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Abstract

Internet scale applications such as search engines and social networks run their services on
large-scale data centres consisting of tens of thousands of servers. These systems have to cope
with explosive and highly variable user demand and maintain a high level of performance. At
the same time, the energy consumption of a data centre is one of the major contributors to its
operational cost.

This embodies the performance-energy trade-off problem. We need to find configurations which
minimise the energy consumed in running important applications in complex environments, but
which also allow those applications to run reliably and fast.

In this thesis, we develop a general performance-energy analysis framework that can be used to
express complex behaviour in communicating systems and provide a rapid analysis of performance
and energy goals. It is intended that this framework can be used both at design time to predict
long-run performance and energy consumption of an application in a large execution environment;
and at run time to make short-term predictions given current conditions of the environment. In
both cases the rapid model analysis permits detailed what-if scenarios to be tested without the

need for expensive experiments or time-consuming simulations.

The major contributions of this thesis are:

(i) development of the Population Continuous-Time Markov Chain (PCTMC) representation as
a low-level abstraction for very large performance models,

(ii) development of rapid ODE analysis techniques to compute performance-based Service Level
Agreements (SLA) and reward-based energy metrics in PCTMCs,

(iii) hybrid extension of PCTMCs that allows models to incorporate continuous variables such as
temperature and that permits the specification of systems with time-varying workloads

(iv) an extension of the GPEPA process algebra that can support session-based synchronisation
between agents and that can be mapped to PCTMCs, thus giving access to the rapid ODE
analysis.

We support the framework with a software tool GPA, which implements all the described formal-

isms and analysis techniques.
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Notation

We use the following notation in this thesis (with some exceptions):

A, B,C,...
A B.C,...

E[A]
X(t),Y(t),Z(t),...

(X(t),C, Xo)

5,8
Agent®15n

a, 57 R

r

[G: PD),...]

A random variable.

A multivariate random variable.

Expectation of a random variable.

A continuous-time stochastic process with state space that is a
subset of ZY'.

Specification of a PCTMC with state space X (¢), a set of transition
classes C and initial populations X (0).

A vector function with range in RY.

Random variable specifying a moment, such as h(A) = A; - Ay or
h(A) = (A1 - E[A1])%

A positive integer constant specifying a scale of a system.

A PCTMC that is a rescaled version of (X (¢),C, Xo) as defined in
Section 3.6.

An approximation to E[h(X (¢))] usually obtained as a solution to
a set of ordinary differential equations such as those defined in
Section 3.4

An agent state identifier in a process algebra model. When suitable
we use abbreviations such as A for convenience.

The coordinate of a PCTMC state X () corresponding to the pop-
ulation of an agent C' (assuming the PCTMC is derived from a
process algebra model).

Shorthand for the accumulated population X; until time ¢, that is
fot X (u)du.

Shorthand for the accumulated product specified by A(X) until
time ¢, that is fot (X (u))du.

A continuous-time stochastic process with state space that is a
subset of RM,

A socket / set of sockets in the GPEPAc process algebra defined in
Chapter 7.

A GPEPAc agent with sockets.

A channel variable used in the semantics of GPEPAc

A channel assignment in GPEPAc transactions.

GPEPAC transaction

12

We will often interleave presented definitions and techniques with demonstrations on an

example. The corresponding text will be highlighted in the same way as this paragraph.

Simulation plots: Unless stated otherwise, whenever we show a plot of an estimate from

stochastic simulation, we use a sufficient number of replications so that confidence intervals are

smaller than line thickness of the respective plot.
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Chapter 1

Introduction

1.1 Motivation and objectives

Internet scale applications such as search engines and social networks run their services on
large-scale data centres consisting of tens of thousands of servers. From a simplified point of view,
providers of data centres for such applications have two goals when designing and operating
their systems:

Guarantee performance Each user query or an internal request is directed to the appropriate
service and executed as a computational task. Providers of the data centre often give a
performance guarantee in the form of a Service Level Agreement (SLA). SLAs typically assign
a minimum probability for the request to finish within a given time, such as “each request
will be completed within 0.3s at least 99% of the time” [66].

Minimise energy consumption At the same time, energy consumption of servers in a data
centre is one of the main factors in its operational cost [27]. Moreover, data centres are
becoming a major contributor to electricity consumption in developed nations and so
there are great incentives for providers to reduce their electricity bill and impact on the

environment.

There is a technically challenging trade-off to be achieved between these two goals — system
configurations which provide energy savings usually reduce the overall system performance,
while higher performance configurations tend to have greater energy demand. Therefore, to be
able to choose between different configurations of a data centre requires accurate predictions of
the resulting performance and the total energy consumption, while taking into account important
system SLAs. Ideally such predictions would be provided by a mathematical model of the data
centre. Using such model would allow the provider of a data centre to evaluate the effects of
different configurations without implementing each configuration in a testing environment and

performing time consuming and costly benchmarking experiments.

In this thesis, we present a performance analysis framework that will allow us to model
such large systems and choose configurations that achieve minimum energy consumption
while meeting critical SLAs.

The arrival patterns of requests to a data centre are highly variable and unpredictable and this
adds to the modelling challenge. A common way to guarantee an SLA is to heavily over-provision
the data centre in order to cope with anticipated peak loads [78]. For example, the total allocated
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computational capacity, such as the number of servers, might be increased by 50% above the
required capacity at the time of the heaviest load. This has a severe impact on the energy
consumption of the data centre, which is often the main component of the overall system cost.
Additionally, together with the increasing popularity of data centre based computation, over-
provisioning has significant impact on the environment, as most electrical energy used by data
centres still comes from non-renewable resources [159, 170].

Data centre architectures provide a number of ways to reduce the energy implications of over-
provisioning. These involve a combination of hardware improvements of individual servers and
sophisticated algorithms for managing servers and allocating computational tasks. We discuss
various energy—performance trade-offs inherent in the different data centre architecture aspects
below:

Energy-proportional hardware Depending on the variability of system load, servers in over-pro-
visioned systems are often not fully utilised. In fact, servers spend most of their time
at around 30% — 40% utilisation [27]. Energy-proportional hardware provides a range
of operational regimes with decreasing power consumption at the expense of decreased
computational capability. The simplest case is for two regimes — normal operation and
reduced power consumption for idle periods. Most advances in this direction have been
made in case of CPUs, where Dynamic Voltage and Frequency Scaling allows the CPU to run
at a range of reduced frequencies, thus reducing power consumption and generated heat
[105]. This saving can be as much as 70% of the peak power [27]. Similar techniques exist
for other hardware components such as RAM and disks, but these have reduced potential
power saving and also introduce performance and energy penalties for switching between
different regimes.

Dynamic provisioning At the level of a data centre, additional energy proportionality can be
achieved by dynamically turning servers on and off, according to the load on the system
[167]. In idle periods, servers can be powered down to eliminate their energy consumption.
However, in case of sudden increase in demand, there is a significant delay and energy
cost to bring the server back up. A compromise can be achieved by a range of “sleep”
states where only certain sub-systems are powered down, resulting in much reduced power
consumption but also in faster return to an operational state.

Consolidation Due to energy proportionality, servers often achieve their highest energy efficiency
when running at full power. At the same time, in order to take full advantage of dynamic
provisioning, it is necessary to maximise the number of servers that can enter a sleep state.
Often, computational tasks running on a group of servers can be consolidated and moved
onto a smaller group of servers. One example is virtualisation, where tasks run in virtual
machine (VM) environments with potentially several VMs on a single server. The VMs can

be moved between servers at the expense of temporary performance degradation.

Temperature-aware resource allocation Cooling infrastructure can contribute as much as 50%
of the total energy consumption of a data centre [160]. The energy-saving techniques
above have an impact on the temperature in a data centre and therefore also on the total

energy consumed by the cooling infrastructure. Additionally, there has been progress on
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temperature-aware allocation algorithms, which spread system load onto different racks in
the data centre in order to minimise the power consumed by cooling infrastructure [111].

Modern data centres implement most of these techniques and give data centre providers access
to a large number of different system configurations which can trade energy consumption for
performance and vice versa. The resulting system becomes extremely complex, even before
considering the details of applications running on the data centre. However, quantitative
understanding of the system as a whole is important at all stages of data centre design and
operation. For example, at the design stage, data centre providers need to choose a suitable size
of their system in order to cope with anticipated loads. Having a quantitative model of the data
centre would allow them to rapidly evaluate different configurations without running expensive
experiments. Similarly, such a model could be used to assess configuration changes and upgrades
once the data center is in operation. In this case the model can be reinforced with parameters
obtained from monitoring the real data centre.

In each case, it is essential for the model to be able to quantify the extent to which both of the
main goals — performance and energy — have been achieved. Taking all the above considerations
into account, we can formulate a number of requirements for this quantitative model:

(i) Deal with large and complex systems. We require analysis of systems with tens of
thousands of different components. Often, the number of servers is a variable in the
configuration and therefore the complexity of the analysis should not be dependent on this
number.

(ii) Allow high-level model descriptions. The modelled systems are often complex and only
possible to understand after being broken down into a number of sub-systems. We require
a behavioural language for compositional description of such systems.

(iii) Accurately capture SLA metrics. We require the ability to verify SLAs based on passage
time probabilities. These SLAs should be described in terms of the behavioural model of the
system.

(iv) Capture energy consumption metrics. We require efficient methods to compute the total
energy consumed by the modelled system.

(v) Jointly consider temperature and workload. The computed energy consumption metrics
need to be able to take into account the energy consumption of cooling infrastructure,
which depends on the environmental temperature which in turn potentially depends on the
load on the system and the current configuration.

(vi) Allow time-dependent stochastic workloads. Realistic applications need to be able to take
into account workloads which are stochastic in nature and vary over time.
1.1.1 Markov population models

Traditionally in performance analysis, a suitable tool for modelling such systems would be
a Markov chain. Although it is a mathematically very simple stochastic process, it has been

successfully applied to capture performance and behaviour in a range of systems. However,
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classical Markov chain analysis techniques rely on linear-algebraic operations with complexity
at least linear in the number of states of the system. This poses a problem as the number of
combinations of states of each of the large number of servers soon explodes beyond the limits
of these techniques. Much more suitable is the so-called Markov population model approach
which treats the system as a Markov chain, but acknowledges the presence of a large number
of similarly behaved agents and models their aggregate populations instead of considering each
agent individually. This representation allows rapid analysis with a derived system of ordinary
differential equations (ODEs) the size of which is independent of the scale of the system. For
example, in the mean-field analysis [e.g. 88, 89, 42, 31, 33] each population is approximated by
a continuous variable from the solution to a system of ODEs. Additional heuristics [e.g. 189, 186,
71, 81, 17] can improve this approximation and also provide ODEs for higher-order moments of
populations, such as the variance. Usually, the ODE approximations are related to the original
stochastic process by various convergence results [e.g. 127] which show that the approximation
becomes more accurate as the number of agents increases.

Markov population models and the related analyses originate in physics, chemistry and biology,
where the extremely large populations, e.g. of particles, molecules, cells, have always been
present. With the increased importance of distributed computation, wireless sensor networks and
further massively parallel systems, Markov population models have seen application in computer
science and the field of performance analysis [25, 33, 79]. Often, in contrast to applications in
natural sciences, the behaviour of individual components, such as servers or wireless sensors, is
known and well defined. Traditionally, this resulted in an approach where systems are described
in a behavioural language, such as a stochastic process algebra, e.g. stochastic w-calculus (sw)[155],
PEPA [107], Stochastic Concurrent Constraint Programming (SCCP) [36] or Stochastic Petri Nets
[26]. Usually, each of these languages has a defined semantics — a translation into an underlying
Markov chain, that can be analysed with traditional explicit state space techniques. In some cases,
the resulting Markov chain from a behavioural description is equivalent to a Markov population
model, and therefore amenable to efficient ODE approximations. Sumpter et al. [171] were
one of the first to use this approach and derived a set of mean-field difference equations for a
discrete time Markov chain described in the WCCS process algebra. Further work includes the
derivation of ODEs approximating models in PEPA [108, 183], subset of sw [48], SCCP [41].
These approaches give the set of ODEs as an alternative semantics to the Markov chain and
in some cases they go on to relate the ODE and Markov chain semantics by showing that the
ODEs would be equivalent to applying mean-field techniques to the Markov chain semantics.
Hayden and Bradley [99] introduce GPEPA, a syntactical extension of PEPA aimed at describing
population models. They consider only a single Markov chain semantics and show how to derive
ODE:s for means and higher-order moments of populations in the Markov chain described by a
GPEPA model.

Several extensions to these rapid analysis techniques allow computation of further metrics, such
as passage times or rewards. However, to the best of our knowledge, none of the existing
results support analysis of SLAs, while being able to accurately capture the evolution of energy
consumption over time and simultaneously take into account the temperature of the environment.
This is the goal we have set ourselves in this thesis.
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1.2 Contributions and thesis outline

In this thesis, we develop Markov population models into a modelling framework for capturing
performance—energy trade-offs. We start with the technique of Hayden and Bradley [99],
originally derived as an efficient ODE analysis for models described in the GPEPA process
algebra. The same authors also show how to use this approach to rapidly evaluate passage
time probabilities for SLAs [4]. We generalise this approach to Markov population models and
define a common representation called Population Continuous-Time Markov Chains (PCTMC). We
incorporate various existing heuristics based on moment closures and present a new moment
closure specifically for models of computer systems. This greatly improves the accuracy of the
ODE analysis of PCTMCs. In doing this, we have a framework which satisfies requirements
(i)—(iii). We show how to derive ODEs for moments of accumulated rewards, enabling us to
compute detailed energy consumption specifications, as given in requirement (iv). A further
extension allows us to include continuous variables in the system, to capture the mutual influence
of temperature and the behavioural part of the model, requirement (v), and also allows time-
dependent rates that can represent high variability in user demand, requirement (vi). We design a
specification language capable of concise description of a number of common interaction patterns.
We implement our techniques in an efficient software tool GPA, making the framework readily
available to modellers.

Chapter 3: Population Continuous-Time Markov Chains

We summarise the main existing results concerning the analysis of Markov population models.
We define a Population Continuous-Time Markov Chain, a Markov chain where the state space
consists of integer valued populations. We show how existing mean-field and moment closure
approximations also referred to as instances of fluid or ODE analysis apply to PCTMCs. We show
how the method of Hayden et al. [4] can be used to compute passage time probabilities for SLAs
in PCTMCs. The chapter ends with an overview of first- and second-order convergence results
which justify the use of the mean-field and moment-closure approximations. We argue that
PCTMC s can be used as an intermediate representation for high-level behavioural description
languages, such as GPEPA. In the subsequent chapters, we work on the PCTMC level and therefore
make our results applicable to any formalism that can be translated to PCTMCs.

Chapter 4: Improving accuracy of ODE analysis of PCTMCs

Although mean-field analysis becomes more accurate as the system size increases, in practice we
require accurate results at arbitrary scales of the system. We investigate the accuracy of mean-field
and moment closure approximations. We show a heuristic, using so-called switch-point distance
that allows us to identify time intervals yielding low accuracy in PCTMC models derived from
GPEPA. As a first improvement, we combine the ODE analysis with stochastic simulation in places
where there is a low predicted accuracy. We introduce min-normal closure — a moment closure
for rates containing the min function based on the normal distribution. Finally, we compare the
accuracy of different closures on a large number of model parameters.
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Chapter 5: PCTMCs with accumulated rewards

We extend the ODE analysis of PCTMCs with differential equations capturing means and higher
moments of accumulated rewards in the system. Both impulse and rate rewards are supported
and the resulting framework can be used to model energy consumption as well as additional cost
functions such as the cost of switching the state of a server. Importantly, the we can simultan-
eously capture SLA metrics as well as rewards. This lets us formulate a class of optimisation
problems addressing the energy—performance trade-off. We illustrate the techniques on a larger

example of a client-server model with server hibernations.

Chapter 6: Hybrid PCTMCs

We further extend the framework by allowing accumulated rewards to be part of the state space
of PCTMC models. This enables us to model for example the temperature in a data centre,
which reacts to system load, and at the same time include scheduling algorithms which take the
temperature into account. We extend ODE analysis techniques to this case. Additionally, we
introduce time-dependent rates into the framework and thus allow models with time-varying
workload.

Chapter 7: High-level specification of transactions

PCTMC is a suitable mathematical formalism to describe very large systems. However, from user
perspective, models can often be complicated and difficult to describe manually. We introduce
GPEPAC, an extension of the GPEPA process algebra, aimed at describing systems with multi-
phase session-based communication. We give a formal definition of the language, and define a
translation to PCTMC. We demonstrate GPEPAc on an example of a heterogeneous computing
cluster, where we optimise a number of scheduling policies while taking the energy—performance
trade-off into account.

Chapter 8: GPA - a tool for rapid analysis of PCTMCs

In order to make the PCTMC framework and extensions from this thesis more accessible, we
implemented all the developed techniques in a software tool GPA. We describe the architecture
of GPA and give an overview of its main features. The tool evolved to support a range of different
specification languages, using hybrid PCTMCs as an intermediate representation. GPA also
provides a number of efficient solution techniques and its architecture allows fast prototyping of

different variations of the ODE analysis.

1.3 Statement of originality and related publications
I declare that this thesis was composed by myself, and that the work it presents is my own, except
where otherwise stated.

During the course of my PhD, I co-authored the following publications. Apart from two exceptions
[4, 5], I am the first author or joint first author in all these publications.
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Journal papers & book chapters

[4]

[10]

[14]

[2]

R. A. Hayden, A. Stefanek and J. T. Bradley. Fluid computation of passage-time distri-
butions in large Markov models. In: Theoretical Computer Science 413.1 (Jan. 2012),
pp. 106-141. 1ssN: 03043975. DOI: 10.1016/j.tcs.2011.07.017

This paper shows how to use the ODE analysis of GPEPA models to derive distribution
functions of a number of different types of passage times. My contribution to this paper is a
case study of a customer—service system demonstrating the techniques and implementation
in the GPA tool.

A. Stefanek, R. A. Hayden and J. T. Bradley. Fluid computation of the performance-
energy trade-off in large scale Markov models. In: SIGMETRICS Perform. Eval. Rev. 39.3
(2011). por: 10.1145/2160803.2160872

This is a short paper where we outline the PCTMC framework and suggest the need for a
high-level specification language for session-based communication. This paper later evolved

into the work presented in Chapter 7.

A. Stefanek, R. A. Hayden and J. T. Bradley. Mean-field Analysis of Large Scale Markov
Fluid Models with Fluid Dependent and Time-Inhomogeneous Rates. In: Annals of
Operations Research to appear (2013)

This is an extended work on hybrid Markov population models [15] that adds time-
dependent rates to the framework. This extended version also improves the presentation of
the original paper and is the basis for Chapter 6. I wrote the majority of the extensions and
the added case study.

J. T. Bradley, M. C. Guenther, R. A. Hayden and A. Stefanek. GPA - A multiformalism,
multisolution approach to efficient analysis of large scale population models. In: The-
ory and Application of Multi-Formalism Modeling. Ed. by M. Gribaudo and M. Iaconno. IGI
Global, 2013. 1SBN: 1466646594. DOI: 10.4018/978-1-4666-4659-9

In this book chapter we give an overview of the GPA tool, focusing on the so-called “multi-
formalism” features which allow a number of different formalisms to be translated into the
intermediate PCTMC representation. I contributed most of the sections concerning the GPA
tool. This work is presented in Chapter 8.

International conference & workshop papers

(8]

A. Stefanek, R. A. Hayden and J. T. Bradley. A new tool for the performance analysis
of massively parallel computer systems. In: Eighth Workshop on Quantitative Aspects of
Programming Languages QAPL 2010 March 2728 2010 Paphos Cyprus. Electronic Proceedings
in Theoretical Computer Science (2010). DOI: 10.4204/EPTCS.28.11

In this paper, we present the GPA tool for the first time and use it for the so-called switch-
point analysis of GPEPA models. I implemented the tool and performed all the experiments,
including the switch-point analysis under scaling. Section 4.2 presents this work in an
improved form. Hayden contributed most of the theoretical considerations in Section 1.5

of the paper. These results are reviewed as background in Section 3.6 of this thesis.
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[9]

[11]

[15]

[3]

[5]

A. Stefanek, R. A. Hayden and J. T. Bradley. Fluid Analysis of Energy Consumption using
Rewards in Massively Parallel Markov Models. In: ICPE’11 - Second Joint WOSP/SIPEW
International Conference on Performance Engineering, Karlsruhe, Germany, March 14-16,
2011. ACM Press, 2011, p. 121. 1SBN: 9781450305198. DOI: 10.1145/1958746.1958767

This paper shows how to compute moments of accumulated rewards in Markov population
models. I contributed the majority of the paper and implementation of the techniques
in the GPA tool. Chapter 5 presents the main results and additionally considers impulse
rewards and a new moment closure approximation.

A. Stefanek, R. A. Hayden and J. T. Bradley. GPA - A Tool for Fluid Scalability Analysis
of Massively Parallel Systems. In: 2011 Eighth International Conference on Quantitative
Evaluation of SysTems. IEEE, Sept. 2011, pp. 147-148. 1SBN: 978-1-4577-0973-9. DOI:
10.1109/QEST.2011.26

In this paper we present the parameter exploration and optimisation aspects of the GPA
tool. This is demonstrated in Section 8.4.1.

A. Stefanek, R. A. Hayden, M. M. Gonagle and J. T. Bradley. Mean-Field Analysis of
Markov Models with Reward Feedback. In: Analytical and Stochastic Modeling Techniques
and Applications - 19th International Conference, ASMTA 2012, Grenoble, France, June 4-6,
2012. Proceedings. Springer, 2012, pp. 193-211. DOI: 10.1007/978-3-642-30782-9_14

This paper shows how to treat accumulated rewards as part of the state space of Markov
population models, allowing rates in the underlying stochastic process to depend on
rewards. This allows us to jointly capture temperature and other metrics in the system.
The extended version of this paper [14] is presented in Chapter 6. This paper also presents,
for the first time, a closure for Markov population models with rates with the minimum
function, presented in Section 4.4. I am responsible for the main part of the paper and
the related implementation in the GPA tool and the experiments used to demonstrate the
framework. Hayden contributed the paragraph on regularity conditions in Section 2.1 of
the paper and proofs of convergence theorems extended to this framework in Section 3.
These are presented in Appendix C.1 of this thesis.

M. C. Guenther, A. Stefanek and J. T. Bradley. Moment closures for performance models
with highly non-linear rates. In: Computer Performance Engineering - 9th European Work-
shop, EPEW 2012, Munich, Germany, July 30, 2012, and 28th UK Workshop, UKPEW 2012,
Edinburgh, UK, July 2, 2012, Revised Selected Papers. Munich: Springer, 2012, pp. 32-47.
DOI: 10.1007/978-3-642-36781-6_3

In this paper we experiment with a number of different moment closures in Markov popula-
tion models. Section 4.5 shows a comparison of the accuracy of three different closures
on a large number of examples. Guenther contributed the implementation of a stochastic
simulation with confidence intervals and additionally a log-normal closure and an example
model in the MASSPA process algebra which are omitted in this thesis.

M. Kohut, A. Stefanek, R. A. Hayden and J. T. Bradley. Specification and efficient compu-
tation of passage-time distributions in GPA. In: Proceeding QEST ’12 Proceedings of the
2012 Ninth International Conference on Quantitative Evaluation of SysTems. London, 2012,
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pp. 199-200. DOI: 10.1109/QEST.2012.24

In this paper, I worked with the first author on adapting the architecture of the GPA tool in
order to enable an extension implementing the Unified Stochastic Probes formalism [103].

National workshop papers

[12]

[13]

[6]

[7]

[1]

A. Stefanek, R. A. Hayden and J. T. Bradley. GPA - a tool for rapid analysis of very large
scale PEPA models. In: UKPEW’10, 26th UK Performance Engineering Workshop. 7-8th July,
University of Warwick. 2010, pp. 91-101

This paper presents the GPA tool.

A. Stefanek, R. A. Hayden and J. T. Bradley. Hybrid analysis of large scale PEPA models.
In: 9th Workshop on Process Algebra and Stochastically Timed Activities (PASTA). 2010, p. 29

This paper combines ODE analysis of GPEPA models with stochastic simulation. We present
this approach in Section 4.3.

A. Stefanek, M. C. Guenther and J. T. Bradley. Normal and inhomogeneous moment clos-
ures for stochastic process algebras. In: 10th Workshop on Process Algebra and Stochastic-
ally Timed Activities (PASTA11). Ragusa, 2011

In this paper we explore existing moment closure approximations in the context of our
PCTMC framework.

A. Stefanek, U. Harder and J. T. Bradley. Energy Consumption in the Office. In: UK-
PEW’12, 28th UK Performance Engineering Workshop, Edinburgh, UK, July 2, 2012, Revised
Selected Papers. Ed. by M. Tribastone and S. Gilmore. Vol. 7587. Lecture Notes in Computer
Science. Springer, 2012, pp. 224-236. 1SBN: 978-3-642-36780-9. DOI: 10.1007/978-3-
642-36781-6_16

This paper describes an experiment in which we measured energy consumption of office
equipment. Guenther contributed the experimental results of different closures applied to a
model in the MASSPA process algebra.

J. T. Bradley, M. Forshaw, A. Stefanek and N. Thomas. Time-inhomogeneous population
models of a cycle-stealing distributed system. In: UKPEW’13, The 29th UK Performance
Engineering Workshop. 2013

This paper is a preliminary application of our framework to HTCondor, a cycle-stealing
distributed system. Examples from this paper are presented in Section 9.2. Forshaw
provided a framework for obtaining the experimental data from HTCondor deployed at
Newcastle University.
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Chapter 2

Background

This chapter provides an overview of the relevant background theory that we use and extend in
this thesis. The chapter starts with a brief overview of continuous-time Markov chains. Guided by
the considerations in Section 1.1, we focus on models that are able to represent systems consisting
of a large number of interacting agents. We provide a high-level overview of Markov population
models and associated efficient analysis techniques and postpone a detailed and unified treatment
of selected results until the next chapter. We show techniques for calculating derived metrics
from general continuous-time Markov chains, such as passage-times and accumulated rewards,
that are crucial in various applications. We review hybrid models, where continuous rewards can
influence the discrete behaviour of the Markov chain. Finally, we survey several existing tools
implementing these techniques. Figure 2.1 gives an overview of this chapter and highlights the
context of extensions developed in this thesis.

GPEPAC 7 clogiie
3.4.2

: v Moment Normal |
[Formahsms} [ Analyses } [Formahsmsj [ Analyses J : ODEs closure
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[Formalisms} [ Analyses J

Moment
(_ODEs 63 )
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models 4.3 models 6

Tools 2.5 <— Tools 2.5 <+ GPA S
Figure 2.1: Overview of the background and contributions of this thesis. The arrows denote a subclass
relationship.
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2.1 Continuous-Time Markov Chains

This thesis will be concerned with stochastic processes that are continuous-time Markov chains
(CTMCQ), whose treatment can be found in many introductory probability textbooks, [e.g. 163,
150]. We say that a stochastic process {X (¢)} indexed by a real variable ¢t € R, and taking
values in a countable state space S is a CTMC if it satisfies the Markov property, that is if for all
t,At € Ry,

P(X(t+At) =k | X(t)=j,X(u) =2(u),0 <u<t)=P(X(t+A) =Fk|X(t)=7).

One way to construct a CTMC is to consider a stochastic process with the following behaviour

every time it enters a state s; € S:

1. the time it stays in the state is exponentially distributed with rate v;,
2. the next state s; it enters is distributed according to a discrete distribution with probabilities

Pijs D j2iPij = L.

Let p;;(t) = P(X(t) = j | X(0) = i). It is possible to show that this construction guarantees that
the following two limits exist:

.1 —pi(At)
lim — 2" — . 2.1
AT A T (2.1)
pij(A?) L
Am ”At = Pijvi =1 i i F (2.2)

and that
pij(t +s) = Zpik(t)pkj(s)
i€S
forall s,t € Ry.

Further manipulation yields the Kolmogorov’s forward equations, which characterise the time-
evolution of the state probabilities in the CTMC as an ordinary differential equation:

d
g Pi(t) = > akipin(t) — vipi (1)
k#j
with initial conditions
pij(0) =0, i £
pii(0) =1
We can set the generator matrix Q) = (g¢;;), where g;; = —v; and define the matrix P = (p;;). The

above differential equation in matrix form is

d
< pu) = P, @3)
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PO)=1

where [ is the [S| x |S| identity matrix. Usually, we are interested in the probability of X (¢) being
in a state given a distribution of the state at time ¢t = 0, with probabilities in a vector py. We can
reduce the above equation to a single vector p:

o) =pl1)Q @4

p(0) = po (2.5)

2.1.1 Analysis techniques

Solution to Equation 2.3 can be expressed as

Pt = exp(@n) = Y G

n=0
Using this solution directly yields a numerically unstable algorithm due to both positive and
negative entries in the matrix (). An improvement can be provided by the identity

exp (Qt) = nlggo (I+Qt/n)".

Further improvement is provided by uniformisation of X (¢) [e.g. 163]. This transforms the CTMC
into an equivalent one with additional self-transitions in each state that guarantee that the new
holding rates v, = v are all equal to the largest v; in the original chain. The state probabilities
can be then expressed as

oo

pii(t) =Y (@), exp(—vt)

n=0

vt)™
n!

where ' = I + @ /v. Numerical evaluation of this summation is stable and provides means to
control the resulting error of the approximation.

Another possibility is to numerically integrate the set of ODEs in Equation 2.3, for example using
the Runge-Kutta algorithm. A common problem with all the presented methods is that they
explicitly represent each state of the CTMC. The computational cost therefore depends at least
linearly on the size of the state space |S|. This limits their applicability, as even simple CTMC
models can have a very large number of states.

2.1.2 Tackling large state spaces

The presented construction of a CTMC can be used in discrete event simulation. Several variants
of the Gillespie algorithm [82] can be used to generate individual simulation traces of a CTMC. It
is often possible to avoid directly evaluating the full state space and the simulation can consider
only states encountered throughout each trace. However, in order to obtain accurate estimates of
the transient state probabilities, a large number of traces have to be evaluated.
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Several symbolic techniques address the problem of having to explicitly store the state-space
of the CTMC. The generator matrix of the CTMC can be efficiently stored as a Multi-terminal
Binary Decision Diagram [74, 106], used in tools such as PRISM [129] and Mobius [65]. A class
of CTMCs can be represented as a Stochastic Automata Network [153], where the generator
matrix can be efficiently derived with tensor algebra. Further implementation optimisations can
be used to tackle large state spaces, such as using disks instead of memory and parallelising
the computation [121]. However, all of these techniques still have to explicitly represent the
probability vector of the CTMC and are therefore not applicable to systems composed of a large
number of interacting agents.

2.1.3 Process algebras

In practice, CTMCs are often not described directly but through a high-level language that has a
defined translation to a CTMC. Examples include Stochastic Petri-nets [26] and stochastic process
algebras such as PEPA [107], stochastic w-calculus [155] and stochastic concurrent constraint
programming [36]. Process algebraic descriptions are attractive for modelling real systems. They
offer a user-friendly language and are thus accessible to a wider community of modellers. Perhaps
the main benefit of describing a system in a process algebra is the compositionality property — it is
possible to define a system from a number of subcomponents, which can in turn be compositions
of smaller components. This allows easy extensions and re-use of existing models. However, the
compositionality often results in a combinatorial explosion of the resulting state space as shown
in an example below.

2.1.4 PEPA process algebra

In this thesis we will use a variant of the PEPA process algebra. PEPA has a proven history of
being applied to a number of different domains, such as mobile networks [73], web servers [44]
and robot control [85]. We briefly introduce the syntax of PEPA and its CTMC semantics. We only
look at a subset of the language and ignore passive rates and action hiding. A detailed description
of PEPA can be found in the original book by Hillston [107]. The main building blocks of PEPA
models are agents defined by the following syntax:

S:=(a,1).8|S+5[Cs
P:=PrIP|(P|P)| Pln]|S|Cp

The variable S stands for sequential agents and P for parallel agents. The symbol B is the
synchronisation operator and L is a set of action labels, | is a shorthand for > and PIn] for

pP|---|P.
~——

n

The label « is an action label and r € R is a rate. Named agents can be defined in equations
of the form C £ P where C is an agent label. Each PEPA model consists of a number of such
definitions and one parallel agent, the system equation.

Informally, the semantics of a PEPA model can be described as:
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Prefix A sequential agent («,r).S can perform an action « and after an exponential duration
with parameter r evolve into another sequential agent S.

Choice An agent P + @ can perform all the actions of sequential agents P and ), where the
exponentially distributed durations are raced against each other.

Constant Any reference to a named agent C stands for the definition of the agent in one of the
equations of the model.

Cooperation An agent P P1Q created as a parallel composition of two agents synchronising on
a set of actions L allows both P and () to independently perform any action that is not in L.
Actions in L must be executed simultaneously, with both agents changing state accordingly.

Formally, the semantics of a PEPA model is described as a labelled transition system in Figure 2.2.
The semantics is inductively defined on the structure of agents and gives all possible transitions
P {27, pr for each state P of the system equation. Each such transition represents a transition
between states P and P’ at rate r in the resulting CTMC. The initial state corresponds to the
state representing the system equation. The semantic definition uses the concept of apparent
rate r,(P), that is the total rate at which an agent P can be seen to perform an action a. A
sequential prefix agent can be observed to perform an action « only when « is included in the
prefix. If an agent is a choice P + @, then « can be observed either on the P or @) part and so
the apparent rate is the sum of the individual apparent rates. PEPA uses the so-called bounded
capacity semantics for cooperation, which means that the apparent rate of a cooperation agent
P @ is the minimum of the individual apparent rates if « is in L. The full definition of the
apparent rate function r,,(P) is as follows:

r iff=«

ra((B, 1).P) := { 0 if84a

ro(P+Q) = ra(P) +7a(Q)
(P Q) = { min(ry (P), ra(Q)) ifa €L
) " Ta(P) +7(Q) ifad¢lL
ra(C) == ro(P) ifc¥p (2.6)

The semantic rule for cooperation in Figure 2.2 defines the rate R as a fraction of the total
apparent rate r,(E Dgﬂ F). The motivation for this is that the total rate is split among all the
possible combinations of cooperation between a transition £ and a transition in F'. The term
r1/7o(E) can be thought of as the probability that the firing of o corresponds to the specific

transition EF m E.

2.1.5 Client-server model

As an example, consider a simple client-server model. The system consists of two agent types,
clients and servers. Clients can request data from servers, receive data from one of the servers
and then perform some independent action with the data. Each server, in addition to providing
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Prefix: (@, 1).E (o, 1) B
(a,r) , (ayr) ,
Competitive Choice: E ( )E F ( fr
E+F 25 p E+F 25
(a, ) (a, )
E—=F P —= F
Cooperation: ) (g S) ) (g S)
ED§F—>E’D§]F ED§F—>ED§]F/
(e, 1) , (at, r2) ,
F—=F F——-F (a € S)
Brar 20, g
where R = TJ(IE) rJ(QF) min(ry (E), ro(F))
(@, 7)1y
Constant: E— 5

def
(e, 7) (C = E)
C —=F

Figure 2.2: CTMC semantics of PEPA.

the data, is susceptible to failure in which case it has to be reset. Figure 2.3 shows a diagram of
the model. The individual agent definitions in PEPA are:

Clientd:ef(request, Trequest )- Client_wait Serverd:d(request, Trequest )-S€Tver_get

+(break, ryreqr ). Server _broken
Server_getg(data, Tdata )-SETVET

def
Server _broken=(reset, Treset ). Server

Client_waitg( data, rgaq). Client_think
Client_thinkZ(think, vk ). Client

The system equation of the model consists of n¢o € Z_ client agents in parallel, cooperating on
actions request and data with a par