errors at each order: For each time t, we define the average/maximum

first-order error as the average/maximum relative error across all means, that is

e1
avg(t) = 1/N

N∑

i

erel(Xi(t)) e1
max(t) = max

i=1,...,N
erel(Xi(t))

Similarly, we define the second-order aggregate errors e2
avg(t) and e2

max(t) by replacing E[h(X(t))]

above with Std[X(t)]. For each closure, we further aggregate the above errors by taking the aver-

age/maximum of each error across a large number of parameter combinations. We define ēiavg(t)

and ēimax(t) as the average of eiavg(t) and maximum of eimax(t) over all parameter combinations

respectively. Additionally, we also look at the effects of scaling initial populations on the error

of the moment closure approximations. We pick a single parameter configuration and calculate

the aggregate average and maximum errors eimax(t) and eiavg(t). We repeat this when the initial

populations in the model are multiplied by a scale constant S ∈ {1, 10, 100}.

4.5.2 Numerical results

In this section we evaluate accuracy of the different moment closures with respect to results

from the accurate simulation. For each of the two example models, we plot ēiavg(t) and ēimax(t)

for i = 1, 2, the relative errors in mean and standard deviation, aggregated over all parameter

combinations. Additionally, we plot eiavg(t) and eimax(t) for a single parameter combination at

3 different scales of the system, illustrating the improved accuracy as the model size increases.

Table 4.3 compares the numerical values of these errors.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 78

Client–server model

Figure 4.14 shows the average and maximum relative errors for the client–server model. The

mean-field mean approximations are quite accurate, with maximum error 37.7% and average

error no more than 2.3%. The min-normal closure is particularly effective here and brings the

errors down to 2.48% and 0.1% respectively. Although in many cases the approximation of

standard deviation is qualitatively accurate, the maximum error is quite large at 95.2%, with an

average at 4%. The min-normal closure results in an improvement in maximum and average

error going to 20% and 1.3% respectively.

Mean-field Min-normal

0 5 10 15 20

10−5

10−4

10−3

10−2

10−1

100

Time, t

R
el

at
iv

e
er

ro
r

in
m

ea
n

(a) Mean

0 5 10 15 20

10−5

10−4

10−3

10−2

10−1

100

Time, t

R
el

at
iv

e
er

ro
r

in
st

.d
ev

.

(b) Standard deviation

Figure 4.14: Comparison of mean-field and min-normal closures for the client–server model. The
solid lines show the average relative error ēiavg(t) and the dotted lines the maximum relative error
ēimax(t). The errors are aggregated over a large number of parameters and all the populations.

Figure 4.15 shows the effect of scaling in the client–server model. We can see a decrease in both

errors as the model size increases. There are more regions where the errors stay non-zero even at

the highest scale. This is possibly caused by the presence of switch points where the minimum

approximations are particularly inaccurate.

Hybrid peer-to-peer model

Figure 4.16 shows the average and maximum relative errors ēiavg(t) and ēimax(t) in the peer-to-peer

model.

In case of approximations of population means, the mean-field analysis gives quite accurate

results, with the average error over across populations in the order of 1.2% and the maximum

error of 17% occurring only in certain populations and limited time intervals for each parameter

configuration. As we use higher-order moments, we can see the error decrease. The second-order

normal closure improves these to 0.08% average and 3.7% maximum error respectively and the

third-order further to 0.07% and 2%. The normal closures give quite accurate approximations to

standard deviations. For a short initial time period, the relative error is higher due to very small

values of the standard deviation. However, for most of the considered time, the second-order

normal closure gives a maximum error of around 30% and average error 2% and the third-order

closure reduces these to 12% and 0.6% respectively. Figure 4.17 shows the relative errors for a

single parameter combination at 3 different scales of the system – when initial populations are

scaled by 1, 10 and 100 respectively.

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 79

Mean-field Min-normal

0 10 20 30

10−6

10−3

100
R

el
at

iv
e

er
ro

r
in

m
ea

n

0 10 20 30

10−6

10−3

100

Time, t

R
el

at
iv

e
er

ro
r

in
st

.d
ev

.

(a) S = 1

0 10 20 30

10−6

10−3

100

0 10 20 30

10−6

10−3

100

Time, t

(b) S = 10

0 10 20 30

10−6

10−3

100

0 10 20 30

10−6

10−3

100

Time, t

(c) S = 100

Figure 4.15: Effects of scaling on the accuracy of moment closures in the client–server model. The
solid lines show the average relative error eiavg(t) and the dotted lines the maximum relative error
eimax(t). Gaps on the plots represent zero values of the error.

Mean-field Normal order 2 Normal order 3

0 5 10 15 20 25

10−5

10−4

10−3

10−2

10−1

100

Time, t

R
el

at
iv

e
er

ro
r

in
m

ea
n

(a) Mean

0 5 10 15 20 25

10−4

10−3

10−2

10−1

100

Time, t

R
el

at
iv

e
er

ro
r

in
st

.d
ev

.

(b) Standard deviation

Figure 4.16: Comparison of closures for the peer-to-peer model. The dotted lines are maximum
relative errors ēimax(t) over all the experiments, the solid lines the average relative errors across a
number of different model parameters ēiavg(t).

We can see that the error in all the 3 closures decreases with higher scales, both in case of means

and standard deviations. At the scale S = 100, the normal closures give a zero error with respect

to the 2% confidence interval estimate from the simulation for most of the time.

4.6 Conclusion

In this chapter we made several attempts to improve the accuracy of ODE analysis of PCTMC

models. We introduced new techniques that allow us to incorporate variance information into

mean approximations for models with minimum rates. The first technique uses the standard

deviation of a switch-point distance to predict where a large error is likely. The second-order

hybrid analysis replaces ODEs with stochastic simulation in such regions and uses approximate

4. IMPROVING ACCURACY OF ODE ANALYSIS OF PCTMCS 80

Mean-field Normal order 2 Normal order 3

0 10 20 30

10−6

10−3

100
R

el
at

iv
e

er
ro

r
in

m
ea

n

0 10 20 30

10−6

10−3

100

Time, t

R
el

at
iv

e
er

ro
r

in
s.

d.

(a) S = 1

0 10 20 30

10−6

10−3

100

0 10 20 30

10−6

10−3

100

Time, t

(b) S = 10

0 10 20 30

10−6

10−3

100

0 10 20 30

10−6

10−3

100

Time, t

(c) S = 100

Figure 4.17: Effect of scaling on the accuracy of moment closures in the peer-to-peer model. All plots
are shown with the same (logarithmic) scale. The gaps on the plots represent zero error values.

Table 4.3: Summary of the aggregate relative (%) error in the benchmark models. The numbers
on the left of each column are the maximum of ēimax(t) over all t and the numbers on the right the
maximum of ēiavg(t) respectively.

Mean-field (Min-)normal 2 Normal 3

mean s.d. mean s.d. mean s.d.

max avg max avg max avg max avg max avg max avg

Peer-to-peer 17 1.2 — 3.7 .08 30 2 2 .07 12 .6
client–server 37.7 2.3 95.2 4.0 2.48 0.1 20 1.3 —

the covariance matrix for more accurate initial sampling of the simulation. This quantitatively

improves the error at a large computational cost. Finally, we present a new moment closure which

approximates the expectation of minimums using an expression for the minimum of bivariate

normal random variables, with covariance matrix obtained from second-order ODEs. This leads

to an approximation with comparable accuracy to the second-order hybrid analysis but much

lower computation cost.

We have validated the new closure as well as the second- and third-order normal closures on two

sample models under a large number of different parameter configurations. The results give us

confidence in applying these closures. This is a crucial development for the remainder of this

thesis. In the following chapter, we extend the moment ODEs with additional equations that

capture moments of accumulated rewards. These equations depend on population ODEs and also

require analogous closure approximations. The improved understanding from this chapter helps

us to better assess the error of the extended reward ODE analysis. Moreover, in Chapter 6, we

show another use of the minimum function in a new class of PCTMC models that use feedback

for transient control of rewards. We will show that the minimum closure is crucial in obtaining a

usable approximation of second- and higher-order moments of populations in such models.

81

Chapter 5

PCTMCs with accumulated rewards

Key contributions

Extend ODE analysis to moments of accumulated rewards 5.3 [9]

Use moments to compute distributions of completion times 5.3.4 [9]

Propose an optimisation problem for efficient evaluation of

energy–performance trade-offs

5.5 [9, 10]

5.1 Introduction

Energy consumption is a critical factor in practical operation of massive computer systems.

Whether in wireless networks, virtualised services that run on data centres, energy consumption,

temperature and total operational costs of the system have to be taken into account as justified in

Chapter 1. Traditionally, such metrics are captured as rewards in a stochastic model representing

the system. However, given the scale of a typical data centre, it would be impractical to perform

traditional reward analysis on these massively parallel systems. The ODE analysis techniques

from Section 3.4 make it possible to analyse systems which exhibit a high degree of parallelism

at a much lower cost than stochastic simulation. Additionally, as demonstrated in Chapter 4, the

accuracy of the ODE analysis techniques can be maintained at a similar level to simulation.

The aim of this chapter is to extend the ODE analysis of PCTMCs to compute accumulated rewards

(reviewed in Section 2.3). We show that many measures can be constructed precisely as functions

of existing population moments, while for others, we derive additional differential equations

augmenting the ODE analysis. The main contributions of this chapter are:

Impulse rewards In Section 5.2.2 we show how impulse rewards can be obtained via simple

addition of auxiliary action counting populations into PCTMC models. This allows the

ODE analysis to be used to compute moments of impulse rewards and composite rewards

that are combinations of population based expressions, impulse rewards and accumulated

rewards below.

Continuously accumulated rewards In Section 5.3.1 we describe how to represent means of

continuously accumulated reward measures as ODEs that augment the set of ODEs for

population means. We show that higher moments of reward measures can similarly be

generated. This gives access to rewards in substantially larger Markov models than has

previously been possible, for example in the approach of Telek and Rácz [175], who

analysed Markov Reward Models of the order of 106 states.

5. PCTMCS WITH ACCUMULATED REWARDS 82

Completion times We demonstrate how reward passage times, or so-called completion times,
can be constructed and expressed in terms of reward moments, giving for instance the

distribution of the time until the accumulated energy consumption of a server reaches a

certain level.

Trade-off between energy consumption and performance Finally, we illustrate the technique

on a model of energy consumption in a client–server system with server failures and

hibernation. We show how the reward metrics and previously derived passage time

measures can form a constrained global optimisation problem that captures the trade-

off between energy consumption and service level agreement (SLA) compliance. We

demonstrate how the efficiency of ODE analysis allows us to tackle such problems at a

reasonable computational cost.

In addition, these contributions are reflected in features of the GPA tool, described in detail

in Chapter 8. We implemented an extension to the syntax of GPEPA to allow a convenient

inclusion of impulse rewards based on action counts. We implemented the ODEs for moments of

accumulated rewards in general PCTMC models. We integrated the framework of Tari et al. [173]

to compute moment-based distribution bounds that can be used to get tighter global passage

time estimates, Section 3.5.4, and completion time estimates, Section 5.3.4. We extended the

simulation algorithm to be able to compute estimates of accumulated rewards. Finally, we provide

a mechanism to explore large optimisation problems such as the energy–performance trade-off;

both explicit parameter exploration and approximate global optimisation algorithms are available.

All numerical examples in this chapter were produced with the GPA tool.

5.1.1 Accumulated rewards

Consider the client–server model described in Section 3.2.3. In Chapter 3, we have summarised

how the ODE analysis can be used to efficiently and accurately approximate means and higher-

order moments of populations in PCTMCs. These are useful in gaining an understanding of the

dynamics of the system from both qualitative and quantitative point of view. However, modellers

are often interested in further quantities influenced by the system behaviour. Many of them

can be thought of as “rewards” generated by the system. Some rewards can be expressed as

expressions of populations at a desired time instant. However, a large number of useful rewards

take into account the whole history of the population process. In this chapter, we are interested

in accumulated rewards, quantities which are accumulated over time.

Impulse rewards

The so-called impulse rewards accumulate rewards discretely with system transitions. For example,

in the client–server model, the service provider can ask for a fixed fee each time a client

successfully processes its acquired data. In GPEPA, this can be captured by so-called action-
counting processes [103] which keep track of the number of times an action fired until time t .

For example, the income from the client fees can be expressed in terms of the process Xthink (t)

that counts the number of fired think actions in the system until time t

Afee(t) = cfee ·Xthink (t).

5. PCTMCS WITH ACCUMULATED REWARDS 83

Continuously accumulated rewards

One example of a reward which grows continuously over time in the client–server model is the

total energy consumption of all servers in the model. We can assume that each server consumes

energy at a rate specific to one of its three states, rS , rSg , rSb
for the idle, serving and broken states

respectively. This is a reasonable assumption that can be confirmed by experiments. Figure 5.1

shows an example of energy consumption and CPU utilisation relationship for two desktop

computers with 2 and 4 cores respectively, obtained from a series of measurement experiments

[7]. The different states of the computers are clearly visible. For example, Computer 1 spends

most of the time in 3 distinct states – with 0%, 50% and 100% CPU utilisation (idle, one and

two active CPU cores). These could represent the states Server_broken, Server and Server_get

respectively. At each of these states, the power consumption is roughly constant, 60W , 90W and

100W respectively. These figures are only rough estimates used for illustration purposes and we

discuss how a more accurate power model could be constructed in Section 5.6.

0 20 40 60 80 100

40

60

80

100

CPU utilisation (%)

Po
w

er
C

on
su

m
pt

io
n

(W
)

Computer 1
Computer 2

Figure 5.1: Example of accumulation rates corresponding to energy consumption of a server. Two
computers were used with 2 and 4 physical CPU cores respectively. The dotted areas show clusters
representing the different states the computers spent most of the time in.

Figure 5.2a shows an example of the energy consumption for a single server. In each state,

the server has a constant power consumption. The energy consumed until time t is a linear

combination of the time durations the server spent in each individual state, weighted by the

respective rate constants rS , rSg , rSb
. This can be expressed as the area under the plot in

Figure 5.2a. Figure 5.2b shows an example of energy consumption of multiple servers. For

each time interval (t1, t2) between two successive changes in the population process, the total

consumption is

(t2 − t1)(S (t1) · rS + Sg(t1) · rSg + Sb(t1) · rSb
).

By summing over all the time intervals during which populations stay constant, we can define the

total energy consumption up to time t as an integral over a linear combination of populations:

Aenergy(t) =

∫ t

0
S (u) · rS + Sg(u) · rSg + Sb(u) · rSb

du (5.1)

Finally, we can combine the continuously accumulated rewards and impulse rewards. For

example, the main metric of interest to the service provider could be the total income from

5. PCTMCS WITH ACCUMULATED REWARDS 84

0 0.2 0.4
0

rSb

rS

rSg

Time, t

power consumpion

Server_broken
Server

Server_get

(a) Energy consumption of a single
server

0 0.2 0.4
0

10

20
×rS

×rSg

×rSb

Time, t

Po
pu

la
ti

on

S (t)

Sg(t)

Sb(t)

(b) Total server energy
consumption

Figure 5.2: Total energy consumption of servers in the client–server model as an accumulated reward
expressed as an integral over the server state populations.

running the system. Ignoring further infrastructure costs, this would be

Atotal(t) = Afee(t)− cenergy · Aenergy(t) (5.2)

where cenergy is a cost for a unit of energy consumption.

Accumulated rewards may grow indefinitely with time and to provide any information about

their values in the steady state, the rewards need to be normalised in some way. It is common to

look at the linear rate of increase in the reward in the steady state: that is, to look at the limit of

the reward divided by t as t goes to infinity.

Measures of interest

We extend the ODE analysis to compute moments of accumulated rewards. Similar to population

moments, these can be further used to compute various derived metrics, such as completion time

probabilities. The following list summarises all quantities we are interested in. The ones marked

by (∗) can already be calculated via ODE approximations, whereas ODE approximations of the

remaining ones are the subject of investigation in this chapter:

Moments of populations∗ means and higher-order and joint moments of agent populations at

a finite time t ≥ 0, for example E[C (t)], Var[C (t)], E[S (t)C (t)] in the client–server model.

Moments of populations in steady state∗ mean populations and moments in the steady state
of the system (as t→∞).

Passage time distributions∗ passage-time distribution of individual agents or groups of agents

reaching a particular state. For example the time it takes a single client to perform its first

think action.

Moments of impulse rewards∗ mean and higher-order moments of quantities which accumu-

late in discrete steps after each successful transition from a given transition class in a

PCTMC, at a finite time t ≥ 0, for example E[Afee(t)], Var[Afee(t)].

5. PCTMCS WITH ACCUMULATED REWARDS 85

Moments of continuously accumulated rewards means and higher-order and joint moments

of continuously accumulated agent populations and moments of combinations of continu-

ously and impulse accumulated rewards at a finite time t ≥ 0, for example E[Aenergy(t)]

and Var[Atotal(t)].

Mean normalised rewards in steady state normalised accumulated quantities (divided by t)

and their moments in the steady state of the system (as t→∞)

Completion-time distributions the passage-time or completion-time distribution for a system

to reach a particular reward level. For example the time it takes the reward Aenergy(t) to

reach an energy consumption of 100 units.

All of these quantities can be obtained via stochastic simulation of the system. However, with

increasing initial populations, simulation becomes expensive due to frequent events of short

duration. Moreover, with increasing order of the moments of interest, the number of simulation

replications needed greatly increases. For the population based quantities above, Section 3.4

shows how to derive a system of ODEs that approximates the transient evolution of means and

higher-order and joint moments of populations. Numerically solving these ODEs is computa-

tionally less expensive than simulation and can thus provide fast access to the moments with a

reasonable degree of accuracy. Population moments can be further used to derive various passage

time measures [4], as described in Section 3.5. The nature of the approximation provided by the

moment ODEs is investigated in Chapter 4, proposing a number of heuristics that can improve the

accuracy of the ODE analysis. This framework thus gives us access to accurate approximations of

the quantities of interest marked by (∗).

The main contribution of this chapter is an extension of the ODE analysis of PCTMCs, with

ODEs approximating moments of continuously accumulated quantities. We give an exact form

of these ODEs, in a theorem analogous to Theorem 1, and show how to apply moment closure

approximations to get a system that can be numerically solved alongside the ODEs for moments

of populations, giving approximations to moments of rewards such as Aenergy(t) and Atotal(t).

We show how to use the moment approximations to derive approximations to distributions of

completion times. We show how the ability to simultaneously compute rewards and passage-times

in PCTMC models allows us to accurately capture energy performance trade-offs in models of

large scale computer systems.

5.2 Accumulated rewards expressed in terms of populations

We start by showing how population moment ODEs can be used to compute two of the metrics

above. A well known property of CTMCs can be used to compute the steady-state normalised

accumulated rewards. On the other hand, we show how impulse rewards can be converted

to auxiliary populations in a modified PCTMC and thus the ODE analysis directly used to

approximate the moments.

5. PCTMCS WITH ACCUMULATED REWARDS 86

5.2.1 Steady state normalised rewards

To access moments of accumulated rewards in the steady state of the system, we can use the ODE

analysis without any extensions. The rate of increase in the steady state is

1

t

∫ t

0
Xi(u)du as t→∞.

For the reward Aenergy(t) we need to evaluate Aenergy(t)/t as t→∞.

We can express expectations of such quantities in general by using the steady-state limits of the

means of individual populations. This is a corollary of a standard property of CTMCs (previously

mentioned in the context of rewards for a process algebra by Ding [68]):

Theorem 5 (Norris [150, Theorem 3.8.1]). Let {X(t) ∈ ZN+}t≥0 be an irreducible, positive

recurrent Markov process and f : ZN+ → R a bounded function. Then:

P

(
1

t

∫ t

0
f(X(s))ds→ f̄

)
= 1 as t→∞ (5.3)

where f̄ =
∑
x∈ZN+ λxf(x) and λx is the unique invariant distribution.

Using the theorem, we can directly get the expression for a mean rate of increase ofAenergy(t)

in the steady state:

E
[
Aenergy(t)/t

]
= E[S (t)] · rS + E[Sg(t)] · rSg + E[Sb(t)] · rSb

as t→∞.

The method from Section 3.4 provides ODEs with solutions Ẽ[·] approximating the expectations

on the right hand side for a finite t. Finding the fixed point solution of these ODEs then gives an

approximation of the desired steady state rates of increase of a reward.

We also note that the Theorem 5 implies that the normalised accumulated rewards are determin-

istic in the steady state limit and therefore all higher-order moments are products of the respective

expectations. For example, the variance of these measures is zero.

5.2.2 Impulse rewards

Impulse rewards increase in discrete steps by a constant after a successful transition in a PCTMC.

It is straightforward to extend a PCTMC X(t) ∈ ZN+ , driven by transition classes C, with auxiliary

populations which capture the number of firings of a transition from a class c ∈ C. We add a

dimension to the state space to get X ′(t) ∈ ZN+1
+ and set

X ′(0) = (X1(0), . . . , XN (0), 0).

The new PCTMC consists of the same transition classes except for c, which we modify to increase

the population XN+1(t) after completion. That is, we replace c with c′ such that rc′ = rc and

δc′ = δc + eN+1, where eN+1 ∈ ZN+ is a zero vector with a one as the last element.

5. PCTMCS WITH ACCUMULATED REWARDS 87

For example, the reward Athink(t) in the client–server model can be computed by adding

a population capturing the number of fired think actions. This requires modification of

the transition class (r3, δ3) with rate r3(X(t)) = −Ct(t) · rthink + min(Cw (t),Sg(t))rdata and

change vector δ3 = (1, 0,−1, 0, 0, 0). The rate stays the same and the new change vector is

(1, 0,−1, 0, 0, 0, 1).

Using this construction, we can apply the ODE analysis to extract means and higher-order

moments of impulse rewards. In the following section, we show how to derive ODEs capturing

moments of continuously accumulated rewards such as Aenergy(t). These depend on auxiliary

ODEs allowing us to access mixed moments specified by a product of an accumulated reward and

a population, such as E[Aenergy(t)C (t)]. When the population corresponds to an impulse reward,

this allows us to calculate higher-order moments of combined rewards such as Var[Atotal(t)]

which requires the expectation E[Aenergy(t)Athink(t)].

5.3 Approximating moments of continuously accumulated rewards

via ODEs

In this section, we extend the ODE approximation of PCTMCs to include ODEs for moments of

accumulated rewards. In case of higher-order moments, we introduce additional mixed moments

– expectations of a product of populations and accumulated populations. Using the construction

for impulse rewards from Section 5.2.2, this allows us to compute moments of linear combination

of accumulated and impulse rewards.

5.3.1 Mean ODEs

We show how to derive approximations for means of accumulated rewards at each time t ≥ 0.

For the energy consumption reward, this is E[Aenergy(t)]. Such expectations are differentiable and

hence we can construct a new differential equation for the mean of each required accumulated

population. To obtain the right-hand side, we note that since the rewards are always bounded

and differentiable, we can swap the differentiation and expectation to get

d
dt

E

[∫ t

0
Xi(u)du

]
= E[Xi(t)]. (5.4)

Numerically solving these simultaneously with the ODEs for population means gives an approx-

imation to mean accumulated rewards.

For our sample rewards we would take ODEs approximating the first-order moments of

populations in the client–server model and add the following ODEs to the system:

d
dt

Ẽ

[∫ t

0
S (u)du

]
= Ẽ[S (t)]

d
dt

Ẽ

[∫ t

0
Sg(u)du

]
= Ẽ[Sg(t)]

5. PCTMCS WITH ACCUMULATED REWARDS 88

d
dt

Ẽ

[∫ t

0
Sb(u)du

]
= Ẽ[Sb(t)].

The energy consumption reward can be expressed as a linear combination of the solution to

the resulting system of ODEs:

E[Aenergy(t)] ≈ rS · Ẽ
[∫ t

0
S (u)du

]
+ rSg · Ẽ

[∫ t

0
Sg(u)du

]
+ rSb

· Ẽ
[∫ t

0
Sb(u)du

]
.

(5.5)

5.3.2 Higher-order moment ODEs

We now look at the general case of higher-order moments of accumulated populations at each time

t, to get for example approximations to variances of accumulated rewards, such as Var[Aenergy(t)]

for t ≥ 0.

First, we define a shorthand for the accumulated population of Xi up to time t as

Xi(t) =

∫ t

0
Xi(u)du (5.6)

where 1 ≤ i ≤ N . From now, unless stated otherwise, we assume 1 ≤ i, j ≤ N when referring to

Xi(t) and Xj(t).

For simplicity, we first consider second-order moments of accumulated populations and later

show how to extend the technique to higher orders. As in the case of mean populations, we can

note that the moments are differentiable and bounded and so we can swap the differentiation

and expectation and get ODEs of the form:

d
dt

E
[
Xi(t)Xj(t)

]
= E[Xi(t)Xj(t)] + E[Xj(t)Xi(t)] (5.7)

The right-hand side now contains mixed moments of the form E[Xi(t)Xj(t)]. We define ODEs

governing these. This time, the process Xi(t)Xj(t) is not differentiable, due to jumps in the

population process Xi(t), so we cannot simply swap the expectation and differentiation. We can

look at the derivative of the expectation of a mixed product of a population and an accumulated

population E[Xi(t)Xj(t)] from the first principles to arrive at the following theorem:

Theorem 6. For a PCTMC X(t) ∈ ZN+ and 1 ≤ i, j ≤ N

d
dt

E[Xi(t)Xj(t)] = E[fXi(X(t))Xj(t)] + E[Xi(t)Xj(t)] (5.8)

where fXi(X(t)) is defined in Equation 3.3, i.e. the function such that

d
dt

E [Xi(t)] = E[fXi(X(t))] (5.9)

Proof. See the proof of the more general statement in Theorem 7 below, setting h0(X(t)) = Xi(t)

and h1(X(t)) = Xj(t).

5. PCTMCS WITH ACCUMULATED REWARDS 89

We need to evaluate each of the two terms on the right-hand side of Equation 5.8 to numerically

solve this ODE together with the rest of the system. The second term E[Xi(t)Xj(t)] has an

approximation Ẽ[Xi(t)Xj(t)] given by one of the moment ODEs. The exact form of the first term

depends on the structure of the PCTMC. Similar to ODEs for moments of populations, a closure

heuristic is required to obtain a closed system of ODEs. For example, if the PCTMC comes from a

split-free GPEPA model, the first term contains, after moving the expectation through summations

and multiplications by constants, terms of the form:

E[Xi(t)Xj(t)] and E[min(g(X(t)), h(X(t)))Xk(t)]

where g, h are piecewise linear functions (i.e. involve only linear combinations and applications

of the min function) of populations. Theorem 6 can be repeatedly used to obtain ODEs of the

former terms. For the latter ones, we can apply the approximation of Equation 3.10 repeatedly

to get piecewise linear functions involving terms E[Xi(t)Xj(t)]. Alternatively, we can modify

the min-closure from Equation 4.3. From our experiments the following approximation leads to

more accurate results, when the random variable C is an accumulated population as opposed to

a population in Equation 4.3 (the variable C is no longer included in the arguments of φ and Φ):

E[C ·min(A,B)] ≈ E[C ·A] · Φ
(
E[B]− E[A]

θ

)
+ E[C ·B] · Φ

(
E[A]− E[B]

θ

)

− E[C] · θ · φ
(
E[B]− E[A]

θ

)
(5.10)

If the model is splitting, we additionally get terms:

E[f(X(t))Xj(t)]

where f is a rational function of populations. We can use the approximation from Equation 3.10

to get rational functions involving terms E[Xi(t)Xj(t)]. This process is fully automated in the

GPA tool described in Chapter 8.

Figure 5.3 shows the general structure of the complete system of ODEs after applying one of the

approximating closures.

We use Theorem 6 and the approximation from Equation 3.10 to find second-order mo-

ments of accumulated server populations and thus compute the variance of Aenergy(t). For

simplicity, we assume that power consumption of a broken server rSb
is zero. We have:

Var[Aenergy(t)] = r2
S Var[S (t)] + r2

Sg
Var[Sg(t)] + 2 · rSrSg Cov[S (t),Sg(t)]

and also:

Var[S (t)] = E[(S (t))2]− E[S (t)]2

Var[Sg(t)] = E[(Sg(t))2]− E[Sg(t)]2

Cov[S (t),Sg(t)] = E[S (t)Sg(t)]− E[S (t)]E[Sg(t)]

5. PCTMCS WITH ACCUMULATED REWARDS 90

=d
dt Ẽ[Xi1(t)] Ẽ[Xi1(t)] (First)

(First)
...

(n-th)

=d
dt Ẽ[Xi1(t)Xi2(t)] Ẽ[Xi1(t)Xi2(t)] + Ẽ[Xi2(t)Xi1(t)] (Second)

...
...

=d
dt Ẽ[Xi1(t) · · ·Xin(t)] Ẽ[Xj1(t)Xj2(t) · · ·Xjn(t)] + · · · (n-th)

=d
dt Ẽ[Xi1(t)Xi2(t)] E[fXi1

(Xj1(t), . . . , Xjm(t))Xi2(t)] + Ẽ[Xi1(t)Xi2(t)]

≈ Moment closure
f̃Xi1

(Xj1(t), . . . , Xjm(t), Xi2(t))

(Second)

=

...
...

d
dt Ẽ[Xi1(t) · · ·Xim(t)Xim+1(t) · · ·Xin(t)] E[fXi1

···Xim
(Xj1(t), . . . , Xjl(t))Xim+1(t) · · ·Xin(t)] + · · · (n-th)

≈ Moment closure
f̃Xi1

···Xim
(Xj1(t), . . . , Xjl(t), Xim+1(t) · · ·Xin(t))

Population
moment ODEs

Accumulation
moment ODEs

Mixed
moment ODEs

Figure 5.3: Structure of the ODE system approximating moments of populations, accumulations and
a mixed product of the two. The arrows show interdependencies between the different groups of
ODEs. Functions f̃x′ are respective transformations of the functions fx′ under the chosen moment
closure.

We can construct additional ODEs approximating the terms on the right-hand side of these

expressions:

d
dt

Ẽ[(S (t))2] = 2Ẽ[S (t)S (t)]

d
dt

Ẽ[(Sg(t))2] = 2Ẽ[Sg(t)Sg(t)]

d
dt

Ẽ[S (t)Sg(t)] = Ẽ[S (t)Sg(t)] + Ẽ[Sg(t)S (t)]

To get ODEs for mixed moments such as Ẽ[S (t)Sg(t)], we can use Theorem 6 where:

fS (t) = rdata ·min(Cw (t),Sg(t)) + rreset · Sb(t)− rrequest ·min(C (t),S (t))− rbreak · S (t)

Therefore the ODE describing the moment E[S (t)Sg(t)] is

d
dt

E[S (t)Sg(t)] = rdata · E[Sg(t) min(Cw (t),Sg(t))] + rreset · E[Sb(t)Sg(t)]

− rrequest · E[Sg(t) min(C (t),S (t))]− rbreak · E[S (t)Sg(t)]

We can apply the same procedure to derive an ODE for the other mixed moment E[Sb(t)Sg(t)].

The remaining terms E[Sg(t) min(C (t),S (t))] and E[Sg(t) min(Cw (t),Sg(t))] require an ap-

proximation similar to the one used for ODEs of second-order moments of populations. For

example, using the original approximation for GPEPA rates, Equation 3.10, we get

E[Sg(t) min(C (t),S (t))] ≈ min(Ẽ[Sg(t)C (t)], Ẽ[Sg(t)S (t)])

5. PCTMCS WITH ACCUMULATED REWARDS 91

Mixed moments are also useful in calculating higher-order moments of rewards which

combine continuously accumulated rewards and impulse rewards. Let Xthink (t) be the

population counting the number of successful think transitions. To compute variance of

the total reward, Var[Atotal(t)], we need the system of ODEs that we used to compute

Var[Aenergy(t)], extended with ODEs for E[Xthink (t)], E[Xthink (t)2], all the mixed moments

E[Xthink (t)S (t)], E[Xthink (t)Sg(t)] and E[Xthink (t)Sb(t)] and all the joint moments required

by the right-hand sides of these equations.

5.3.3 Accumulations of products of populations

So far, we have only looked at accumulated rewards where the reward grows as an integral over

a linear combination of populations. There are cases where a more general function would be

desired. One hypothetical example would be if in the client–server model, there is a cost for

the connection bandwidth between clients and servers per unit of time. Depending on the used

infrastructure, this cost could be proportional to the number of possible pairs of client–server

connections. In that case, the reward would accumulate at a rate given by the product of the

client and server population at each time, that is we would get

Anetwork(t) =

∫ t

0
C (u)S (u)du.

In this section we show how to generalise the presented accumulated rewards to allow accumula-

tions of products of populations by extending Equation 5.4, Equation 5.7 and Theorem 6. We

generalise the notation for accumulated populations to accumulated products of populations:

if h(X(t)) is a product specification h(X(t)) =
∏o
i=1X

ei
i (t), we define the accumulation of the

product as

h(X)(t) =

∫ t

0

o∏

i=1

Xei
i (u)du. (5.11)

For example, we can write the above reward as Anetwork(t) = C S (t).

We proceed analogously to the case of accumulated populations. We can swap differentiation

and expectation in the ODE for an accumulated product of populations and get

d
dt

E[h(X)(t)] = E[h(X(t))]. (5.12)

In our example, we get

d
dt

E[C S (t)] = E[C (t)S (t)].

This ODE can be numerically solved together with the system for first- and second-order moments,

giving us the mean of Anetwork(t).

In order to compute variance of Anetwork(t), we need to compute the moment E[C S (t)
2
]. Similar

to Equation 5.7, we can get an ODE for second-order moments of accumulated products of

5. PCTMCS WITH ACCUMULATED REWARDS 92

populations:

d
dt

E[h1(X)(t)h2(X)(t)] = E[h1(X(t))h2(X)(t)] + E[h2(X(t))h1(X)(t)].

To compute the right-hand side terms, we need the following theorem

Theorem 7 (Generalisation of Theorem 6). For finite products hi(X(t)), i = 0, . . . , n of the form

hi(X(t)) =
n∏

l=1

Xl(t)
ei,l ei,l ≥ 0

defining a mixed moment specified by

h(X(t)) = h0(X(t))

n∏

j=1

hj(X)(t)
ej

we have

d
dt

E [h(X(t))] = E

fh0(X(t))

n∏

j=1

hj(X)(t)
ej

+

n∑

k=1

E

[
∂h

∂hk(X)
(X(t))

]

where

∂h

∂hk(X)
(X(t)) = en · h0(X(t)) · hk(X(t)) · hk(X)(t)

ek−1
n∏

j=1,j 6=k
hj(X)(t)

ej

and fh0(·) is defined in Equation 3.3, that is a function such that

d
dt

E[h0(X(t))] = E[fh0(X(t))].

Proof. See Appendix B.2

5.3.4 Completion times

We illustrate how to use moments of accumulated populations to obtain an approximation of

completion time probabilities in PCTMC models. Consider a random variable representing the

first time a reward A(t) hits a target value a:

Tc = inf{t ≥ 0 : A(t) ≥ a} (5.13)

In order to guarantee various service level agreements of the form “the probability of reaching a

reward a in time t is less than p”, we are interested in the distribution of Tc, i.e. in the probabilities

P(Tc ≤ t). Section 3.5.4 described this problem for the case of completion times of populations –

that is the time until a population reaches a target (usually specified by a proportion of the total

number of agents). The technique uses the one sided improvement of Chebyshev’s inequality: for

5. PCTMCS WITH ACCUMULATED REWARDS 93

a random variable X:

P(X − E[X] ≥ y) ≤ Var[X]

Var[X] + y2

P(E[X]−X ≥ y) ≤ Var[X]

Var[X] + y2
(5.14)

To get the required probabilities, we note that if A(t) is non-decreasing (such as for example the

reward Aenergy(t)):

P(Tc ≤ t) = P(A(t) ≥ a)

= P(A(t)− E[A(t)] ≥ a− E[A(t)])

This allows us to use the following bounds:

P(Tc ≤ t) ≤
Var[A(t)]

Var[A(t)] + (a− E[A(t)])2
if E[A(t)] ≤ a

P(Tc ≤ t) ≥ 1− Var[A(t)]

Var[A(t)] + (a− E[A(t)])2
if E[A(t)] > a

(5.15)

If A(t) cannot be guaranteed to be non-decreasing (such as the rewardAtotal(t)), we have instead:

P(Tc ≤ t) ≥ P(A(t) ≥ a)

and only the lower bound in Equation 5.15 can be used. These bounds can be efficiently

approximated by a solution to the systems of ODEs for accumulated populations, giving a lower

and upper approximations to the CDF of completion times.

A more general result by Tari et al. [173] uses moments of order higher than two to produce

tighter bounds on the CDF of rewards at each point in time, P(A(t) ≤ a). These bounds

can replace the upper and lower bounds for respectively. We demonstrate the technique on a

numerical example in Section 5.4.

5.3.5 Convergence of ODE approximations

Theorem 3 shows that a PCTMC X(t) converges to the deterministic solution of the respective

mean ODEs as its initial populations get scaled to infinity. That is, we take a sequence of PCTMCs

X(S)(t) where each is constructed from X(t) by scaling its initial populations by a scale constant

S ∈ Z+. Then as S → ∞, each population mean re-scaled back by S, E[X
(S)
i (t)]/S, converges

to the ODE approximation Ẽ[Xi(t)], uniformly for t in a finite interval [0, tf). Applying Fubini’s

theorem and dominated convergence, it is possible to extend this result to the convergence of

accumulated populations. That is, as S →∞, the re-scaled means E[X
(S)
i (t)]/S converge to the

ODE approximations given by Equation 5.4. In the following chapter, Section 6.4 we formally

show convergence for hybrid PCTMCs, which generalise the accumulated populations presented

here.

5. PCTMCS WITH ACCUMULATED REWARDS 94

In practice, this justifies an increased accuracy as the scale of the system increases, as further

explored in Chapter 4. In Section 5.4, we proceed with similar investigations of moment ODEs

for accumulated populations. We demonstrate the improved accuracy in mean approximations

at larger scales. We also show that the second-order approximations from Section 5.3.2 are

similarly accurate to population approximations. In particular, we show that the min-normal

closure from Section 4.4 significantly improves the accuracy of mean and second-order moment

approximations of accumulated populations.

5.3.6 Computational cost

The overall complexity of the presented technique to obtain moments of accumulated populations

is given by the number of ODEs and the time over which they need to be numerically integrated.

Calculating an n-th order moment of an accumulated population Xi(t) requires all the population

moment ODEs of order up-to n. Additionally, this requires all the mixed ODEs of the form

h(X(t))Xi(t)
k where k < n and h(X(t)) is a population moment of order n − k. In total, the

method gives O(Nn) ODEs.

For example, in the client–server model, N = 7 (including the think action-counting population)

and to get the mean of Atotal(t), the method requires 10 ODEs. For the variance of Atotal(t), there

are 65 ODEs – 7 for mean populations, 21 for second order population moments and 47 for mixed

moments.

It is worth noting that the usual algorithms for numerically solving systems of ODEs, as described

in Section 3.4.4, have both run time and memory requirements linearly dependent on the size of

the system (unless stiffness problems arise). Therefore the technique is able to cope with fairly

large systems. For example, models requiring more than 104 ODEs can be solved in under a

minute on a standard Intel i7 3.0 GHz desktop computer.

5.4 Numerical examples

In this section we present numerical examples of ODE approximations of rewards in the client–

server model. We use the same rate parameters as Model A in Table 4.1 with accumulation rate

constants given in Table 5.1.

Table 5.1: Accumulation rate parameters in the client–server model. The rate rwakeup is used in a
further extension in Section 5.5.

rS rSg rSb
cenergy cfee rwakeup

1.0 0.05 0.1 1.0 0.3 0.05

Figure 5.4 shows the evolution of means of the rewards Aenergy(t) and Atotal(t) over time.

Additionally, the figure also shows an approximation to the 95% interval obtained from standard

deviations of the rewards. The error of the ODE approximation when compared to estimates

from 108 replications of stochastic simulation is very small relative to the scale of the figure.

Figure 5.5 investigates the error of the ODE approximations closely and looks at the accuracy of

approximations of means and standard deviations at different scales of the system, S = 1, 4, 16

5. PCTMCS WITH ACCUMULATED REWARDS 95

0 10 20 30

0

50

100

Time, t

R
ew

ar
d

E[Aenergy(t)]

(a) Mean of Aenergy(t)

0 10 20 30

0

20

40

Time, t

R
ew

ar
d

E[Atotal(t)]

(b) Mean of Atotal(t)

Figure 5.4: Approximation of the rewardsAenergy(t) andAtotal(t). The shaded region shows an interval
of width 1.95 of standard deviation of the respective reward, approximating the 95% interval. The
dotted lines are estimates from 108 replications of stochastic simulation.

and 64. It compares the error of approximation when using two different closure schemes – the

mean-field approximation from Section 3.4 and the min-closure from Section 4.4. As expected

in Section 5.3.5, the scaled errors decrease as the system size increases. The error is affected

by small switch-point distance (switch-point is shown by a vertical line). From this region, the

error accumulates at a rate which is proportional to the error of the approximation of population

means. In particular, we can see that the error stays at a constant level when the system moves

away from a switch point. This corresponds to the accumulated error during the phase with small

switch-point distance. Similar to the case of population moments, the min-closure significantly

improves the accuracy of the ODE approximation (see Figure 4.13 for a similar comparison for

population moments).

Figure 5.6 shows the lower and upper approximations to the CDF of the completion time of the

reward Aenergy(t) reaching a target value a = 20 for the first time. The bounds from second-order

moments, as described in Section 5.3.4 can be used to estimate the completion time probabilities.

For example, the probability of reaching the value a at time 6.0 is now between 0.95 and 1. On

the other hand, the earliest time the reward reaches the value a with probability 0.95 is between

5.23 and 6.0. The bounds from the first seven moments computed using the method of Tari et al.

[173] are much tighter – the probability of reaching a at time 6.0 is between 0.99 and 1.0 and

the earliest time the reward reaches a with probability 0.95 is between 5.34 and 5.6. Figure 5.6b

shows the error in the bounds approximation, as compared to the same bounds computed from

moments from stochastic simulation. The maximum error when using the mean-field closure

is in the order of 10−2 of the computed probability and the maximum error when using the

min-closure is in the order of 10−3.

The total reward Atotal(t) can decrease over time and so only the lower bounds can be used to

estimate the completion time probabilities. However, the upper bound is still a valid bound on

the probability of the reward reaching a particular value at a given time (not necessarily for the

first time). Figure 5.4 shows that the total reward initially goes negative. It would be useful to

estimate the completion time when the reward hits a positive value for the first time. Figure 5.7

shows the approximate bounds on the lower bound of the probability of the reward Atotal(t)

reaching a small positive value 4.0 for the first time, computed using the first two moments in

Chebyshev’s inequality as well as using the first seven moments in the method of Tari et al. [173].

5. PCTMCS WITH ACCUMULATED REWARDS 96

S = 1 S = 4 S = 16 S = 64

0 5 10 15 20 25
−2

0

2

4

6

·10−3

Time, t

Sc
al

ed
er

ro
r

in
E[
A

en
er

gy
(t
)]

(a) Mean of Aenergy(t)

5 10 15 20 25

−4

−2

0

·10−3

Time, t

Sc
al

ed
er

ro
r

in
Va

r[
A

en
er

gy
(t
)]

(b) Standard deviation of Aenergy(t)

0 5 10 15 20 25

−2

0

2

·10−2

Time, t

Sc
al

ed
er

ro
r

in
E[
A

to
ta

l(
t)
]

(c) Mean of Atotal(t)

5 10 15 20 25
−4

−2

0

2

4

·10−3

Time, t

Sc
al

ed
er

ro
r

in
Va

r[
A

to
ta

l(
t)
]

(d) Standard deviation of Atotal(t)

Figure 5.5: Effects of scaling on the error of the ODE approximations of means and standard deviations
of accumulated populations. The vertical line shows the location of a switch-point in the model,
Section 4.2. The solid lines are approximations when using the min-closure from Section 4.4 and the
dashed lines the approximations under the original mean-field closure, Section 3.4. Because of the
high variance of rewards, 108 replications of stochastic simulation had to be used to obtain smoother
plots.

The relatively higher variance of the total reward compared to the energy consumption reward

causes the bounds to be less tight. For example, the probability of the reward becoming positive

for the first time at time t = 10 is bounded by 0.06 from below whereas the actual probability is

0.59. The bound computed from the first seven moments only improve the Chebyshev bounds

for time intervals around 3 units away from the time t when Atotal(t) is zero. The error of the

bounds is at the order of 10−3 as shown in Figure 5.7b.

5.5 Trade-off between energy consumption and performance

In practice, system providers cannot consider the client response times and server energy con-

sumption in isolation. Usually, the performance required by clients is given in the form of a

Service Level Agreement (SLA). This is often set as a constraint on a passage time probability. For

example, in the client–server model, we could propose an SLA: “the probability of an individual

client receiving the service within 13 seconds is at least 0.9”. An obvious target for the system is

to be able to satisfy the SLA while at the same time operate as efficiently as possible. Usually,

there is a trade-off between these two metrics. For example, increasing the number of servers

leads to better response times (higher probability of finishing within a given time), but worse

energy-efficiency.

5. PCTMCS WITH ACCUMULATED REWARDS 97

4 6 8

0

0.5

1

Time, t

Pr
ob

ab
ili

ty
exact CDF
Chebyshev
7 moments

(a) Bounds on completion time
CDF

4 6 8

0

1

·10−2

Time, t

Er
ro

r

(b) Error in the bounds approx-
imation

Figure 5.6: Approximations of the CDF of the time of the reward Aenergy(t) reaching the target value
a = 2.0. The dotted line is the exact CDF estimated from 108 replications of stochastic simulation.
Figure (b) shows the absolute error, the difference between the bounds from simulation and ODE
approximations. The dashed lines correspond to the error when using the mean-field closure and the
solid lines when using the min-closure.

0 5 10 15 20

0

0.5

1

Time, t

Pr
ob

ab
ili

ty

exact CDF
Chebyshev
7 moments

(a) Lower bound on the completion
time CDF

0 5 10 15 20

0

2

4

6

·10−3

Time, t

Er
ro

r

(b) Error in the lower bound

Figure 5.7: Approximations of the CDF of the time of the reward Atotal(t) reaching the target value
a = 0.0. The dotted line is the exact CDF estimated from 108 replications of stochastic simulation.
Figure (b) shows the absolute error, the difference between the bounds from simulation and ODE
approximations. The dashed lines correspond to the error when using the mean-field closure and the
solid lines when using the min-closure.

One of the main benefits of our approach to the computation of reward metrics is that we are

able to compute both passage time and reward metrics simultaneously. In particular, we are

able to compute the passage time probabilities with the method [4] described in Section 3.5,

while using the same set of ODEs to compute accumulated rewards. This allows us to efficiently

capture the trade-off between performance (SLA satisfaction) and energy consumption (or in

general minimisation/maximisation of a reward).

For example, Figure 5.8 considers the trade-off as the number of servers nS in the client–server

model increases from 50 to 200. For each number of servers, we compute the CDF of the time

in which a client finishes a first think action, Tthink , and plot the value at time t = 13, as given

by the SLA, in Figure 5.8a. On the other hand Figure 5.8b shows the energy consumption at

time t = 40, Aenergy(40), computed from the same ODE solution. As expected, as the number of

servers increases, both the probability of finishing but also the energy consumption increase. The

SLA is satisfied if the probability of finishing on time is at least 0.9, as shown by the horizontal

5. PCTMCS WITH ACCUMULATED REWARDS 98

line in Figure 5.8a. In that case, the optimal configuration is with nS = 81 servers, achieving

energy consumption of 355.78 units.

50 81 100 150 200

0.88

0.9
SLA

Number of servers nS

Pr
ob

ab
ili

ty

P (Tthink ≤ 13)

(a) Probability of finishing before
time t = 13.0

50 81 100 150 200

300

355.78

400

Number of servers nS

En
er

gy
C

on
su

m
pt

io
n

E[Aenergy(40)]

(b) Energy consumption until time t =
40.0

Figure 5.8: Trade-off between response time and energy consumption as the number of servers
increases.

5.5.1 Client–server model with server hibernation

When computing the trade-off in Figure 5.8, the relationship between energy consumption and

the number of servers is obvious – it would not be necessary to compute the energy consumption

reward in order to find the optimal number of servers, which clearly has to be minimal. However,

in many cases the optimal configuration is not necessarily this intuitive. In fact, the reward we

seek to optimise is not necessarily a monotonic function of the parameters that we can control.

In this section, we illustrate this on a small extension of the client–server model, which allows

the system to be more energy-efficient by hibernating servers according to the client demand.

One way to reduce energy consumption in the client–server model is to turn some of the servers

off when the client demand decreases and turn them back on when the demand increases. We

modify the GPEPA model from Section 3.2.3 accordingly. Idle servers can switch to a sleeping

state at a rate independent of the number of requesting clients. This is indirectly related to the

client demand, as these transitions have to compete with the request synchronisations. Clients

are additionally allowed to request a server to be switched back on with a synchronised action

wakeup. See Figure 5.9 for the full GPEPA description of this modification. As before, we will

be interested in the rewards Aenergy(t) and Atotal(t) and the time before a client finishes its first

think action. For simplicity, we assume that the energy consumption in the sleeping state is 0. We

also ignore any additional energy costs of the switch from sleeping to idle state and vice versa.

These could be easily added with additional impulse rewards.

We assume that the rate rsleep and the number of servers nS are the only parameters that the

system providers can control – all the remaining rates and the number of clients depend on

the infrastructure and the external client load. Our framework can be used to explore the

energy–performance trade-off for a large number of combinations of the possible values of rsleep

and nS . Figure 5.10 shows an example plot of the energy consumption and the total reward for

parameter combinations where the SLA constraint is satisfied, as obtained by numerically solving

the moment ODEs with initial values and rates computed from given parameters. In total, 1680

5. PCTMCS WITH ACCUMULATED REWARDS 99

Client
def
= (request , rrequest).Client_wait Server

def
= (request , rrequest).Server_get

+(wakeup, rwakeup).Client +(break , rbreak).Server_broken

+(sleep, rsleep).Server sleep

Client_wait
def
= (data, rdata).Client_think Server_get

def
= (data, rdata).Server

Client_think
def
= (think , rthink).Client Server_broken

def
= (reset , rreset).Server

Server sleep
def
= (wakeup, rwakeup).Server

Clients{Client [nC]} BC
{request,data, wakeup }

Servers{Server [nS]}

Figure 5.9: Extension of the client–server GPEPA model allowing the servers to hibernate when the
client demand is low. The modifications of the original model are highlighted.

different combinations are explored, with the overall computation time in the order of minutes

on a standard desktop computer.

0
2

4.153
6

100

117

130
0

200

400

307.28

rsleep

nS

Ẽ[
A

en
er

gy
(4
0.
0)
]

(a) Mean of Aenergy(40)

0
2

2.92 4
6

100
105

115

130
0

100

200

253.72

rsleep
nS

Ẽ[
A

to
ta

l(
40

.0
)]

(b) Mean of Atotal(40)

Figure 5.10: Exploration of the trade-off between response time satisfaction and minimisation of
energy consumption (a) / maximisation of the total reward (b) in the client–server model with server
hibernation. The number of servers nS is varied from 90 to 131 and the rate of sleeping rsleep from 0.0
to 6.0 in 41 steps, giving a total of 1680 combinations. Only the points for configuration where the
SLA given by P (Tthink ≤ 13) ≥ 0.9 is satisfied are shown.

Intuitively, increasing the number of servers increases the probability of a client finishing early, but

also raises the energy cost of running the system. Similarly, decreasing the hibernation rate has a

positive effect on the system response. Figure 5.10a clearly shows that for each number of servers,

there is a maximal hibernation rate under which the SLA is still satisfied. The minimum energy

consumption lies on the boundary given by this relationship. From the numerical evaluations,

the minimum energy consumption Aenergy(40) = 307.28 is achieved when the number of servers

is nS = 117 and the hibernation rate is rsleep = 4.15. In case of the total reward Atotal(t), there is

an additional effect of the impulse reward from successful client requests. The maximum reward

is Atotal(40) = 253.72 when nS = 105 and rsleep = 2.92.

Figure 5.11 shows the error of ODE approximation across all the considered parameter combina-

tions, as compared to estimates from stochastic simulation. We note that simulation was feasible

5. PCTMCS WITH ACCUMULATED REWARDS 100

only due to massive parallelisation provided by the GPA tool, which required around 100 CPU

hours as opposed to several CPU minutes for the ODE analysis.

0
2

4
6

100

1200

0.2

0.4

nS rsleep

Er
ro

r

(a) E[Aenergy(40)]

0
2

4
6

100

1200

0.5

1

rsleep nS

Er
ro

r
(b) E[Atotal(40)]

0
2

4
6

100

1200

2 · 10−3

rsleep nS

Er
ro

r

(c) P (Tthink ≤ 13)

Figure 5.11: The error of approximations of accumulated rewards and passage times in Figure 5.10.

5.5.2 Global optimisation

Usually there are many more configuration parameters and it is not practical to explore the full

parameter space such as in Figure 5.10. In general, the performance-energy trade-off in our

setting can be expressed as a global optimisation problem:

Optimisation problem 1. Given a PCTMC Xp(t) that depends on a vector of parameters p ∈
P ⊆ Rk, we seek to optimise a reward that is a combination of accumulated rewards and

population based rewards at a time tf

min
p∈P

E

[∫ tf

0
h1(Xp(u),p)du+ h2(Xp(tf),p)

]

where hi(X(t),p) are linear combinations of Xj(t). Initial populations are given by Xp(0) = Yp.

Constraints are imposed by a set of SLA inequalities on points on CDF of passage times Ti

P (Ti ≤ ti) ≥ ci for 1 ≤ i ≤ m

Using the ODE approximation from this chapter, we can turn this into a global optimisation

problem with an embedded system of ODEs.

Optimisation problem 2. Let xp(t) be the ODEs for moments of populations and yp(t) moments

of accumulated populations and mixed moments in a PCTMC XP (t), that is

d
dt
xp(t) = f1(xp(t),p)

d
dt
yp(t) = f1(xp(t),yp(t),p)

where functions fi are determined by the ODE approximation. The initial values are xp(0) =

m(Yp) and yp(0) = 0 where m(·) is a function which initialises the moments from the initial

values of populations. We seek to optimise

min
p∈P

h1(yp(tf),p) + h2(xp(tf),p)

5. PCTMCS WITH ACCUMULATED REWARDS 101

under constraints

gi(xp(ti)) ≥ ci for 1 ≤ i ≤ m

where the functions gi(·) approximate the CDFs of passage times Ti.

Unfortunately, the structure of this optimisation problem is too general for most existing efficient

solution techniques. The objective function is not guaranteed to be convex. There are existing

techniques for solving global optimisation problems with embedded ODEs, such as the algorithm

of Singer and Barton [165]. However, the right-hand sides of the moment equations can be

complicated and contain polynomial functions and occurrences of the min function and normal

PDF and CDF, preventing a direct application of the algorithm. Another problem is the presence of

integer parameters such as the initial populations in the client–server example. Nevertheless, the

ODE analysis allows us to efficiently compute individual instances of the objective function and

constraints and therefore make it possible to apply approximate numerical global optimisation

algorithms. Particularly suitable are derivative-free methods [161] which only require the ability

to evaluate the objective function and not its derivatives. We have chosen the Constrained
Optimisation By Linear Approximation (COBYLA2) algorithm by Powell [154] due to its general

applicability and available implementation and integrated it into the GPA tool. For example,

running the algorithm on the example from Figure 5.10 when allowing real valued initial

populations, requires only 76 evaluations of the objective function and constraints, arriving at an

approximate minimal energy consumption of 307.1 with parameters nS = 116.4 and rsleep = 4.13.

If we instead iterate over the possible integer valued initial populations and run the optimisation

algorithm at each step, we obtain an improved minimal consumption 307.09 with nS = 116 and

rsleep = 4.09 in around 600 evaluations of the objective function.

5.6 Estimating power consumption rates

The power consumption rates we used in this chapter such as rS , rSg , rSb
in the client–server

example were chosen only for illustration purposes. Techniques for creating accurate power

models of real systems form a wide research area and lie outside of the scope of this thesis.

In this section, we review a number of possibilities that could be used within the PCTMC

framework. From a high-level perspective, power models can be obtained by a combination of

direct measurements, indirect estimation from various metrics such as hardware performance

counters and methods to extrapolate models into larger systems or different application domains.

Mobius et al. [147] give an overview of power estimation models for processors and servers. The

selection of available techniques depends on the context in which the PCTMC framework is used.

In Section 9.2 we suggest how PCTMC models could be used at various stages of the system life

cycle. At a purely design stage, PCTMC models could be used to evaluate possible configurations

of the system. In such case, it is often impossible to perform measurement experiments on the

desired hardware and software combinations. Estimates of power consumption rates can be

obtained from hardware specification. For example, Intel includes the thermal design power
in their CPU specification [112]. This can be used to obtain a crude estimate of the upper

5. PCTMCS WITH ACCUMULATED REWARDS 102

bound of the power consumption of a CPU, which usually forms a significant part of the power

consumption of the whole system [147]. At this stage, the remaining parameters in the model

(such as job arrival rates) are also rather speculative and the analysis results only suitable for

relative comparison of different configurations.

In some cases, the modeller has access to some of the hardware already at the design stage of

the system. For example, in a large data centre, there are often only a few different types of

servers. It is possible to use a small number of each type of machine to obtain power consumption

benchmarks that could be used in the model of the whole system [133].

Section 9.2 also suggests a dynamic usage of PCTMC models that is evaluated alongside a live

system and can be used for accurate predictions of the system behaviour in the immediate future.

It would be possible to instrument the system (or a small subset of the system) to provide live

measurement of power consumption metrics. These could be used to accurately calibrate the

power consumption parameters. For example, Joulemeter [115] is a software for dynamically

learning an accurate model of power consumption of a laptop or desktop computer.

In all the mentioned examples, the accuracy of the resulting power consumption estimate depends

on the detail of the model. Even if low level details of the system such as CPU cache memory

and network card are captured, the overall error of a power model is highly workload dependent

[143]. It is part of the modelling challenge to choose a model structure which accurately captures

the power consumption behaviour (as well as other operational aspects of the real system) while

maintaining a manageable size of the resulting PCTMC.

5.7 Conclusion

In this chapter, we have shown how to extend the efficient ODE analysis of PCTMCs to addi-

tionally capture accumulated rewards. These model important operational metrics of systems

such as total energy consumption or generated income. Impulse accumulated rewards can be

analysed as populations after a simple transformation of the PCTMC. We have derived additional

differential equations for means and higher-order moments of continuously accumulated integrals

of populations. The latter equations require auxiliary ODEs capturing mixed moments that are

expectations of products of populations and accumulated populations. These can be also used

when computing moments of rewards which are combinations of continuously accumulated

rewards and impulse rewards. We have also shown how to use the higher-order moments of

rewards to approximate bounds on distributions of completion times until a reward reaches

a target value. We have demonstrated the techniques on a reward structure defined on the

client–server model from Section 3.2.3. We have numerically investigated the accuracy of the

ODE approximation in a style similar to Chapter 4, comparing different moment closure schemes

and looking at different scales of the system.

A crucial advantage of our approach is that we are now in a position to compute reward

and response time metrics during the same analysis. This allows us to accurately capture

trade-offs such as those between energy consumption and performance, given by the response

time probabilities of the system that can be already computed within the framework. We

5. PCTMCS WITH ACCUMULATED REWARDS 103

have formulated a global optimisation problem where the objective function is given as an

accumulated reward, such as energy in a server farm, and constraints are given by lower

bounds on passage time probabilities, such as service level guarantees by the service provider.

Using the moment ODE equations, this problem can be approximated by a global optimisation

problem with embedded differential equations. While such a problem is still generally not

analytically tractable, the efficient evaluation of the objective function and constraints allows us

to use approximate numerical algorithms. We have demonstrated on the client–server reward

model how an application of such algorithms can efficiently find an approximate solution to the

optimisation problem.

We use the results from this chapter in two ways in the subsequent chapters of this thesis. In

Chapter 6, we further extend this framework to allow accumulations of a more general class of

expressions as opposed to linear combinations of populations. We show how to model feedback

from rewards by allowing the transition rates to contain rewards. In Chapter 7, we define an

extension of GPEPA process algebra which more accurately captures ongoing transactions between

different agents. These leads to PCTMCs with a large number of populations and a complicated

structure of transition rates. Our efficient implementation of the reward ODE analysis within the

GPA tool, described in Chapter 8 makes it possible to address the performance-energy trade-off in

such large models.

104

Chapter 6

Hybrid PCTMCs

Key contributions

hPCTMC – PCTMC with continuous variables 6.2 [15, 14]

Extended ODE analysis to moments in hPCTMC 6.3.1 [15, 14]

hPCTMC Time-inhomogeneous models and dynamic SLA

verification

6.6 [14]

6.1 Introduction

The behaviour of large computing clusters is often indirectly controlled by feedback from various

accumulated continuous quantities, such as temperature, energy consumption or the total

operational cost. For example, an air conditioning controller in a server farm will react to the

ambient temperature. At the same time, sophisticated thermally-aware schedulers [172] can

use temperature sensors to regulate server operation and thus indirectly affect the ambient

temperature, creating a feedback loop. Additionally, scheduling can be affected by time-varying

workloads. These might be driven by seasonal job submission patterns or the need to follow the

fluctuating price of electricity or availability of renewable energy sources [135].

In this chapter, we address these issues within the PCTMC framework and provide efficient

techniques to analyse models with feedback from continuous variables and with time-depended

rates. This is an important step towards applying the PCTMC framework and the associated

ODE analyses to real data. For example, Figure 6.1a shows the load experienced by the World

Cup 1998 website [137]. Our framework can be used to verify whether a complex large-scale

model of a computing cluster serving the website would cope with such a workload, while

satisfying pre-determined service level agreements (SLA) with its users. The SLAs often guarantee

maximal execution time for a task with some agreed probability. These are usually assumed to

hold in the steady state of the system and can be efficiently verified within the ODE analysis

framework [4]. If parameters of the system are changing over a period of time, we need to check

the validity of SLAs throughout this period. We present dynamic SLA verification and show how

to use the efficient ODE analysis to check passage-time probabilities for clients arriving into the

system at a number of pre-determined time points. At the same time, the framework is able to

incorporate feedback from continuous quantities. The ODE analysis can compute the total energy

consumption of the servers as in Chapter 5 and also take into account the cost of running air

conditioning units that control the operating temperature of the system.

The main contributions of this chapter are:

6. HYBRID PCTMCS 105

0 20 40 60 80

0

0.5

1

·107

Day

A
rr

iv
al

s
pe

r
ho

ur

(a) Accesses each day

0 4 8 12 16 20

1

2

·104

Hour

A
rr

iv
al

s
pe

r
ho

ur

(b) Accesses on an average day

Figure 6.1: The number of accesses of the World Cup 1998 website during a long period around the
event (a) and hourly accesses on an average day (b) during the tournament.

hPCTMC – Hybrid PCTMC In Section 6.2 we define an extension of PCTMC with state space

that includes a vector of continuous variables, obtaining a hybrid model as described in

Section 2.4. The continuous variables generalise the accumulated populations in Chapter 5

and can instead grow as a function of populations and also influence populations by

appearing in the rates of transition classes in a PCTMC. The continuous variables are

global and their value is available to every agent, as opposed to agents having individual

continuous variables [e.g. 51, 97]. We demonstrate how to use hPCTMC to model systems

with feedback from continuous variables. In Section 6.3.1 we extend the ODE analysis from

Section 3.4 to hPCTMC and show how to derive approximations to moments of populations

and continuous variables. Section 6.4 justifies this approach by proving convergence to

the solution of the mean-field equations as the scale of the system increases. We show

that the min-normal moment closure from Section 4.4 is particularly suited to models with

threshold feedback from continuous quantities and leads to increased accuracy of the ODE

analysis. Section 6.5 presents a worked example of a heterogeneous computing cluster with

controlled temperature in Section 6.5. We validate a large number of system evaluations

against stochastic simulation.

Time-inhomogeneous rates In Section 6.6 we show how to incorporate time-inhomogeneous

rates in hPCTMC models. These are crucial when applying the framework to real-world

examples, where workloads often depend on time. We show how to combine passage-time

techniques of Hayden et al. [4] with time-inhomogeneous rates to dynamically verify SLAs

at a number different points throughout the evolution of the system. Section 6.6.2 shows a

worked example with time-inhomogeneous rates from real data and applies the dynamic

SLA verification to find a suitable system size that minimises energy consumption while

maintaining a required performance.

We have extended the implementation in the GPA tool, Chapter 8, with developments in this

chapter. The tool implements the hPCTMC framework and allows inclusion of data-driven

time-inhomogeneous rates.

6. HYBRID PCTMCS 106

6.2 Hybrid PCTMCs

In this section, we define an extension of a continuous-time Markov population process that

treats accumulated quantities such as the rewards in Chapter 5 as part of the state space of the

model.

We illustrate the following definitions on a PCTMC representing a simplified, single-stage

version of the client–server model from Section 3.2.3. The GPEPA description of the model

is

Client0
def
= (data, rdata).Client1 Server0

def
= (data, rdata).Server1

Client1
def
= (task , rtask).Client0 Server1

def
= (reset , rreset).Server0

Clients{Client0[nC]} BC
data

Servers{Server0[nS]}

The state space of the underlying PCTMC consists of numerical vectorsX = (C 0,C 1,S 0,S 1) ∈
Z4

+, where the populations correspond to the four possible group–agent pairs, and the initial

state given by the system equation is X0 = (nC , 0, nS , 0). There are three transition classes

in this model – one corresponding to the synchronised event where a client sends its data to

a server and two independent events where a client or a server move to their initial states.

According to PCTMC semantics of GPEPA, Section 3.2.2, the respective difference vectors

and rate functions are δ1 = (−1,−1, 1, 1) with r1(X) = min(C 0,S 0)rdata , δ2 = (1,−1, 0, 0)

with r2(X) = C 1 · rtask and δ3 = (0, 0, 1,−1) with r3(X) = S 1 · rreset .

We augment the state space with a set of continuous variables governed by an auxiliary system of

integral equations whose evolution may additionally depend on the discrete populations. The

continuous variables can be used to track the evolution of associated quantities such as energy

consumption or ambient temperature. The rates of the Markovian evolution of the discrete

populations may also depend on the value of these variables, thus allowing, for example, the

temperature to enter a feedback loop controlling the system.

6.2.1 Definition

The state space of a hybrid PCTMC (hPCTMC) is a subset of ZN+ ×RM consisting of states (X,Y),

where X ∈ ZN+ captures discrete populations and Y ∈ RM captures continuous variables. The

discrete populations evolve as in traditional PCTMCs, Section 3.1, that is according to a set C of

transition classes. The associated rate functions are extended onto the full state space, that is

rc : ZN+ × RM → R+. The initial state of X and Y is given by the (possibly correlated) random

variables X0 and Y0.

The evolution of continuous variables Y(t) is given by an integral equation of the form:

Y(t) = Y0 +

∫ t

0
g(X(s),Y(s)) ds (6.1)

where g : ZN+ × RM → RM is an accumulation function. That is, the continuous variables Y(t)

are deterministically accumulated between successive jumps in the population process X(t).

6. HYBRID PCTMCS 107

In the client–server model we might wish to model generation of heat by servers in the

active state Server1, resulting in an increase in the total energy in the server room. In order

to model the heating–cooling process, we extend the discrete model with a temperature

variable T defined below. We add a group of air conditioning units which control the

temperature:

Aircon0
def
= (on, λon(T)).Aircon1 Aircon1

def
= (off , λoff (T)).Aircon0

(
Clients{Client0[nC]} BC

data
Servers{Server0[nS]}

)
‖ Aircon{Aircon0[nA]}

where the rates λon and λoff are defined below. The active air conditioning units contribute

to the cooling of the environment, by transferring heat out of the room. If we assume that

the heat generation and cooling rates for a single server and air conditioning unit (rheat and

rcool) are constant over time, the thermal energy in the server room can be captured by an

accumulated variable E:

E(t) = E0 +

∫ t

0
rheat S 1(u)− rcool A1(u) du

where E0 is the initial energy in the room.

We can introduce feedback into the system by making the air conditioning transition rates

depend on the current temperature of the room. An approximate physical model for the

temperature is:

T (t) =
c

v
E(t) (6.2)

where c is a constant and v is the total volume of air in the room. One possible control policy

for the air conditioning units might be: when the temperature is above a given threshold

tthresh , units switch on at a rate proportional to the difference between the temperature

and the threshold, otherwise active units switch off after an exponentially distributed time

period:

λon(T) = ron(T − tthresh)+ (6.3)

λoff (T) = roff

6.2.2 Regularity conditions

In general, each hPCTMC process can be realised as a piecewise deterministic Markov process
(PDMP) [64]. However, in order for the above construction to result in a uniquely well-defined

PDMP on any finite interval of time, some regularity conditions are required. In particular, it

is important that the possibility of infinitely many jumps of the discrete component in a finite

period of time is prevented and also that the continuous component cannot grow unboundedly

in a finite period of time, that is it cannot explode. The following conditions are sufficient to

achieve this, where X ⊂ ZN+ is defined to be the reachable state space, in a finite time horizon tf ,

of the discrete part of the state space:

6. HYBRID PCTMCS 108

1. There exist constants A,B ∈ R+ such that for all x ∈ X, y ∈ RM and c ∈ C:

‖g(x,y)‖ ≤ A(‖y‖+ 1) and rc(x,y) ≤ B(‖y‖+ 1)

2. For a fixed population vector x ∈ X, the function g(x, ·) : RM → RM satisfies a local

Lipschitz condition;

3. For each transition class c ∈ C, the function rc(x, ·) : RM → R+ is measurable for each

x ∈ X.

Assumptions 1 and 2 guarantee that, between successive discrete jumps, the continuous compon-

ent is defined uniquely as the absolutely continuous solution to Equation 6.1 which exists as long

as it does not explode [e.g. 60, Chapter 2]. In fact, the only way that the above construction can

fail is if the continuous component explodes, since, otherwise, the maximal jump rate is bounded

by assumption 1. However, if the continuous component does explode, say, at time t∗, then for

any t < t∗, we have:

‖Y(t)‖ ≤ ‖Y0‖+

∫ t

0
‖g(X(s),Y(s))‖ds ≤ ‖Y0‖+At∗ +

∫ t

0
A‖Y(s))‖ds

Applying a version of Grönwall’s lemma [e.g. 72, Page 498] yields:

‖Y(t)‖ ≤ (‖Y0‖+At∗) exp(At)

This implies that Y(t) cannot explode at time t∗ since it is continuous and bounded by (‖Y0‖+

At∗) exp(At∗) for any t < t∗. Thus we have a contradiction and have shown that, subject to the

assumptions above, our construction is well-defined on finite intervals of time.

It can be seen that the client–server model satisfies these requirements. In Section 6.6 we show

how a continuous quantity can be used to describe time in the system and thus allow the model to

include time-inhomogeneous behaviour. In particular, in models in Section 6.6 and Section 6.6.2,

we will use time-varying parameters obtained as piecewise continuous functions from measured

data. These will have only a finite number of jumps and so all the conditions hold in such models.

6.3 ODE analysis

It is possible to extend the simulation algorithm for PCTMCs, for example described in Section 3.3,

to realise traces of the discrete and continuous state components of hPCTMC models. Despite

efficient algorithms for exact simulation of such models, e.g. [18], the simulation still suffers

from high computational costs in case of large systems. In order to produce numerical examples

in this chapter, we have implemented an extension of the stochastic simulation algorithm from

Section 3.3 which deals with rates that can vary over the time between two successive events

(required when a transition rate refers to a continuous variable).

6. HYBRID PCTMCS 109

6.3.1 Mean-field approximations

We extend the efficient mean-field analysis of PCTMC models [e.g. 99, 108, 183], described in

Section 3.4 to the case of hPCTMC models. Specifically, we define a function f : RN ×RM → RN ,

analogous to Equation 3.7, as

f(x,y) :=
∑

c∈C
rc(x,y)δc

for suitable real extensions of the rate functions rc and also implicitly consider a real extension of

the accumulation function g. Then an extension of the mean-field approach yields the following

system of M +N differential equations for x(t) ∈ RN and y(t) ∈ RM :

d
dt
x(t) = f(x(t),y(t))

d
dt
y(t) = g(x(t),y(t)) (6.4)

with initial conditions x(0) = E[X0] and y(0) = E[Y0]. The solution of this system can be

interpreted as an approximation of means of the stochastic processes X(t) and Y(t), respectively,

or for sufficiently large populations, as an approximation to individual traces of the stochastic

processes. In Section 6.4 we show that, in the limit of large populations, the traces of the

processes X(t) and Y(t) (and in particular the means E[X(t)] and E[Y(t)]) converge to the

mean-field solutions x(t) and y(t), respectively. We will extend the notation from Section 3.4

and write Ẽ[Y(t)] for y(t).

In the client–server model, the mean-field system includes equations such as:

d
dt

Ẽ[S 0(t)] = rreset Ẽ[S 1(t)]− rdata min(Ẽ[C 0(t)], Ẽ[S 0(t)])

d
dt

Ẽ[E(t)] = rheat Ẽ[S 1(t)]− rcool Ẽ[A1(t)]

d
dt

Ẽ[Aircon1(t)] = (Ẽ[T (t)]− tthresh)+ · ron Ẽ[Aircon0]− roff Ẽ[Aircon1(t)]

Figure 6.2 shows the numerical solutions to the mean-field ODEs from Equation 6.4 as applied to

the client–server model, compared to estimates of the exact means sampled from 105 simulation

runs. As in the rest of this thesis, the estimates from simulation are shown as dotted lines unless

noted otherwise. Table 6.1 shows the specific values of parameters used to produce this figure

and all the subsequent examples from this model.

Table 6.1: Rate and threshold parameters used in the client–server model with air conditioning units.

rdata rtask rreset ron roff rheat rcool tthresh

0.6 0.2 0.1 0.2 0.2 0.2 0.4 30

6. HYBRID PCTMCS 110

0 20 40

0

20

40

60

Time, t

Po
pu

la
ti

on
Ẽ[C 1(t)]

Ẽ[S 1(t)]

(a) Active clients/servers

0 20 40

0

5

10

15

20

Time, t

Po
pu

la
ti

on

Ẽ[A1(t)]

(b) Active air condition-
ing units

0 20 40

0

20

40

Time, t

Te
m

pe
ra

tu
re

Ẽ[T (t)]

(c) Temperature

Figure 6.2: Approximation of means of populations and of the temperature variable in the client–server
model with air conditioning units.

6.3.2 Higher-order moments

We proceed with extending the ODE analysis of higher moments of populations in PCTMCs [e.g.

99, 10, 81], as described in Section 3.4.2, to higher moments of populations and continuous

variables in hPCTMCs. The following theorem is a hPCTMC version of Theorem 1:

Theorem 8. Let (X(t),Y(t), C, g,X0,Y0) be a hPCTMC and h : RN × RM → R a continuous

bounded function differentiable in the latter M variables. The expectation of h(X(t),Y(t)) can

be described by a differential equation

d
dt

E[h(X(t),Y (t))] =
M∑

i=1

E
[
gi(X(t),Y(t))

∂h

∂Yi(t)
(X(t),Y(t))

]

+
∑

c∈C
E [rc(X(t),Y(t)) (h(X(t) + δc,Y(t))− h(X(t),Y(t)))] (6.5)

with initial value E[h(X0,Y0)].

Proof. See Appendix C.1

Equations for second-order moments can be obtained by choosing h(x,y) := xiyj , xixj and

yiyj for each appropriate i and j. Assuming that the set of possible population vectors X is

finite then the arguments of Section 6.2 guarantee that, over finite intervals of time, the process

(X(t),Y(t)) is bounded to remain in some compact set, and then the boundedness requirement

for the functions h need only be honoured on this set. Monomial functions of any order can be

used to obtain equations for arbitrary order moments.

If the functions f and g are non-linear, as is usually the case in GPEPA models for example,

the terms on the right-hand side of Equation 6.5 involve expectations of non-linear functions

of populations and accumulations and thus needs to be simplified by applying some form of

moment-closure approximation, in the same fashion as in Section 3.4.2.

In the client–server model, the right-hand side of Equation 6.5 contains terms of the form

E[min(C 0(s),S 0(s))]. In Equation 6.4 above, the approximation from Equation 3.5 has been

used, giving min(E[C 0(s)],E[S 0(s)]). This has been shown in Section 4.2 to work well in

6. HYBRID PCTMCS 111

general for a large class of performance models. However, if the process remains close to

states where the arguments of the minimum function are equal, that is the so-called switch
point distance is small for a long period of time, the accuracy of this approximation can

decrease significantly. This can be crucial in hPCTMC models where the minimum function is

used in rates which control the continuous variables. In the client–server model, the control

rate (T (s)− tthresh)+ can be expressed as −min(−T (s) + tthresh , 0). The behaviour of the

air conditioning agents results in the temperature variable staying near the threshold value

and thus in small switch-point distance. The resulting error is visible in the approximation

of the mean of the temperature variable, as shown in Figure 6.2c. In Section 6.4.3, we show

how the min-normal closure from Section 4.4 improves this approximation.

0 20 40

0

2

4

Time, t

Po
pu

la
ti

on

S̃td[S 1(t)]

Simulation

(a) Active servers

0 20 40

0

2

4

Time, t

Po
pu

la
ti

on

S̃td[A1(t)]

Simulation

(b) Active aircon. units

0 20 40

0

50

100

Time, t

Te
m

pe
ra

tu
re

S̃td[T (t)]
Simulation

(c) Temperature

Figure 6.3: Approximation of the evolution of standard deviation of populations and the temperature
variable in the client–server model.

Figure 6.3 shows approximations of standard deviations in the client–server model. As demon-

strated in Section 4.2, the ODE analysis is quite accurate in case of standard deviations of client

and server populations, which are not dependent on the temperature variable, as depicted in

Figure 6.3a. However, when applied to standard deviation of the population of air conditioning

units, Figure 6.3b, and the temperature variable, Figure 6.3c, there are large quantitative and

qualitative differences accumulated over time. The main source of error is the approximation of

the minimum function from Equation 6.4 and Equation 3.10. Section 6.4.3 will discuss ways to

improve the accuracy.

6.3.3 Relationship with accumulated populations

Continuous variables in a hPCTMC can be seen as generalisations of the accumulated populations

from Chapter 5. Theorem 8 can be seen as a general form covering the cases of mean accumulated

populations, Equation 5.7, higher-order moments of accumulated populations, Theorem 6, and

higher-order moments of accumulated products of populations, Theorem 7.

The energy consumption of servers Aenergy(t) in the client–server model, Equation 5.1, can

be directly defined as a continuous variable:

Yenergy(t) =

∫ t

0
S (u) · rS + Sg(u) · rSg + Sb(u) · rSb

du

6. HYBRID PCTMCS 112

Table 6.2: Comparison between ODE systems used to calculate variance of the reward Aenergy(t) using
moments of accumulated populations and the hPCTMC framework. The variable X(t) stands for any
of the six populations in the client–server model and the variable S(t), S′(t) and for any of the three
server populations.

Accumulated populations hPCTMC

Pop. means E[X(t)] 6 E[X(t)] 6
Pop. second E[X(t)X ′(t)] 21 E[X(t)X ′(t)] 21
Acc. means E[S(t)] 3 E[Yenergy(t)] 1
Acc. second E[S(t)S′(t)] 6 E[Y2

energy(t)] 1
Mixed E[X(t)S(t)] 18 E[X(t)Yenergy(t)] 6

Total 54 35

The mean of Yenergy(t) can be approximated by a single mean-field ODE using Equation 6.4,

whereas the mean of Aenergy(t) is expressed in Equation 5.5 as a linear combination of three

accumulated populations, each captured by an ODE.

In order to calculate variance of Aenergy(t), we have to consider auxiliary ODEs approx-

imating second-order moments of accumulated populations of the three server states, the

second-order moments of the three combinations of pairs of accumulated server states, and

mixed moments between each system population and each accumulated server population.

In the case of variance of Yenergy(t), there is only a single second-order moment of the

accumulated variable and only mixed moments between each system population and the

accumulated variable. Table 6.2 gives an overview of the numbers of different ODE types in

the system.

6.4 Convergence properties

In this section we will prove that, in the limit of large populations, a suitably rescaled hPCTMC

model converges to its mean-field approximation. We present results analogous to those for

the PCTMC case from Section 3.6. Given a hPCTMC (X(t),Y(t), C, g,x0,y0), we construct a

sequence of hPCTMCs (X(S)(t),Y(S)(t), C(S), g(S),x
(S)
0 ,y

(S)
0). We assume that the population

structure and difference vectors in C(S) are the same as in C, but that the rate functions r(S)
c

and the accumulation functions g(S) vary with S. The initial conditions for the S-th model in

the sequence are given by (Sx0, Sy0). For each model in this sequence, we assume that the

assumptions of Section 6.2 are satisfied so that all of the processes are well defined and write

X(S) ⊆ ZN+ for the reachable state space of the discrete component of the S-th process.

We assume further that the rate functions r(S)
c and the accumulation functions g(S) satisfy the

density dependent property from Section 3.6, that is they can be defined as functions of the scale

S as follows:

r(S)
c (x,y) := Src(x/S,y/S) c ∈ C(S)

g(S)(x,y) := Sg(x/S,yS)

6. HYBRID PCTMCS 113

We will consider the mean-field Equation 6.4 for the original hPCTMC (X(t),Y(t)) and assume

that the functions f and g satisfy local Lipschitz conditions uniformly with respect to t over any

compact interval. Further, we assume that solutions to the mean-field equations exist globally.

It is easy to see that due to the above definition of the rates and accumulations in the hPCTMC

models in the sequence, the mean-field equations for these are the same as for the original

hPCTMC, with the difference of initial conditions.

We define the rescaled process (X̄(S)(t), Ȳ(S)
(t)), as:

X̄(S)(t) := X(S)(t)/S Ȳ(S)
(t) := Y(S)(t)/S

We require that there is some compact subset of RN that contains all of the state spaces of the

rescaled processes X̄(S)(t). We also assume that g(x,y) ≤ C(‖x‖ + ‖y‖ + 1) for all x ∈ RN+ ,

y ∈ RM for some C ∈ R+. Then by an application of Grönwall’s lemma similar to that of

Section 6.2, we have that for all t ∈ [0, tf], for some tf ∈ R the rescaled stochastic processes

and the mean-field approximations can be contained within a single compact set S ⊂ RN+M

that is independent of S. Note that it is then only strictly necessary for the following theorem

that f and g are defined on S rather than on the whole of RN+M . Finally, we require that

r
(S)
c (x,y) ≤ D(‖x‖ + ‖y‖ + S) for all c ∈ C, x ∈ X(S), y ∈ {S · s : s ∈ S} where D ∈ R+ is

independent of S.

6.4.1 First-order convergence

The following theorem, analogous to Theorem 3 shows that the rescaled processes converge in

probability to the mean-field approximation of the original process.

Theorem 9. Under the assumptions and setup given above, we have, for any tf > 0 and ε > 0:

lim
S→∞

P

{
sup

t∈[0,tf]
‖X̄(S)(t)− x(t)‖ > ε

}
= 0 lim

S→∞
P

{
sup

t∈[0,tf]
‖Ȳ(S)

(t)− y(t)‖ > ε

}
= 0

Proof. Due to Hayden. See Appendix C.1.

In the client–server model, scaling the number of agents by S, and, in particular, the number

of servers, can be assumed to require a room approximately S times larger in volume than

that of the original system. Therefore if the initial heat energy content of the room E0 is

scaled by S and the total heat energy content of the room is divided by S, the temperature

as S increases is:

T (S)(t) =
c

Sv
E(S)(t) and E(S)

0 = SE0

Theorem 9 requires a continuity assumption on the transition rate and accumulation functions in

a hPCTMC. The rate functions λ(S)
on and λ(S)

off in the client–server model satisfy these requirements.

Figure 6.4 observes the exact means (estimated from simulation) converging to the solutions of

the mean-field equations.

6. HYBRID PCTMCS 114

20 40

5

10

15

20

Time, t

E[
Ā

(S
)

1
(t

)]

M-F
Simulation

20 40

20

30

Time, t

E[
T

(S
)
(t
)]

M-F
Simulation

(a) S = 1

20 40

5

10

15

20

Time, t

M-F
Simulation

20 40

20

30

Time, t

M-F
Simulation

(b) S = 10

20 40

5

10

15

20

Time, t

M-F
Simulation

20 40

20

30

Time, t

M-F
Simulation

(c) S = 100

Figure 6.4: Effect of scaling the system size on the first order mean-field approximation of air
conditioning units population and the temperature variable in the client–server model.

6.4.2 Second-order convergence

In this section, we give a second-order Gaussian convergence result for the sequence of rescaled

hPCTMC models, which will justify the use of second-order moment equation from Theorem 8

and motivate the use of the min-normal closure in Section 6.4.3. We maintain all of the notation

of the previous section.

In addition to the main assumptions of this section, we assume that we can decompose the

functions f and g such that

f(x,y) =
∑

i

1{(x,y)∈Fi}f
i(x,y)

g(x,y) =
∑

j

1{(x,y)∈Gj}g
j(x,y)

where {Fi} and {Gj} are finite collections of disjoint open sets in RN × RM such that for each

i, respectively j, f i(·, ·), respectively gj(·, ·) is totally differentiable on F i ∩ int(S), respectively

Gj ∩ int(S), for all t ∈ R+ with uniformly continuous total derivative there. Then f(·, ·) and g(·, ·)
have uniformly continuous total derivative on ∪iFi ∩ int(S) and ∪iGi ∩ int(S) respectively, which

we write as Df , Dg. We can extend Theorem 4 to hPCTMC:

Theorem 10. Fix tf > 0. Assume that the set {t ∈ [0, tf] : (X(t),Y(t)) /∈ ∪iFi ∩ ∪jGj ∩ int(S)}
has Lebesgue measure zero. Then for mutually independent standard Brownian motions {Bc(t) :

c ∈ C}, the following equations have a unique strong solution [e.g. 120, Theorem 6.30] such that

6. HYBRID PCTMCS 115

(EX(t),EY (t)) defined below is jointly-Gaussian:

EX(t) :=

∫ t

0
Df(x(s),y(s)) · (EX(s),EY (s))T ds+

∑

c∈C
Bc

(∫ t

0
fc(x(s),y(s)) ds

)
δc

EY (t) :=

∫ t

0
Dg(x(s),y(s)) · (EX(s),EY (s))T ds

Furthermore,

(
X(S)(t)− Sx(t)√

S
,
Y(S)(t)− Sy(t)√

S

)
⇒ (EX(t),EY (t)) as S →∞

where the convergence is weak on D([0, tf];Rn+m) endowed with the uniform topology [e.g. 32].

Informally, this is ‘uniform convergence in distribution over [0, tf]’.

Proof. Due to Hayden. See Appendix C.1.

The assumptions of Theorem 10 apply to the client–server model. Figure 6.5 shows convergence

of standard deviations of the active air conditioning units population and the temperature variable.

Unlike in the mean case, the convergence seems to be much slower and the approximations

are not very accurate even at the highest scale shown where S = 100. In the next section,

based on the Gaussian assumption justified by Theorem 10, we use the min-normal closure from

Section 4.4 to improve the standard deviation approximations.

0 20 40

0

2

4

Time, t

St
d[
A

(S
)

1
(t
)]

M-F
Simulation

0 20 40

0

10

20

Time, t

St
d[
T

(S
)
(t
)]

M-F
Simulation

(a) S = 1

0 20 40

0

1

2

3

Time, t

M-F
Simulation

0 20 40

0

2

4

6

Time, t

M-F
Simulation

(b) S = 10

0 20 40

0

0.5

1

1.5

Time, t

M-F
Simulation

0 20 40

0

1

2

Time, t

M-F
Simulation

(c) S = 100

Figure 6.5: Effect of scaling on the mean–field approximation of standard deviation of air conditioning
units population and of the temperature variable in the client–server model.

6. HYBRID PCTMCS 116

6.4.3 Normal approximations

Theorem 10 suggests that both the discrete and continuous components X(t) and Y(t) of a

hPCTMC can be approximated by a jointly Gaussian process for sufficiently large populations.

The main source of error in the mean and standard deviation approximations, Figure 6.4 and

Figure 6.5 respectively, was the approximation of the expectation of a minimum function on the

right-hand side of the mean and second-order moment ODEs. We can apply the min-normal

closure from Section 4.4 to the ODEs for moments of agent populations as well as moments of

the continuous variables. For terms involving a product of a rate and a continuous variable, we

use the approximation previously used for accumulated populations, Equation 5.10.

Figure 6.6 compares simulation estimates with numerical solutions to the mean-field equations

and with solutions to the new set of equations obtained by replacing occurrences of the minimum

function according to the min-normal closure. We see that this results in significant improvements

in accuracy.

20 40
5

10

15

Time, t

E[
Ā

(S
)

1
(t

)]

M-F
Min-closure
Simulation

20 40

10

20

30

40

Time, t

E[
T

(S
)
(t
)]

M-F
Min-closure
Simulation

(a) S = 1

20 40
5

10

15

Time, t

M-F
Min-closure
Simulation

20 40

10

20

30

40

Time, t

M-F
Min-closure
Simulation

(b) S = 10

20 40
5

10

15

Time, t

M-F
Min-closure
Simulation

20 40

10

20

30

40

Time, t

M-F
Min-closure
Simulation

(c) S = 100

Figure 6.6: Effect of scaling on the min-closure approximation of mean air conditioning units
population and the temperature variable.

Figure 6.7 further shows that the min-normal moment closure can result in an accurate approx-

imation of the standard deviation of the temperature variable even at relatively low scales of the

system.

Figure 6.8 shows the distribution of the population of air conditioning units and the temperature

over time (obtained from stochastic simulation), with means and variances shown in Figure 6.6

and Figure 6.5. At the lowest scale, the temperature variable is clearly skewed away from

a normal distribution. This means that the approximation used by the min-normal closure,

Equation 4.2, is not necessarily accurate and results in the errors seen in the respective plots of

the mean and standard deviation. As the system scale increases, both the temperature variable

and the active air conditioning population get closer to a normal distribution, in agreement with

Theorem 10.

6. HYBRID PCTMCS 117

0 20 40

0

2

4

6

Time, t

St
d[
A

(S
)

1
(t
)]

Min-closure
Simulation

0 20 40

0

5

10

15

Time, t

St
d[
T

(S
)
(t
)]

Min-closure
Simulation

(a) S = 1

0 20 40

0

1

2

3

4

Time, t

Min-closure
Simulation

0 20 40

0

2

4

Time, t

Min-closure
Simulation

(b) S = 1

0 20 40

0

1

2

Time, t

Min-closure
Simulation

0 20 40

0

0.5

1

1.5

2

Time, t

Min-closure
Simulation

(c) S = 1

Figure 6.7: Effect of scaling on the min-closure approximation of standard deviation of air conditioning
units population and the temperature variable. The closure significantly improves the accuracy over
the mean-field approximation, Figure 6.5.

0

20

40

0
10

20

0

0.2

0.4

Time, t Value

P.
d.

fo
fĀ

(S
)

1
(t

)

0

20

40
0

20
40

0

0.2

Time, t Value

P.
d.

fo
fT

(S
) (
t)

(a) S = 1

0

20

40

0
10

20

0

0.2

0.4

Time, t Value

0

20

40
0

20
40

0

0.2

Time, t Value

(b) S = 10

0

20

40

0
10

20

0

0.2

0.4

Time, t Value

0

20

40
0

20
40

0

0.2

Time, t Value

(c) S = 100

Figure 6.8: Distribution of the number of active air conditioning units (top row) and the temperature
variable (bottom row), as the system evolves over time (x axis). Each column shows the distribution
for an increased scale of the system.

6. HYBRID PCTMCS 118

20 40 60

20

30

Time, t

E[
T

(S
)
(t
)]

M-F
Min-closure
Simulation

0

20

40

60 0

20

40

0

0.2

0.4

Time, t Value

P.
d.

fo
fT

(S
) (
t)

(a) S = 1

20 40 60

20

30

Time, t

Te
m

pe
ra

tu
re

M-F
Min-closure
Simulation

0

20

40

60 0

20

40

0

0.2

0.4

Time, t Value

(b) S = 10

20 40 60

20

30

Time, t

Te
m

pe
ra

tu
re

M-F
Min-closure
Simulation

0

20

40

60 0

20

40

0

0.2

0.4

Time, t Value

(c) S = 100

Figure 6.9: Effect of scaling on the mean temperature for the client–server model with two thresholds.
The bottom row shows the probability density function of the temperature at each point in time as
the system evolves.

6.4.4 Limitations – speed of convergence

Figure 6.6 shows the convergence of the mean air conditioning population and temperature

variable in the client–server model. The mean-field approximations and the means from simu-

lation converge to each other as the system gets scaled. In this particular case, the accuracy of

the approximation is very high for the whole time interval t ∈ (0, 60) at the largest shown scale

S = 100.

Theorem 9 only describes the relationship between the joint process (X(S)(t),Y(S)(t)) and the

mean-field approximation (x(t),y(t)) in the limit as S →∞. The accuracy at particular values

of the scale S and for specific final times tf cannot be predicted and heavily depends on the

model. For example, the client–server model can be extended with a second threshold in the

temperature control. In addition to air conditioning units becoming active with the proportional

rate in Equation 6.3, we can define the rate of switching off to be proportional to a distance from

a second, lower, temperature threshold

λoff (T) = (t′thresh − T)+roff (6.6)

Setting t′thresh = 25 and leaving the rest of the system identical, we get significantly different

behaviour in the temperature variable and its convergence properties.

Figure 6.9 compares the mean temperature obtained from the mean-field technique and the nor-

mal approximations with the mean from simulation. The time interval where the approximations

are accurate grows slowly with the scale S and even at the largest shown scale, the approxima-

tions do not agree with the simulation mean after t ≈ 30. This can be explained by looking at the

corresponding distribution of the temperature variable (the bottom row of Figure 6.9). Before

6. HYBRID PCTMCS 119

hitting any of the thresholds is very likely, the temperature can be approximated by a normal

random variable. However, as hitting the thresholds becomes more likely, the temperature starts

concentrating around the thresholds and reaches a bi-modal distribution.

6.5 Worked example

In this section we demonstrate the hPCTMC formalism and the efficient ODE analysis on a larger

example of a heterogeneous computing cluster. Similar to the client–server model, we consider

a high level abstraction of the system. We assume that there are two types of servers in the

cluster — ones with low (class A) and ones with high power consumption (class B), respectively.

Clients in the system submit two types of jobs — with low (type 1) and high loads (type 2) on

the servers. As in the client–server model, we include air conditioning units that maintain the

ambient temperature in the room. Additionally, servers are capable of entering a sleep mode in

case the temperature increases above a threshold. Unlike in the case of the client–server model

where the client and server agents in the discrete state space were unaffected by the continuous

variables, this will result in an hPCTMC with a complete interdependence between the discrete

agents and continuous variables.

We use the GPEPA process algebra to concisely describe the hPCTMC model (j ∈ {A,B} is a

server class and i ∈ {1, 2} is a job type):

Client
def
=

2∑

i=1

(queuei, rq,i).Jobi Server j
def
=

2∑

i=1

(serviceji , rservice,i).Server ji

+ (sleep, λsleep(t)).Server jsleep

Jobi
def
= (servicei, rservicei).Client Server ji

def
= (reset , rreset).Server j

Server jsleep

def
= (wakeup, rwakeup).Server j

(
Servers{ServerA[nSA]|ServerB[nSB]} ‖ Aircon{Aircon0[nA]}

)

BC
{servicei|1≤i≤4}

Clients{Client [nC]}

with rates λoff (t) = ron and

λsleep(t) = (T (t)− tsleep)+ · rj,sleep and λon(t) = (T (t)− tthresh)+ · ron

where temperature is defined as in Equation 6.2 and the energy variable is

E(t) = E0 +

∫ t

0

∑

j

(S j(u)cj,s + S jsleep(u)cj,sl + S j1(u)cj,1 + S s(u)cj,2)−A1(u)cadu

for some constants cj,s, cj,sl , cj,1, cj,2, ca .

Additionally, we query the model to calculate SLA derived passage times as described in Sec-

tion 6.6. We compute the time until an individual client executes its first high load job. Such

6. HYBRID PCTMCS 120

measures are often used when expressing SLAs. The example shows how the presented frame-

work can be used to study the trade-off between SLA satisfaction and the energy efficiency of the

system. An increasingly common metric assessing energy efficiency of data centres is the Power
Usage Efficiency (PUE) metric [157], calculated as the ratio between the total energy consumption

and the energy used by the servers. That is, PUE of 1 represents a perfectly efficient data centre.

In the above model, we can model the total energy consumption as a continuous variable:

P(t) =

∫ t

0

∑

j

(pj,sl S
j
sleep(u) + pj,sS

j(u) + pj,1S j1(u) + pj,2S j2(u)) + paA1(u)du

for some constants pj,s, pj,sl , pj,1, pj,2, pa.

The quantity U(t) represents the energy used for computation and is defined as P(t), omitting

the contribution of the air conditioning units and the servers in the sleeping state. To obtain an

approximation of the mean PUE, we compute Ẽ[P(t)]/Ẽ[U(t)] for sufficiently large t (1000 in the

examples below).

0 20 40 60 80 100

0

1

2

·104

Time, t

Po
pu

la
ti

on Ẽ[C (t)]

Ẽ[J 1(t)]

Ẽ[J 2(t)]

(a) Mean client popula-
tions

0 20 40 60 80 100

0

200

400

Time, t

Ẽ[SA
1 (t)]

Ẽ[SA
2 (t)]

Ẽ[SA
sleep(t)]

(b) Mean server popula-
tions

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

SLA:
P (t ≤ 350.0)
≥ 0.95

Time, t

Pr
ob

ab
ili

ty

P (Job2 in ≤ t)

(c) Passage-time CDF

Figure 6.10: Means of client–server populations and passage-time CDF in the computing cluster
model. The shaded regions are 1.95 standard deviations around the respective means.

0 20 40 60 80 100

0

20

40

60

80

Time, t

Po
pu

la
ti

on

Ẽ[A1(t)]

(a) Active aircon. units

0 20 40 60 80 100

15

20

25

Time, t

Te
m

pe
ra

tu
re

Ẽ[T (t)]

(b) Temperature

0 20 40 60 80 100

1

2

3

4

Time, t

PU
E

Ẽ[PUE (t)]

(c) PUE

Figure 6.11: Mean population of active air conditioning units and mean temperature in the cluster
model. The approximation of standard deviation in figure (b) was obtained by applying the normal
min closure from Section 6.4.3.

Figure 6.10 shows the mean populations of client and server-A agents and the passage-time CDF

as obtained by the mean-field analysis. Figure 6.11 shows the mean population of air conditioning

units, its effect on the mean controlled temperature and the PUE of the system. The used values

of all the model parameters are shown in Table 6.3.

6. HYBRID PCTMCS 121

Table 6.3: Values of rate and initial population parameters used in the worked example, Figures 6.10,
6.11, 6.12. The constants pB,· are set as the respective pA,· constants multiplied by 1.7 and the heat
constants c·,· are set as the corresponding p·,· constants multiplied by a conversion factor 7.71× 10−6.

nC nS nA rq,1 rq,2 rs,1 rs,2 rreset rwakeup

20000 1000 100 0.2 0.5 0.2 0.2 0.2 0.3

ron roff T0 tthresh tsleep pA,s pA,sl pA,1 pA,2 rcool

0.2 0.2 25 20 23 10 1 30 37.5 0.026

One benefit of mean-field analysis is the relatively low computational cost of numerically in-

tegrating the mean-field equations. This allows a rapid evaluation of a large number of system

configurations, such as in the energy–performance trade-off case study in Section 5.5.1. For

example, we can look at the relationship between the two temperature thresholds tthresh and

tsleep that specify when the air conditioning units start contributing to cooling and servers switch

to sleep mode, respectively. We fix the server threshold at 23 units and search for the best air con-

ditioning threshold. Our target measure to minimise will be the PUE in steady state of the system

and the constraints are given by requiring satisfaction of the above SLA. Figure 6.12 explores a

range of system configurations with the number of servers of each type nS = nSA = nSB varying

between 50 and 1500 and the threshold tthresh varying between 20 and 26 units.

Figure 6.12a shows the mean steady-state PUE for each configuration. For each size of the

computing cluster given by a value of nS , there is an optimal value of tthresh achieving a minimal

PUE metric. These thresholds and the corresponding optimal PUE values are shown by the thick

solid line.

It can be seen that this is slightly below the server threshold, shown as the red dotted line. For

example, for nS = 850, the value of tthresh achieving the optimal PUE is 22.7. The SLA is achieved

only when there are sufficiently many servers in the system, shown as the darker region on the

surface plot. Figure 6.12b shows that the optimal PUE line minimises the number of sleeping

servers, while keeping the air conditioning units as lightly loaded as possible. Figure 6.12c

shows that line of minimum PUE separates the region with maximal standard deviation of the

temperature variable.

Figure 6.13 shows the absolute error in Figure 6.12 as compared to a large number of stochastic

simulations. For the mean PUE and number of sleeping servers, figures Figure 6.13a and

Figure 6.13b, the error would be barely visible on the graphs. For figure Figure 6.13c, the

ODEs consistently under-estimate the standard deviation of the temperature. We note that the

simulations used to evaluate these errors took several days of CPU time. Although we used

parallel solution features of GPA and were able to distribute the load on hundreds of machines,

such analysis would not be feasible in practical applications.

6.6 Time-inhomogeneous models

In this section we show how to use the hPCTMC framework to model time-inhomogeneous

behaviour and how to adapt the passage time results for GPEPA to verify the validity of SLAs

at different points in time. Time can be simply captured by a continuous variable with a unit

6. HYBRID PCTMCS 122

20

23

26

500
1,000

1.4

1.5

- min. for nS

SLA met

tthresh
nS

PU
E

(a) Mean PUE

20

23

26

500
1,000

1,500
0

500

tthresh
nS

Po
pu

la
ti

on

(b) E[S sleep(1000)]

20

23

26

500

1,000
0

0.1

0.2

tthresh
nS

Te
m

pe
ra

tu
re

(c) Std[T (1000)]

Figure 6.12: Effect of varying the cooling threshold and the number of servers on the steady state
PUE metric and the number of servers in sleeping state. For each initial server population nS , the
thick black line shows the threshold under which the minimum PUE is achieved.

accumulation, t = 0 +
∫ t

0 1ds. Rate and accumulation functions can depend on this variable in

the same way they would for example depend on the temperature variable in the client–server

example.

When modelling large-scale computer systems, it is often not suitable to assume that the system is

stationary. For example, web applications can experience load that significantly varies over time,

as shown in Figure 6.1. Similarly, data transfer rates can depend on external load on the network.

For example, in the example client–server model, we have assumed that transfer between clients

and servers happens at a constant rate rdata . However, if this system is placed in a larger network,

it might happen that this rate is not constant over a given time period. The hPCTMC framework

allows this rate to vary as a function of time t, rdata(t). For example, we could use historical

data to estimate the rate at some given points in time. The regularity conditions in Section 6.2.2

allow jumps in the rate functions and so we can extend the rate parameter to a continuous time

interval as a piecewise constant function.

Figure 6.14a shows an example. The rate drops from around 1.5 requests per unit of time to 0.3

requests. This results in a lower number of active servers compared to the previous case with the

rate constant at 0.6 requests and therefore in a lower heat generation and so a lower number of

6. HYBRID PCTMCS 123

20

23

26

500
1,000

0

1 · 10−3

tthreshnS

Er
ro

r

(a) PUE

20

23

26

500
1,000

1,500
0

20

tthreshnS

(b) E[S sleep(1000)]

20

23

26

500
1,000

0

5 · 10−2

0.1

tthreshnS

(c) Std[T (1000)]

Figure 6.13: Absolute error in the plots in Figure 6.12, as compared to stochastic simulation.

0 20 40 60

0.5

1

1.5

2

Time, t

R
at

e

rdata = 0.6

rdata(t)

(a) Time-inhomogeneous
rate

0 20 40

0

10

20

Time, t

Po
pu

la
ti

on

Ẽ[A1(t)] const.

Ẽ[A1(t)] time IH

(b) Mean air conditioning
population

0 20 40

0

20

40

Time, t

Te
m

pe
ra

tu
re

Ẽ[T (t)] const.

Ẽ[T (t)] time IH

(c) Mean temperature

Figure 6.14: Client–server model with a time dependent rate of data transfer rdata(t).

active air conditioning units, as seen in Figure 6.14b. The temperature is maintained around the

desired threshold, shown in Figure 6.14c.

6.6.1 Dynamic SLA verification

In the client–server model, and in models of computer systems in general, a useful metric is the

time it takes an individual client to go through a single data transfer. Usually, these metrics are

part of service level agreements (SLA), which specify the minimum probability with which a

client request has to be answered within a given maximum processing time. For example, in the

client–server model, we can say that each client has to receive the data from servers within 10

time units at least 80% of the time. It is possible to derive this quantity by the ODE analysis[4],

as described in Section 3.5. The state space of the model is extended with states that remember

whether the data has been transmitted. The passage-time probability can be derived from a

suitable expression involving first-order moments obtainable from the ODE analysis. Often, the

service specification is not as simple as data transmission and can involve further requirements,

such as the absence of failure or a pre-defined required sequence of sub-services. The Unified
Stochastic Probes formalism (USP) [103] allows a large class of complex passage-times to be

specified. These get translated into probe agents which can be composed with the original model

and used to compute the passage-time probabilities within the ODE analysis framework.

If the system is considered to be stationary, the SLAs only have to be verified once – each

request is assumed to arrive at the system under the same conditions. However, if the service

characteristics change over time, care has to be taken to make sure that the SLAs are maintained

6. HYBRID PCTMCS 124

throughout the time interval of interest. The generated probes from the USP formalism allow

description of passage times that are triggered after a given sequence of events. It is possible to

use time-inhomogeneous rates to modify a probe so that it starts computing the passage-time

probability only after an exact time period ta. We can multiply the rate of the initial probe

transition with an auxiliary inhomogeneous function

rta(t) =

0 if t < ta

1 otherwise

to disable the passage-time computation before ta.

Figure 6.15 shows example passage-time distributions in the client–server model. The first CDF,

corresponding to the time it takes to obtain the data for an individual client arriving at t = 0 can

be obtained using the original techniques by Hayden et al. [4]. The second CDF, corresponding to

the passage time of a client starting at ta = 20 units, is computed with the time-inhomogeneous

function above. If the SLA was to finish within 10 units with probability at least 0.8, the decrease

in the data transfer rate would result in a violation at a later time.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

SLA

Time, t

Pr
ob

ab
ili

ty

ta = 0
ta = 20

Figure 6.15: Dynamic SLA verification in the time-inhomogeneous client–server model. The figure
shows the CDF of the time it takes an individual client to finish a data transfer, calculated with the
mean-field analysis as an individual passage time. Two CDFs are shown - one for the transfer starting
at time ta = 0 and at ta = 20. The red lines represent an SLA requirement to finish 10 time units after
the start with probability at least 0.8.

One limitation is that only a finite number of starting times ta can be queried. Each passage-time

computation requires a solution of the extended system. The efficient nature of the ODE analysis

allows a large number of starting times to be queried, but cannot guarantee the SLA for passage

times starting at intermediate times. However, by inspecting the variations in the workload over

time, it is often possible to select the starting times to cover the heaviest loads.

6.6.2 Worked Example

In this section we present an example of a hypothetical distributed computing system with

time-inhomogeneous external arrivals with rate obtained from real data. We will use a widely

analysed dataset of all the website accesses of the World Cup 1998 website [137]. Figure 6.1a

shows how the website was accessed during its lifetime.

We start with a simple model abstracting the real system. We assume that the requests arrive at a

time-inhomogeneous rate λ(t). We model the system as a multi server queue. Each server can

6. HYBRID PCTMCS 125

process requests at rate µ. To save energy during periods of low load, the servers can switch to

an idle state, with rate proportional to the excess number of servers above the current number

of requests in the system. Additionally, we model air conditioning units that have to maintain a

given temperature in the system. If the temperature exceeds a critical level Tfail , the servers start

being prone to failures.

We can describe the resulting PCTMC in the notation from Equation 3.1:

∅ → Request at rate λ(t)

Server + Request → Server at rate min(R,S) · µ
Server → Server idle at rate (S − R)+ · rdown

Server idle → Server at rate Si · rup

Server → Server sleep at rate (T − tfail)
+ · rfail

Airconoff → Airconon at rate Aoff · (T − tthresh)+ · ron

Airconon → Airconoff at Aon · roff

The accumulated variable for temperature T is defined in a similar way to the previous case study

and we also include an accumulation capturing the total consumed power. The initial number

of servers is nS and air conditioning units nA. The initial temperature is equal to the desired

threshold tthresh = 25 degrees.

Similar to the previous case study, a question of interest would be to find the optimal number

of servers nS that minimises the operational costs of the system while coping with an expected

workload. In this case, we will assume that the system will have to be employed to cope with a

workload similar to that of the World Cup 1998 website, as shown in Figure 6.1.

Table 6.4: Values of rate and initial population parameters used in the time-inhomogeneous worked
example, Figures 6.16, 6.18, 6.19. We obtained the arrival rate λ(t) from the World Cup 98 data [137]
available at http://ita.ee.lbl.gov/html/contrib/WorldCup.html. For illustration purposes, we
have rescaled the arrival rate by a factor of 10−5.

nS nA µ rup rdown rfail

150 50 50.0 10.0 5.0 1.0

ron roff T0 tthresh Tfail

2.0 0.5 25 25 35

pS pidle pA hcool hS hidle

1.0 0.2 0.2 5.0 1.0 0.1

We assume a periodic workload and take an average busy day as representative of what the

system has to cope with. To make the model simple, we fit a simple arrival process to match the

average number of arrivals for each hour in the day. If we set the time unit in the PCTMC model

as one hour, we can set the arrival rate λ(t) to be a piecewise constant function with values equal

to the average number of accesses during each hour. Figure 6.16 shows the arrival rate and a

sample behaviour of the system. For this particular configuration, all the servers are occupied

during the busy time between the hours 16 and 24 Figure 6.16c. The air conditioning units reflect

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

6. HYBRID PCTMCS 126

this and more are active during this time period Figure 6.16d. Table 6.4 lists the used parameter

values for the examples in this section.

8 12 16 20

0.4

0.6

0.8

1

1.2
·108

Hour

A
rr

iv
al

ra
te

λ(t)

(a) Arrival rate

0 5 10 15 20 25

0

0.5

1

1.5

·104

Time, t

Po
pu

la
ti

on

Ẽ[R(t)]

(b) Request population

0 4 8 12 16 20 24

0

100

200

Time, t

Po
pu

la
ti

on

Ẽ[S (t)]
Ẽ[Si(t)]

(c) Server population

0 4 8 12 16 20 24

0

20

40

Time, t

Po
pu

la
ti

on

Ẽ[A(t)]

(d) Active AC population

Figure 6.16: The external arrival rate piecewise continuous λ(t) and evolution of population means
in the inhomogeneous multiserver model.

The increased load affects the service quality for each individual request. This can be captured

by the time between arrival and end of processing of the request. Using the method described

in Section 6.6, we can efficiently compute the CDFs of processing times for requests arriving

at various fixed times. We set these to 8, 12, 16 and 20 (the low computational cost of the ODE

analysis would allow us to keep track of many more). Figure 6.17b shows the passage time

probabilities. For this configuration, the high load between the hours 16 and 24 results in a much

slower processing time for requests arriving at times 16 and 20. Figure 6.17a shows the mean

temperature in the system. It can be seen that this is close to the controlled threshold and rarely

reaches the thresholds that triggers server failure.

A possible SLA can guarantee that each request gets processed within 0.05 hours at least 90%

of the time. We would want to find the system configuration that is able to satisfy this. The

low computation cost of mean-field analysis allows us to explore a large number of system

configurations. We will perform the analysis with large number of different values of nS and nA.

Figure 6.18 shows the passage time probabilities for different system combinations. As expected,

requests arriving during busier times can only be satisfied with respect to the SLA when there are

sufficiently many servers in the system. In each case, the number of air conditioning units has to

be sufficient to maintain the temperature below the failure level.

The total daily power consumption can be computed at the same time when looking for the

passage time probabilities. Figure 6.19 shows the daily power consumption and the absolute

difference between the results from mean-field analysis and simulation. As expected, the optimal

6. HYBRID PCTMCS 127

0 4 8 12 16 20 24

20

22

24

26

28

Hour

Te
m

pe
ra

tu
re

Ẽ[T (t)]

(a) Mean temperature

5 · 10−2
0

0.9 SLA

Time, t

Pr
ob

ab
ili

ty

ta = 8
ta = 12
ta = 16
ta = 20

(b) Passage times for different arrival times

Figure 6.17: Temperature and multiple passage time CDFs in the inhomogeneous multiserver model.
Figure (b) shows the CDFs of time to completion for clients arriving at different points in time of the
system. The red line shows an SLA level of 90% guarantee to finish within 0.05 hours.

number of servers which minimises the energy consumption is the smallest value of nS in the

intersection of feasible regions for the passage times with different request arrival times.

6.7 Conclusion

In this chapter, we defined hybrid PCTMCs, hPCTMCs, which generalise the rewards from

Chapter 5 and allow continuously accumulated variables to be included in the state space of

models. The variables can appear in transition rates of the discrete component of the system

and thus allow feedback loops controlling the evolution of the continuous variables. We have

shown how to use a continuous variable to represent time and thus allow time-inhomogeneous

behaviour. We have shown how to efficiently extract passage time measures in a system with

non-stationary behaviour.

One of the main advantages of the framework is that it enables efficient ODE analysis of the

resulting models. This gives access to various metrics in the models without having to resort to

computationally expensive stochastic simulation. Although the ODE analysis is an approximation,

we have proved convergence results that guarantee the approximation error to decrease as the

systems get larger. We have also used a moment closure based on the normal distribution from

Section 4.4 that can improve the accuracy at a much lower computational cost than simulation.

We have demonstrated the framework on an example of a large scale many server system under

a time-varying load. We have shown how to obtain the arrival rates from real data and used

an available website access data in our example. An important advantage of the ODE analysis

techniques is the low computational cost that can be used to explore a large number of different

system configurations. The framework thus ultimately allows us to experiment with a large

number of system configurations and find one where a client SLA specification is met while server

running temperature is maintained at a desired level and the total energy consumption of the

system is minimised.

All of the numerical results in this chapter were produced using an implementation of the

techniques in an extension to the GPA tool, described in Chapter 8.

6. HYBRID PCTMCS 128

100
200

300
400

100

200

0

0.5

1

nS

nA

Pr
ob

ab
ili

ty

(a) P(Tf ≤ 0.05 | ta = 8)

100
200

300
400

100

200

0

0.5

1

nS

nA

Pr
ob

ab
ili

ty

(b) P(Tf ≤ 0.05 | ta = 20)

100 200 300 400

50

100

150

200

nS

n
A

ta = 8
ta = 12
ta = 16
ta = 20

Intersection

(c) Feasible regions for the SLA at dif-
ferent request arrival times

Figure 6.18: Request processing time probabilities in a large number of configurations of the
multiserver example. Figure (a) shows the probabilities for requests arriving at time 8 and fig-
ure (b) at time 20. The shaded surface is the feasible region where the probability is greater than the
one given by the SLA. Figure (c) shows the feasibility regions for all 4 request arrival times and their
intersection.

100
200

300
400

100

200

0

5,000

nS

nA

En
er

gy
C

on
su

m
pt

io
n

(a) Mean energy

100
200

300
400

100

200

0

50

100

nS

nA

Er
ro

r

(b) Error

Figure 6.19: Daily power consumption for different configurations of the multiserver system.

129

Chapter 7

High-level specification of transactions

Key contributions

GPEPA with channels for transaction layer over GPEPA 7.2 [10]

Large scale computing cluster case study 7.4 [10]

7.1 Introduction

In previous chapters of this thesis, we presented PCTMC models of systems consisting of a large

number of interacting agents, where populations represent the number of agents in different

states. This is a natural abstraction and allows intuitive descriptions of systems from various

domains. One drawback of this approach is that all the interactions among a particular set of

agents can last only for the duration of a single system transition. For example GPEPA models

do not maintain a persistent session information between agents from different groups. In the

client–server model from Section 3.2.3, a client requests data from a server in two stages. In

the presented version of this model, there is no guarantee that the server responding to the

client request is the same as the one providing the data. In various applications, this is a crucial

feature of the modelled system - the agents behave according to an agreed protocol enter a longer

lasting transaction, throughout which they interact exclusively with each other. For example, in

virtualised systems, each server is capable of running a number of virtual machines (VMs). This

can be captured by a transaction keeping track of the server resources and the states of the VMs

allocated to the server. In wireless sensor networks, there can be a long-range communication

between pairs of agents in different locations. In chemistry, compounds can be thought of as

transactions between the individual molecules which are able to jointly take part in further

reactions.

In this chapter, we describe how to extend our framework to capture such transactional interaction

pattern in a concise way. We use the client–server model as a simple example. Instead of

representing the client and server agents individually, we can include a new auxiliary population

which tracks the number of pairs of clients and servers in the “(Client_wait ,Server_get)” ongoing

transaction. This model can be still represented as a PCTMC. It turns out that in this case, the

resulting PCTMC stays the same – the populations Cw (t) and Sg(t) are identical and only get

replaced by the new population, say Cw Sg(t). However, the situation changes if we introduce a

new class of client agents. Suppose that instead of one type of clients, there are two different

classes, Client1 and Client2, with identical state transitions as in Client , only with each state

with a subscript 1 or 2 respectively. Additionally, the Client2 class clients have a ten times slower

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 130

data transition rate. The system equation becomes:

Clients{Client1[n1] ‖ Client2[n2]} BC
{request,data}

Servers{Server [nS]}

We compare two different interpretations of the model – a standard GPEPA interpretation where

the request and data stages are independent and any server can serve data to any client and a

transactional interpretation where the model keeps track of the number of pairs of a server agent

in the Server_get state and one of the two client agent in the state Client_wait1 or Client_wait2

respectively.

In either case, we can apply the ODE analysis to the underlying PCTMC and access performance

metrics such as passage times and rewards mentioned in previous chapters. The analysis reveals

significant quantitative differences between the two models. Figure 7.1 shows the CDF of

the passage time of a single client from Client1 class performing its first think action. In the

transaction version of the model, the probabilities are lower throughout the whole time. This is

caused by the slower clients blocking the servers after the request stage, where in the original

model the servers in the Server_get stage would be equally available to both client classes.

0 10 20 30
0

0.2

0.4

0.6

0.8

Time, t

Pr
ob

ab
ili

ty

GPEPA
Transactions

Figure 7.1: Client passage-time CDF in the two-class client–server model; comparison between the
GPEPA version and a PCTMC model with transactions.

The main contributions of this chapter are the following:

GPEPAc – GPEPA with channels We introduce a lightweight extension to the GPEPA stochastic

process algebra that allows us to elegantly express transaction cooperation which is ortho-

gonal to the group structure of the model. In general, it is possible to represent transactions

via auxiliary populations in the PCTMC model. However, often there can be a large number

of different combinations of agents forming a transaction and manual specification of such

models can become cumbersome.

Computing cluster case study We present a larger case study where we use the channel ex-

tension of GPEPA to model a large-scale computing cluster where servers are capable of

concurrently running a number of jobs. We allow a number of server and job classes each

with different performance characteristics. We look at the performance–energy trade-off

from Section 5.5, considering multiple SLAs corresponding to each job class.

Our approach is in contrast to the approach by Hayden and Bradley [102], who present Shared
Transaction Markov Chains, a low level framework that can be potentially adapted to different

formalisms.

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 131

7.2 GPEPAc – GPEPA with channels

In this section, we introduce an extension of the GPEPA process algebra that allows a flexible

specification of transactional cooperation. We add a lightweight syntactical layer to GPEPA

and re-use the original GPEPA semantics when defining the underlying PCTMC. We extend the

description of PEPA agents with sockets. Two sockets belonging to multiple agents, originating

in different groups in the model, can be joined by a channel. The channels are created after

standard GPEPA action interaction, and are building blocks of transactions. Agents can perform

actions on sockets, which restrict the cooperation to only the agents sharing the same channel.

Each agent can maintain a number of sockets joined to a number of channels. Each transaction

can be therefore represented as a connected graph of GPEPA group–agent pairs, joined via named

sockets. The resulting PCTMC model will include a population for each such graph. The Grouped

Model syntax of GPEPA is extended with annotations which specify the transaction each agent

belongs to.

7.2.1 Extended syntax of PEPA agents

The extension of PEPA agent syntax consists of two parts – agents with sockets and actions with
socket instructions. Each agent is allowed to maintain a set of sockets {s1, . . . , sk} from a set of

socket labels S:

P {s1,...,sk} si ∈ S

We usually omit the braces above and write a set of sockets in uppercase letters, PS for the

agent above. For example, the client agent could maintain a connection to the server serving

the requests via a socket s, Client_waits, and a server could remember the respective client with

a socket c, Server_getc. In a different model, a server could keep track of two served clients,

Server_getc1,c2 .

Agents can execute actions annotated with socket instructions in order to establish new persistent

connections or to restrict the communication onto a connection maintained by the socket. We

allow four instructions: send on, receive on, init, forward and get. Each can annotate an action

a with a socket s (or a list of sockets in case of the send on instruction), e.g. (a send on s).P .

In the definition of an agent PS , S = {s1, . . . , sk} we allow the following action prefixes (the

description of their behaviour is only informal and is defined in GPEPAc semantics in Section 7.3):

The init instruction An action a can be annotated with init z, where z is a new socket not present

in S. Executing the action results in creation of a new socket and a corresponding channel

which is sent to agents cooperating on the action a. The other agents receive the new

channel via a corresponding get instruction, see below.

(a init z).QU z /∈ S,U ⊆ S ∪ {z}

The forward instruction An action a can be annotated with forward s, s ∈ S. This works similarly

to the init instruction above, but instead of creating a new socket–channel pair, an existing

channel is forwarded to the receiving agents within a cooperation.

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 132

(a forward s).QU s ∈ S,U ⊆ S

The get instruction An action a can be annotated with get z, where z is either an existing or a

new socket. The agent accepts a new channel after a cooperation on a and binds it to the

socket z.

(a get z).QU U ⊆ S ∪ {z}

The send on and receive on instructions An action a can be annotated with send onS′ where

S′ ⊆ S are existing sockets or with receive on s where s ∈ S is an existing socket. Cooper-

ation on such action a is then restricted to one agent with the send on instruction and a

number of agents with receive on instruction, such that they share the channels attached

to sockets in S′. We assume that the actions with receive on and send on instructions are

distinct from all the remaining actions in the system.

(a send onS).QU S′ ⊆ S,U ⊆ S
(a receive on s).QU s ∈ S,U ⊆ S

For example, a server can establish a new connection with a specific client after the request action

with the init instruction and the corresponding client accepts the connection by creating a new

socket with the get instruction:

Server = (request init c, rrequest).Server_getc

Client = (request get s, rrequest).Client_waits

In this way, it is possible to restrict the cooperation on the subsequent data action to only the

pairs of client and server agents whose sockets are joined by the same channel (this is defined in

the semantics below). We can re-define the Client_wait and Server_get states:

Client_waits = (data receive on s, rdata).Client_think

Server_getc = (data send on c, rdata).Server

To demonstrate all the features of GPEPAc, we use a modified version of the client–server

model where each server can serve two clients simultaneously. The persistent session with

each client is kept via a corresponding socket combination. To demonstrate a communication

over multiple sockets, a server can break when serving two clients (e.g. by running out of

memory), notifying both of them at the same time. The server agent definition is:

Server = (request init c1, rrequest).Server_getc1 + (break , rbreak).Server_broken

Server_getc1 = (request init c2, rrequest).Server_getc1,c2 + (data send on c1, rdata).Server

Server_getc2 = (request init c1, rrequest).Server_getc1,c2 + (data send on c2, rdata).Server

Server_getc1,c2 = (data send on c1, rdata,2).Server_getc2

+ (data send on c2, rdata,2).Server_getc1

+ (break send on c1, c2, rbreak).Server_broken

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 133

Server_broken = (reset , rreset).Server

The corresponding client agent definition is (i ∈ {1, 2}):

Client i = (request get s, rrequest).Client_wait
s
i

Client_wait
s
i = (data receive on s, rdata).Client_think i + (break receive on s, rbreak).Client i

Client_think i = (think , rthink).Client i

We will interleave the definitions below with demonstrations on this example and will

highlight the corresponding passages in the same style as this text.

7.2.2 Extended syntax of GPEPA models

In addition to the grouped model structure of GPEPA, models in GPEPAc maintain information

about the ongoing transactions.

Channels and transactions

The building blocks of transactions are channels. Each agent with sockets can be given a channel
assignment Γ: S → Ch, where Ch is the set of all channels. We write

PS(Γ).

We use lowercase letters of the Greek alphabet to denote channels. For example, a client agent

can be given an assignment Γ = {s 7→ α} where the socket s is attached to a channel α.

We consider multisets of group–agents pairs with channel assignments, written as

τ =
r
G1 : P

S1
1 (Γ1), . . . , Gl : P

Sl
l (Γl)

z

where Gi are group labels from the GPEPAc model (see below).

Each such multiset can be represented as a bi-partite graph where agent nodes are joined via

named sockets to channels. We call such a multiset a transaction if the corresponding graph is

connected.

In the client–server model, a possible transaction would be a server connected to a client

from the first class on socket c1:

τ1
1 =

q
Client_wait

s
1({s 7→ α}),Server_getc1({c1 7→ α})

y

We consider transactions modulo channel names unless stated otherwise. For example, the

transaction τ1
1 above would stay identical if we replace the channel α with a channel β.

We allow standard multiset operators such as union and difference. We also use substitution.

Take a transaction τ and a set of group agent pairs Gi : P
Si
i (Γi) where each agent changes state

to QZii (Γ′i). Then τ after the corresponding substitution is:

τ [G1 : P
S1
1 (Γ1) 7→ Q

Z1
1 (Γ′1), . . . , Gl : P

Sl
l (Γl) 7→ Q

Zl
l (Γ′l)]

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 134

:= τ \ JG1 : P
S1
1 (Γ1), . . . , Gl : P

Sl
l (Γl)K ∪ JG1 : Q

Z1
1 (Γ′1), . . . , Gl : Q

Zl
l (Γ′l)K

The union of two transactions or a substitution on a single transaction does not necessarily result

in a multiset that is a transaction. We define a function Split(τ) which splits a multiset τ of

agents with channel assignments into a multiset of transactions which correspond to the maximal

connected components in τ .

As defined in the semantics of GPEPAc below, the transaction τ1
1 can split after a data

transition, resulting in two transactions with single client and server agents respectively:

Split
(
τ1

1 [Clients : Client_wait
s
1({s 7→ α}) 7→ Client_think1,

Servers : Server_getc1({c1 7→ α}) 7→ Server]) = JJClient_think1K, JServerKK

Models with transactions

Models in GPEPAc consist of the same group structure as in GPEPA, but additionally contain

transaction annotations of agents in the following syntax:

G := G BC
L
G | G ‖ G | Y{τ 3 P (Γ) ‖ · · · ‖ τ 3 P (Γ)}

The notation τ 3 P (Γ) corresponds to an agent P with an assignment Γ that is part of a

transaction τ . If τ is a transaction consisting of a single agent, we normally omit the annotation.

Usually, the initial state of the model (given by the system equation), does not contain any

ongoing transaction (of more than one agent). Therefore, a user specifying a GPEPAc model does

not have to be concerned with explicitly writing out any transactions. We write τ ∈M if there is

a group G in a model M containing an agent τ 3 P .

The GPEPAc system equation of the client–server model is

Clients{Client1[n1] ‖ Client2[n2]} BC
request

Servers{Server [nS]}

After one request of a client to a server, the model changes to

Clients{Client1[n1 − 1] ‖ Client2[n2] ‖ τ1
1 3 Client_wait

s
1({s 7→ α})}

BC
request

Servers{Server [nS − 1] ‖ τ1
1 3 Server_getc1({c1 7→ α})}

We define this behaviour formally in the PCTMC semantics of GPEPAc below.

7.3 PCTMC semantics of GPEPAc

In PCTMCs derived from GPEPA models, each population corresponds to a group–agent pair.

In GPEPAc, populations correspond to ongoing transactions between a multiset of group–agent

pairs. In GPEPA, the global set of all group–agent pairs can be generated by independently

considering all derivative states for each agent. In GPEPAc, this is no longer possible, as new

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 135

combinations of agents in transactions can arise after transitions in the system. Similarly, in

GPEPA the possible transition classes can be directly enumerated from the possible transitions of

individual agents. In GPEPAc, the complete set of transition classes can be derived only once all

the possible transactions are known.

We define an iterative algorithm which simultaneously computes the set of all transactions

and transition classes in a GPEPAc model. There are two types of transition classes in GPEPAc –

internal transitions corresponding to communication on channels inside a transaction and external
transitions corresponding to communication between agents from different transactions. This

agent communication is identical to the action cooperation in GPEPA. Therefore the semantics

of external transition classes is induced by transition classes in an auxiliary GPEPA model. The

semantics of internal transition classes is similar to transitions of single agents and is defined

below.

7.3.1 Algorithm to compute the set of all transactions and transition classes

The algorithm explores the possible populations and transition classes in a GPEPAc model in an

iterative fashion. Similar to simulation, at each step the algorithm enumerates all the possible

transition classes for current transactions in the model. The rates of the transitions are ignored

and the algorithm selects a transition class which introduces a new transaction into the model.

Additionally, the population sizes are considered to be large enough to always allow each possible

transition class (we will denote this by writing ∞ for the number of agent replications in the

system equation). The algorithm terminates when all possible transition classes only change

populations of existing transactions in the system.

In each iteration, the algorithm collects all the possible internal and external transition classes.

The set E stores information about all the possible external transition classes. It consists of triples

({
G : τi,ΓiP

Si
i

(ai, ri)−−−−→ τi,ΓQ
Zi
i

}l

i=1

, In,Out

)

The first element is a set of agent transitions in an auxiliary GPEPA model that we define shortly.

The second and third elements are incoming and outgoing transactions that will define the change

vector of the resulting transition class. After the last iteration, the algorithm can use each triple

to derive a complete transition class, including the rate function.

The set I stores all internal transition classes. Their rates do not depend on the rest of the model

and so they can be directly stored as (JτinK,Out , r) where JτinK is the only incoming transaction

and Out is a multiset of outgoing transactions and r ∈ R+ is a rate constant. This represents a

transition class

τin →
∑

τ∈Out

τ at Xτin · r

The algorithm starts with a GPEPAc system equation M . As a first step, each agent is replaced

with infinitely many copies of itself. Let this model be M (0). At each step k the algorithm will

maintain a current version of the model, M (k) and the sets E and I.

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 136

At each step, the algorithm examines all the possible internal and external transitions classes

in M (k) and stores information about them in the sets E and I. Each transition class results

in a change of a number of transactions, reflected in a potential candidate for the model

M (k+1). Because of the “infinite” populations in M (k), this new model contains all transactions

encountered so far. If it additionally contains a new unseen transaction, the algorithm continues

with the step k + 1. Otherwise this process is repeated for the remaining transition classes. If

none introduce a new transaction, the algorithm terminates.

A high-level overview of the algorithm can be seen in Algorithm 1. The overall complexity of the

algorithm depends on the total number of different transactions in the model. Certain model

structures could potentially give rise to infinitely many distinct transactions. For example if an

agent A in group G could establish a connection with up to two different agents B from group H

and each agent B could establish a connection with up to two different agents A, there could be

transactions of the form JG : A(Γ1), H : B(Γ2), . . . ,H : B(Γk−1), G : A(Γk)K of an arbitrary size.

In this chapter, we assume that the number of different transactions is finite and so that the

algorithm terminates.

Algorithm 1: Computing all possible transactions in a GPEPAc model
input :M – a GPEPAc model
output :M (∞) – a GPEPAc model

I – set of internal transition classes
E – set of specifications of external transition classes

1 begin
2 Set M (0) = M , replace each population by∞
3 while possible to find M (k+1) 6= M (k) do
4 Generate GPEPA model M (k)

GPEPA C External transitions 7.3.1.1

5 foreach transition class c of M (k)
GPEPA do

6 Translate the effect of c on M (k):
7 join and split transactions according to the channel semantics
8 resulting model M (k+1), replace each population by∞
9 Collect the sets of incoming and outgoing transactions in M (k), In, Out , store

(c, In,Out) in E
10 if M (k+1) 6= M (k) then
11 k ← k + 1, continue at 4

12 foreach transaction τ in M (k) C Internal transitions 7.3.1.2
13 do
14 foreach possible socket communication c in τ do
15 Translate the effect of c on M (k):
16 In = JτK, Out is Split(τ after c)
17 resulting model M (k+1), replace each population by∞
18 Store (In,Out , τ ·min(ri)) in I
19 if M (k+1) 6= M (k) then
20 k ← k + 1, continue at 4

21 Set M (∞) = M (k)

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 137

7.3.1.1 External transitions

To enumerate the possible external transition classes, we define an auxiliary GPEPA model

M
(k)
GPEPA as follows: replace each τ 3 PS(Γ) in a group G with an agent τ,ΓPS that is defined ex-

actly as PS , but with each derivative state also prefixed with “τ,Γ”. Ignore any socket annotations

and actions with send on and receive on instructions. The PCTMC semantics of M (k)
GPEPA gives

transition classes consisting of transitions of individual agents and a rate function defined on

vectors of populations of group-agent pairs in M (k)
GPEPA:

({
G : τi,ΓiP

Si
i

(ai, ri)−−−−→ τi,ΓiQ
Zi
i

}l

i=1︸ ︷︷ ︸
T

, r(X)

)
(7.1)

Each of these transition classes defines an external transition class in GPEPAc. The effect of this

transition class additionally takes into account the socket instructions to produce the multiset of

outgoing transactions. The multiset of incoming transactions is given by

In = JτiKli=1

There are two possible cases for the multiset of outgoing transactions, which depend on the

interaction structure.

GPEPA interactions not affecting sockets All the socket sets Si and Zi are empty. This implies

that all the involved transactions contain only a single agent. In the GPEPAc modelM (k), the

corresponding transition class simply changes transactions τi = JGi : PiK into τ ′i = JGi : QiK.
Therefore set

Out = JJGi : QiKKli=1

We extend E with the triple (if E does not contain it already):

(
T, JGi : PiKli=1, JGi : QiKli=1

)

The resulting candidate for the modelM (k+1) after such transition then additionally contains

agents Qi in group Gi for each 1 ≤ i ≤ l. We denote this as

M (k+1) = M (k) + {Gi : τ ′i 3 Qi[∞]}li=1

If M (k+1) is different from M (k), we accept it and continue at the next step.

In the client–server model, we can have

M (0) = Clients{Client1[∞] ‖ Client2[∞]} BC
request

Servers{Server [∞]}

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 138

(as mentioned before, we leave out the transaction annotations for single agent

transactions). One possible transition class corresponds to a server failure, given by

the following tuple

({
Servers : Server

(break , rbreak)−−−−−−−−→ Server_broken

}
,S · rbreak

)

The incoming and outgoing transaction multisets are:

In = JJServerKK

Out = JJServer_brokenKK

Applying this transition to M (0) we get

M (1) = Clients{Client1[∞] ‖ Client2[∞]}
BC

request
Servers{Server [∞] ‖ Server_broken[∞]}.

Applying the same transition to M (1) in the next step would result in the same model

and therefore a different transition class has to be found in order to proceed to step 2.

Transitions affecting socket connections One of the socket list Si or Zi is non-empty. This

means that this transition class potentially results in a creation of new transactions – either

by splitting some of the transactions in In due to agents closing sockets or by merging some

of the transactions via the init–get interaction. There are three possibilities for the type of

action annotations in ai:

• All ai = a for 1 ≤ i ≤ l and a an action label. No new sockets are created in this

transition – either the incoming transactions from In undergo a change in the state

of the cooperating agent or undergo a structural change in their channel graph by

closing sockets, possibly resulting in transactions being split into a number of smaller

transactions. The resulting outgoing transactions are

Out =
l⋃

i=1

Split
(
τi

[
Gi : P

Si
i (Γi) 7→ Gi : Q

Zi
i (Γ′i)

])

where Γ′i is a restriction of Γi onto the socket list Zi ⊆ Si.
• One ai, say a1 is of the form a initu1 and the remaining aj of the form a getuj for

2 ≤ j ≤ l. In this case new sockets are created and are joined by a newly created

channel. Let α be a new channel not present in any of the incoming transactions τi.

The outgoing transactions are

Out = Split

l⋃

i=1

τi

[
Gi : P

Si
i (Γi) 7→ Q

Zi
i (Γ′i)

]

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 139

where

Γ′i(v) =

Γi(v) for v ∈ Zi, v 6= ui

α for v = ui

• One ai, say a1 is of the form a forwardu1 and the rest of the form a getuj for 2 ≤ j ≤ 1.

This is similar to the case above, with α = Γ1(u1) instead of a new channel.

In both cases, we extend E with the corresponding triple (T, In,Out). The candidate for

M (k+1) contains the agents which actively changed state in the transition class. Additionally,

the remaining agents from each transaction in In change their transaction annotations to a

corresponding transaction in Out . The resulting model is:

M (k) + {Gi : τ 3 Q(Γ) | G : Q(Γ) ∈ τ, τ ∈ Out} (7.2)

In the client–server model, an interaction between a client and a server is represented

by the transition class in M (1)
GPEPA

({
Clients : Client1

(request get s, rrequest)−−−−−−−−−−−−−→ Client_wait
s
1,

Servers : Server
(request init s, rrequest)−−−−−−−−−−−−−→ Server_getc1

}
,

C 1

C 1 + C 2
min(S ,C 1 + C 2) · rrequest

)

The incoming and outgoing transactions are

In = JJClients : Client1K, JServers : ServerKK

Out =
r
τ1

1

z

and the next model

M (2) = Clients{Client1[∞] ‖ Client2[∞] ‖ τ1
1 3 Client_wait

s
1({s 7→ α})[∞]}

BC
request

Servers{Server [∞] ‖ τ1
1 3 Server_getc1({c1 7→ α})[∞]

‖ Server_broken[∞]}

In M (2), a server can accept another client, say from the class Client1. This is

determined by a transition class in M (2)
GPEPA:

({
Clients : Client1

(request get s, rrequest)−−−−−−−−−−−−−→ Client_wait
c
1,

Servers : τ
1
1 ,ΓServer_getc1

(request init c2, rrequest)−−−−−−−−−−−−−−→ Server_getc1,c2
}
,

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 140

C 1

C 1 + C 2

τ11 ,ΓSg
c1

S + τ11 ,ΓSg
c1

min(S + τ11 ,ΓSg
c1 ,C 1 + C 2) · rrequest

)

The incoming multiset of transaction is

In =
r
τ1

1 , JClients : Client1K
z
.

The multiset of outgoing transactions consists of a single transaction

τ11
12 =

q
Clients : Client_wait

s
1({s 7→ α}),Clients : Client_wait

s
1({s 7→ β}),

Servers : Server_getc1,c2({c1 7→ α, c2 7→ β})K

The resulting model M (3) after the transition is

M (3) = Clients{Client1[∞] ‖ Client2[∞] ‖ τ1
1 3 Client_wait

s
1({s 7→ α})[∞]

‖ τ11
12 3 Client_wait

s
1({s 7→ α})[∞] ‖ τ11

12 3 Client_wait
s
1({s 7→ β})[∞]}

BC
request

Servers{Server [∞] ‖ τ1
1 3 Server_getc1({c1 7→ α})[∞] ‖ Server_broken[∞]

‖ τ11
12 3 Server_getc1,c2({c1 7→ α, c2 7→ β})[∞]}

7.3.1.2 Internal transitions

Each transaction in a GPEPAc model allows its agents to communicate on the established channel

connections. Each such communication consists of one agent executing an action with a send on

instruction and a number of agents executing the same action with receive on instructions. Each

receive on instruction has to act on a socket that shares a channel with the sending agent.

At each step, consider every transaction τ in M (k). Take every agent G : PS(Γ) in τ that is capable

of executing an action a with the instruction send onu1, . . . , ul, that is there exists a transition

PS
(a send onu1,...,ul, r)−−−−−−−−−−−−−→ QZ

Find all agents capable of executing the same action on one of the channels connected to the

sockets uj . That is agents Gi : P
Si
i (Γi) in τ capable of executing the action a receive on vi,

1 ≤ i ≤ k,

P
Si
i

(a receive on vi, ri)−−−−−−−−−−−→ Q
Zi
i

such that Γi(vi) ∈ {Γ(uj) | 1 ≤ j ≤ l}. We require that there is at least one such agent, otherwise

this transition is not allowed. We could define different versions of internal transitions which

impose different restrictions on the interaction, for example blocking the transition until there is

a corresponding agent for each channel attached to ui.

All the agents P and Pi, 1 ≤ i ≤ k, evolve simultaneously and so the resulting outgoing

transactions can be obtained by substituting the agents for the right-hand sides of the above

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 141

transitions:

Out = Split
(
τ
[
G : PS(Γ) 7→ QZ(Γ′), Gi : P

Si
i (Γi) 7→ Q

Zi
i (Γ′i), 1 ≤ i ≤ k

])

where Γ′ and Γ′i are restrictions of Γ and Γi to Z and Zi respectively. The incoming multiset of

transactions consists only of the transaction τ , In = JτK. We define the rate of this transition

as the minimum of all the involved rates, rmin = min(r, r1, . . . , rk). We can include the triple

(In,Out , rmin) in the set I. Similarly to the case of external transitions, the candidate for the

next model contains all the newly transformed agents, Equation 7.2. If this model contains new

transactions, the algorithm continues at the next step k + 1.

For example, model M (3) contains the transaction τ11
12 . The server agent from this trans-

action, Servers : Server_getc1,c2({c1 7→ α, c2 7→ β}) is capable of sending data to say the

client listening to the channel α on socket c1,

Server_getc1,c2
(data send on c1, rdata)−−−−−−−−−−−−−→ Server_getc2

The client listening to the channel α is capable of executing the corresponding receiving

action

Client_wait
s
1

(data receive on s, rdata,1)−−−−−−−−−−−−−−−→ Client_think1

and so the resulting multiset of outgoing transactions is

Out =
r
τ1

2 , JClients : Client_think1K
z

where τ1
2 is a transaction between a server in the Server_get state with a client of the first

class connected to the socket c2. The resulting model M (4) is

M (4) = Clients{Client1[∞] ‖ Client2[∞] ‖ τ1
1 3 Client_wait

s
1({s 7→ α})[∞]

‖ τ11
12 3 Client_wait

s
1({s 7→ α})[∞] ‖ τ11

12 3 Client_wait
s
1({s 7→ β})[∞]

‖ τ1
2 3 Client_wait

s
1({s 7→ β})[∞] ‖ Client_think1[∞]}

BC
request

Servers{Server [∞] ‖ τ1
1 3 Server_getc1({c1 7→ α})[∞] ‖ Server_broken[∞]

‖ τ11
12 3 Server_getc1,c2({c1 7→ α, c2 7→ β})[∞]

‖ τ1
2 3 Server_getc2({c2 7→ β})[∞]}

Another possible internal transition in the transaction τ11
12 corresponds to the break action

announced by the server to both clients. We have

Server_getc1,c2
(break send on c1,c2, rbreak)−−−−−−−−−−−−−−−−→ Server_broken

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 142

and

Client_wait
s
1

(break receive on s, rbreak)−−−−−−−−−−−−−−−→ Client1

The multiset of outgoing transactions now contains two copies of the single client agent and

a single broken server:

Out = J2× JClients : Client1K, JServers : Server_brokenKK .

The model M (5) is obtained by adding the agent Server_broken to the group Servers in

M (4).

7.3.2 Computing the final PCTMC

We use the previous algorithm to obtain the final PCTMC of a GPEPAc model M . Algorithm 2

gives an overview. We show how to derive the population vector X(t), set of transition classes C
and the initial populations X0.

Algorithm 2: Generating a PCTMC from a GPEPAc model
input :M – a GPEPAc model
output : PCTMC X(t), C,X0 corresponding to M

1 begin
2 Use Algorithm 1 to compute M (∞), I, E from M .
3 Populations labels correspond to transactions in M (∞)

4 Set the initial populations as X0,τ = #τ (M) for τ ∈M (∞)

5 foreach transition specification (JτinK,Out , r) in I C Internal transitions
6 do
7 Add the transition class below to C:

τin →
∑

τ∈Out τ at Xτin · r
8 Generate M (∞)

GPEPA and its PCTMC XGPEPA(t), CGPEPA,X0,T C External transitions
9 foreach transition specification (T, In,Out) in E do

10 Find a transition class c in CGPEPA corresponding to T
11 Define r′c(X) from rc(XGPEPA) by replacing elements of XGPEPA indexed by τ,ΓPS

with elements of X indexed by τ .
12 Add the transition class below to C:∑

τ∈In τ →
∑

τ∈Out τ at r′c(X)

Populations

The output from Algorithm 1 contains a model M (∞) which enumerates all the possible transac-

tions in M . Let T be the set of all such transactions. The population vector is X(t) ∈ Z|T|+ . We

will index the individual populations in this vector with the corresponding transactions.

Transition classes

Internal transition classes do not depend on the rest of the model. We can directly use the triples

from I to construct the corresponding transition classes in C. The difference vectors are given by

the single incoming transaction τin and a multiset of outgoing transactions Out in each triple in

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 143

(JτinK,Out , r) ∈ I. Each instance of τin can perform the internal communication independently at

a rate r and so the resulting transition class is

τin →
∑

τ∈In

τ at Xτin · r

External transition classes are a result of agents communicating between different transactions.

Such communication can be defined by the auxiliary GPEPA model used in Algorithm 1. The

same model can be used to define the rates in the external transition classes. Define a model

M
(∞)
GPEPA as in Section 7.3.1.1 and derive its PCTMC (XGPEPA(t), CGPEPA,XT,0) using the GPEPA

semantics. Each triple (U, In,Out) ∈ E clearly corresponds to a transition class in the GPEPA

model, c ∈ CGPEPA. Because the socket instructions in the GPEPAc model only determine what

happens after each transition, the rate function rc(XGPEPA) can be used as the rate of the GPEPAc

transition class. Construct r′c(X) by replacing all occurrences of XGPEPA elements indexed with
τ,ΓPS by respective elements Xτ of X. The transition class corresponding to the triple thus

becomes

∑

τ∈In

τ →
∑

τ∈Out

τ at r′c(X)

Initial populations

The initial populations X0 are simply obtained as the number of occurrences of each transaction

in the model M . Define a counting function #G:PS(Γ)(τ) as the number of occurrences of the

agent G : PS(Γ) in a transaction τ . Similarly, define #G:τ3PS(Γ)(M) as the number of occurrences

of the agent τ 3 PS(Γ) in a group G in a model M . The count of a transaction τ in a model M is

then defined as

#τ (M) =
#G:τ3PS(Γ)(M)

#G:PS(Γ)(τ)

which has to be equal for all agents G : PS(Γ) ∈ τ . The initial populations are then set as

X0,τ = #τ (M) τ ∈M (∞).

Algorithm 1 eventually obtains the following transactions in the client–server model:

τ jk = JClients : Client_wait
s
j(s 7→ α),Servers : Server_getck(ck 7→ α)K

τ ij12 = JClients : Client_wait
s
i (s 7→ α1),Clients : Client_wait

s
j(s 7→ α2),

Servers : Server_getc1,c2(c1 7→ α1, c2 7→ α2)K

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 144

where i, j, k ∈ {1, 2} and single agent transactions (with abbreviations shown under each

transaction)

JClients : Client iK︸ ︷︷ ︸
C i

, JClients : Client_think iK︸ ︷︷ ︸
Ct i

,

JServers : ServerK︸ ︷︷ ︸
S

, JServers : Server_brokenK︸ ︷︷ ︸
Sb

The complete model M (∞) contains all the agents in these transactions. The resulting

PCTMC consists of 14 populations, one for each transaction. The possible internal transition

classes are

τ ik → S + Ct i at τ ik · rdata,i

τ ij12 → τ i1 + Ct j at τ ij12 · rdata,j

τ ij12 → τ j2 + Ct i at τ ij12 · rdata,i

τ ij12 → Sb + C i + C j at τ ij12 · rbreak

The external transition classes are

S + C i → τ i1 at
S

rS (X)
· C i

C 1 + C 2
·min(rS (X),C 1 + C 2) · rrequest

τ i1 + C j → τ ij12 at
τ i1

rS (X)
· C j

C 1 + C 2
·min(rS (X),C 1 + C 2) · rrequest

τ i2 + C j → τ ji12 at
τ i2

rS (X)
· C j

C 1 + C 2
·min(rS (X),C 1 + C 2) · rrequest

Ct i → Client i at Ct i · rthink

S → Sb at S · rbreak

Sb → S at Sb · rreset

where i, j ∈ {1, 2} and

rS (X) = S +
∑

i,k∈{1,2}
τ ik

The initial populations are zero except for X0,C i = ni, X0,S = nS .

7.4 Case study: A large scale computing cluster

In this section, we demonstrate GPEPAc on a model of a computing cluster with nodes capable

of concurrently executing a number of jobs. Both job and node instances come from different

classes. A scheduling policy determines the allocation of jobs to nodes.

We show how to apply the GPEPAc semantics to produce a PCTMC representing the model. We

augment the PCTMC with a continuous variable capturing the total cluster energy consumption

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 145

to obtain a hPCTMC model (Chapter 6). We present a number of numerical examples obtained

by solving the hPCTMC model with the efficient ODE analysis from Section 6.3. We look at

the performance–energy trade-off from Section 5.5 and show how to find a combination of

scheduling policy and cluster configuration that simultaneously satisfies an SLA for each job class

and minimises the total energy consumption.

7.4.1 The model

A hypothetical computing cluster consists of a large number of nodes of different types, capable

of processing a large number of job requests from users with different priorities. The requests and

node allocations are handled by scheduler threads with various scheduling policies. Figure 7.2

shows an overview of the system.

Jobp1

Jobpi

Jobpn

Sch

Node
J
k1,c1

Node
J
kj ,cj

Node
J
km,cm

requestpi assignsj ,kj

Job
n
1

...
Job

n
k1

freek1+1

...
freen1

Figure 7.2: Overview of the cluster model.

The subscripts pi for jobs stand for different job priorities. The subscripts cj for nodes stand for

different node classes and the subscripts kj for the current number of jobs already assigned to the

nodes, as shown by the detail of the class c1 with k1 assigned jobs out of the total capacity n1.

Nodes

Nodes come from different classes, drawn from a set CNode , for example differing in their

processing speed or failure rates. Each node from a class c ∈ CNode is capable of simultaneously

serving n jobs, up to capacity(c) ∈ N, through a set of sockets Jn, one for each assigned job.

Each node can respond to processing requests from the allocated jobs on a channel linking to the

job, with rate rc,nproc depending on the current node occupancy n. Each node advertises an empty

processing slot and its current class c and occupation n (when n < capacity(c)) via the action

assignc,n. A new job can be assigned to the node via synchronisation on this action. The node

selects an available socket j
i

with the smallest index i. Jobs can be de-allocated from nodes via

the end action, with nodes closing the respective socket. Finally, a node can break, announcing

the failure on all its channels and switching to a state where it has to be repaired. The definition

of nodes in GPEPAc is:

Node0,c
def
= (assignc,0 get j

1
, rc,0assign).Node

j
1

1,c

Node
Jn
n,c

def
=
∑

j∈Jn
(proc receive on j, rc,nproc).Node

Jn
n,c +

∑

j∈Jn
(end receive on j,>).Node

Jn\{j}
n−1,c

+ (assignc,n get j
min

, rc,nassign).Node
Jn∪{jmin

}
n+1,c

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 146

+ (break send on Jn, r
c
break).Nodebroken,c 1 ≤ n < capacity(c)

Node
Jm
m,c

def
=
∑

j∈Jm
(proc receive on j, rc,mproc).Node

Jm
m,c +

∑

j∈Jm
(end receive on j,>).Node

Jm\j
m−1,c

+ (break send on Jm, r
c
break).Nodebroken,c m = capacity(c)

Nodebroken,c
def
= (reset , rcreset).Node0,c

where c ∈ CNode and Jn = {j
i1
, . . . , j

in
} ⊆ {j

1
, . . . , j

m
}, j

min
= j

min({1,...,m}\{i1,...,in}).

Jobs

The cluster processes jobs with multiple priorities from the set CJob . Each job requests a node

from the scheduler described below. The scheduler creates a new channel and sends a copy to

the requesting job. After selecting a suitable node, the scheduler forwards the channel, creating a

link between the job and the node. Each job from a priority class p runs through a sequence of

processing commands with length states(p) ∈ N, followed by a termination command end :

Jobp
def
= (requestp getn, rprequest).Job

n
1,p

Job
n
i,p

def
= (proc send onn,>).Job

n
i+1,p + (break receive onn,>).Jobp

Job
n
states(p),p

def
= (end send onn, rpend).Jobp

where p ∈ CJob , 1 ≤ i < states(p).

Schedulers

Schedulers provide an interface between unassigned jobs and nodes with empty slots. They

respond to client requests, aware of their priority through the requestp action, switching into the

state Schp. In each such state, schedulers try to assign the job to an available node according to a

scheduling policy: the node class c and current job occupancy n are determined via probabilistic

weighting of the rate parameters rc,nassign,p for synchronisation on the assignc,n actions. The formal

definition is:

Sch
def
=
∑

p

(requestp init j, rrequest).Sch
j
p

Sch
j
p

def
=

∑

c∈CNode

capacity(c)−1∑

n=0

(assignc,n forward j, rc,nassign,p).Sch

where p ∈ CJob .

Model

The final model consists of np copies of p priority jobs, nc copies of nodes from each class c and

nS copies of the scheduler:

Jobs{Jobp1 [np1] ‖ · · · ‖ Jobpn [npn]}
BC
L1(

Schedulers{Sch[nS]} BC
L2

Nodes{Node0,c1 [nc1] ‖ · · · ‖ Node0,cm [ncm]}
)

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 147

where CNode = {c1, . . . , cm}, CJob = {p1, . . . , pn} and the cooperation sets are

L1 = {requestp1 , . . . , requestpn}
L2 = {assignc,n | c ∈ CNode , 0 ≤ n < capacity(c)}

7.4.2 Resulting PCTMC

We follow the definition of PCTMC semantics of GPEPAc from Section 7.3 and describe the

underlying PCTMC of the cluster model. We stress that we show the full PCTMC for illustration

purposes only – in practical cases it is automatically generated from the GPEPAc description and

the complexity is hidden from the modeller.

Possible transactions

There are four types of agents without a socket – idle schedulers, unassigned jobs, nodes and

broken nodes:

JSchK︸ ︷︷ ︸
S

, JJobpK︸ ︷︷ ︸
Jp

p ∈ CJob

JNode0,cK︸ ︷︷ ︸
N 0,c

JNodebroken,cK︸ ︷︷ ︸
N b,c

c ∈ CNode

For brevity, we will use the abbreviations shown under each transaction.

Channels are initialised by the scheduler agents. Each scheduler gets linked to a single job,

resulting in transactions of the form

JJob
n
1,p({n 7→ α})Sch

j
p({j 7→ α})K

︸ ︷︷ ︸
JJpSK

p ∈ CJob

There are |CJob | such transactions.

A scheduled job can be assigned to a node. Each node can already be linked, by different channels,

to a number of jobs given by the nodes capacity. The jobs can be in any of their possible states.

Therefore all the remaining transactions are of the form

JJob
n
k1,p1

({n 7→ α1}) . . . Job
n
kn,pn

({n 7→ αn})Node
Jn
n,c({jik 7→ αk}nk=1)K

︸ ︷︷ ︸
Ji1:Jk1,p1 ,...,ik:Jkn,pnNn,cK

c ∈ CNode

where n ≤ capacity(c), pi ∈ CJob and 1 ≤ ki ≤ states(pi) for i = 1, . . . , n. We can note that

the socket indexes i1, . . . , ik in the transaction form above do not affect the behaviour of the

transactions. At this stage, we perform an obvious aggregation and will only remember the total

number of occupied node sockets. We will write

JJk1,p1 , . . . , Jkn,pnNn,cK

for the transactions under such aggregation.

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 148

In total, there are

N1 =
∑

c∈CNode

capacity(c)∑

n=1

 ∑

c∈CJob

states(p)

n

such transactions. Therefore, the state space of the model is X(t) ∈ ZN+ where N = 1 + 2 ·
|CJob |+ 2 · |CNode |+N1.

Transition classes

There are three types of external transition classes in this model. Job request transitions are the

same as they would be in standard GPEPA, with a difference that the right-hand side consists of a

new transaction between a job and a scheduler instead of two independent agents. The first type

of transition classes is of the form

J p + S → JJ 1,pS pK (requestp)

for all p ∈ CJob .

In transitions corresponding to the assigns,n actions, a transaction of an unassigned job with a

scheduler JJ1,pSpK is synchronised with a transaction consisting of a node N n,c linked to n jobs

J jki ,pi , 1 ≤ i ≤ n. The job is assigned to the node by forwarding the channel after which the

scheduler is freed. This results in transition classes of the form

JJ 1,pS pK + JJ k1,p1 · · · J kn,pnN n,cK→ JJ 1,pJ k1,p1 · · · J kn,pnN n+1,cK + S (assignc,np,p,k)

for any p ∈ CJob , c ∈ CNode , n < capacity(c) and p1, . . . , pn ∈ CJob , ki < states(pi) for all

i = 1, . . . , n.

Finally, a broken node can be reset

N broken,c → N 0,c (resetc)

There are three types of internal transition classes. Processing events occur within all the possible

transactions of jobs assigned to nodes:

JJ k,p · · ·N n,cK→ JJ k+1,p · · ·N n,cK (procc,nk,p,k,p)

for p ∈ CJob and j < states(p), c ∈ CNode and the pair of “· · · ” standing for the other n− 1 jobs

J k1,p1 , . . . , J kn−1,pn−1 assigned to the node. Similarly for the end transitions:

JJ states(p),p · · ·N n,cK→ J· · ·N n−1,cK + J p (endn,cp,k,p)

In case of node failures, the node N n,c notifies all the n allocated jobs and the transaction breaks

into n jobs and a broken node:

JJ k1,p1 · · · J kn,pnN n,cK→ J p1 + · · ·+ Jpn + N broken,c (breakn,cp,k)

for pi ∈ CJob , ki ≤ states(pi) for i = 1, . . . , n and c ∈ CNode , n ≤ capacity(c).

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 149

Rates

Transition class rate functions are based on the original GPEPA semantics, derived via the auxiliary

model M (∞)
GPEPA in Algorithm 2. The rate functions for transition classes of the type (requestp) are

given directly by GPEPA semantics as the event is a result of cooperation between two standard

GPEPA agents:

rrequestp(X(t)) =
rprequest J p(t)

Rrequest ,Job(X(t))
·min

(
Rrequest ,Job(X(t)), rrequest · S (t)

)
(7.3)

where

Rrequest ,Job(X(t)) =
∑

q∈CJob

rqrequest · J q(t)

Transitions classes of type (assignc,np,p,k) involve a cooperation of a job–scheduler transaction and

a node–jobs transaction. If we apply GPEPA semantics treating the transactions as if they were

the PEPA agents executing the action, we get the rate:

rassignc,np,p,k
(X(t)) =

rc,nassign,p · JJ 1,pS pK(t)
Rc,nassign,Sch(X(t))

·
rc,nassign · JJ j1,p1 · · · J jn,pnN n,cK(t)

Rc,nassign,Node(X(t))

·min(Rc,nassign,Sch(X(t)), Rc,nassign,Node(X(t))) (7.4)

where

Rc,nassign,Sch(X(t)) =
∑

q∈CJob

rc,nassign,qJJ 1,qS qK(t)

Rc,nassign,Node(X(t)) =
∑

qi∈CJob ,ki<states(qi)

rc,nassignJJ k1,q1 · · · J kn,qnN n,cK(t)

These are the only two types of external transition classes resulting from agent cooperation. All

the other transitions are internal to transactions. Treating these in the same way as internal

transitions of standard PEPA agents, we get rates of the form r × J· · ·K(t). In case of transition

classes of the type (procc,nk,p,k,p), the rates are

rprocc,np,p,k
(X(t)) = rc,nproc · JJ j,p · · ·N n,cK(t) (7.5)

Similarly for (endn,cp,k,p) transition classes:

rendn,cp,p,k
(X(t)) = rend ,p · JJ s(p),p · · ·N n,sK(t) (7.6)

For (breakn,cp,k) transitions the rates are:

rbreakn,cp,k
(X(t)) = rs,nbreak · JJ j1,p1 · · · J jn,pnN n,sK(t) (7.7)

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 150

Table 7.1: Rates used in the cluster model.

p = L p = H

np 200 50

c = slow c = fast

rcrepair 0.5 0.5

nc 40 32

n = 0 n = 1 n = 2 n = 0 n = 1 n = 2

rc,nassign 1.0 1.0 – 2.0 2.0 –
rc,nproc – 0.8 0.5 – 4.0 3.0
rc,nfail 0.1 0.4 0.6 0.1 0.2 0.3

rc,nenergy 0.05 0.1 0.15 0.05 0.3 0.5

and for (resetc):

rresetc(X(t)) = rcreset ·N broken,c(t) (7.8)

Energy consumption

Similar to the client–server model, Section 5.2, we can argue that the total energy consumption

by all nodes in the cluster can be expressed as a linear combination of accumulated transaction

populations. We can extend the model PCTMC with a continuous variable capturing this reward,

and obtain a hPCTMC from Section 6:

Aenergy(t) =
∑

c∈CNode

capacity(c)∑

n=0

rc,nenergy

∑

p1,...,pn∈CJob
0<ji≤states(pi), i=1,...,n

∫ t

0
JJ j1,p1 · · · J jn,pnN n,cK(u)du (7.9)

for node energy consumption rates rc,nenergy for each node of class c, serving n jobs.

7.4.3 Numerical examples

We examine a specific instance of the cluster model with two job priorities, low and high,

CJob = {L,H}, having two and three processing stages respectively, that is states(L) = 2,

states(H) = 3. There are two node classes, slow and fast, CNode = {slow , fast}, each capable of

processing two jobs at a time, that is capacity(c) = 2 for c ∈ CNode . We assume that the fast nodes

are around five times faster than the slow nodes – the rate of processing a single job is 4.0 and 0.8

respectively. Additionally, we assume that the fast nodes cope better when concurrently serving

two jobs – the rate of processing one of two concurrently running jobs is 3.0 and 0.5 respectively.

The increased performance is at the expense of energy consumption. We assume that the fast

servers consume around 3 times as much energy per unit of time as slow servers. Table 7.1 shows

all constants in the numerical example, except for the scheduling weights which are defined as

part of scheduling policies.

We examine a range of different scheduling policies. Table 7.2b shows the parameters for a

uniform policy which assigns jobs to servers regardless of the job priority and node class and

occupancy. We look at the effects of scheduling policies on response times for jobs and on the total

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 151

energy consumption of all nodes. We use the ODE analysis to compute passage time probabilities

of a job from each class finishing for the first time (executing the first end action) [4]. This

technique is directly applicable to the GPEPAc model, as we only replace the sequential job agents.

We use the continuous variable from Equation 7.9 to compute the total energy consumption of

nodes.

We apply the ODE analysis to the underlying PCTMC to obtain means of agent populations,

passage time probabilities for each job priority and the total energy consumption. The PCTMC

has 273 populations and 736 transition classes. Additionally we capture the energy consumption

as a continuous variable as described in Section 6.2. The ODE analysis generates a system of

274 ODEs. It takes around 0.1 seconds on to numerically solve this system until time tf that is

sufficiently large to approximate a steady state in the model (tf = 30 in the examples below) a

standard desktop computer . For example, Figure 7.3 shows the mean populations of nodes in

different states – idle, broken and in a transaction with one or two jobs.

0 10 20 30

0

20

40

60

Time, t

Po
pu

la
ti

on

idle 1 job
2 jobs broken

(a) Fast nodes

0 10 20 30

0

20

40

60

Time, t

idle 1 job
2 jobs broken

(b) Slow nodes

Figure 7.3: Population of different node classes and occupancies over time.

We examine the trade-off between performance and energy consumption, in the same fashion as

in Section 5.5. We define a service level agreement for each job class. For example, we require

that a low priority job finishes within 8.0 seconds with probability at least 0.8 and a high priority

job finishes within 6.5 seconds with probability at least 0.9. We aim to minimise the steady state

rate of energy consumption, that is the limit of E[Aenergy(t)]/t as t → ∞, while satisfying the

given SLAs. Figure 7.4 plots the passage time probability and the energy consumption per time

for two different system configurations. When there are 36 slow nodes and 34 fast nodes, SLAs

for both low and high priority jobs are satisfied and the energy consumption rate is around

16 units per unit of time. When the number of nodes decreases to 26 and 24 respectively, the

consumption decreases to around 11 units per unit of time, but both SLAs are violated.

7.4.4 Optimising the cluster configuration

Because of the low computational cost of the ODE analysis of PCTMCs, we can afford to explore

large number of model parameter combinations. In case of the cluster model, we can assume

that all the rates in Table 7.1, except for the number of nodes nslow and nfast, cannot be modified

by the system providers as they represent performance and energy consumption parameters of

the available hardware and the expected job workload. We assume that system providers can

choose the number of nodes in the system and the parameters of the scheduling policy.

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 152

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time, t

Pr
ob

ab
ili

ty

L jobs
H jobs

(a) nslow = 36, nfast = 34: SLA
compliance

0 10 20 30

0

5

10

15

Time, t

C
on

su
m

pt
io

n
pe

r
s

Ẽ[Aenergy(t)]/t

(b) nslow = 36, nfast = 34: Energy
consumption

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

6

6

Time, t

Pr
ob

ab
ili

ty

L jobs
H jobs

(c) nslow = 26, nfast = 24: SLA
compliance

0 10 20 30

0

5

10

15

Time, t

C
on

su
m

pt
io

n
pe

r
s

Ẽ[Aenergy(t)]/t

(d) nslow = 26, nfast = 24: Energy
consumption

Figure 7.4: Response time probabilities for a low and high priority job and the rate of energy
consumption of the cluster. The dashed lines visualise the SLA thresholds – 6.5 seconds with probability
at least 0.9 for high priority jobs and 8 seconds with probability at least 0.8 for low priority jobs.

We first take three scheduling policies and find the optimal number of nodes such that the energy

consumption is minimised and both SLAs are satisfied. For each policy, we evaluate all cluster

configurations with up to 70 nodes from each of the two classes. For each configuration, we

numerically solve the ODE system generated from the hPCTMC corresponding to the model and

calculate the passage time probabilities and the steady state energy consumption.

The first policy dedicates one server class to each job priority – slow nodes to low priority jobs

and fast nodes to high priority jobs, with rates in Table 7.2a. In such case the SLAs are never

simultaneously satisfied in any configuration. As the second policy, we take the uniform policy

where jobs are assigned to nodes regardless of priorities and node classes and occupancies. The

rates are listed in Table 7.2b. Figure 7.5a visualises the SLA satisfaction and energy consumption

across all configurations. In this particular case, the lowest energy consumption of 16.59 units is

achieved when nslow = 10 and nfast = 44.

Because the SLA for high priority jobs is more strict, i.e. the time by which jobs are required

to finish is lower and the probability higher, it makes sense for the scheduling policy to give

priority to these jobs. This can be achieved by setting some of the rates rc,nassign,H higher than the

respective rates rc,nassign,L. For example, the scheduler can make it twice as likely to assign a higher

priority job onto a fast node than a lower priority one and equally likely for slow nodes:

rfast ,0
assign,H = 2 · rfast ,0

assign,L = 4.0 rslow ,0
assign,H = rslow ,0

assign,L = 2.0

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 153

Table 7.2: Values of rc,kassign,p for different scheduling policies in the case study.

(a) Dedicated nodes for each class

c = slow c = fast

p k = 0 k = 1 k = 0 k = 1

L 2.0 1.0 0 0
H 0 0 4.0 2.0

(b) Uniform policy

c = slow c = fast

p k = 0 k = 1 k = 0 k = 1

L 2.0 2.0 2.0 2.0
H 2.0 2.0 2.0 2.0

(c) Priority weighted policy

c = slow c = fast

p k = 0 k = 1 k = 0 k = 1

L 2.0 1.0 1.0 0.5
H 2.0 1.0 4.0 2.0

(d) Optimal policy for nslow = 24,
nfast = 58

c = slow c = fast

p k = 0 k = 1 k = 0 k = 1

L 1.2 0.6 0.8 0.4
H 0.8 0.4 3.6 1.8

To make sure idle nodes are likely to be assigned before second jobs are assigned to already

occupied nodes, we can set the rate of assignment higher (say twice) for nodes with no jobs than

for ones with one job

rc,0assign,p = 2× rc,1assign,p

Figure 7.5b shows the parameter exploration for this scheduling policy. The minimum energy

consumption 15.78 units per unit time is obtained when there are 40 slow nodes and 32 fast

nodes. This minimum is lower than in case of the uniform scheduling policy.

So far, we have fixed a scheduling policy and tried to find the node configuration minimising

energy consumption. Due to the low computational cost of ODE analysis, we can also afford

to vary the possible scheduling parameters for each cluster configuration. In practice, this

would represent different software settings which are arguably easier to set than hardware

configurations. We generalise the third scheduling policy. We fix the total assignment rate for idle

nodes for low and high priority jobs, to say 3.0 and 6.0 respectively, and set the rate to occupied

nodes to be a half of the rate for idle nodes. For each job priority we vary the proportion of the

total rate being assigned to fast nodes. For example in the scheduling policy above, we have the

rate 2.0 out of 3.0 for low priority jobs to slow servers and the remaining rate 1.0 to fast servers

and 4.0 out of 6.0 for high priority jobs to fast nodes and the remaining 2.0 to slow nodes .

Figure 7.5c plots the energy consumption for the best scheduling policy that satisfies both SLAs,

if such a policy exists, for each node configuration. The minimum energy consumption of 15.1

units per unit time is obtained when there are 58 fast nodes and 24 slow nodes and is lower than

in the fixed scheduling policies above. The particular rates achieving the minimum can be found

in Table 7.2d.

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 154

0
10

20

50

20
44

60

15

20 16.59

nslow
nfast

En
er

gy
C

on
su

m
pt

io
n

L

H

(a) Uniform policy

0

20

40
50

20
32

60

15

20
15.78

Figure 7.4

nslow
nfast

En
er

gy
C

on
su

m
pt

io
n

L

H

(b) Priority weighted policy

0

20

50
58

24

58
10

20

15.11

nslow
nfast

En
er

gy
C

on
su

m
pt

io
n

L and H

(c) Optimised policy for each configur-
ation

Figure 7.5: Energy consumption and SLA satisfaction for varying cluster configurations under different
scheduling policies. Figures (a) and (b) maintain a fixed scheduling policy. Figure (c) shows for each
configuration the results of the optimal policy among a range of priority policies.

7.5 Conclusion

In this chapter we have proposed a framework that allows us to concisely capture multi-phase

interactions in large-scale population models. We presented GPEPAc, a channel-based extension

of the GPEPA process algebra. This extension adds a minimal syntactical layer in which agents

can keep track of transaction partners via named sockets. The PCTMC semantics of GPEPAc

uses the GPEPA semantics on a sequence of related models to obtain all the possible transaction

configurations. A further derived GPEPA model is used to obtain the rates in transition classes of

the resulting PCTMC. This approach allows us to apply the efficient ODE analysis on transaction

based models and efficiently derive passage times and reward measures in the models. We

demonstrated the GPEPAc extension on a model of a heterogeneous computing cluster, with

multiple node classes and job priorities. We explored a large number of parameters in order to

find the optimal cluster configuration and scheduling policy.

The developments in this chapter are crucial in providing a wider applicability of the scalable

analysis of PCTMC models. Apart from the increased expressive power of the GPEPAc process

algebra, we are now able to include models where synchronisations have non-exponential

7. HIGH-LEVEL SPECIFICATION OF TRANSACTIONS 155

durations. The multi-phase transaction cooperation can be directly used to represent phase-type

distributions – we will show an example of a model constructed from real data in Section 9.2.

156

Chapter 8

GPA – a tool for rapid analysis
of PCTMCs

Key contributions

Implementation of the PCTMC framework [8, 12]

Multiple supported formalisms 8.2 [2, 5]

Rewards and hPCTMC implementation 8.2.4 [11]

Optimisation experiments 8.4.1 [11]

8.1 Introduction

The framework and techniques presented in this thesis provide an efficient way to analyse

models where explicit state space approaches require an infeasible amount of computation.

However, especially the higher-order ODE analysis requires a derivation of a system of ODEs

with a complicated structure. This is even more obvious for PCTMC models described in a

concise high-level formalism such as the GPEPA process algebra and the GPEPAc extension from

Chapter 7. Obtaining moment approximations from model descriptions manually would be highly

impractical and error-prone. Therefore the applicability of the PCTMC framework would be

limited without an efficient and extensible implementation.

In this chapter, we present GPA – a tool implementing most of the contributions in this thesis.

GPA provides a convenient interface for applications of the PCTMC and related techniques

to a range of models and also offers a flexible implementation that allows development of

further extensions. Initially, GPA was used to investigate the accuracy of higher-order moment

approximation for GPEPA by Hayden and Bradley [99], summarised in Section 4.2. Since then,

the tool development was interleaved with the theoretical contributions of this thesis. The second

iteration of GPA implemented accumulated rewards from Chapter 5, limited to GPEPA models. A

later stage consisted of an extension supporting a subset of PCTMCs alongside of GPEPA. When

experimenting with different moment closures, Section 4.4 and Section 4.5, we rewrote the core

of GPA. All the analyses now work with an intermediate PCTMC representation and different

specification languages such as GPEPA and the chemical equation language are realised on a

separate layer that generates the PCTMC semantics. We implemented the hPCTMC extension

from Chapter 6 and features such as parameter exploration for evaluating performance–energy

trade-offs. Additionally, the extensible architecture allowed a fast implementation of the spatial

process algebra MASSPA [92] and Unified Stochastic Probes [5].

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 157

The main distinctive features of GPA are:

General PCTMC framework At the core of GPA is an extensible implementation of the PCTMC

framework. Each model is represented in an abstract form as a PCTMC, to which a number

of analyses can be applied. GPA implements the mean-field and higher-order moment

ODE analyses from Section 3.4. Different moment closure modules are supported, such as

an implementation of the min-normal closure from Section 4.4. GPA provides a number

of numerical integration algorithms and allows to extract various measures from the

numerical solution, such as moments of populations, rewards or passage time probabilities.

Additionally, GPA can compute estimates of these metrics from simulation.

High-level specification languages Models in GPA can be specified in the GPEPA process al-

gebra or using a chemical equation style language from Section 3.1. These are part of a

layer where additional languages can be added together with an implementation of their

PCTMC semantics.

hPCTMC extension Models in any of the supported specification language in GPA can be aug-

mented with continuous variables from the hPCTMC extension from Chapter 6. GPA also

supports time-dependent rates, as described in Section 6.6, that can be included from

external data.

Parameter exploration An analysis of a model in GPA can form a part of a parameter explora-

tion and minimisation experiment. GPA implements minimisation by explicit parameter

sweeping as well as by a general approximate global optimisation solver.

Efficient implementation The core of GPA is implemented in the Java programming language.

GPA keeps an abstract representation of models and analyses and dynamically generates

optimised Java code for numerical computation. Additional modules allow translation to

C++ and Matlab.

Figure 8.1 gives an overview of the architecture of GPA. GPA is primarily a command line

application, taking as an input a complete model description together with the related analyses.

GPA outputs the analysis results to specified files and can additionally visualise the data. Most of

the plots in this thesis were produced with data from GPA. The core functionality of GPA can be

also easily accessed via a library, making it possible to use its features in larger projects.

In the remainder of this chapter, we describe individual features of GPA. We show examples

corresponding to models in this thesis. For each we give relevant portions of the specification

code and also show the graphical output when applicable. Full syntax of GPA files can be found

in Appendix D.1

8.2 Model syntax

Each GPA input file consists of a single model definition and a number of analyses and secondary

experiments. The first section of the file consists of definitions of all the numerical parameters

used as rates and initial conditions in the model. For example the following code defines

parameters in the client–server model from Table 4.1, Model A:

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 158

1.
Parameter
definitions

Time dep.
data

2.
Model
description

Continuous
variables

GPEPA MASSPAChem. Eq.Supported
Formalisms

3.
Analysis
description

Measures
of interest

4.
Experiments

(US)ProbesRewards

hPCTMC
Intermediate
representation

Analysis

ODEs

Moment Closure
Simulation

Moment ODEs

Generated
code

Parameters

Numerical
Solver

Moment
expressions

Core solvers

In
pu

t
fi

le

ProbeIterate Distribution

Expression
PDF

Passage
time CDF

Optimal
parameters

Secondary solvers

Output

Figure 8.1: Overview of the architecture of GPA.

rreq = 2.0; rdata = 1.0; rthink = 0.2;
rbreak = 0.1; rreset = 2.0;
n_C = 100; n_S = 50;

Time-dependent rates, such as the rate λ(t) in the example in Section 6.6.2 can be loaded from a

CSV file, where the first column specifies the time of change of the rate and the given column (2

in the code bellow) the value of the rate:

load "worldcup.csv" 2 into lambda;

Each PCTMC specification language supported by GPA has to provide syntax for model definition

and syntax for referring to population labels.

8.2.1 Plain PCTMC

Models can be specified in a syntax close to the chemical-reaction style notation in Equation 3.1.

Each population label is written in curly braces, such as {Name}. Rates can be written as arithmetic

expressions over population labels. After a number of transition class definitions separated by

semi-colons, the initial values of non-zero populations are given as {Name} = n. For example, the

peer-to-peer model from Section 3.2.1 is:

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 159

{Soff} -> {Son} @ {Soff} * ron; {Ul} + {Us} -> {Us} + {Us} @ {Us}{Ul} * rseed;
{Son} -> {Soff} @ {Son} * roff; {Son} + {Ul} -> {Son} + {Us} @ {Ul}{Son} * rsseed;
{Us} -> {Uf} @ {Us} * rleave; {Son} + {Uf} -> {Son} + {Uf} @ {Uf}{Son} * rsseed;
{Uf} -> {Ul} @ {Uf} * rback;

{Soff} = n_S;
{Ul} = n_Ul;
{Us} = n_Us;

8.2.2 GPEPA

GPA implements a large subset of GPEPA syntax, described in Section 2.2.3. A model definition

consists of a number of sequential agent definitions and a system equation. For example the

client–server model from Section 3.2.3 can be defined as:

Client = (req, rreq).Client_waiting;
Client_waiting = (data, rdata).Client_think;
Client_think = (think, rthink).Client;

Server = (req, rreq).Server_get + (break, rbreak).Server_broken;
Server_get = (data, rdata).Server;
Server_broken = (reset, rreset).Server;

Clients{Client[n_c]}<req,data>Servers{Server[n_s]}

Count think;

The last line specifies an action counting population in the resulting PCTMC that keeps track

of the count of fired think actions and can be used as an impulse reward specification, as in

Section 5.2.2. Agent populations are referred to by Group:Agent syntax and action counting

populations as #action.

The probed version of the client–server model can be defined by including an auxiliary sequential

agent that remembers a fired think action and modifying the system equation to include a client

synchronised with such an agent, as described in Section 3.5.2:

...
NotDone = (think, rthink).Done;
Done = (think, rthink).Done;
...
Clients{Client[n_c-1]|Client<think>NotDone}<req,data>Servers{Server[n_s]}

8.2.3 Spatial process algebra

Additional model definition languages can be easily added to GPA. The code below shows an

example of a model of a content distribution network described in the MASSPA process algebra:

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 160

Client_stale@x = ?(m, 0.25).Client_updated@x + ?(m, 0.75).Client_stale@x;
Client_updated@x = (r_stale@x).Client_stale@x;

Server@x = !(r_rx, m, 0.1).Server@x + (r_stale@x).Server_refresh@x;
Server_refresh@x = ?(m, 0.1).Server@x + ?(m, 0.9).Server_refresh@x;

Server@A[N_A]<>Server_refresh@B[N_B] <> Server_refresh@C[N_C]<>Client_stale@D[N_D]
<> Client_stale@E[N_E]<>Client_stale@F[N_F];

Channel(Server@A,Server_refresh@B,m,2); Channel(Server@A,Server_refresh@C,m,1);
Channel(Server@B,Client_stale@D,m,3); Channel(Server@B,Client_stale@E,m,1);
Channel(Server@C,Client_stale@E,m,2); Channel(Server@C,Client_stale@F,m,2);

Further details of the MASSPA process algebra can be found in the paper by Guenther and Bradley

[92] and the PCTMC semantics in the paper by Bradley et al. [2].

8.2.4 hPCTMC continuous variables

A model definition can be extended with continuous variables, thus defining a hPCTMC model.

Each continuous variable is defined by its accumulation function and an initial value. For example,

the temperature variable T from Equation 6.2 can be defined as:

ddt ~T = {S1} * rheat * c / v - {A1} * rcool * c / v;
~T = 0;

Continuous variables can be used within model definitions, such as in the on-rate of air condi-

tioning units in the example in Section 6.2:

...
{A0} -> {A1} @ {A0} * min(tthresh - ~T, 0.0) * (-r_on);
...

Accumulated populations and products of populations are a special case of continuous variables

and don’t require the ddt definition. We use the notation acc(h) for the accumulated product of

populations given by h.

8.2.5 Variables and pattern matching

The solvers below allow computation of moments of populations. For convenience, GPA addi-

tionally allows definition of variables which can be arithmetic expressions over populations. For

example, the energy and total reward in the client–server model, defined in Equation 5.1 and

Equation 5.2, can be specified as:

$energy = crunning * acc(Servers:Server_get)
+ cpower * acc(Servers:Server) + cbroken * acc(Servers:Server_broken);

$total = cfee * #task
+ (-crunning) * acc(Servers:Server_get) + (-cpower) * acc(Servers:Server)
+ (-cbroken) * acc(Servers:Server_broken);

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 161

In case of GPEPA models, GPA also provides a convenient shorthand for sums of populations of

sequential PEPA agents based on their structure. The pattern %Group:_<actions>Agent expands to

the sum of all populations where _ can be replaced by any agent. For example, to sum over the

whole absorbing set of client states in the probed client–server example, Equation 3.18, we can

use the following syntax:

$passage = %Clients:_<task>Done;

8.3 Model analysis – Core solvers

The model description is followed by a list of solvers applied to the model. Core solvers

compute transient evolution of moment based expressions in the model. Each solver accepts

pre-processing options (in square brackets) that influence the type of analysis to be performed.

These options, together with the model and desired expressions (in curly braces) generate a

symbolic representation of the solver. This representation is compiled into a numerical solver,

with options given in parenthesis. The stopTime option gives the time tf until which the numerical

solution is obtained and stepSize determines the fixed time step at which the expressions are

sampled. The code below shows the general structure:

Solver[option = value, ...]
(stopTime = t_f, stepSize=1, numerical_option = value, ...) {
moment_expression, ... -> output file;
moment_expression, ... -> output file;

...
}

Moment expressions

Each core solver can plot a number of given expressions evaluated. These can be any expressions

that can be evaluated from the raw moments represented by the ODEs in case of ODE analysis.

An expectation of a population is denoted by E[X] and higher-order moments similarly by E[X Y

Z] etc. GPA provides convenient shorthands such as Var[X] for variance of a population X, Cov[X,Y]

for the covariance of two populations X and Y, SCM[X,n] for the n-th standardised central moment

of X. Additionally, these shorthands are defined on expressions that are linear combinations

of populations and GPA automatically expands the resulting expectation into a corresponding

linear combination of raw moments, for example Var[a*X + b*Y] is translated to the corresponding

expression involving raw moments of populations. The n-th raw moment of an expression is

denoted by Moment[e, n].

8.3.1 ODE analysis

ODE analysis of moments is implemented in the ODEs solver as shown in the code below:

ODEs[momentClosure=..., maxOrder=...]
(stopTime=..., stepSize=..., integrator=...){ ... }

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 162

Pre-processing options determine the used moment closure and the maximum order of moments

in the system. When no option is specified, the mean-field closure from Section 3.4.1 is ap-

plied; value NormalClosure selects the normal closure for polynomial rates from Section 3.4.3 and

NormalClosureMinApproximation the min-normal closure from Section 4.4. The resulting system of

ODEs is numerically integrated until the time given by stopTime. A number of algorithms is avail-

able, via the integrator parameter – ClassicalRungeKutta, DormandPrince853 and others, provided by

the Apache Commons Math library [61].

Figure 8.2 shows an example of the ODE solver applied to the GPEPA client–server example.

Figure 8.3 shows additional functions that can be used in the moment based expressions, such as

the upper and lower moment based bound on the CDF of a population, using the technique of

Tari et al. [173].

ODEs(stopTime=6.0, stepSize=0.01, density=1){
E[Clients:Client],

E[Clients:Client_waiting],
E[Clients:Client_think];// (b)

Var[Clients:Client],
Var[Clients:Client_waiting],
Var[Clients:Client_think];// (c)

E[$switch],
E[$switch]+2.58*Var[$switch]^0.5,
E[$switch]-2.58*Var[$switch]^0.5;// (d)

}

(a) Code (b) Client means

(c) Client variances (d) Switch point distance

Figure 8.2: Example plots from the ODE analysis of the client–server model, corresponding to plots
from Figure 4.2 and Figure 4.1a.

8.3.2 Simulation

The Simulation solver implements the Gillespie algorithm for simulation of PCTMC models,

described in Section 3.3:

Simulation(stopTime = ..., stepSize = ..., replications = ...) { ... }

AccurateSimulation(stopTime = ..., stepSize = ..., CI = ...
maxRelCIWidth = ..., batchSize = ...) { ... }

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 163

ODEs(stopTime=10.0, stepSize=0.01, density=10){
estimateLCDF(0,1e200,a,1, E[$energy],
Moment[$energy, 2], Moment[$energy, 3],
Moment[$energy, 4], Moment[$energy, 5],
Moment[$energy, 6]),

estimateUCDF(0,1e200,a,1, E[$energy],
Moment[$energy, 2], Moment[$energy, 3],
Moment[$energy, 4], Moment[$energy, 5],
Moment[$energy, 6]),

div(Var[$energy], Var[$energy]+(E[$energy]-a)^2)
*(1-[E[$energy] > a]) +[E[$energy] > a],

(1-div(Var[$energy], Var[$energy]
+(E[$energy]-a)^2)) *[E[$energy] > a];}

(a) Code (b) Screenshot

Figure 8.3: Example plot of reward completion time bounds expression, corresponding to Figure 5.6.

The parameter replications specfies the number of simulation traces that are used to compute

estimates of the given moment based expressions. Alternatively, the version AccurateSimulation

accepts a confidence level CI with a desired relative width maxRelCIWidth and a parameter batchSize

that determines how frequently the analysis estimates each confidence interval.

In addition to moment based expressions, the analysis can compute an expectation of an arbitrary

expression, with the syntax Eg[...]. Figure 8.4 shows an example, corresponding to a plot in the

investigation of the min-normal closure in Section 4.4.

$theta = (Var[Clients:Client] - 2*(E[Clients:Client Servers:Server] -
E[Clients:Client]*E[Servers:Server]) + Var[Servers:Server])^0.5;

Simulation(stopTime=6.0, stepSize=0.1,
replications=100000){

Eg[min(Clients:Client, Servers:Server)],
min(E[Clients:Client], E[Servers:Server]),
E[Clients:Client] * safe_Phi(
E[Servers:Server] - E[Clients:Client], $theta)
+ E[Servers:Server] * safe_Phi(
- E[Servers:Server] + [Clients:Client], $theta)
+ $theta * safe_phi(
E[Servers:Server] - E[Clients:Client], $theta);

}

(a) Code (b) Screenshot

Figure 8.4: Example plot of simulation estimates, corresponding to Figure 4.10. Functions
safe_Phi(a,b) and safe_phi(a,b) stand for Φ(a/b) and φ(a/b) respectively, with correctly handling
the positive and negative infinity in case b is zero.

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 164

8.4 Experiments – Secondary solvers

8.4.1 Parameter exploration

The provided ODE and Simulation analyses can compute various performance and energy metrics

for models under a single parameter regime. GPA also provides further capabilities which allow

to analyse models under a number of parameter values and also embed the ODE or simulation

analysis in a global optimisation problem.

The Iterate experiment accepts a number of parameter range specifications of the form r from

0.0 to 1.0 in 10 steps. For each combination of parameter values from the given ranges, the

experiment performs a given analysis. If only one or two ranges are given, at each parameter

combination, the experiment can show a 2d or 3d plot respectively of an expression evaluated

at given points in time. Additionally, it is possible to specify an inequality constraint which has

to hold for the value to be recorded/shown, for example representing satisfaction of an SLA.

Figure 8.5 shows an example from the performance–energy trade-off in Section 5.5.

Iterate rsleep from 0.0 to 6.0 in 40 steps
n_s from 90.0 to 131.0 with step 1.0

ODEs(stopTime=40.1,stepSize=0.1,density = 10)
plot{

E[$energy] at 40.0
when E[$passage] at 13.0 >= 0.9;

}

(a) Code (b) Screenshot

Figure 8.5: Iterate experiment, corresponding to Figure 5.10a.

Parameters can be also explored in an optimisation problem, where the objective is to minimise

a given moment based expression evaluated at a given time, under a number of inequality

conditions. The Minimise experiment accepts an objective expression and inequality constraints,

number of parameter range specifications and a list of plot expressions as the Iterate experiment.

For each plot expression, the experiment outputs the value evaluated with parameters that

optimise the objective and satisfy the constraints. Additionally, the Minimise experiment can be

a part of an Iterate experiment, where the minimisation occurs at each resulting parameter

combination. Figure 8.6 shows an example from optimising a cluster scheduling policy in

Section 7.4.4.

8.4.2 Unified Stochastic Probes for GPEPA

GPA supports passage time specifications with Unified Stochastic Probes [103] through the Probe

solver. Figure 8.7 shows an example of an individual transient passage time probe. More details

of the implementation can be found in Kohut [124].

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 165

Iterate
n_N_slow from 0.0 to 70.0 in 36 steps
n_N_fast from 20.0 to 70.0 in 26 steps

Minimise E[~Aenergy] at 30.0
when E[$passageL] at 8.0 >= 0.8
and E[$passageH] at 6.5 >= 0.9

qL from 0.0 to 3.0 in 20 steps
qH from 0.0 to 6.0 in 20 steps where

r_assign_L_slow_0=(3.0-qL)*2/3;
r_assign_L_slow_1=(3.0-qL)*1/3;
r_assign_L_fast_0=qL*2/3;
r_assign_L_fast_1=qL*1/3;
r_assign_H_slow_0=(6.0-qH)*2/3;
r_assign_H_slow_1=(6.0-qH)*1/3;
r_assign_H_fast_0=qH*2/3;
r_assign_H_fast_1=qH*1/3;

ODEs(stopTime = 30.1, stepSize = 0.1,
density = 10)

plot { E[~Aenergy] at 30.0
when E[$passageL] at 8.0 >= 0.8
and E[$passageH] at 6.5 >= 0.9;
qH at 1.0
when E[$passageL] at 8.0 >= 0.8
and E[$passageH] at 6.5 >= 0.9;

}

(a) Code (b) Screenshot

Figure 8.6: Parameter exploration with minimisation at each combination, corresponding to Fig-
ure 7.5c (top screenshot) and the optimal value of the qH parameter (bottom screenshot).

8.4.3 Distribution computation

The primary simulation solver only computes expectations and moment based expressions. GPA

provides a secondary solver that can also compute distributions of arbitrary expressions involving

populations and continuous variables. For example, Figure 8.8 shows the distribution of the

temperature variable in the air-conditioning model in Section 6.2.

Probe
ODEs(stopTime = 40.0,stepSize = 0.1,density = 10)
transient 300 {
GProbe = begin: start, end:stop
observes { LProbe = eE: begin, think: end }
where {

Clients{Client[n_C]}
=> Clients{Client<*>Probe|Client[n_C-1]}

}
}

(a) Code (b) Screenshot

Figure 8.7: Example of a local probe in the client–server model.

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 166

Distribution
Simulation

(stopTime=61.0, stepSize=1.0,
replications=100000)

computes {
$temp into 60 bins;

}

(a) Code (b) Screenshot

Figure 8.8: Distribution of the temperature variable in the hPCTMC client–server model with air-
conditioning corresponding to Figure 6.9.

8.5 Implementation details

GPA is implemented in the Java programming language and all the source code is freely available

on the tool website [87] under the MIT license [177]. We highlight a few implementation

features:

Modular parser Parsing of input files is implemented with the ANTLR 3 parser [20]. A core

parser implements all the syntax except for model definition and population labels. Each

specific language parser is responsible for defining these rules and for implementing a

translation of models to PCTMCs. For example, the GPEPA parser defines the syntax of

GPEPA models, closely following the formal definition. It also provides a translation to

PCTMCs, impelenting the semantics in Section 3.2.2. Population labels are defined as

group–component pairs.

Symbolic expression library Arithmetic expressions in GPA are based on a custom built sym-

bolic expression library. These include transition class rates, moment and population based

expressions in solvers and generated ODE methods. The library provides tools for conveni-

ent implementation of expression transformations, used for example in the implementation

of the various moment closures.

Abstract solver representation Each solver is represented in a symbolic abstract form. For

example, the ODE analysis generates a corresponding symbolic ODE method. Before the

numerical solution stage, this form is printed into a target language code and dynamically

compiled into concrete implementation. GPA additionally optimises the generated code,

for example by factoring out common arithmetic expressions into temporary variables. By

default, the target language is Java and the code is compiled in memory. The compiled

method is provided to one of the built-in ODE solvers. The solver supplies a complete

parameter set to the ODE method and calls the method in each step of the numerical

integration.

8. GPA – A TOOL FOR RAPID ANALYSIS OF PCTMCS 167

Solution transformation Each solver (ODE or stochastic simulator) outputs a vector for each

selected time instant containing values of all computed moments in the PCTMC. The

symbolic expression library is used dynamically compile user supplied expressions in order

to efficiently transform the raw moment results into the desired form.

Parallelisation In order to speed up the parameter exploration experiments, GPA is able to

distribute the computation of the numerical solutions for different parameters onto a

given number of CPU cores. Moreover, GPA can also automatically split the computation

into a large number of smaller tasks and generate a specification used by the HTCondor
high-throughput distributed computation framework [176]. This allowed us for example to

evaluate the error in Figure 6.13 by running the simulations on around 100 workstations.

8.6 Conclusion

In this chapter, we presented GPA, a software tool which implements most of the techniques

developed in this thesis. The architecture of GPA closely follows the structure of the theoretical

framework. At the core of GPA is a PCTMC representation, which serves as an intermediate

format for the models. Different specification languages are supported in a separate layer, only

requiring an implementation of the corresponding PCTMC semantics. GPA can be used by

practitioners to apply the framework of this thesis to real models. Additionally, the source of

GPA is available under an open source licence and the architecture facilitates extensions of the

modelling formalisms and solution techniques.

168

Chapter 9

Conclusion

9.1 Summary of achievements

This thesis has explored methods for efficient analysis of performance–energy trade-offs in large-

scale Markov population models. As a motivation, we aim to be able to analyse the trade-off

in models of large data centres. In the introduction to this thesis, we argue that the resulting

approach has to be able to

(i) analyse models with very large state space,

(ii) provide high-level behavioural model descriptions,

(iii) capture detailed SLA specifications based on passage time probabilities,

(iv) capture energy consumption metrics,

(v) jointly capture the interaction between temperature and workload in the system,

(vi) include time-dependent workloads.

To the best of our knowledge, no existing prior work was able to simultaneously meet all these

requirements. Analysis of such models was either restricted to significantly smaller state spaces,

or the available metrics were limited to average and often steady-state measures. Time-dependent

behaviour or feedback from continuous quantities such as temperature was not possible. The

main contribution of this thesis is a framework where all these restrictions are lifted for a

class of Markov population models. In achieving this, we are now able to rapidly analyse

performance–energy trade-offs in realistic models of large-scale systems.

Our approach is based on efficient analysis of Markov population models where the system is

approximated with a set of ordinary differential equations (ODEs). These include the mean-field
method [42, 31, 33], moment closure heuristics [186, 71, 132, 81, 99, 17] and fluid analysis of

process algebra models [108, 183, 68, 56]. These techniques can rapidly deal with extremely

large state spaces and are not sensitive to the number of different agents in the system.

As the first step, we defined Population Continuous-Time Markov Chains (PCTMC) in Chapter 3, a

stochastic process to which most of the ODE-based techniques apply. In particular, fluid analysis

of stochastic process algebras, such as the method of Hillston [108], Hayden and Bradley [99] or

Bortolussi and Policriti [41] can be considered as an application of a moment-closure heuristic

to PCTMCs derived from a process algebra model. An advantage of the method of Hayden

9. CONCLUSION 169

and Bradley [99] is that it provides an extension [4] which can use the ODE analysis to obtain

passage-time probabilities in the models and thus capture the required SLA specifications. We

generalised this approach to PCTMCs in Chapter 3. Before proceeding with further extensions,

we investigated the accuracy of different ODE analysis techniques. In Chapter 4 we presented a

novel moment closure for models with rates containing the min function.

In Chapter 5, we extended the ODE analysis of PCTMCs to capture moments of accumulated
rewards. Our extension supports both rate and impulse rewards and is suitable for modelling

energy consumption and other more complicated cost functions. Moreover, both rewards and

passage time probabilities can be computed in the same analysis. This allowed us to define the

energy–performance trade-off as a constrained global optimisation problem with an embedded

system of differential equations. Although no known algorithms can provide guaranteed solutions

to the general class of such problems, the low computational cost of ODE analysis means that we

were able to apply approximate numerical algorithms, including explicit parameter exploration.

To complete the analysis related requirements set above, we defined hybrid PCTMCs (hPCTMC) in

Chapter 6. A hPCTMC is a stochastic process that consists of a PCTMC, augmented with continuous

variables, defined by integral equations over the populations and other continuous variables

in the model. To introduce feedback loops into hPCTMC models, the continuous variables are

allowed to influence rates in the PCTMC part of the model. For example a continuous variable

can represent temperature that affects behaviour of air-conditioning units in a data centre. We

extend the ODE analysis to hPCTMC. Importantly, by treating time as such a continuous variable,

this allows us to capture time-dependent rates in hPCTMC models.

In Chapter 7, we defined GPEPAc, an extension of GPEPA where channels can serve as building

blocks of complex interactions, which can be used to express session-based communication

protocols. GPEPAc addresses the limitation of existing specification languages which are amenable

to ODE analysis. These restrict interactions between agents in the system to single-step transitions.

To be able to analyse models in this formalism, we defined a corresponding PCTMC semantics.

We illustrated the language on a model of a heterogeneous computing cluster and used rapid

ODE analysis to capture energy–performance trade-off under multiple SLAs.

We kept an up-to-date implementation of our framework in a software tool GPA. We gave a

brief overview of GPA in Chapter 8. GPA allowed us to perform a range of case studies and

experiment with different heuristics used by the ODE analysis. Moreover, the architecture of GPA

closely resembles our theoretical approach and keeps PCTMC as an intermediate representation

of models. Different specification languages can be included in a lightweight separate layer. For

example, MASSPA, a spatial process algebra, is implemented by a corresponding translation to

PCTMC [92].

9.2 Applications

In this section, we demonstrate the complete analysis life-cycle provided by the framework de-

veloped in this thesis. We show how hPCTMC models can be used by the provider of a distributed
high-throughput cycle-stealing system. Such systems, for example BOINC or HTCondor [134],

9. CONCLUSION 170

are a popular computation model amongst scientists, engineers and financial organisations,

allowing massively distributed calculations to be spread over many thousands of otherwise idle

office workstations. We apply our framework to real data from a HTCondor cluster deployed at

Newcastle University [1].

9.2.1 Distributed high-throughput cycle-stealing system

In total, around 1400 machines take part in the cluster. These are workstations from various

classrooms and spaces around the university campus. There is a large variety of usage patterns

– some machines are used for teaching and are physically inaccessible outside teaching hours,

some belong to 24 hour access facilities. Some of the machines are located in halls of residence

and experience higher use during weekends.

HTCondor monitors each workstation for any interactive user activity. If a machine is idle for a

period of time, HTCondor marks it as available for high-throughput computation. The cluster is

accessible to a number of high-throughput user groups. Such users submit their computational

tasks, usually parallelised into a large number of separate jobs, into one of several queues for

the different groups. HTCondor continuously monitors each queue and assigns jobs to available

workstations. If a user arrives at a workstation executing a high-throughput job, HTCondor

interrupts the execution of the job and evicts it back to the queue. A high-level overview of the

system can be seen in Figure 9.1.

PC Class 1

User 1

user arrives

user departsJob

PC Class NPC

User NPC

user arrives

user departs

Job

Job

...Scheduler...
assigns to PC

job completed

job completed

Queue 1

Queue NQ

job evicted

job evicted

job submitted

job submitted

Figure 9.1: Overview of the model of HTCondor.

9.2.2 GPEPAc model of HTCondor

We describe a model of the system in the GPEPAc process algebra developed in Chapter 7. The

session-based communication features of GPEPAc are particularly suitable for this application. In

this case, we use multi-phase synchronisation to implement job durations with Coxian distribution

[e.g. 23]. Appendix E shows a detailed GPEPAc model of the system. Here, we only list the key

points of this model:

(i) The model contains agents for users, jobs, workstations and HTCondor schedulers.

(ii) The job processing durations are distributed according to Coxian random variables. This is

achieved by a number of states of the respective agents.

9. CONCLUSION 171

(iii) GPEPAc channels represent allocation of jobs and users to workstations. The channel

connection between a job and a workstation is maintained throughout all the phases of the

respective Coxian distribution.

In this example, we use a simple instance of this model consisting of only one type of workstations

and users – A for “all” users and workstations from the campus. We consider two job groups –

B for the “background” jobs submitted by all the different high-throughput groups, and H for

“hypothetical” jobs that we will use to evaluate the system under various conditions.

We use this model to showcase the many developments that this thesis provides in the analysis of

energy and performance in systems with time varying workloads:

(i) The resulting GPEPAc model can be automatically translated to a PCTMC, using the se-

mantics described in Section 7.3.

(ii) We augment this PCTMC model by adding a continuous variable Yenergy(t) capturing the

energy consumption caused by executing the hypothetical H jobs and thus obtain a hPCTMC

model, as described in Chapter 6.

(iii) Using the method in Section 5.2.2, we can define an additional populationXevict(t) counting

the number of evictions of the hypothetical jobs.

(iv) The efficient ODE analysis described in Section 6.3 can be used to rapidly obtain means

and higher moments of Yenergy(t) and Xevict(t).

(v) The method from Section 3.5 can be used in the same ODE analysis to compute passage

time distribution of the time TH that each job from a group H takes to finish.

(vi) The model is analysed with the GPA tool described in Chapter 8.

(vii) The tool uses techniques from Section 6.6 to accept data driven time-dependent rates, such

as the user arrival rate rarrive,A(t).

9.2.3 Analysis using the collected data

HTCondor keeps a log of all system events, such as job submissions and user arrivals. We were

able to obtain a complete log for the year 2010. For the purposes of the GPEPAc model, we

aggregated the log to only keep timestamps with the information about increasing and decreasing

populations. Figure 9.2 shows the number of active users and the number of currently processed

jobs (both submitted and executing) in the entire system, throughout a sample period of five

weeks (during October 2010). It also shows a periodogram for the number of active users. We

demonstrate two different approaches to using HTCondor logs together with the GPEPAc model:

Static model: In the static model, we build a version that captures the HTCondor system during

a longer time period. This model can be used to evaluate different system configurations

and their effects on the high-throughput performance and overall energy consumption.

9. CONCLUSION 172

Dynamic model: The dynamic model runs alongside the real system and uses the logs to obtain

current model parameters. The model can be used to evaluate short term hypothetical

scenarios, such as the effect of submitting a batch of jobs.

0 1 2 3 4

0

200

400

600

800

Week

A
ct

iv
e

us
er

s

(a) Active users

24h 7 days

0

2

4

·109

Period
Po

w
er

(b) Periodogram for act-
ive users

0 1 2 3 4

0

50

100

Week

Jo
bs

(c) Jobs

Figure 9.2: Sample trace of the number of active users during five weeks of monitoring the system.

Static model of an average week

We can see from Figure 9.2 that the number of active users in the system almost repeats with

a weekly cycle. This holds for the rest of the data (excluding weeks outside term times) and

therefore it is possible to construct a model which captures a “representative” week in the system.

We take one such week and fit the time-dependent user arrival and departure rates rarrive,A(t)

and rlogout ,A(t). In this example we simply fit an exponential distribution with a mean equal to

the average inter-arrival time throughout each one hour interval during the week. Figure 9.3

shows the number of users during a representative week and the respective rates.

Mo Tu We Th Fr Sa Su

0

200

400

600

Time, t

A
ct

iv
e

us
er

s

(a) Active users

0

500

1,000

A
rr

iv
al

s

Mo Tu We Th Fr Sa Su
0

500

1,000

1,500

Time, t

D
ep

ar
tu

re
s

(b) Arrival and departure rates

Figure 9.3: Number of active users during a representative week and the corresponding arrival and
departure rates (per hour).

We perform a similar fit to the submission rates and durations of background jobs, rates rsubmit ,B(t)

and rprocess,B. In case any of the durations require a Coxian distribution, experiments show that

the expectation maximisation algorithm of the EMpht tool [22] gives good match to both mean

and variance of the distributions.

We will use the model to evaluate the performance of the system as seen by a batch of 100

hypothetical jobs, each with a two-phase Coxian duration with mean 2.7 hours. For example, we

9. CONCLUSION 173

can compare the performance of the system if the jobs were submitted at different times of the

week. We choose a busy time such as 12pm on Monday and a less busy time, such as 6pm on

Friday. Figure 9.4 shows the passage time probabilities for a single job to finish if the batch was

submitted at these two times, computed as described in Section 6.6.1.

0 5 10 15

0

0.5

1

Time, t

Pr
ob

ab
ili

ty
Monday 12 pm
Friday 6pm

Figure 9.4: Probability of a single hypothetical job finishing after being submitted at different times.

One parameter that the maintainer of HTCondor can control is the delay after which workstations

become available to high-throughput jobs. We can set a hypothetical SLA of an individual job

finishing within 8 hours at least 93% of the time. Our aim is to minimise the energy consumption

caused by the high-throughput jobs. If the availability delay is too short, jobs get allocated to

workstations during busy times and are likely to be evicted. On the other hand, a longer delay

avoids job evictions but potentially increases the time each job spends in the system. We can use

the rapid ODE analysis of the model to evaluate the performance and energy metrics for a large

number of delay parameters. Figure 9.5 shows that an average availability delay of 1.66 hours

minimises the total energy consumption of the batch of jobs and satisfies the given SLA.

1.66 4 6 8 10

0.6

0.8

0.93

1

Mean delay

Pr
ob

ab
ili

ty

t = 4 t = 6
t = 8 t = 10

(a) Probability of a single job finish-
ing before time t

1.66 4 6 8 10

1.2

1.22

1.24

1.26
1.2677

1.28

·104

Mean delay

En
er

gy
C

on
su

m
pt

io
n

(b) Energy consumption after finishing
all jobs

Figure 9.5: Energy–performance trade-off under varying mean availability delay. The SLA is given by
the probability at t = 8 to be at least 0.93. Probabilities for other values of t are shown for illustration.

Dynamic model

Another potential use of the GPEPAc model of the HTCondor system is to evaluate short-term

predictions on an accurate model of the current state of the system. The aggregate nature of

PCTMCs makes it feasible to process the logs of HTCondor in an on-line fashion to obtain current

parameters of the system. At each point in time, we forecast user and background job arrival

parameters to fit a dynamic model for a subsequent forecast period. In this example we set this

9. CONCLUSION 174

period to be two hours and we use a simple forecast by looking at the parameters from the same

time during the previous week.

We can use the dynamic model to evaluate derived performance metrics of the system. For

example, we can use the model to virtually submit a hypothetical job that counts the number of

evictions a job is likely to experience. Figure 9.6a shows this for the different forecast periods.

Another virtual experiment might be to evaluate the submission of a batch of 500 jobs with mean

processing time 2 hours and evaluate the number of completions at the end of the forecast period,

as seen in Figure 9.6b. Figure 9.6c shows the resulting additional energy consumption caused by

these jobs. The rapid ODE analysis allows calculation of a large number of such experiments. For

example, the analysis could be used by users of HTCondor to predict the time of completion of

their submitted jobs.

5 9 13 17 21 1
0

1

2

3

Time, t

N
um

be
r

of
ev

ic
ti

on
s

(a) Evictions

5 9 13 17 21 1
0

20

40

Time, t

N
um

be
r

of
co

m
pl

et
ed

jo
bs

(b) Completions

5 9 13 17 21 1
0

10

20

30

Time, t
En

er
gy

co
ns

um
pt

io
n

(k
W

h)

(c) Additional energy
consumption

Figure 9.6: Forecast for metrics of the hypothetical batch of jobs.

9.3 Future work

There are many potential avenues for future work. Here we choose to highlight, in our opinion,

six of the most impactful and promising enhancements to the energy–performance framework

presented in this thesis.

9.3.1 Practical advances

A number of enhancements is motivated by applications, such as the model of HTCondor in

this section, that in our opinion would have the greatest effect on the performance modelling

accuracy of the framework.

General distributions In PCTMC models, all transitions are assumed to be exponentially distrib-

uted. We have suggested how to represent Coxian distributions in the GPEPAc model of

HTCondor in Section 9.2. These can approximate a range of realistic distributions with a

sequence of exponentially distributed phases. However, certain distributions are notoriously

hard to approximate in this way. An example includes deterministic distributions, where

the system takes an action after a pre-determined time period. For example, the availability

delay in the model of HTCondor is usually a deterministic delay. There has been an ongoing

9. CONCLUSION 175

work into incorporating deterministic delays and general distributions into ODE analysis

of Markov population models [95, 96, 39]. So far, existing results apply only to a limited

number of cases.

More accurate parameter forecasts The dynamic model of HTCondor from Section 9.2 relied

on accurate parameter forecasts from existing data. We are investigating suitable time-series

analysis techniques which would allow us to obtain accurate predictions of time-dependent

rate parameters. In particular, we seek methods which would be able to forecast parameters

of Coxian distributions in the model.

Different synchronisation options in GPEPAc transactions In the presented version of GPE-

PAc, agents within a transaction can only take part in one type of synchronisation, where a

single sender emits a message on a set of channels to a set of receivers. Various applications

might require different types of synchronisation. For example, agents might be able to probe

a socket connection and only perform an action if there were enough required receiving

agents.

Support of dynamic models in GPA We are planning to implement the full modelling life-cycle

presented on the HTCondor study in GPA. This involves on-line aggregation of system logs,

fitting and forecasting model parameters and automatically generating models for different

types of users.

9.3.2 Theoretical advances

We present two example theoretical developments that, if implemented, would greatly enhance

the modelling power of the presented framework.

Accumulations and rates with thresholds When describing hPCTMC models in Chapter 6, we

used the minimum function in the transition rate of an air conditioning unit to capture

the feedback from the temperature variable. We were able to use the min-closure from

Section 4.4 to obtain accurate approximations from the ODE analysis. Often, it is natural

for the model to implement feedback based on thresholds, such as enabling a transition only

if the temperature variable is above a certain fixed threshold. Such a rate might introduce

discontinuities in the ODE system. In order to achieve this, we would need to develop

a specialised moment-closure that would express expectations involving such terms as

functions of other moments.

Hybrid state space of individual agents The continuous variables in hPCTMC are available

globally to all agents. However, often the behaviour of individual components of large-scale

systems, such as wireless sensor networks, is influenced by their “local” continuous variables

such as battery level or position in space. There has been preliminary work into extending

Markov population models by allowing each of the large number of agents to access a

collection of local continuous variables [97]. A natural extension of the analysis is a system

of partial differential equations (PDEs), that can compute the proportion of agents which

have a particular value of local variable. So far, this approach has been limited to only a

small class of Markov population models. Moreover, we believe that a similar approach

9. CONCLUSION 176

can be used to address the efficiency of ODE analysis of GPEPAc models. The session-based

interactions in GPEPAc models can lead to a combinatorial explosion of the number of

different transactions in the system. For example, in the model in Section 7.4, the ODE

analysis would become infeasible if each of the nodes is allowed to concurrently serve 100

different jobs. However, we could approximate the number of each different job as a local

variable and use the PDE method to obtain an approximation to the system.

177

Related Publications

[1] J. T. Bradley, M. Forshaw, A. Stefanek and N. Thomas. “Time-inhomogeneous population

models of a cycle-stealing distributed system”. In: UKPEW’13, The 29th UK Performance
Engineering Workshop. 2013 (on p. 21, 170).

[2] J. T. Bradley, M. C. Guenther, R. A. Hayden and A. Stefanek. “GPA - A multiformalism,

multisolution approach to efficient analysis of large scale population models”. In: Theory
and Application of Multi-Formalism Modeling. Ed. by M. Gribaudo and M. Iaconno. IGI

Global, 2013. ISBN: 1466646594. DOI: 10.4018/978-1-4666-4659-9 (on p. 19, 156,

160).

[3] M. C. Guenther, A. Stefanek and J. T. Bradley. “Moment closures for performance models

with highly non-linear rates”. In: Computer Performance Engineering - 9th European
Workshop, EPEW 2012, Munich, Germany, July 30, 2012, and 28th UK Workshop, UKPEW
2012, Edinburgh, UK, July 2, 2012, Revised Selected Papers. Munich: Springer, 2012,

pp. 32–47. DOI: 10.1007/978-3-642-36781-6_3 (on p. 20, 61, 75).

[4] R. A. Hayden, A. Stefanek and J. T. Bradley. “Fluid computation of passage-time distri-

butions in large Markov models”. In: Theoretical Computer Science 413.1 (Jan. 2012),

pp. 106–141. ISSN: 03043975. DOI: 10.1016/j.tcs.2011.07.017 (on p. 17–19, 35, 53,

58, 85, 97, 104, 105, 123, 124, 151, 169).

[5] M. Kohut, A. Stefanek, R. A. Hayden and J. T. Bradley. “Specification and efficient

computation of passage-time distributions in GPA”. In: Proceeding QEST ’12 Proceedings
of the 2012 Ninth International Conference on Quantitative Evaluation of SysTems. London,

2012, pp. 199–200. DOI: 10.1109/QEST.2012.24 (on p. 18, 20, 156).

[6] A. Stefanek, M. C. Guenther and J. T. Bradley. “Normal and inhomogeneous moment

closures for stochastic process algebras”. In: 10th Workshop on Process Algebra and
Stochastically Timed Activities (PASTA’11). Ragusa, 2011 (on p. 21, 61).

[7] A. Stefanek, U. Harder and J. T. Bradley. “Energy Consumption in the Office”. In: UK-
PEW’12, 28th UK Performance Engineering Workshop, Edinburgh, UK, July 2, 2012, Revised
Selected Papers. Ed. by M. Tribastone and S. Gilmore. Vol. 7587. Lecture Notes in Computer

Science. Springer, 2012, pp. 224–236. ISBN: 978-3-642-36780-9. DOI: 10.1007/978-3-

642-36781-6_16 (on p. 21, 83).

[8] A. Stefanek, R. A. Hayden and J. T. Bradley. “A new tool for the performance analysis

of massively parallel computer systems”. In: Eighth Workshop on Quantitative Aspects
of Programming Languages QAPL 2010 March 2728 2010 Paphos Cyprus. Electronic

Proceedings in Theoretical Computer Science (2010). DOI: 10.4204/EPTCS.28.11 (on

p. 19, 61, 156).

http://dx.doi.org/10.4018/978-1-4666-4659-9
http://dx.doi.org/10.1007/978-3-642-36781-6_3
http://dx.doi.org/10.1016/j.tcs.2011.07.017
http://dx.doi.org/10.1109/QEST.2012.24
http://dx.doi.org/10.1007/978-3-642-36781-6_16
http://dx.doi.org/10.1007/978-3-642-36781-6_16
http://dx.doi.org/10.4204/EPTCS.28.11

RELATED PUBLICATIONS 178

[9] A. Stefanek, R. A. Hayden and J. T. Bradley. “Fluid Analysis of Energy Consumption using

Rewards in Massively Parallel Markov Models”. In: ICPE’11 - Second Joint WOSP/SIPEW
International Conference on Performance Engineering, Karlsruhe, Germany, March 14-16,
2011. ACM Press, 2011, p. 121. ISBN: 9781450305198. DOI: 10.1145/1958746.1958767

(on p. 20, 81).

[10] A. Stefanek, R. A. Hayden and J. T. Bradley. “Fluid computation of the performance-

energy trade-off in large scale Markov models”. In: SIGMETRICS Perform. Eval. Rev. 39.3

(2011). DOI: 10.1145/2160803.2160872 (on p. 19, 81, 110, 129).

[11] A. Stefanek, R. A. Hayden and J. T. Bradley. “GPA - A Tool for Fluid Scalability Analysis

of Massively Parallel Systems”. In: 2011 Eighth International Conference on Quantitative
Evaluation of SysTems. IEEE, Sept. 2011, pp. 147–148. ISBN: 978-1-4577-0973-9. DOI:

10.1109/QEST.2011.26 (on p. 20, 156).

[12] A. Stefanek, R. A. Hayden and J. T. Bradley. “GPA - a tool for rapid analysis of very large

scale PEPA models”. In: UKPEW’10, 26th UK Performance Engineering Workshop. 7-8th
July, University of Warwick. 2010, pp. 91–101 (on p. 21, 156).

[13] A. Stefanek, R. A. Hayden and J. T. Bradley. “Hybrid analysis of large scale PEPA models”.

In: 9th Workshop on Process Algebra and Stochastically Timed Activities (PASTA). 2010,

p. 29 (on p. 21, 61).

[14] A. Stefanek, R. A. Hayden and J. T. Bradley. “Mean-field Analysis of Large Scale Markov

Fluid Models with Fluid Dependent and Time-Inhomogeneous Rates”. In: Annals of
Operations Research to appear (2013) (on p. 19, 20, 104, 197, 198).

[15] A. Stefanek, R. A. Hayden, M. M. Gonagle and J. T. Bradley. “Mean-Field Analysis of

Markov Models with Reward Feedback”. In: Analytical and Stochastic Modeling Techniques
and Applications - 19th International Conference, ASMTA 2012, Grenoble, France, June 4-6,
2012. Proceedings. Springer, 2012, pp. 193–211. DOI: 10.1007/978-3-642-30782-9_14

(on p. 19, 20, 104).

http://dx.doi.org/10.1145/1958746.1958767
http://dx.doi.org/10.1145/2160803.2160872
http://dx.doi.org/10.1109/QEST.2011.26
http://dx.doi.org/10.1007/978-3-642-30782-9_14

179

Bibliography

[16] O. E. Akman, F. Ciocchetta, A. Degasperi and M. L. Guerriero. “Modelling Biological

Clocks with Bio-PEPA: Stochasticity and Robustness for the Neurospora crassa Circadian

Network”. In: CMSB ’09 Proceedings of the 7th International Conference on Computational
Methods in Systems Biology. Ed. by P. Degano and R. Gorrieri. Vol. 5688. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, Aug. 2009, pp. 52–67.

ISBN: 978-3-642-03844-0. DOI: 10.1007/978-3-642-03845-7 (on p. 32).

[17] A. Ale, P. Kirk and M. Stumpf. “A general moment expansion method for stochastic

kinetic models”. In: The Journal of chemical physics March (2013), pp. 1–13. arXiv:arXiv:

1303.5848v1 (on p. 16, 29, 30, 168).

[18] D. F. Anderson. “A modified next reaction method for simulating chemical systems with

time dependent propensities and delays.” en. In: The Journal of chemical physics 127.21

(Dec. 2007), p. 214107. ISSN: 0021-9606. DOI: 10.1063/1.2799998 (on p. 108).

[19] H. Andersson and T. Britton. “Stochastic epidemics in dynamic populations: quasi-

stationarity and extinction”. In: Journal of Mathematical Biology 41.6 (2000), pp. 559–

580. ISSN: 0303-6812. DOI: 10.1007/s002850000060 (on p. 31).

[20] ANTLRv3 project. URL: http://www.antlr3.org/ (visited on 09/08/2013) (on p. 166).

[21] D. Ardagna, B. Panicucci, M. Trubian and L. Zhang. “Energy-Aware Autonomic Resource

Allocation in Multitier Virtualized Environments”. In: IEEE Transactions on Services Com-
puting 5.1 (Jan. 2012), pp. 2–19. ISSN: 1939-1374. DOI: 10.1109/TSC.2010.42 (on

p. 36).

[22] S. Asmussen, O. Nerman and M. Olsson. “Fitting Phase-type Distributions via the EM

Algorithm”. In: Scandinavian Journal of Statistics 23.4 (1996), pp. 419 –441 (on p. 172).

[23] S. Asmussen. Applied Probability and Queues. Springer New York, 2003. ISBN: 978-0-387-

00211-8. DOI: 10.1007/b97236 (on p. 170).

[24] F. Baccelli, D. McDonald and J. Reynier. “A mean-field model for multiple TCP connections

through a buffer implementing RED”. In: Performance Evaluation 49.1-4 (Sept. 2002),

pp. 77–97. ISSN: 01665316. DOI: 10.1016/S0166-5316(02)00136-0 (on p. 30).

[25] F. Baccelli, A. Chaintreau, D. De Vleeschauwer and D. McDonald. “A mean-field analysis

of short lived interacting TCP flows”. In: ACM SIGMETRICS Performance Evaluation Review
32.1 (June 2004), p. 343. ISSN: 01635999. DOI: 10.1145/1012888.1005727 (on p. 16,

30).

[26] G. Balbo. “Introduction to Stochastic Petri Nets”. In: Lecture Notes in Computer Science

2090 (Sept. 2001). Ed. by E. Brinksma, H. Hermanns and J.-P. Katoen. DOI: 10.1007/3-

540-44667-2 (on p. 16, 25).

http://dx.doi.org/10.1007/978-3-642-03845-7
http://arxiv.org/abs/arXiv:1303.5848v1
http://arxiv.org/abs/arXiv:1303.5848v1
http://dx.doi.org/10.1063/1.2799998
http://dx.doi.org/10.1007/s002850000060
http://www.antlr3.org/
http://dx.doi.org/10.1109/TSC.2010.42
http://dx.doi.org/10.1007/b97236
http://dx.doi.org/10.1016/S0166-5316(02)00136-0
http://dx.doi.org/10.1145/1012888.1005727
http://dx.doi.org/10.1007/3-540-44667-2
http://dx.doi.org/10.1007/3-540-44667-2

BIBLIOGRAPHY 180

[27] L. A. Barroso and U. Hölzle. “The Case for Energy-Proportional Computing”. In: Computer
40.12 (Dec. 2007), pp. 33–37. ISSN: 0018-9162. DOI: 10.1109/MC.2007.443 (on p. 13,

14).

[28] F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios. “Open, Closed, and Mixed

Networks of Queues with Different Classes of Customers”. In: Journal of the ACM 22.2

(Apr. 1975), pp. 248–260. ISSN: 00045411. DOI: 10.1145/321879.321887 (on p. 30).

[29] R. J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press, 1982 (on

p. 30).

[30] N. Bellomo and M. Pulvirenti. Modeling in applied sciences - A kinetic theory approach.

Springer, 2000 (on p. 30).

[31] M. Benaïm and J.-Y. Le Boudec. “A class of mean field interaction models for computer

and communication systems”. In: Performance Evaluation 65.11-12 (Nov. 2008), pp. 823–

838. ISSN: 01665316. DOI: 10.1016/j.peva.2008.03.005 (on p. 16, 30, 168).

[32] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, 1968 (on p. 115).

[33] A. Bobbio, M. Gribaudo and M. Telek. “Analysis of Large Scale Interacting Systems by

Mean Field Method”. English. In: 2008 Fifth International Conference on Quantitative
Evaluation of Systems 978 (Sept. 2008), pp. 215–224. DOI: 10.1109/QEST.2008.47 (on

p. 16, 30, 168).

[34] L. Bortolussi. “Hybrid Behaviour of Markov Population Models”. In: (Nov. 2012). arXiv:1211.

1643 (on p. 38).

[35] L. Bortolussi. “On the Approximation of Stochastic Concurrent Constraint Programming

by Master Equation”. In: Electronic Notes in Theoretical Computer Science 220.3 (2008),

pp. 163–180. ISSN: 15710661. DOI: 10.1016/j.entcs.2008.11.025 (on p. 32).

[36] L. Bortolussi. “Stochastic Concurrent Constraint Programming”. In: Electronic Notes
in Theoretical Computer Science 164.3 (Oct. 2006), pp. 65–80. ISSN: 15710661. DOI:

10.1016/j.entcs.2006.07.012 (on p. 16, 25, 32).

[37] L. Bortolussi, V. Galpin and J. Hillston. “HYPE with stochastic events”. In: Electronic
Proceedings in Theoretical Computer Science 57.Qapl (July 2011), pp. 120–133. ISSN:

2075-2180. DOI: 10.4204/EPTCS.57.9 (on p. 37).

[38] L. Bortolussi and R. A. Hayden. “Bounds on the Deviation of Discrete-time Markov Chains

from Their Mean-field Model”. In: Perform. Eval. 70.10 (Oct. 2013), pp. 736–749. ISSN:

0166-5316. DOI: 10.1016/j.peva.2013.08.012 (on p. 61).

[39] L. Bortolussi and J. Hillston. “Fluid Approximation of CTMC with Deterministic Delays”.

English. In: 2012 Ninth International Conference on Quantitative Evaluation of Systems.
IEEE, Sept. 2012, pp. 53–62. ISBN: 978-1-4673-2346-8. DOI: 10.1109/QEST.2012.13 (on

p. 175).

[40] L. Bortolussi and J. Hillston. “Fluid Model Checking”. In: CONCUR 2012 – Concurrency
Theory. Ed. by M. Koutny and I. Ulidowski. Vol. 7454. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 333–347. ISBN: 978-3-642-

32939-5. DOI: 10.1007/978-3-642-32940-1_24 (on p. 35).

http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1145/321879.321887
http://dx.doi.org/10.1016/j.peva.2008.03.005
http://dx.doi.org/10.1109/QEST.2008.47
http://arxiv.org/abs/1211.1643
http://arxiv.org/abs/1211.1643
http://dx.doi.org/10.1016/j.entcs.2008.11.025
http://dx.doi.org/10.1016/j.entcs.2006.07.012
http://dx.doi.org/10.4204/EPTCS.57.9
http://dx.doi.org/10.1016/j.peva.2013.08.012
http://dx.doi.org/10.1109/QEST.2012.13
http://dx.doi.org/10.1007/978-3-642-32940-1_24

BIBLIOGRAPHY 181

[41] L. Bortolussi and A. Policriti. “Dynamical Systems and Stochastic Programming: To

Ordinary Differential Equations and Back”. In: Transactions on Computational Systems
Biology XI. Lecture Notes in Computer Science 5750 (2009). Ed. by C. Priami, R.-J. Back

and I. Petre, pp. 216–267. DOI: 10.1007/978-3-642-04186-0 (on p. 16, 32, 168).

[42] J.-Y. L. Boudec, D. McDonald and J. Mundinger. “A Generic Mean Field Convergence

Result for Systems of Interacting Objects”. In: Fourth International Conference on the
Quantitative Evaluation of Systems (QEST 2007). IEEE, Sept. 2007, pp. xii–xii. ISBN:

0-7695-2883-X. DOI: 10.1109/QEST.2007.3 (on p. 16, 30, 168).

[43] J. T. Bradley, S. T. Gilmore and J. Hillston. “Analysing distributed Internet worm attacks

using continuous state-space approximation of process algebra models”. In: Journal of
Computer and System Sciences 74.6 (Sept. 2008), pp. 1013–1032. ISSN: 00220000. DOI:

10.1016/j.jcss.2007.07.005 (on p. 31).

[44] J. Bradley, N. Dingle, S. Gilmore and W. Knottenbelt. “Derivation of passage-time densities

in PEPA models using ipc: the imperial PEPA compiler”. In: 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems,
2003. MASCOTS 2003. IEEE Comput. Soc, 2003, pp. 344–351. ISBN: 0-7695-2039-1. DOI:

10.1109/MASCOT.2003.1240679 (on p. 25).

[45] J. Bradley, N. Dingle, P. Harrison and W. Knottenbelt. “Distributed computation of

passage time quantiles and transient state distributions in large semi-Markov models”.

English. In: Proceedings International Parallel and Distributed Processing Symposium. IEEE

Comput. Soc, 2003, p. 8. ISBN: 0-7695-1926-1. DOI: 10.1109/IPDPS.2003.1213505 (on

p. 35, 39).

[46] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons,

2003. ISBN: 978-0-471-96758-3 (on p. 52).

[47] M. Cain. “The moment-generating function of the minimum of bivariate normal random

variables”. In: The American Statistician 48.2 (1994), pp. 124–125. DOI: 10.1080/

00031305.1994.10476039 (on p. 73).

[48] L. Cardelli. “On process rate semantics”. In: Theoretical Computer Science 391.3 (2008),

pp. 190 –215. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2007.11.012 (on p. 16, 32, 33).

[49] G. Casale. “Exact analysis of performance models by the Method of Moments”. In:

Performance Evaluation 68.6 (2011), pp. 487 –506. ISSN: 0166-5316. DOI: 10.1016/j.

peva.2010.12.009 (on p. 31).

[50] F. Castella, G. Dujardin and B. Sericola. “Moments’ Analysis in Homogeneous Markov

Reward Models”. In: Methodology and Computing in Applied Probability 11.4 (May 2008),

pp. 583–601. ISSN: 1387-5841. DOI: 10.1007/s11009-008-9075-5 (on p. 34).

[51] A. Chaintreau, J.-Y. Le Boudec and N. Ristanovic. “The Age of Gossip: Spatial Mean

Field Regime”. In: ACM SIGMETRICS Performance Evaluation Review 37.1 (June 2009),

pp. 109–120. ISSN: 0163-5999. DOI: 10.1145/2492101.1555363 (on p. 105).

[52] K. M. Chandy and D. Neuse. “Linearizer: A Heuristic Algorithm for Queueing Network

Models of Computing Systems”. In: Communications of the ACM 25.2 (Feb. 1982), pp. 126–

134. ISSN: 0001-0782. DOI: 10.1145/358396.358403 (on p. 31).

http://dx.doi.org/10.1007/978-3-642-04186-0
http://dx.doi.org/10.1109/QEST.2007.3
http://dx.doi.org/10.1016/j.jcss.2007.07.005
http://dx.doi.org/10.1109/MASCOT.2003.1240679
http://dx.doi.org/10.1109/IPDPS.2003.1213505
http://dx.doi.org/10.1080/00031305.1994.10476039
http://dx.doi.org/10.1080/00031305.1994.10476039
http://dx.doi.org/10.1016/j.tcs.2007.11.012
http://dx.doi.org/10.1016/j.peva.2010.12.009
http://dx.doi.org/10.1016/j.peva.2010.12.009
http://dx.doi.org/10.1007/s11009-008-9075-5
http://dx.doi.org/10.1145/2492101.1555363
http://dx.doi.org/10.1145/358396.358403

BIBLIOGRAPHY 182

[53] G. Ciardo, D. Nicol and K. Trivedi. “Discrete-event simulation of fluid stochastic Petri

nets”. In: Proceedings of the Seventh International Workshop on Petri Nets and Performance
Models. IEEE Comput. Soc, 1997, pp. 217–225. ISBN: 0-8186-7931-X. DOI: 10.1109/PNPM.

1997.595553 (on p. 37).

[54] F. Ciocchetta, A. Degasperi, J. K. Heath and J. Hillston. “Modelling and analysis of the

NF-κB pathway in Bio-PEPA”. In: Transactions on Computational Systems Biology XII.
Ed. by C. Priami, R. Breitling, D. Gilbert, M. Heiner and A. Uhrmacher. Springer Berlin

Heidelberg, 2010, pp. 229–262. DOI: 10.1007/978-3-642-11712-1_7 (on p. 32).

[55] F. Ciocchetta, A. Duguid, S. Gilmore, M. L. Guerriero and J. Hillston. “The Bio-PEPA Tool

Suite”. In: 2009 Sixth International Conference on the Quantitative Evaluation of Systems
(Sept. 2009), pp. 309–310. DOI: 10.1109/QEST.2009.27 (on p. 32).

[56] F. Ciocchetta and J. Hillston. “Bio-PEPA: A framework for the modelling and analysis of

biological systems”. In: Theoretical Computer Science 410.33-34 (Aug. 2009), pp. 3065–

3084. ISSN: 03043975. DOI: 10.1016/j.tcs.2009.02.037 (on p. 31, 168).

[57] F. Ciocchetta and J. Hillston. “Bio-PEPA for Epidemiological Models”. In: Electronic
Notes in Theoretical Computer Science 261 (Feb. 2010), pp. 43–69. ISSN: 15710661. DOI:

10.1016/j.entcs.2010.01.005 (on p. 32).

[58] A. Clark. “The ipclib PEPA Library”. In: QEST’07, 4th International Conference on the
Quantitative Evaluation of Systems. IEEE, Sept. 2007, pp. 55–56. DOI: 10.1109/QEST.

2007.20 (on p. 39).

[59] A. Clark, S. Gilmore and M. Tribastone. “Scalable Analysis of Scalable Systems”. In: FASE
2009, 12th International Conference on Fundamental Approaches to Software Engineering.

Ed. by M. and Chechik and M. Wirsing. Vol. 5503. Lecture Notes in Computer Science.

Springer, 2009, pp. 1–17. DOI: 10.1007/978-3-642-00593-0_1 (on p. 36).

[60] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill

Book Company, 1955 (on p. 108).

[61] Commons Math: The Apache Commons Mathematics Library. URL: http://commons.

apache.org/proper/commons-math/ (visited on 09/08/2013) (on p. 52, 162).

[62] P. Cremonesi, P. Schweitzer and G. Serazzi. “A unifying framework for the approximate

solution of closed multiclass queuing networks”. In: IEEE Transactions on Computers
51.12 (2002), pp. 1423–1434. ISSN: 0018-9340. DOI: 10.1109/TC.2002.1146708 (on

p. 31).

[63] R. W. R. Darling and J. R. Norris. “Differential equation approximations for Markov

chains”. In: Probability Surveys 5 (Oct. 2008), pp. 37–79. ISSN: 1549-5787. DOI: 10.1214/

07-PS121. arXiv:0710.3269 (on p. 58, 61).

[64] M. H. A. Davis. Markov models and optimization. Chapman & Hall/CRC, 1993 (on p. 107).

[65] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders and

P. G. Webster. “The Möbius Framework and its Implementation”. In: IEEE Transactions on
Software Engineering 28.10 (Oct. 2002), pp. 956–969. DOI: 10.1109/TSE.2002.1041052

(on p. 25, 38).

http://dx.doi.org/10.1109/PNPM.1997.595553
http://dx.doi.org/10.1109/PNPM.1997.595553
http://dx.doi.org/10.1007/978-3-642-11712-1_7
http://dx.doi.org/10.1109/QEST.2009.27
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.entcs.2010.01.005
http://dx.doi.org/10.1109/QEST.2007.20
http://dx.doi.org/10.1109/QEST.2007.20
http://dx.doi.org/10.1007/978-3-642-00593-0_1
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://dx.doi.org/10.1109/TC.2002.1146708
http://dx.doi.org/10.1214/07-PS121
http://dx.doi.org/10.1214/07-PS121
http://arxiv.org/abs/0710.3269
http://dx.doi.org/10.1109/TSE.2002.1041052

BIBLIOGRAPHY 183

[66] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall and W. Vogels. “Dynamo”. In: ACM SIGOPS Operating
Systems Review 41.6 (Oct. 2007), p. 205. ISSN: 01635980. DOI: 10.1145/1323293.

1294281 (on p. 13).

[67] E. de Souza e Silva and R. Gail. “An algorithm to calculate transient distributions of

cumulative rate and impulse based reward”. In: Communications in Statistics: Stochastic
Models 14.3 (1998), pp. 509–536. DOI: 10.1080/15326349808807486 (on p. 34).

[68] J. Ding. “Structural and Fluid Analysis for Large Scale PEPA Models -with Applications to

Content Adaptation Systems”. PhD thesis. University of Edinburgh, 2010 (on p. 31, 34,

35, 53, 86, 168).

[69] L. Donatiello and V. Grassi. “On Evaluating the Cumulative Performance Distribution

of Fault-Tolerant Computer Systems”. In: IEEE Transactions on Computers 40.11 (1991).

ISSN: 0018-9340. DOI: 10.1109/12.102838 (on p. 34).

[70] J. Dormand and P. Prince. “A family of embedded Runge-Kutta formulae”. In: Journal of
Computational and Applied Mathematics 6.1 (1980), pp. 19 –26. ISSN: 0377-0427. DOI:

10.1016/0771-050X(80)90013-3 (on p. 52).

[71] S. Engblom. “Computing the moments of high dimensional solutions of the master

equation”. In: Applied Mathematics and Computation 180.2 (2006), pp. 498 –515. DOI:

10.1016/j.amc.2005.12.032 (on p. 16, 29, 30, 46, 168).

[72] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley,

2005 (on p. 31, 108, 197, 198).

[73] J. Fourneau, L. Kloul and F. Valois. “Performance modelling of hierarchical cellular

networks using PEPA”. In: Performance Evaluation 50.2-3 (Nov. 2002), pp. 83–99. ISSN:

01665316. DOI: 10.1016/S0166-5316(02)00101-3 (on p. 25).

[74] M. Fujita, P. McGeer and J.-Y. Yang. “Multi-Terminal Binary Decision Diagrams: An Effi-

cient Data Structure for Matrix Representation”. en. In: Formal Methods in System Design
10.2-3 (Apr. 1997), pp. 149–169. ISSN: 1572-8102. DOI: 10.1023/A:1008647823331 (on

p. 25).

[75] V. Galpin, L. Bortolussi and J. Hillston. “HYPE: hybrid modelling by composition of flows”.

In: Formal Aspects of Computing 25.4 (2010), pp. 1–39. DOI: 10.1007/s00165-011-0189-

0 (on p. 37).

[76] A. Gandhi, V. Gupta and M. Harchol-Balter. “Optimality analysis of energy-performance

trade-off for server farm management”. In: Performance Evaluation 67.11 (2010), pp. 1155–

1171. DOI: 10.1016/j.peva.2010.08.009 (on p. 36).

[77] A. Gandhi and M. Harchol-Balter. “The case for sleep states in servers”. In: HotPower
’11 Proceedings of the 4th Workshop on Power-Aware Computing and Systems. 2011. ISBN:

9781450309813. DOI: 10.1145/2039252.2039254 (on p. 36).

[78] A. Gandhi, Yuan Chen, D. Gmach, M. Arlitt and M. Marwah. “Minimizing data center SLA

violations and power consumption via hybrid resource provisioning”. English. In: 2011
International Green Computing Conference and Workshops. IEEE, July 2011, pp. 1–8. ISBN:

978-1-4577-1222-7. DOI: 10.1109/IGCC.2011.6008611 (on p. 13, 36).

http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1080/15326349808807486
http://dx.doi.org/10.1109/12.102838
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/j.amc.2005.12.032
http://dx.doi.org/10.1016/S0166-5316(02)00101-3
http://dx.doi.org/10.1023/A:1008647823331
http://dx.doi.org/10.1007/s00165-011-0189-0
http://dx.doi.org/10.1007/s00165-011-0189-0
http://dx.doi.org/10.1016/j.peva.2010.08.009
http://dx.doi.org/10.1145/2039252.2039254
http://dx.doi.org/10.1109/IGCC.2011.6008611

BIBLIOGRAPHY 184

[79] N. Gast and B. Gaujal. A mean field model of work stealing in large-scale systems. Vol. 38.

1. New York, New York, USA: ACM Press, June 2010, p. 13. ISBN: 9781450300384. DOI:

10.1145/1811039.1811042 (on p. 16).

[80] E. Gelenbe and C. Morfopoulou. “Power Savings in Packet Networks via Optimised

Routing”. In: Mobile Networks and Applications 17.1 (Oct. 2011), pp. 152–159. ISSN:

1383-469X. DOI: 10.1007/s11036-011-0344-0 (on p. 36).

[81] C. S. Gillespie. “Moment-closure approximations for mass-action models”. In: IET Systems
Biology 3.1 (2009), pp. 52–58 (on p. 16, 29, 30, 39, 110, 168).

[82] D. T. Gillespie. “Exact stochastic simulation of coupled chemical reactions”. In: Journal
of Physical Chemistry 81.25 (1977), pp. 2340–2361. ISSN: 00223654. DOI: 10.1021/

j100540a008 (on p. 24, 39, 45).

[83] D. T. Gillespie. Markov Processes: An Introduction for Physical Scientist. Gulf Professional

Publishing, 1992, p. 565. ISBN: 0122839552 (on p. 29, 34).

[84] S. Gilmore, J. Hillston and M. Ribaudo. “An efficient algorithm for aggregating PEPA

models”. In: IEEE Transactions on Software Engineering 27.5 (May 2001), pp. 449–464.

ISSN: 00985589. DOI: 10.1109/32.922715 (on p. 28).

[85] S. Gilmore, J. Hillston, R. Holton and M. Rettelbach. “Specifications in Stochastic Process

Algebra for a Robot Control Problem”. In: International Journal of Production Research
(1995) (on p. 25).

[86] R. Gonzalez and M. Horowitz. “Energy dissipation in general purpose microprocessors”.

In: IEEE Journal of Solid-State Circuits 31.9 (1996), pp. 1277–1284. ISSN: 00189200. DOI:

10.1109/4.535411 (on p. 36).

[87] GPAnalyser project. URL: http : / / code . google . com / p / gpanalyser/ (visited on

09/08/2013) (on p. 166).

[88] C. Graham. “Kinetic limits for large communication networks”. In: Modeling in applied
sciences: a kinetic theory approach (2000), pp. 317–330 (on p. 16, 30).

[89] C. Graham and P. Robert. “Interacting multi-class transmissions in large stochastic

networks”. EN. In: The Annals of Applied Probability 19.6 (Dec. 2009), pp. 2334–2361.

ISSN: 2168-8737. DOI: 10.1214/09-AAP614 (on p. 16, 30).

[90] M. Gribaudo and M. Telek. “Fluid models in performance analysis”. In: Formal Methods
for Performance Evaluation. Ed. by M. Bernardo and J. Hillston. Vol. 4486. Springer Berlin

Heidelberg, May 2007, pp. 271–317. ISBN: 978-3-540-72482-7. DOI: 10.1007/978-3-

540-72522-0_7 (on p. 37).

[91] M. Gribaudo, M. Sereno and A. Bobbio. “Fluid Stochastic Petri Nets: An Extended

Formalism to Include Non-Markovian Models”. In: Proceedings of The 8th International
Workshop on Petri Nets and Performance Models. Zaragoza: IEEE Computer Society, Sept.

1999, pp. 74 –81. ISBN: 0-7695-0331-4. DOI: 10.1109/PNPM.1999.796554 (on p. 37).

http://dx.doi.org/10.1145/1811039.1811042
http://dx.doi.org/10.1007/s11036-011-0344-0
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1109/32.922715
http://dx.doi.org/10.1109/4.535411
http://code.google.com/p/gpanalyser/
http://dx.doi.org/10.1214/09-AAP614
http://dx.doi.org/10.1007/978-3-540-72522-0_7
http://dx.doi.org/10.1007/978-3-540-72522-0_7
http://dx.doi.org/10.1109/PNPM.1999.796554

BIBLIOGRAPHY 185

[92] M. C. Guenther and J. T. Bradley. “Higher moment analysis of a spatial stochastic

process algebra.” In: Proceedings of the 8th European conference on Computer Performance
Engineering. 2011, pp. 87–101. DOI: 10.1007/978-3-642-24749-1_8 (on p. 156, 160,

169).

[93] P. G. Harrison and W. J. Knottenbelt. “Passage Time Distributions in Large Markov Chains”.

In: Proceedings of the ACM SIGMETRICS international conference on Measurement and
modeling of computer systems - SIGMETRICS ’02. Vol. 30. ACM SIGMETRICS Performance

Evaluation Review 1. May 2002, pp. 77–85. DOI: 10.1145/511399.511345 (on p. 35).

[94] J. Hasenauer, V. Wolf, A. Kazeroonian and F. J. Theis. “Method of conditional moments

(MCM) for the Chemical Master Equation : A unified framework for the method of

moments and hybrid stochastic-deterministic models.” In: Journal of mathematical biology
(Aug. 2013). ISSN: 1432-1416. DOI: 10.1007/s00285-013-0711-5 (on p. 38).

[95] R. A. Hayden. “Mean-field approximations for performance models with generally-timed

transitions”. In: SIGMETRICS Perform. Eval. Rev. 39.3 (2011), pp. 119–121. DOI: 10.1145/

2160803.2160877 (on p. 46, 175).

[96] R. A. Hayden. “Mean Field for Performance Models with Deterministically-Timed Trans-

itions”. In: 2012 Ninth International Conference on Quantitative Evaluation of Systems. Lon-

don: IEEE, Sept. 2012, pp. 63–73. ISBN: 978-1-4673-2346-8. DOI: 10.1109/QEST.2012.27

(on p. 175).

[97] R. A. Hayden. “Mean-field models for interacting battery-powered devices”. In: Imperial
College Energy and Performance Colloqium. 2012 (on p. 105, 175).

[98] R. A. Hayden. “Scalable performance analysis of massively parallel stochastic systems”.

PhD thesis. 2011 (on p. 62).

[99] R. A. Hayden and J. T. Bradley. “A fluid analysis framework for a Markovian process

algebra”. In: Theoretical Computer Science 411.22-24 (May 2010), pp. 2260–2297. ISSN:

03043975. DOI: 10.1016/j.tcs.2010.02.001 (on p. 16, 17, 29–32, 40, 48, 63, 109,

110, 156, 168).

[100] R. A. Hayden and J. T. Bradley. “A functional central limit theorem for PEPA”. In:

PASTA’09, Proceedings of the 8th Workshop on Process Algebra and Stochastically Timed
Activities. Edinburgh, Aug. 2009, pp. 13–23 (on p. 31, 58).

[101] R. A. Hayden and J. T. Bradley. “Evaluating fluid semantics for passive stochastic process

algebra cooperation”. In: Performance Evaluation 67.4 (2010), pp. 260–284. DOI: 10.

1016/j.peva.2009.08.010 (on p. 31).

[102] R. A. Hayden and J. T. Bradley. Shared Transaction Markov Chains for fluid analysis of
massively parallel systems. IEEE, Sept. 2009, pp. 1–12. ISBN: 978-1-4244-4927-9. DOI:

10.1109/MASCOT.2009.5367050 (on p. 130).

[103] R. A. Hayden, J. T. Bradley and A. Clark. “Performance Specification and Evaluation

with Unified Stochastic Probes and Fluid Analysis”. In: IEEE Transactions on Software
Engineering 39.1 (Jan. 2013), pp. 97–118. ISSN: 0098-5589. DOI: 10.1109/TSE.2012.1

(on p. 21, 34, 35, 55, 82, 123, 164).

http://dx.doi.org/10.1007/978-3-642-24749-1_8
http://dx.doi.org/10.1145/511399.511345
http://dx.doi.org/10.1007/s00285-013-0711-5
http://dx.doi.org/10.1145/2160803.2160877
http://dx.doi.org/10.1145/2160803.2160877
http://dx.doi.org/10.1109/QEST.2012.27
http://dx.doi.org/10.1016/j.tcs.2010.02.001
http://dx.doi.org/10.1016/j.peva.2009.08.010
http://dx.doi.org/10.1016/j.peva.2009.08.010
http://dx.doi.org/10.1109/MASCOT.2009.5367050
http://dx.doi.org/10.1109/TSE.2012.1

BIBLIOGRAPHY 186

[104] T. A. Henzinger. “The theory of hybrid automata”. In: Logic in Computer Science, 1996.
LICS ’96. Proceedings., Eleventh Annual IEEE Symposium on. IEEE Computer Society, July

1996, pp. 278–292. ISBN: 0-8186-7463-6. DOI: 10.1109/LICS.1996.561342 (on p. 37).

[105] S. Herbert and D. Marculescu. “Analysis of dynamic voltage/frequency scaling in chip-

multiprocessors”. In: Proceedings of the 2007 international symposium on Low power
electronics and design - ISLPED ’07. New York, New York, USA: ACM Press, 2007, pp. 38–

43. ISBN: 9781595937094. DOI: 10.1145/1283780.1283790 (on p. 14).

[106] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker and M. Siegle. “On the use of

MTBDDs for performability analysis and verification of stochastic systems”. In: The Journal
of Logic and Algebraic Programming 56.1-2 (May 2003), pp. 23–67. ISSN: 15678326. DOI:

10.1016/S1567-8326(02)00066-8 (on p. 25).

[107] J. Hillston. A compositional approach to performance modelling. Cambridge University

Press, Oct. 1996. ISBN: 0-521-57189-8 (on p. 16, 25).

[108] J. Hillston. “Fluid flow approximation of PEPA models”. In: QEST. IEEE, Sept. 2005,

pp. 33–42. ISBN: 0-7695-2427-3. DOI: 10.1109/QEST.2005.12 (on p. 16, 31, 39, 109,

168).

[109] G. Horton, V. G. Kulkarni, D. M. Nicol and K. S. Trivedi. “Fluid stochastic Petri nets:

Theory, applications, and solution techniques”. In: European Journal of Operational
Research 105.1 (1998), pp. 184–201. DOI: 10.1016/S0377-2217(97)00028-3 (on p. 37).

[110] G. Horváth, S. Rácz, Á. Tari and M. Telek. “Evaluation of Reward Analysis Methods

with MRMSolve 2.0.” In: Proceedings of the First International Conference on Quantitative
Evaluation of Systems. 2004, pp. 165–174. DOI: 10.1109/QEST.2004.1348031 (on p. 34,

35).

[111] W. Huang, M. Allen-Ware, J. B. Carter, E. Elnozahy, H. Hamann, T. Keller, C. Lefurgy,

K. Rajamani and J. Rubio. “TAPO: Thermal-aware power optimization techniques for

servers and data centers”. English. In: 2011 International Green Computing Conference
and Workshops. IEEE, July 2011, pp. 1–8. ISBN: 978-1-4577-1222-7. DOI: 10.1109/IGCC.

2011.6008610 (on p. 15).

[112] Intel product information. URL: http://ark.intel.com (visited on 09/09/2013) (on

p. 101).

[113] L. Isserlis. “On a Formula for the Product-Moment Coefficient of any Order of a Normal

Frequency Distribution in any Number of Variables”. In: Biometrika 12.1/2 (1918), pp.

134–139. ISSN: 00063444 (on p. 50).

[114] J. R. Jackson. “Networks of Waiting Lines”. In: Operations Research 5.4 (Aug. 1957),

pp. 518–521. ISSN: 0030-364X. DOI: 10.1287/opre.5.4.518 (on p. 30).

[115] Joulemeter. URL: http://research.microsoft.com/en- us/projects/joulemeter

(visited on 09/08/2013) (on p. 102).

[116] O. Kallenberg. Foundations of Modern Probability. Springer, 2002 (on p. 59, 197).

[117] J. G. Kemény and J. L. Snell. Finite markov chains. Springer-Verlag, 1976 (on p. 28).

http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1145/1283780.1283790
http://dx.doi.org/10.1016/S1567-8326(02)00066-8
http://dx.doi.org/10.1109/QEST.2005.12
http://dx.doi.org/10.1016/S0377-2217(97)00028-3
http://dx.doi.org/10.1109/QEST.2004.1348031
http://dx.doi.org/10.1109/IGCC.2011.6008610
http://dx.doi.org/10.1109/IGCC.2011.6008610
http://ark.intel.com
http://dx.doi.org/10.1287/opre.5.4.518
http://research.microsoft.com/en-us/projects/joulemeter

BIBLIOGRAPHY 187

[118] G. Kesidis, T. Konstantopoulos and P. Sousi. “A stochastic epidemiological model and a

deterministic limit for BitTorrent-like peer-to-peer file-sharing networks”. In: (Nov. 2008),

p. 25. arXiv:0811.1003 (on p. 42).

[119] U. Khadim. A comparative study of process algebras for hybrid systems. Computer Science

Report 06–23. Technische Universiteit Eindhoven, 2006 (on p. 37).

[120] F. C. Klebaner. Introduction to stochastic calculus with applications. Second edition. Imper-

ial College Press, 2006 (on p. 114).

[121] W. J. Knottenbelt and P. G. Harrison. “Distributed disk-based solution techniques for large

Markov models”. In: NSMC’99, Proceedings of the 3rd Intl. Conference on the Numerical
Solution of Markov Chains (1999). Ed. by B. Plateau, W. Stewart and M. Silva, pp. 58–75

(on p. 25).

[122] H. Kobayashi. “Application of the Diffusion Approximation to Queueing Networks I:

Equilibrium Queue Distributions”. In: Journal of the ACM 21.2 (Apr. 1974), pp. 316–328.

ISSN: 0004-5411. DOI: 10.1145/321812.321827 (on p. 31).

[123] H. Kobayashi. “Application of the Diffusion Approximation to Queueing Networks II:

Nonequilibrium Distributions and Applications to Computer Modeling”. In: Journal of the
ACM 21.3 (July 1974), pp. 459–469. ISSN: 0004-5411. DOI: 10.1145/321832.321844

(on p. 31).

[124] M. Kohut. A unified performance query formalism. Tech. rep. 2012 (on p. 164).

[125] I. Krishnarajah, A. Cook, G. Marion and G. Gibson. “Novel moment closure approxima-

tions in stochastic epidemics.” In: Bulletin of Mathematical Biology 67.4 (2005), pp. 855–

873. DOI: 10.1016/j.bulm.2004.11.002 (on p. 30).

[126] T. G. Kurtz. “Limit theorems and diffusion approximations for density dependent Markov

chains”. In: Stochastic Systems: Modeling, Identification and Optimization, I. Ed. by R. J.-B.

Wets. Vol. 5. Mathematical Programming Studies. Springer Berlin Heidelberg, 1976,

pp. 67–78. ISBN: 978-3-642-00783-5. DOI: 10.1007/BFb0120765 (on p. 31).

[127] T. G. Kurtz. “Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov

Processes”. In: 7.1 (Apr. 1970), pp. 49–58 (on p. 16, 30).

[128] T. G. Kurtz. “Strong approximation theorems for density dependent Markov chains”. In:

Stochastic Processes and their Applications 6.3 (Feb. 1978), pp. 223–240. ISSN: 03044149.

DOI: 10.1016/0304-4149(78)90020-0 (on p. 31, 58).

[129] M. Z. Kwiatkowska, G. Norman and D. Parker. “PRISM: Probabilistic Symbolic Model

Checker”. In: (Apr. 2002), pp. 200–204 (on p. 25, 38).

[130] M. Kwiatkowski and I. Stark. “The Continuous π-Calculus: A Process Algebra for Bio-

chemical Modelling”. In: Computational Methods in Systems Biology. Ed. by M. Heiner

and A. Uhrmacher. Springer Berlin Heidelberg, 2008, pp. 103–122. DOI: 10.1007/978-3-

540-88562-7_11 (on p. 32).

http://arxiv.org/abs/0811.1003
http://dx.doi.org/10.1145/321812.321827
http://dx.doi.org/10.1145/321832.321844
http://dx.doi.org/10.1016/j.bulm.2004.11.002
http://dx.doi.org/10.1007/BFb0120765
http://dx.doi.org/10.1016/0304-4149(78)90020-0
http://dx.doi.org/10.1007/978-3-540-88562-7_11
http://dx.doi.org/10.1007/978-3-540-88562-7_11

BIBLIOGRAPHY 188

[131] M. Lapin, L. Mikeev and V. Wolf. “SHAVE: stochastic hybrid analysis of markov popu-

lation models”. In: Proceedings of the 14th international conference on Hybrid systems:
computation and control. HSCC ’11. New York, NY, USA: ACM, 2011, pp. 311–312. ISBN:

978-1-4503-0629-4. DOI: 10.1145/1967701.1967746 (on p. 39).

[132] C. H. Lee, K.-H. Kim and P. Kim. “A moment closure method for stochastic reaction

networks.” In: The Journal of chemical physics 130.13 (2009), p. 134107. DOI: 10.1063/

1.3103264. (on p. 29, 168).

[133] H. Lim, A. Kansal and J. Liu. “Power Budgeting for Virtualized Data Centers”. In: Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference. USENIX-

ATC’11. Portland, OR: USENIX Association, 2011, pp. 5–5 (on p. 102).

[134] M. Litzkow, M. Livny and M. Mutka. “Condor-a hunter of idle workstations”. In: 8th
International Conference on Distributed Computing Systems (1988), pp. 104 –111. DOI:

10.1109/DCS.1988.12507 (on p. 169).

[135] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah and C. Hyser.

“Renewable and cooling aware workload management for sustainable data centers”.

In: ACM SIGMETRICS Performance Evaluation Review 40.1 (June 2012), p. 175. ISSN:

01635999. DOI: 10.1145/2318857.2254779 (on p. 104).

[136] R. Marler and J. Arora. “Survey of multi-objective optimization methods for engineering”.

In: Structural and Multidisciplinary Optimization 26.6 (Apr. 2004), pp. 369–395. ISSN:

1615-147X. DOI: 10.1007/s00158-003-0368-6 (on p. 36).

[137] T. J. Martin Arlitt. “Workload Characterization of the 1998 World Cup Web Site”. In: IEEE
Network 14.3 (2000), pp. 30–37. DOI: 10.1109/65.844498 (on p. 104, 124, 125).

[138] M. Massink, M. Brambilla, D. Latella, M. Dorigo and M. Birattari. “Analysing robot

swarm decision-making with Bio-PEPA”. In: ANTS’12 Proceedings of the 8th international
conference on Swarm Intelligence. Ed. by M. Dorigo, M. Birattari, C. Blum, A. L. Christensen,

A. P. Engelbrecht, R. Groß and T. Stützle. Vol. 7461. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer Berlin Heidelberg, Sept. 2012, pp. 25–36. ISBN: 978-3-642-

32649-3. DOI: 10.1007/978-3-642-32650-9 (on p. 32).

[139] M. Massink, M. Brambilla, D. Latella, M. Dorigo and M. Birattari. “On the use of Bio-

PEPA for modelling and analysing collective behaviours in swarm robotics”. In: Swarm
Intelligence 7.2-3 (Apr. 2013), pp. 201–228. ISSN: 1935-3812. DOI: 10.1007/s11721-

013-0079-6 (on p. 32).

[140] M. Massink, D. Latella, A. Bracciali and J. Hillston. “Modelling non-linear crowd dynam-

ics in Bio-PEPA”. In: Proceedings of the 14th International Conference on Fundamental
Approaches to Software Engineering. Ed. by D. Giannakopoulou and F. Orejas. 2011,

pp. 96–110. DOI: 10.1007/978-3-642-19811-3_8 (on p. 32).

[141] M. Massink, D. Latella, A. Bracciali, M. D. Harrison and J. Hillston. “Scalable context-

dependent analysis of emergency egress models”. In: Formal Aspects of Computing 24.2

(July 2011), pp. 267–302. ISSN: 0934-5043. DOI: 10.1007/s00165-011-0188-1 (on

p. 32).

http://dx.doi.org/10.1145/1967701.1967746
http://dx.doi.org/10.1063/1.3103264.
http://dx.doi.org/10.1063/1.3103264.
http://dx.doi.org/10.1109/DCS.1988.12507
http://dx.doi.org/10.1145/2318857.2254779
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1109/65.844498
http://dx.doi.org/10.1007/978-3-642-32650-9
http://dx.doi.org/10.1007/s11721-013-0079-6
http://dx.doi.org/10.1007/s11721-013-0079-6
http://dx.doi.org/10.1007/978-3-642-19811-3_8
http://dx.doi.org/10.1007/s00165-011-0188-1

BIBLIOGRAPHY 189

[142] T. I. Matis and I. G. Guardiola. “Achieving Moment Closure through Cumulant Neglect”.

In: Mathematica (2010) (on p. 29).

[143] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C. Snoeren and

R. K. Gupta. “Evaluating the Effectiveness of Model-based Power Characterization”.

In: Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference.

USENIXATC’11. Portland, OR: USENIX Association, 2011, pp. 12–12 (on p. 102).

[144] B. Melamed and M. Yadin. “Randomization Procedures in the Computation of Cumulative-

Time Distributions over Discrete State Markov Processes”. In: Operations Research 32.4

(1984), pp. 926–944. DOI: 10.1287/opre.32.4.926 (on p. 35).

[145] S. Méléard. “Asymptotic behaviour of some interacting particle systems; McKean-Vlasov

and Boltzmann models”. In: Probabilistic Models for Nonlinear Partial Differential Equa-
tions. Lecture Notes in Mathematics 1627 (1996). Ed. by D. Talay and L. Tubaro, pp. 42–

95. DOI: 10.1007/BFb0093175 (on p. 30).

[146] P. Milner, C. S. Gillespie and D. J. Wilkinson. “Moment closure approximations for

stochastic kinetic models with rational rate laws.” In: Mathematical biosciences 231.2

(June 2011), pp. 99–104. ISSN: 1879-3134. DOI: 10.1016/j.mbs.2011.02.006 (on

p. 30).

[147] C. Mobius, W. Dargie and A. Schill. “Power Consumption Estimation Models for Pro-

cessors, Virtual Machines, and Servers”. In: IEEE Transactions on Parallel and Distributed
Systems 99.PrePrints (2013), p. 1. ISSN: 1045-9219. DOI: 10.1109/TPDS.2013.183 (on

p. 101, 102).

[148] J. K. Muppala and K. S. Trivedi. “Numerical transient solution of finite Markovian

queueing systems”. In: Queueing and related models. Oxford university press, 1992,

pp. 262–262 (on p. 35).

[149] H. Nabli and B. Sericola. “Performability analysis: a new algorithm”. In: IEEE Transactions
on Computers 45.4 (Apr. 1996), pp. 491–494. ISSN: 00189340. DOI: 10.1109/12.494108

(on p. 34).

[150] J. R. Norris. Markov chains. Cambridge University Press, 1998, p. 237. ISBN: 0521633966

(on p. 23, 86).

[151] A. Phillips and L. Cardelli. “A Correct Abstract Machine for the Stochastic Pi-calculus”. In:

BIOCONCUR’04, Concurrent Models in Molecular Biology. Aug. 2004 (on p. 38).

[152] A. Phillips and L. Cardelli. “Efficient, correct simulation of biological processes in

stochastic Pi-calculus”. In: CMSB’07, Proceedings of Computational Methods in Systems
Biology. Vol. 4695. Lecture Notes in Computer Science. Springer-Verlag, Sept. 2007,

pp. 184–199. DOI: 10.1007/978-3-540-75140-3_13 (on p. 32, 38).

[153] B. Plateau and K. Atif. “Stochastic automata network of modeling parallel systems”.

English. In: IEEE Transactions on Software Engineering 17.10 (1991), pp. 1093–1108.

ISSN: 00985589. DOI: 10.1109/32.99196 (on p. 25).

[154] M. J. D. Powell. “Direct search algorithms for optimization calculations”. English. In: Acta
Numerica 7 (Nov. 2008), p. 287. ISSN: 0962-4929. DOI: 10.1017/S0962492900002841

(on p. 101).

http://dx.doi.org/10.1287/opre.32.4.926
http://dx.doi.org/10.1007/BFb0093175
http://dx.doi.org/10.1016/j.mbs.2011.02.006
http://dx.doi.org/10.1109/TPDS.2013.183
http://dx.doi.org/10.1109/12.494108
http://dx.doi.org/10.1007/978-3-540-75140-3_13
http://dx.doi.org/10.1109/32.99196
http://dx.doi.org/10.1017/S0962492900002841

BIBLIOGRAPHY 190

[155] C. Priami. “Stochastic pi-Calculus”. In: The Computer Journal 38.7 (July 1995), pp. 578–

589. ISSN: 0010-4620. DOI: 10.1093/comjnl/38.7.578 (on p. 16, 25).

[156] S. Ramsey, D. Orrell and H. Bolouri. “Dizzy: Stochastic Simulation of Large-scale Genetic

Regulatory Networks”. In: Journal of Bioinformatics and Computational Biology 3.2 (2005),

pp. 415–436 (on p. 39).

[157] A. Rawson, J. Pfleuger and T. Cader. “Data Center Power Efficiency Metrics: PUE and

DCiE”. In: The Green Grid (2007) (on p. 120).

[158] M. Reiser and S. S. Lavenberg. “Mean-Value Analysis of Closed Multichain Queuing

Networks”. In: Journal of the ACM 27.2 (Apr. 1980), pp. 313–322. ISSN: 00045411. DOI:

10.1145/322186.322195 (on p. 31).

[159] Renewable energy – Data Centers – Google. URL: http://www.google.co.uk/about/

datacenters/renewable/index.html (visited on 14/09/2013) (on p. 14).

[160] Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431. Tech.

rep. US Environmental Protection Agency, 2007 (on p. 14).

[161] L. M. Rios and N. V. Sahinidis. “Derivative-free optimization: a review of algorithms and

comparison of software implementations”. English. In: Journal of Global Optimization
56.3 (2013), pp. 1247–1293. ISSN: 0925-5001. DOI: 10.1007/s10898-012-9951-y (on

p. 101).

[162] A. Riska and E. Smirni. “Autonomic exploration of trade-offs between power and per-

formance in disk drives”. In: Proceeding of the 7th international conference on Autonomic
computing - ICAC ’10. New York, New York, USA: ACM Press, June 2010, p. 131. ISBN:

9781450300742. DOI: 10.1145/1809049.1809072 (on p. 36).

[163] S. M. Ross. Stochastic processes. Wiley, 1996, p. 510. ISBN: 0471120626 (on p. 23, 24).

[164] P. J. Schweitzer. “Approximate analysis of multiclass closed networks of queues”. In:

Proceedings of the International Conference on Stochastic Control and Optimization. Ams-

terdam, Netherlands, 1979, pp. 25–29 (on p. 31).

[165] A. B. Singer and P. I. Barton. “Global Optimization with Nonlinear Ordinary Differential

Equations”. In: Journal of Global Optimization 34.2 (Feb. 2006), pp. 159–190. ISSN:

0925-5001. DOI: 10.1007/s10898-005-7074-4 (on p. 101).

[166] A. Singh and J. Hespanha. “Lognormal moment closures for biochemical reactions”. In:

Decision and Control 2006 45th IEEE Conference on. 2. IEEE, 2006, pp. 2063–2068. ISBN:

1424401712. DOI: 10.1109/CDC.2006.376994 (on p. 30).

[167] J. Slegers, I. Mitrani and N. Thomas. “Evaluating the optimal server allocation policy for

clusters with on/off sources”. In: Performance Evaluation 66.8 (Aug. 2009), pp. 453–467.

ISSN: 01665316. DOI: 10.1016/j.peva.2009.01.004 (on p. 14, 36).

[168] V. Sotiropoulos and Y. N. Kaznessis. “Analytical Derivation of Moment Equations in

Stochastic Chemical Kinetics.” In: Chemical engineering science 66.3 (Feb. 2011), pp. 268–

277. ISSN: 0009-2509. DOI: 10.1016/j.ces.2010.10.024 (on p. 29).

[169] A. Stefanek. “Continuous and spatial extension of stochastic Pi-calculus”. MA thesis.

Department of Computing, Imperial College London, July 2009 (on p. 38).

http://dx.doi.org/10.1093/comjnl/38.7.578
http://dx.doi.org/10.1145/322186.322195
http://www.google.co.uk/about/datacenters/renewable/index.html
http://www.google.co.uk/about/datacenters/renewable/index.html
http://dx.doi.org/10.1007/s10898-012-9951-y
http://dx.doi.org/10.1145/1809049.1809072
http://dx.doi.org/10.1007/s10898-005-7074-4
http://dx.doi.org/10.1109/CDC.2006.376994
http://dx.doi.org/10.1016/j.peva.2009.01.004
http://dx.doi.org/10.1016/j.ces.2010.10.024

BIBLIOGRAPHY 191

[170] C. Stewart, D. Gmach and M. Arlitt. “Policy and mechanism for carbon-aware cloud

applications”. In: 2012 IEEE Network Operations and Management Symposium. IEEE, Apr.

2012, pp. 590–594. ISBN: 978-1-4673-0269-2. DOI: 10.1109/NOMS.2012.6211963 (on

p. 14).

[171] D. J. Sumpter, G. B. Blanchard and D. S. Broomhead. “Ants and agents: a process algebra

approach to modelling ant colony behaviour.” In: Bulletin of mathematical biology 63.5

(Sept. 2001), pp. 951–80. ISSN: 0092-8240. DOI: 10.1006/bulm.2001.0252 (on p. 16).

[172] Q. Tang, S. Gupta and G. Varsamopoulos. “Energy-efficient thermal-aware task scheduling

for homogeneous high-performance computing data centers: A cyber-physical approach”.

In: IEEE Transactions on Parallel and Distributed Systems 19.11 (2008), pp. 1458–1472.

DOI: 10.1109/TPDS.2008.111 (on p. 104).

[173] Á. Tari, M. Telek and P. Buchholz. “A Unified Approach to the Moments Based Distribution

Estimation - Unbounded Support”. In: Formal Techniques for Computer Systems and
Business Processes. Ed. by M. Bravetti, L. Kloul and G. Zavattaro. Vol. 3670. Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 79–93.

ISBN: 978-3-540-28701-8. DOI: 10.1007/11549970 (on p. 82, 93, 95, 162).

[174] M. Telek, A. Horváth and G. Horváth. “Analysis of inhomogeneous Markov reward

models”. In: Linear Algebra and its Applications 386 (July 2004), pp. 383–405. ISSN:

00243795. DOI: 10.1016/j.laa.2004.02.002 (on p. 34, 35).

[175] M. Telek and S. Rácz. “Numerical Analysis of Large Markov Reward Models”. In: Perform-
ance Evaluation 36-37.1-4 (1999), pp. 95–114. DOI: 10.1016/S0166-5316(99)00032-2

(on p. 34, 81).

[176] D. Thain, T. Tannenbaum and M. Livny. “Distributed computing in practice: the Condor

experience.” In: Concurrency - Practice and Experience 17.2-4 (2005), pp. 323–356. DOI:

10.1002/cpe.v17:2/4 (on p. 167).

[177] The MIT License. URL: http://opensource.org/licenses/MIT (visited on 14/08/2013)

(on p. 166).

[178] N. Thomas and Y. Zhao. “Mean value analysis for a class of PEPA models”. In: The
Computer Journal 54.5 (Sept. 2010), pp. 643–652. ISSN: 0010-4620. DOI: 10.1093/

comjnl/bxq064 (on p. 31).

[179] H. Tijms and R. Veldman. “A fast algorithm for the transient reward distribution in

continuous-time Markov chains”. In: Operations Research Letters 26.4 (May 2000),

pp. 155–158. ISSN: 01676377. DOI: 10.1016/S0167-6377(00)00023-7 (on p. 34).

[180] M. Tribastone. “A Fluid Model for Layered Queueing Networks”. English. In: IEEE Trans-
actions on Software Engineering 39.6 (June 2013), pp. 744–756. ISSN: 0098-5589. DOI:

10.1109/TSE.2012.66 (on p. 33).

[181] M. Tribastone, J. Ding, S. Gilmore and J. Hillston. “Fluid Rewards for a Stochastic Process

Algebra”. In: IEEE Transactions on Software Engineering 38.4 (July 2012), pp. 861–874.

ISSN: 0098-5589. DOI: 10.1109/TSE.2011.81 (on p. 34, 35, 53).

http://dx.doi.org/10.1109/NOMS.2012.6211963
http://dx.doi.org/10.1006/bulm.2001.0252
http://dx.doi.org/10.1109/TPDS.2008.111
http://dx.doi.org/10.1007/11549970
http://dx.doi.org/10.1016/j.laa.2004.02.002
http://dx.doi.org/10.1016/S0166-5316(99)00032-2
http://dx.doi.org/10.1002/cpe.v17:2/4
http://opensource.org/licenses/MIT
http://dx.doi.org/10.1093/comjnl/bxq064
http://dx.doi.org/10.1093/comjnl/bxq064
http://dx.doi.org/10.1016/S0167-6377(00)00023-7
http://dx.doi.org/10.1109/TSE.2012.66
http://dx.doi.org/10.1109/TSE.2011.81

BIBLIOGRAPHY 192

[182] M. Tribastone, A. Duguid and S. Gilmore. “The PEPA eclipse plugin”. In: ACM SIGMETRICS
Performance Evaluation Review 36.4 (Mar. 2009), p. 28. ISSN: 01635999. DOI: 10.1145/

1530873.1530880 (on p. 39).

[183] M. Tribastone, S. T. Gilmore and J. Hillston. “Scalable Differential Analysis of Process

Algebra Models”. In: IEEE Transactions on Software Engineering 38.1 (Jan. 2012), pp. 205–

219. ISSN: 0098-5589. DOI: 10.1109/TSE.2010.82 (on p. 16, 31, 109, 168).

[184] K. S. Trivedi and V. G. Kulkarni. “FSPNs: Fluid stochastic Petri nets”. In: Application
and Theory of Petri Nets. Vol. 691. Springer Berlin / Heidelberg, 1993, pp. 24–31. DOI:

10.1007/3-540-56863-8_38 (on p. 37).

[185] B. Tuffin, D. S. Chen and K. S. Trivedi. “Comparison of Hybrid Systems and Fluid

Stochastic PetriNets”. In: Discrete Event Dynamic Systems 11.1-2 (Jan. 2001), pp. 77–95.

ISSN: 0924-6703. DOI: 10.1023/A:1008387132533 (on p. 37).

[186] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. Ed. by S. Albeverio, P.

Combe and M. Sirugue-Collin. Vol. 11. North-Holland personal library 2. North-Holland,

1992, p. 465. ISBN: 0444893490. DOI: 10.2307/2984076 (on p. 16, 29, 168).

[187] H. Wang, K. C. Sevcik, G. Serazzi and S. Wang. “The general form linearizer algorithms:

A new family of approximate mean value analysis algorithms”. In: Performance Evaluation
65.2 (2008), pp. 129 –151. ISSN: 0166-5316. DOI: 10.1016/j.peva.2007.05.005 (on

p. 31).

[188] J. Wang and C. Liu. “Generating multivariate mixture of normal distributions using a

modified Cholesky decomposition”. In: Winter Simulation Conference (2006), p. 342. DOI:

10.1109/WSC.2006.323100 (on p. 70).

[189] P. Whittle. “On the use of the normal approximation in the treatment of stochastic

processes”. In: Journal of the Royal Statistical Society Series B Methodological 19.2 (1957),

pp. 268–281. ISSN: 00359246 (on p. 16, 29).

[190] W. Whitt. Internet supplement to Stochastic-Process Limits. 2002. URL: http://www.

columbia.edu/~ww2040/supplement.html (visited on 09/09/2013) (on p. 198).

[191] A. Wierman, L. L. H. Andrew and A. Tang. “Power-Aware Speed Scaling in Processor

Sharing Systems”. In: IEEE INFOCOM 2009 - The 28th Conference on Computer Commu-
nications. IEEE, Apr. 2009, pp. 2007–2015. ISBN: 978-1-4244-3512-8. DOI: 10.1109/

INFCOM.2009.5062123 (on p. 36).

[192] Y. Zhao. “Practical Applications of Performance Modelling of Security Protocols Using

PEPA”. PhD thesis. Newcastle University, 2011 (on p. 62).

http://dx.doi.org/10.1145/1530873.1530880
http://dx.doi.org/10.1145/1530873.1530880
http://dx.doi.org/10.1109/TSE.2010.82
http://dx.doi.org/10.1007/3-540-56863-8_38
http://dx.doi.org/10.1023/A:1008387132533
http://dx.doi.org/10.2307/2984076
http://dx.doi.org/10.1016/j.peva.2007.05.005
http://dx.doi.org/10.1109/WSC.2006.323100
http://www.columbia.edu/~ww2040/supplement.html
http://www.columbia.edu/~ww2040/supplement.html
http://dx.doi.org/10.1109/INFCOM.2009.5062123
http://dx.doi.org/10.1109/INFCOM.2009.5062123

193

Appendix A

Chapter 3

A.1 ODE systems

A.1.1 First-order moments

d
dt

Ẽ[C (t)] = −min(Ẽ[C (t)], Ẽ[S(t)])rr + Ẽ[Ct(t)]rt

d
dt

Ẽ[Cw (t)] = min(Ẽ[C (t)], Ẽ[S(t)])rr −min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd

d
dt

Ẽ[Ct(t)] = min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd − rt Ẽ[Ct(t)]

d
dt

Ẽ[S(t)] = −min(Ẽ[C (t)], Ẽ[S(t)])rr +min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd + Ẽ[Sb(t)]rs − Ẽ[S(t)]rb

d
dt

Ẽ[Sg(t)] = min(Ẽ[C (t)], Ẽ[S(t)])rr −min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd

d
dt

Ẽ[Sb(t)] = −Ẽ[Sb(t)]rs + Ẽ[S(t)]rb

A.1.2 Second-order moments

d
dt

Ẽ[C (t)2] = −2min(Ẽ[C (t)2], Ẽ[C (t)S(t)])rr +min(Ẽ[C (t)], Ẽ[S(t)])rr + 2Ẽ[C (t)Ct(t)]rt + Ẽ[Ct(t)]rt

d
dt

Ẽ[C (t)Cw (t)] = −min(Ẽ[C (t)Cw (t)], Ẽ[S(t)Cw (t)])rr +min(Ẽ[C (t)2], Ẽ[C (t)S(t)])rr −min(Ẽ[C (t)], Ẽ[S(t)])rr

+ Ẽ[Ct(t)Cw (t)]rt −min(Ẽ[C (t)Cw (t)], Ẽ[C (t)Sg(t)])rd

d
dt

Ẽ[C (t)Ct(t)] = −min(Ẽ[C (t)Ct(t)], Ẽ[S(t)Ct(t)])rr − Ẽ[C (t)Ct(t)]rt

+ Ẽ[Ct(t)Cw (t)]rt + Ẽ[Ct(t)
2]rt − Ẽ[Ct(t)]rt +min(Ẽ[Cw (t)C (t)], Ẽ[Sg(t)C (t)])rd

d
dt

Ẽ[C (t)S(t)] = −min(Ẽ[C (t)S(t)], Ẽ[S(t)2])rr −min(Ẽ[C (t)2], Ẽ[S(t)C (t)])rr +min(Ẽ[C (t)], Ẽ[S(t)])rr

+ Ẽ[Ct(t)Cw (t)]rt + Ẽ[Ct(t)S(t)]rt + Ẽ[Sb(t)C (t)]rs − Ẽ[S(t)C (t)]rb

+min(Ẽ[Cw (t)C (t)], Ẽ[Sg(t)C (t)])rd

d
dt

Ẽ[C (t)Sg(t)] = −min(Ẽ[C (t)Sg(t)], Ẽ[S(t)Sg(t)])rr +min(Ẽ[C (t)2], Ẽ[S(t)C (t)])rr −min(Ẽ[C (t)], Ẽ[S(t)])rr

+ Ẽ[Ct(t)Sg(t)]rt −min(Ẽ[Cw (t)C (t)], Ẽ[Sg(t)C (t)])rd

d
dt

Ẽ[C (t)Sb(t)] = −min(Ẽ[C (t)Sb(t)], Ẽ[S(t)Sb(t)])rr + Ẽ[Ct(t)Sb(t)]rt − Ẽ[C (t)Sb(t)]rs + Ẽ[C (t)S(t)]rb

d
dt

Ẽ[Cw (t)
2] = 2min(Ẽ[Cw (t)C (t)], Ẽ[Cw (t)S(t)])rr +min(Ẽ[C (t)], Ẽ[S(t)])rr

− 2min(Ẽ[Cw (t)
2], Ẽ[Sg(t)Cw (t)])rd +min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd

d
dt

Ẽ[Cw (t)Ct(t)] = min(Ẽ[C (t)Ct(t)], Ẽ[S(t)Ct(t)])rr −min(Ẽ[Ct(t)Cw (t)], Ẽ[Ct(t)Sg(t)])rd

A. CHAPTER 3 194

+min(Ẽ[Cw (t)
2], Ẽ[Cw (t)Sg(t)])rd −min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd − rt Ẽ[Cw (t)Ct(t)]

d
dt

Ẽ[Cw (t)S(t)] = min(Ẽ[C (t)S(t)], Ẽ[S(t)2])rr −min(Ẽ[C (t)Cw (t)], Ẽ[S(t)Cw (t)])rr −min(Ẽ[C (t)], Ẽ[S(t)])rr

−min(Ẽ[S(t)Cw (t)], Ẽ[S(t)Sg(t)])rd +min(Ẽ[Cw (t)
2], Ẽ[Sg(t)Cw (t)])rd

−min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd + Ẽ[Cw (t)Sb(t)]rs − Ẽ[Cw (t)S(t)]rb

d
dt

Ẽ[Cw (t)Sg(t)] = min(Ẽ[Cw (t)C (t)], Ẽ[Cw (t)S(t)])rr +min(Ẽ[C (t)Sg(t)], Ẽ[S(t)Sg(t)])rr +min(Ẽ[C (t)], Ẽ[S(t)])rr

−min(Ẽ[Cw (t)
2], Ẽ[Cw (t)Sg(t)])rd −min(Ẽ[Cw (t)Sg(t)], Ẽ[Sg(t)

2])rd

+min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd

d
dt

Ẽ[Cw (t)Sb(t)] = min(Ẽ[C (t)Sb(t)], Ẽ[S(t)Sb(t)])rr −min(Ẽ[Cw (t)Sb(t)], Ẽ[Sg(t)Sb(t)])rd − Ẽ[Cw (t)Sb(t)]rs

+ Ẽ[Cw (t)S(t)]rb

d
dt

Ẽ[Ct(t)
2] = 2min(Ẽ[Ct(t)Cw (t)], Ẽ[Ct(t)Sg(t)])rd +min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd − 2rt Ẽ[Ct(t)

2] + rt Ẽ[Ct(t)]

d
dt

Ẽ[Ct(t)S(t)] = −min(Ẽ[C (t)Ct(t)], Ẽ[S(t)Ct(t)])rr +min(Ẽ[Cw (t)Ct(t)], Ẽ[Sg(t)Ct(t)])rd

+min(Ẽ[S(t)Cw (t)], Ẽ[Sg(t)S(t)])rd +min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd

+ Ẽ[Sb(t)Ct(t)]rs − Ẽ[S(t)Ct(t)]rb − rt Ẽ[S(t)Ct(t)]

d
dt

Ẽ[Ct(t)Sg(t)] = −min(Ẽ[Ct(t)Cw (t)], Ẽ[Ct(t)Sg(t)])rd +min(Ẽ[Cw (t)Sg(t)], Ẽ[Sg(t)
2])rd

−min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd − rt Ẽ[Ct(t)Sg(t)] + min(Ẽ[C (t)Ct(t)], Ẽ[S(t)Ct(t)])rr

d
dt

Ẽ[Ct(t)Sb(t)] = min(Ẽ[Sb(t)Cw (t)], Ẽ[Sb(t)Sg(t)])rd − rt Ẽ[Ct(t)Sb(t)]− Ẽ[Ct(t)Sb(t)]rs + Ẽ[Ct(t)S(t)]rb

d
dt

Ẽ[S(t)2] = −2min(Ẽ[C (t)S(t)], Ẽ[S(t)2])rr +min(Ẽ[C (t)], Ẽ[S(t)])rr

+ 2min(Ẽ[Cw (t)S(t)], Ẽ[S(t)Sg(t)])rd +min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd + 2Ẽ[Sb(t)S(t)]rs

+ Ẽ[Sb(t)]rs − 2Ẽ[S(t)2]rb + Ẽ[S(t)]rb
d
dt

Ẽ[S(t)Sg(t)] = min(Ẽ[C (t)S(t)], Ẽ[S(t)2])rr −min(Ẽ[C (t)Sg(t)], Ẽ[S(t)Sg(t)])rr −min(Ẽ[C (t)], Ẽ[S(t)])rr

−min(Ẽ[Cw (t)S(t)], Ẽ[Sg(t)S(t)])rd +min(Ẽ[Cw (t)Sg(t)], Ẽ[Sg(t)
2])rd

−min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd + Ẽ[Sb(t)Sg(t)]rs − Ẽ[Sg(t)S(t)]rb

d
dt

Ẽ[S(t)Sb(t)] = −min(Ẽ[C (t)Sb(t)], Ẽ[S(t)Sb(t)])rr +min(Ẽ[Cw (t)Sb(t)], Ẽ[Sg(t)Sb(t)])rd

− Ẽ[S(t)Sb(t)]rs + Ẽ[Sb(t)
2]rs − Ẽ[Sb(t)]rs − Ẽ[Sb(t)S(t)]rb + Ẽ[S(t)2]rb − Ẽ[S(t)]rb

d
dt

Ẽ[Sg(t)
2] = 2min(Ẽ[C (t)Sg(t)], Ẽ[S(t)Sg(t)])rr +min(Ẽ[C (t)], Ẽ[S(t)])rr

− 2min(Ẽ[Cw (t)Sg(t)], Ẽ[Sg(t)
2])rd +min(Ẽ[Cw (t)], Ẽ[Sg(t)])rd

d
dt

Ẽ[Sg(t)Sb(t)] = min(Ẽ[C (t)Sb(t)], Ẽ[S(t)Sb(t)])rr −min(Ẽ[Cw (t)Sb(t)], Ẽ[Sg(t)Sb(t)])rd

− Ẽ[Sg(t)Sb(t)]rs + Ẽ[S(t)Sg(t)]rb

d
dt

Ẽ[Sb(t)
2] = −2Ẽ[Sb(t)

2]rs + Ẽ[Sb(t)]rs + 2Ẽ[S(t)Sb(t)]rbreak

195

Appendix B

Chapter 5

B.1 ODE systems

B.1.1 Second-order accumulated moments

In addition to the ODEs in Section A.1.2, the following ODEs are needed to calculate Var[S (t)]:

d
dt

Ẽ[S(t)2] = 2 · Ẽ[S(t)S(t)]

d
dt

Ẽ[C (t)S(t)] = −min(Ẽ[C (t)S(t)], Ẽ[S(t)S(t)])rr + Ẽ[Ct(t)S(t)]rt + Ẽ[C (t)S(t)]

d
dt

Ẽ[Cw (t)S(t)] = min(Ẽ[C (t)S(t)], Ẽ[S(t)S(t)])rr −min(Ẽ[Cw (t)S(t)], Ẽ[Sg(t)]S(t))rd + Ẽ[Cw (t)S(t)]

d
dt

Ẽ[Ct(t)S(t)] = min(Ẽ[Cw (t)S(t)], Ẽ[Sg(t)S(t)])rd − rt Ẽ[Ct(t)S(t)] + Ẽ[Ct(t)S(t)]

d
dt

Ẽ[S(t)S(t)] = −min(Ẽ[C (t)S(t)], Ẽ[S(t)S(t)])rr +min(Ẽ[Cw (t)S(t)], Ẽ[Sg(t)S(t)])rd + Ẽ[Sb(t)S(t)]rs

− Ẽ[S(t)S(t)]rb + Ẽ[S(t)2]
d
dt

Ẽ[Sg(t)S(t)] = min(Ẽ[C (t)S(t)], Ẽ[S(t)S(t)])rr −min(Ẽ[Cw (t)S(t)], Ẽ[Sg(t)S(t)])rd + Ẽ[Sg(t)S(t)]

d
dt

Ẽ[Sb(t)S(t)] = −Ẽ[Sb(t)S(t)]rs + Ẽ[S(t)S(t)]rb + Ẽ[Sb(t)S(t)]

B.2 Proofs

Proof of Theorem 7. For convenience let

h′(X(t)) =

n∏

j=1

hj(X)(t)
ej
.

We have

d
dt

E[h0(X(t))h′(X(t))]

= lim
h→0

1

h
(E[h0(X(t+ h))h′(X(t+ h))]− E[h0(X(t))h′(X(t))])

= lim
h→0

1

h
(E[(h0(X(t+ h))− h0(X(t)))h′(X(t))]

+ E[h0(X(t+ h))(h′(X(t+ h))− h′(X(t)))])

=
d
dt

E[h0(X(t))h′(X(s))]|s=t +

n∑

k=1

E

[
∂h

∂hk(X)
(X(t))

]

B. CHAPTER 5 196

where the second term is obtained by applying the bounded convergence theorem. For the first

term

d
dt

E[h0(X(t))h′(X(s))]

=
d
dt

∫

r

∑

k

rkP(h0(X(t)) = k, h′(X(s)) = r)dr

=

∫

r

∑

k

rk
d
dt

P(h0(X(t)) = k | h′(X(s)) = r)P(h′(X(s)) = r)dr

=

∫

r
rE[fXi(X(t)) | h′(X(s)) = r]P(h′(X(s)) = r)

= E[fh0(X(t))h′(X(s))]

and the result follows.

197

Appendix C

Chapter 6

C.1 Proofs

Proof of Theorem 8. The joint process (X(t),Y(t)) is clearly Markovian with infinitesimal gener-

ator A defined on h:

Ah(x,y) := lim
δ→0

E[h(X(t+ δ),Y(t+ δ))|(X(t),Y(t)) = (x,y)]− h(x,y)

δ

=

M∑

i=1

gi(x,y)
∂h

∂yi
(x,y) +

∑

c∈C
rc(x,y)[h(x+ δc,y)− h(x,y)]

It thus follows by Dynkin’s formula [e.g. 116, Lemma 17.21] that for t ∈ R+:

E[h(X(t),Y (t))] = h(x0,y0) +

∫ t

0
E[Ah(X(s),Y(s))] ds

Proof of Theorem 9. This proof is originally due to Hayden [14]. We begin by representing each

process (X̄S(t), Ȳ S(t)) in terms of mutually independent rate-1 Poisson processes {Pc(t) : c ∈ C}
by the random-time change approach [72]:

X̄S(t) = x0 +
∑

c∈C
Pc

(∫ t

0
rSc (XS(s),YS(s)) ds

)
δc/S

ȲS
(t) = y0 +

∫ t

0
g(X̄S(s), ȲS

(s)) ds

On S, f(·, ·) : Rn×Rm → Rn and g(·, ·) : Rn×Rm → Rm are both Lipschitz continuous uniformly;

let K be a Lipschitz constant for both functions. Now define:

DS(t) := sup
s∈[0,t]

∥∥∥∥X̄S(s)− x0 −
∫ s

0
f(X̄S(u), ȲS

(u)) du
∥∥∥∥

and εS(t) := ‖X̄S(t)− x(t)‖+ ‖Ȳ S(t)− y(t)‖. Then we have for t ∈ [0, tf]:

εS(t) ≤ DS(T) +

∫ t

0
‖g(X̄S(s), ȲS

(s))− g(x(s),y(s))‖ds

+

∫ t

0
‖f(X̄S(s), ȲS

(s))− f(x(s),y(s))‖ds ≤ DS(tf) + 2K

∫ t

0
εS(s) ds

C. CHAPTER 6 198

and by Grönwall’s inequality, we obtain εS(t) ≤ DS(T) exp(2Ktf). Now note that:

DS(T) ≤

sup
s∈[0,tf]

∥∥∥∥∥∥
∑

c∈C

δc
S

[
Pc

(∫ s

0
rSc (XS(u),YS(u)) du

)
−
∫ s

0
rSc (XS(u),YS(u)) du

]∥∥∥∥∥∥

which can be bounded above by
∑

c∈C ‖δc‖ sups∈[0,tf] |Pc(SCs)/S − Cs| for some C ∈ R+ inde-

pendent of S. The result then follows by the strong law of large numbers for the Poisson process,

which is equivalent to the functional strong law of large numbers [e.g. 190, Section 3.2], that is,

for all s ∈ R+, supu∈[0,s] ‖Pc(Su)/S − u‖ → 0 as S →∞ with probability 1.

Proof of Theorem 10. This proof is originally due to Hayden [14]. We assume the representation

of the processes X̄S(t) and ȲS
(t)) given in Equation C.1. Further it is possible [72, Corollary

5.5 and Remark 5.4] to construct, on the same probability space as these processes, mutually

independent standard Brownian motions {Bc(t) : c ∈ C}, such that:

Zc := sup
t∈R+

|Pc(t)− t−Bc(t)|
log(2 ∨ t) <∞ almost surely

From this it follows that as N →∞, almost surely:

√
S sup
t∈[0,tf]

∥∥∥∥X̄S(t)− x0 −
∫ t

0
f(X̄S(s), ȲS

(s)) ds

−
∑

c∈C
Bc

(∫ t

0
rSc (XS(s),YS(s)) ds

)
(δc/S)

∥∥∥∥−→ 0 (C.1)

A direct comparison of X
S(t)−Nx(t)√

S
with EX(t) and similarly for EY (t) using Equation C.1 yields

the result. We omit further details here for the sake of brevity.

199

Appendix D

Chapter 8

D.1 GPA Syntax

System

System := Parameters VariableDef ∗ModelDef ContinuousVariables

Analysis∗ Experiment∗

Parameters := ParameterDef ∗ TDParameterDef ∗

ParameterDef := parameterId = number;

TDParameterDef := load "filename"integer into parameterId;

VariableDef := Variable=Expression(NonMoment) | Expression(Moment)

Variable := $variableId

Expression(x) := Expression(x)(+ | - | * | / | ˆ)Expression(x)

functionID(Expression(x)(,Expression(x))+) | Terminal(x)

Terminal(Constant) := realnumber | integer | parameter | t | Variable

Terminal(NonMoment) := Terminal(Constant) |
(

(Population | ContinuousVariable)(ˆinteger)?
)+

Terminal(Moment) := Terminal(Constant) |
(
E | Var | Skew

)
[LinCombination(NonMoment)]

Cov[LinCombination(NonMoment),LinCombination(NonMoment)]

Moment[LinCombination(NonMoment),integer]

Eg[Expression(NonMoment)]

Plain PCTMC models

Population := {populationID}

ModelDef := TransitionClass∗ InitValues

D. CHAPTER 8 200

TransitionClass := PopulationList -> PopulationList @Expression(NonMoment);

PopulationList := Population

(
+Population

)∗

InitValues :=

(
Population=Expression(Constant);

)∗

GPEPA models

Population := groupLabel:Agent | #actionId

ModelDef := AgentDef ∗SystemEquation ActionCount?

AgentDef := agentID = Agent

Agent := Agent<ActionList?>Agent

| Summation | agentId | (Agent)

Summation := Prefix (+Prefix)∗

Prefix := (actionId, parameterId).((Summation) | stop | agentId |);

SystemEquation := (SystemEquation<ActionList?>SystemEquation)

| groupLabel{AgentsParallel}

AgentsParallel := FluidAgent(|FluidAgent)∗

FluidAgent := agentId ([Expression(Constant)])?

ActionList := actionId (, actionId)∗

ActionCount := Count actionId

(
,actionId

)∗
;

Continuous variables

ContinuousVariables := ContinuousDef ∗ContinuousInit∗

ContinuousDef := ddt ˜contId = Expression(NonMoment);

ContinuousInit := ˜contId = Expression(Constant);

ContinuousVariable := ˜contId | acc(Terminal(NonMoment))

Analyses

Analysis := ODEs | Simulation

ODEs := ODEs

(
[Options]

)?

(stopTime = realnumber, stepSize = realnumber,Options?)

D. CHAPTER 8 201

{Plot∗}

Simulation := Simulation(stopTime = realnumber, stepSize = realnumber, replications = integer)

{Plot∗}

Options := optionId = optionValue

(
,optionId = optionValue

)∗

Plot := Expression(Moment)

(
,Expression(Moment)

)∗(
-> "filename"

)?

;

Experiments

Experiment := Iterate | Distribution

Iterate :=

(
Iterate Range+

)?

(
Minimise PlotAt Range+

(
where ParameterDef +

)?
)?

Analysis plot {

(
PlotAt;

)+

}

Range := parameterId from realnumer to realnumber Step

Step :=

(
in integer steps

)
|
(
with step realnumber

)

PlotAt := ExpressionAt

(
when ExpressionAt>=realnumber

(
and ExpressionAt >= realnumber

)∗)?

ExpressionAt := Expression(Moment) at realnumber

202

Appendix E

GPEPAc model of HTCondor

User agents

Each different environment i ∈ CPC (such as library, labs, etc.) is subject to arrivals and departures of
interactive users. A user agent arrives into the environment according to an external arrival process,
generating an arrivei action:

Arrive_user i
def
= (arrivei, rarrive,i(t)).Arrive_user i

Each agent logs into a randomly chosen workstation and logs out after a period of time:

User_ready i
def
= (arrivei,>).User

User i
def
= (login get pc, rlogin,i).User

pc

i

User
pc

i

def
= (logout send on pc, rlogout,ii(t)).User_ready i

Job agents

Similarly, jobs from each different group i ∈ CJob are submitted to the respective queue according to an
external process generating an submit i action:

Submit_jobi
def
= (submit i, rsubmit,i(t)).Submit_jobi

Each job agent can be removed from the queue to be assigned to a workstation. At the workstation, the
job is processed until finished or evicted by an incoming user, returning back to the queue:

Job_ready i
def
= (submit i,>).Jobi

Jobi
def
= (dequeue get pc, rsubmit,i).Job

pc

i

Job
pc

i

def
= (process send on pc, rproc,i).Job_donei + (evict receive on pc,>).Jobi

In this example, the job is processed in a single phase with an exponentially distributed duration. However,
in real applications, job durations come from a range of distributions. For example, the job could be
executed in a sequence of phases, for example, a database retrieval followed by a numerical computation.
The job could terminate at each phase. If the durations at each phase are exponentially distributed,
the distribution of the overall duration belongs to the family of Coxian distributions. These can be used
to accurately approximate a wide range of distributions. The GPEPAc framework can directly model
multi-phase communication with a Coxian structure. For example, the job agent can be processed in three
phases instead of one:

Job
pc

i

def
= (end send on pc, rproc,i,0).Job_donei + (process send on pc, rproc,i,0,1).Jobi,1

(evict receive on pc,>).Jobi

E. GPEPAC MODEL OF HTCONDOR 203

Job
pc

i,1

def
= (end send on pc, rproc,i,1).Job_donei + (process send on pc, rproc,i,1,2).Jobi,2

(evict receive on pc,>).Jobi

Job
pc

i,2

def
= (end send on pc, rproc,i,2).Job_donei + (evict receive on pc,>).Jobi

Similar modification can be applied to model more general inter-arrival and inter-submission times for
users and jobs respectively and interactive usage durations.

Workstations and HTCondor

Each workstation from an environment i ∈ CPC is available to interactive users and a workstation with an
active user waits until the user logs out. Workstations without users become available to HTCondor jobs
after an idle period. In such case it expects a job to be assigned (by a scheduler) for processing. While
processing a job, the workstation is also available to users to log in, in which case it evicts the currently
processed job:

PC i
def
= (login initu, rlogin,i).PC u + (avail , ravail,i).PC _avail i

PC
u
i

def
= (logout receive onu, rlogout,i).PC i

PC _avail i
def
= (assigni get j).PC

j

i + (login initu, rlogin,i).PC
u
i

PC
j

i

def
= (process receive on j, rprocess,i).PC

j

i + (end receive on j, rprocess,i).PC _avail i

(login initu, rlogin,i).PC _evict
j,u

i

PC _evict
j,u

i

def
= (evict send on j, revict,i).PC

u
i

The core HTCondor system is captured by scheduler agents. Each scheduler provides an interface between
jobs from the different high-throughput groups and different workstation classes. It dequeues jobs from
the respective queues and assigns them to workstations.

Sch
def
=
∑

i∈CJob

(dequeuei init j, rdequeue,i).Sch
pc

i

Sch
pc

i

def
=
∑

j∈CPC

(assignj , rassign forward j,i,j).Sch

System equation

We present a simple example consisting of only one type workstations and users – A for “all” users and
workstations from the campus. We consider two job groups – B for the “background” jobs submitted by
all the different high-throughput groups, and H for “hypothetical” jobs that we will use to evaluate the
system under various conditions.

The whole system can be described by the system equation below:

(
Queue{‖i∈{B,H} Job_ready i[∞]} BC

{submiti,i∈{B,H}}
SubmissionsJ{‖i∈{B,H} Submit_jobi}

)

BC
{dequeuei,i∈{B,H}}

Schedulers{Sch[nSch]} BC
{assignA}(

PCs{PCA[nPC ,A]} BC
{loginA}

Users{UserA[∞]} BC
{arriveA}

ArrivalsU{Arrive_userA}
)

We use infinite populations here to model open arrivals of users and jobs. This results in a valid PCTMC,
because the infinite populations always occur inside the minimum operator where the other argument is
finite.

	Introduction
	Motivation and objectives
	Markov population models

	Contributions and thesis outline
	Statement of originality and related publications

	Background
	Continuous-Time Markov Chains
	Analysis techniques
	Tackling large state spaces
	Process algebras
	PEPA process algebra
	Client–server model

	Population models
	Analysis techniques
	Process algebras for population models
	Grouped PEPA
	Transaction-based interactions

	Reward models
	Passage times and completion times
	Performance–energy trade-offs

	Hybrid models
	Software tools for population models

	Population Continuous-Time Markov Chains
	PCTMCs
	Examples
	Peer-to-peer model
	PCTMC semantics of GPEPA
	GPEPA client–server model

	Simulation
	ODE analysis of PCTMCs
	Mean-field analysis
	Moment closures
	Normal closure for PCTMCs with polynomial rates
	Numerical solutions of mean-field and moment ODEs

	Efficient computation of passage times
	Agent state transition graphs
	Probed client–server model
	Individual passage time
	Global passage time

	Convergence
	Convergence of mean approximations
	Convergence of variance approximation

	Conclusion

	Improving accuracy of ODE analysis of PCTMCs
	Introduction
	Switch-point analysis in PCTMC models with minimum rates
	Numerical investigation: GPEPA client–server model
	Discussion

	First improvement: combining ODE analysis and simulation
	First-order hybrid analysis
	Second-order hybrid analysis
	Effects of interval length

	Normal moment closure for minimum rates
	Closure comparison
	Evaluation framework
	Numerical results

	Conclusion

	PCTMCs with accumulated rewards
	Introduction
	Accumulated rewards

	Accumulated rewards expressed in terms of populations
	Steady state normalised rewards
	Impulse rewards

	Approximating moments of continuously accumulated rewards via ODEs
	Mean ODEs
	Higher-order moment ODEs
	Accumulations of products of populations
	Completion times
	Convergence of ODE approximations
	Computational cost

	Numerical examples
	Trade-off between energy consumption and performance
	Client–server model with server hibernation
	Global optimisation

	Estimating power consumption rates
	Conclusion

	Hybrid PCTMCs
	Introduction
	Hybrid PCTMCs
	Definition
	Regularity conditions

	ODE analysis
	Mean-field approximations
	Higher-order moments
	Relationship with accumulated populations

	Convergence properties
	First-order convergence
	Second-order convergence
	Normal approximations
	Limitations – speed of convergence

	Worked example
	Time-inhomogeneous models
	Dynamic SLA verification
	Worked Example

	Conclusion

	High-level specification of transactions
	Introduction
	GPEPAc – GPEPA with channels
	Extended syntax of PEPA agents
	Extended syntax of GPEPA models

	PCTMC semantics of GPEPAc
	Algorithm to compute the set of all transactions and transition classes
	Computing the final PCTMC

	Case study: A large scale computing cluster
	The model
	Resulting PCTMC
	Numerical examples
	Optimising the cluster configuration

	Conclusion

	GPA – a tool for rapid analysis of PCTMCs
	Introduction
	Model syntax
	Plain PCTMC
	GPEPA
	Spatial process algebra
	hPCTMC continuous variables
	Variables and pattern matching

	Model analysis – Core solvers
	ODE analysis
	Simulation

	Experiments – Secondary solvers
	Parameter exploration
	Unified Stochastic Probes for GPEPA
	Distribution computation

	Implementation details
	Conclusion

	Conclusion
	Summary of achievements
	Applications
	Distributed high-throughput cycle-stealing system
	GPEPAc model of HTCondor
	Analysis using the collected data

	Future work
	Practical advances
	Theoretical advances

	Related Publications
	Bibliography
	Chapter ch:pctmc
	ODE systems
	First-order moments
	Second-order moments

	Chapter ch:rewards
	ODE systems
	Second-order accumulated moments

	Proofs

	Chapter ch:feedback
	Proofs

	Chapter ch:GPA
	GPA Syntax

	GPEPAc model of HTCondor

