
Efficient Pseudorandom Generators from
Exponentially Hard One-Way Functions

Iftach Haitner1, Danny Harnik2, Omer Reingold3

1 Dept. of Computer Science and Applied Math., Weizmann Institute of Science,
Rehovot, Israel. iftach.haitner@weizmann.ac.il.†

2 Dept. of Computer Science, Technion, Haifa, Israel. harnik@cs.technion.ac.il.‡
3 Dept. of Computer Science and Applied Math., Weizmann Institute of Science,

Rehovot, Israel. omer.reingold@weizmann.ac.il.§†

Abstract. In their seminal paper [HILL99], H̊astad, Impagliazzo, Levin
and Luby show that a pseudorandom generator can be constructed from
any one-way function. This plausibility result is one of the most funda-
mental theorems in cryptography and helps shape our understanding of
hardness and randomness in the field. Unfortunately, the reduction of
[HILL99] is not nearly as efficient nor as security preserving as one may
desire. The main reason for the security deterioration is the blowup to
the size of the input. In particular, given one-way functions on n bits one
obtains by [HILL99] pseudorandom generators with seed length O(n8).
Alternative constructions that are far more efficient exist when assuming
the one-way function is of a certain restricted structure (e.g. a permu-
tations or a regular function). Recently, Holenstein [Hol06] addressed a
different type of restriction. It is demonstrated in [Hol06] that the blowup
in the construction may be reduced when considering one-way functions
that have exponential hardness. This result generalizes the original con-
struction of [HILL99] and obtains a generator from any exponentially
hard one-way function with a blowup of O(n5), and even O(n4 log2 n) if
the security of the resulting pseudorandom generator is allowed to have
weaker (yet super-polynomial) security.
In this work we show a construction of a pseudorandom generator from
any exponentially hard one-way function with a blowup of only O(n2)
and respectively, only O(n log2 n) if the security of the resulting pseudo-
random generator is allowed to have only super-polynomial security. Our
technique does not take the path of the original [HILL99] methodology,
but rather follows by using the tools recently presented in [HHR05] (for
the setting of regular one-way functions) and further developing them.

1 Introduction

Pseudorandom Generators, a notion first introduced by Blum and Micali [BM82]
and stated in its current, equivalent form by Yao [Yao82], are one of the corner-
† Research supported in part by a grant of the Israeli Science Foundation (ISF).
‡ Part of this research was conducted at the Weizmann Institute. Research was sup-

ported in part at the Technion by a fellowship from the Lady Davis Foundation.
§ Incumbent of the Walter and Elise Haas Career Development Chair.

stones of cryptography. Informally, a pseudorandom generator is a polynomial-
time computable function G that stretches a short random string x into a long
string G(x) that “looks” random to any efficient (i.e., polynomial-time) algo-
rithm. Hence, there is no efficient algorithm that can distinguish between G(x)
and a truly random string of length |G(x)| with more than a negligible proba-
bility. Originally introduced in order to convert a small amount of randomness
into a much larger number of effectively random bits, pseudorandom generators
have since proved to be valuable components for various cryptographic applica-
tions, such as bit commitments [Nao91], pseudorandom functions [GGM86] and
pseudorandom permutations [LR88], to name a few.

The seminal paper of H̊astad et al. [HILL99] introduced a construction of
a pseudorandom generator using any one-way function (called here the HILL
generator). This result is one of the most fundamental and influential theorems
in cryptography. While the HILL generator fully answers the question of the
plausibility of a generator based on any one-way function, the construction is
quite involved and very inefficient. This inefficiency also plays a crucial role in
the deterioration of the security within the construction.

The seed length and security of the construction: There are various fac-
tors involved in determining the security and efficiency of a reduction. In this
discussion, however, we focus only on one central parameter, which is the length
m of the generator’s seed compared to the length n of the input to the underlying
one-way function. The HILL construction produces a generator with seed length
on the order of m = O(n8) (a formal proof of this seed length does not actually
appear in [HILL99] and was given in [Hol06]). An alternative construction was
recently suggested in [HHR05] which improves the seed length to O(n7).

The length of the seed is of great importance to the security of the resulting
generator. While it is not the only parameter, it serves as a lower bound to how
good the security may be. For instance, the HILL generator on m bits has security
that is at best comparable to the security of the underlying one-way function,
but on only O(8

√
m) bits. To illustrate the implications of this deterioration in

security, consider the following example: Suppose that we only trust a one-way
function when applied to inputs of at least 100 bits, then the HILL generator can
only be trusted on seed lengths of 1016 (ignoring constants) and up (or 1014 using
the construction of [HHR05]). Thus, trying to improve the seed length towards
a linear one is of great importance in making these constructions practical.

Pseudorandom generators from restricted one-way functions: On the
other hand, there are known constructions of pseudorandom generators from
one-way functions that are by far more efficient when restrictions are made on
the type of one-way functions at hand. Most notable is the so called BMY gen-
erator (of [BM82,Yao82]) based on any one-way permutation. This construction
gives a generator with seed length of O(n) bits. A generator based on any regular
one-way function of seed length O(n log n) was presented in [HHR05] (improv-
ing the original such construction of seed length O(n3) from [GKL93]). Basing

generators on one-way functions with known preimage-size [ILL89] also yield
constructions that are significantly more efficient than the general case.

The common theme in all of the above mentioned restrictions is that they
deal with the structure of the one-way function. A different approach was taken
by Holenstein [Hol06], that builds a pseudorandom generator from any one-way
function with exponential hardness. This approach is different as it discusses raw
hardness as opposed to structure. The result in [Hol06] is essentially a general-
ization of the HILL generator that also takes into account the parameter stating
the hardness of the one-way function. In its extreme case where the hardness
is exponential (i.e. 2−Cn for some constant C), then the pseudorandom genera-
tor takes a seed length of O(n5). Alternatively, the seed length can be reduced
to as low as O(n4 log2 n) when the resulting generator is only required to have
super-polynomial security (i.e. security of nlog n).

This Work: We give a construction of a pseudorandom generator from any
exponentially hard one-way function with seed length O(n2). If the resulting
generator is allowed to have only super-polynomial security then the construction
gives seed length of only O(n log2 n).

Unlike Holenstein’s result, our constructions is specialized for one-way func-
tions with exponential hardness. If the security parameter is 2−φn then the result
holds only when φ > Ω(1

log n), and does not generalize for use of weaker one-way
functions. The core technique of our construction is the randomized iterate that
was introduced by Goldreich, Krawczyk and Luby [GKL93], and is the focal
point in [HHR05].

2 Overview of the Construction

As a motivating example we start by briefly describing the BMY generator. This
generator works by iteratively applying the one-way permutation on its own out-
put. More precisely, for a given function f and input x define the kth iterate re-
cursively as fk(x) = f(f i−1(x)) where f0(x) = f(x).4 To complete the construc-
tion, one needs to take a hardcore-bit at each iteration. If we denote by b(z) the
hardcore-bit of z (take for instance the Goldreich-Levin [GL89] predicate), then
the BMY generator on seed x outputs the hardcore-bits b(f0(x)), . . . , b(f `(x)).
The rationale behind this technique is that for all k, the kth iteration of f is
hard to invert (it is hard to compute fk−1(x) given fk(x)). Indeed, Levin [Lev87]
showed that the same generator works with any function that is “one-way on
its iterates”. However, a general one-way function does not have this guarantee,
and in fact, may lose all of its hardness after just one iteration (since there may
be too little randomness in the output of f).

The randomized Iterate and regular one-way functions: With the above
problem in mind, Goldreich et al. [GKL93] suggested to add a randomizing step

4 We take f0(x) = f(x) rather than f0(x) = x for consistency with [HHR05] (see also
remark in Section 4).

between every two iterations. This idea is central in our work and we define it
next (following [HHR05]):

Definition (Informal): (The Randomized Iterate) For function f , input
x and random pairwise-independent hash functions h = (h1, . . . , h`), recursively
define the ith randomized iterate (for i ≤ `) by:

f i(x, h) = f(hi(f i−1(x, h)))

where f0(x) = f(x).
The rational is that hi(f i(x, h)) is now uniformly distributed, and the chal-

lenge is to show that f , when applied to hi(f i(x, h), is hard to invert even when
the randomizing hash functions h are made public. Indeed, in [HHR05] it was
shown that the last randomized iteration is hard to invert even when h is known,
when the underlying one-way function is regular5 (a regular function is a func-
tion such that every element in its image has the same preimage size). Once this
is shown, a generator from regular one-way function is similar in nature to the
BMY generator, replacing iterations with randomized iterations (the generator
outputs b(f0(x, h)), . . . , b(f `(x, h)), h).

The randomized iterate and general one-way functions: Unfortunately,
the last randomized iteration of a general one-way function is not necessarily
hard to invert. It may in fact be easy on a large fraction of the inputs. How-
ever, following the proof method presented in [HHR05], we manage to prove the
following statement regarding the kth randomized iteration (Lemma 42): There
exists a set Sk of inputs to fk such that the kth randomized iteration is hard to
invert over inputs taken from this set. Moreover, the density of Sk is at least 1

k
of the inputs.

So taking a hard core bit of the kth randomized iteration is beneficial, in the
sense that this bit will look random (to a computationally bounded observer)
just that this will happen only 1

k of the time.

The multiple randomized iterate: Our goal is to get a string of pseudoran-
dom bits, and the idea is to run m independent copies of the randomized iterate
(on m independent inputs). We call this the multiple randomized iterate. From
each of the m copies we output a hardcore bit of the kth iteration. This forms
a string of m bits, of which m

k are expected to be random looking. The next
step is to run a randomness extractor on such a string (where the output of the
extractor is of length, say, m

2k). This ensures that with very high probability, the
output of the extractor is a pseudorandom string of bits.

The use of randomness extractors in a computational setting, was initiated in
[HILL99]. We give a general “uniform extraction lemma” for this purpose that
is proved using a uniform hardcore Lemma of Holenstein from [Hol05]. Note
that similar proofs were given previously [Hol06,HHR05]. In Appendix A we

5 Such a statement was originally proved in [GKL93] for n-wise independent hash
functions rather than pairwise independent hash.

give a new version of this Lemma since we require a more careful of the security
parameters.

The pseudorandom generator - a first attempt: A first attempt for the
pseudorandom generator runs the multiple randomized iterate (on m indepen-
dent inputs) for ` iterations. For each k ∈ [`] we extract m

2k bits at the kth

iteration. These bits are guaranteed to be pseudorandom (even when given all
of the values at the (k + 1)st iterate and all of the randomizing hash functions).
Thus outputting the concatenation of the pseudorandom strings for the different
values of k forms a long pseudorandom output (by a standard hybrid argument).

However, this concatenation is still not long enough. It is required that the
output of the generator is longer than its input, which is not the case here. The
input contains m strings x1, . . . , xm and m ·` hash functions. The hash functions
are included in the output, so the rest of the output needs to make up for the
mn bits of x1, . . . , xm. At each iteration we output m

2k bits which adds up to∑`
k=1

m
2k bits. This is a harmonic progression that is bounded by m log `

2 and in
order to exceed the mn lost bits of the input, we need ` > 2n which is far from
being efficient.

The pseudorandom generator and exponential hardness: The failed gen-
erator from above can be remedied when the exponential hardness comes into
play. It is known that if a function has hardness 2−Cn (for some constant C),
then it has a hardcore function of C ′n bits (for another constant C ′). Such a
general hardcore function appears in the original Goldreich-Levin paper [GL89].
Thus, if the original hardness was exponential, then in the kth iteration we can
actually extract C ′n random looking strings, each of length m

2k . Altogether we
get that the output length is C ′n

∑`
k=1

m
2k ≥ C ′mn log `. Thus for a choice of `

such that log ` > C ′ we get that the overall output is a pseudorandom string of
length greater than the input.

The input length of the construction is O(nm), where m can be taken to be
approximately O(log `

ε(n)) where ε(n) is the security of the resulting generator.
In particular, in order to get an exponentially strong generator, one needs to
take a seed of length O(n2).

To sum up, we describe the full construction in a slightly different manner:
One first creates a matrix of size m×`, where each row in the matrix is generated
by computing the first ` randomized iterates of f (each row takes independent
inputs). Now from each entry in the matrix O(φn) hardcore bits are computed
(thus generating a matrix of hardcore bits). The final stage runs a randomness
extractor on each of the columns of the hardcore bits matrix.6 Moreover, the
number of pseudorandom bits extracted from a column deteriorates from one
iteration to another (m

k pseudorandom bits are taken at the columns associated
with the kth randomized iterate).

6 Note that each execution of the extractor runs on a column in which each entry
consists of a single bit (rather than O(φn) bits). This is a requirement of the proof
technique.

Some Notes:

– Our method works for one-way functions with hardness 2−φn as long as
φ > Ω(1

log n). Loosely speaking, this is because for large values of `, the
value 1

` becomes too small to overcome with limited repetition (and thus
requires m to grow substantially).

– The paper focuses on length-preserving one-way functions, however, the re-
sults may be generalized to use non-length preserving functions (see [HHR05]).

Paper Organization: In Section 3 we provide general definitions and nota-
tions. Section 4 gives the core results regarding the randomized iterate. Section
5 presents the multiple randomized iterate and its properties, while Section 6
presents the actual construction of the generator. Appendix A discusses the uni-
form extraction Lemma.

3 Notations and Definitions

We denote by f : {0, 1}n → {0, 1}`(n), where ` is a function from N to N, the en-
semble of functions

{
fn : {0, 1}n → {0, 1}`(n)

}
n∈N. ppt stands for probabilistic-

polynomial time Turing machine. A function µ : N → [0, 1] is negligible if for
every polynomial p we have that µ(n) < 1/p(n) for large enough n. To denote
that µ is negligible we simply write µ(n) ∈ neg(n). We denote by Im(f) the
image of a function f . Let y ∈ Im(f), we denote the preimages of y under f by
f−1(y). The degeneracy of f on y is defined by Df (y) def= dlog

∣∣f−1(y)
∣∣e.

3.1 Distributions and Entropy

We denote by Un the uniform distribution over {0, 1}n. Given a function f :
{0, 1}n → {0, 1}`(n), we denote by f(Un) the distribution over {0, 1}`(n) induced
by f operating on the uniform distribution.
Let D be a distribution over some finite domain X, we use the following “mea-
sures” of entropy:

– The Shannon-entropy of D is H(D) =
∑

x∈X D(x) log 1
D(x) .

– The collision-probability of D is CP (D) =
∑

x∈X D(x)2.
– The min-entropy of D is H∞(D) = minx∈X log 1

D(x) .

Two distributions P and Q over Ω are ε-close (or have statistical distance ε)
if for every S ⊆ Ω it holds that |Prx←P (S)− Prx←Q(S)| ≤ ε.

By a Distribution Ensemble we mean a series {Dn}n∈N where Dn is a distri-
bution over {0, 1}n. Let {Xn} and {Yn} be distribution ensembles. Define the
distinguishing advantage of an algorithm A between the ensembles {Xn} and
{Yn} denoted as ∆A({Xn} , {Yn}), by:

∆A({Xn} , {Yn}) = |Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]|

where the probabilities are taken over the distributions Xn and Yn, and the
randomness of A.

3.2 Family Of Pairwise-Independent Hash Functions

Definition 31 (Efficient family of pairwise-independent hash functions) Let H
be a collection of functions where each function h ∈ H is from {0, 1}n to {0, 1}`(n).
H is an efficient family of pairwise-independent hash functions if |h| (i.e., the de-
scription length of h) and `(n) are polynomials in n, each h ∈ H is a polynomially-
computable function, and for all n, for all x 6= x′ ∈ {0, 1}n and all y, y′ ∈
{0, 1}`(n),

Pr
h← H

[h(x) = y
∧

h(x′) = y′] =
1

22`(n)

There are various constructions of efficient families of pairwise-independent
hash functions for any values of n and `(n) whose description length (i.e., |h|)
is linear in n (e.g., [CW77]). In this paper we also make use of the special case
in which `(n) = n (the hash is length preserving). In such a case H is called an
efficient family of pairwise-independent length-preserving hash functions.

3.3 Randomness Extractors

Randomness extractors, introduced by Nisan and Zuckerman [NZ96] are an in-
formation theoretic tool for obtaining true randomness from a “weak” source
of randomness. In this work, extractors are used in a computational setting to
extract pseudorandomness from an imperfect source.

Definition 32 (Strong Extractors) [NZ96] A polynomial-time computable func-
tion Ext : {0, 1}n × {0, 1}d → {0, 1}m is an (explicit) (k, ε)-strong extractor
if for every distribution X over {0, 1}n with H∞(X) ≥ k, the distribution
(Ext(X, Y), Y) is ε-close to (Um, Y) where Y is uniform over {0, 1}d.

3.4 One-Way Functions

Definition 33 (One-way functions) Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function and let µ : N → [0, 1]. f is one-way with hardness µ if
for every ppt A with running time TA the following holds,

Pr
x← {0,1}n

[A(1n, f(x)) ∈ f−1(f(x))]/TA(n) < µ(n).

Few convention remarks: When the value of the security-parameter (i.e., 1n)
is clear, we allow ourselves to omit it from the adversary’s parameters list. Since
any one-way function is w.l.o.g. length-regular (i.e., inputs of same length are
mapped to outputs of the same length), it can be viewed as an ensemble of
functions mapping inputs of a given length to outputs of some polynomial (in
the input) length. Therefore we can write: let f : {0, 1}n → {0, 1}`(n) be a
one-way function, where `(n) is some polynomial-computable function.

3.5 Hardcore Predicates and Functions

Hard-core predicates/functions have a major role in the construction of pseudo-
random generators based on one-way functions.

Definition 34 [Hardcore Function] Let f and g be functions defined over {Sn ⊆ {0, 1}n}n∈N
and let hc : Im(g) → {0, 1}s be a polynomial-time computable function, and let
µ : N → [0, 1]. We call hc a hardcore function of f with hardness µ w.r.t. {Sn}
if for any algorithm A with running time TA the following holds,

∆A ((f(x), hc(g(x)))x← Sn
, (f(x), y)x← Sn,y ← Us

) /TA(n) < µ(n).

If hc is a predicate (i.e., s = 1) then it is a hardcore predicate of f

It is custom to call the value hc(x), the “hardcore-bits” of f(x).

Construction 35 (The GL hardcore function) Let x ∈ {0, 1}n, and r ∈
{0, 1}2n and let ` ∈ [n]. For every i ∈ [n], denote by bi(x, r) the inner product
of x and the n bit substring of r starting at the ith location (i.e. bi(x, r) =∑

j∈[n] xi · ri+j−1). Define the function gl` : {0, 1}3n → {0, 1}` as follows:
gl`(x, r) = b1(x, r), b2(x, r), . . . , b`(x, r).

Theorem 36 ([GL89]) Let f and g be functions defined over {Sn ⊆ {0, 1}n}n∈N
and suppose that for all ppt algorithms A, for all sufficiently large n:

Pr
x←Sn

[A(f(x)) = g(x)] ≤ 2−φn

Then for X and R uniformly chosen in Sn and {0, 1}2n respectively we have that
no ppt can distinguish between (f(X), R, glφn/6(g(X), R)) and (f(X), R, Uφn/6)
with advantage better than O(2−φ/6). More precisely, let D be an algorithm that
distinguishes between the above distributions with probability 2−φ/6 and running-
time TD(n), then there exist an algorithms that computes g(x) given f(x) over
Sn with probability O(2−φn) and running-time O(φ3n5TD(n))

3.6 Pseudorandom Generators

Definition 37 (Pseudorandom-Generator (PRG)) Let G : {0, 1}n → {0, 1}`(n)

be a polynomial-time computable function where `(n) > n. We say that G is a
Pseudorandom-Generator with security µ, if for any algorithm A with running
time TA the following holds,

∆A
(
G(Un)), U`(n)

)
/TA(n) < µ(n).

3.7 The Security of Cryptographic Constructions

We note that the security µ of primitives in this paper is generally measured as
the best “success-time” ratio of an adversary. That is, µ is the maximal ratio of
the success probability of an adversary A, divided by the A’s running time. The
extent to which a reduction is security preserving is measured by the relation
between the security of the original primitive and the security of the resulting
one. For a more comprehensive discussion about the security of reductions one
may refer to [HL92] (and also to [HHR05].

It is worth noting that the results in this paper may be adapted to work with
respect to a less strict security measure. That is, if the security is taken to be
the highest success probability of a polynomially bounded adversary. The later
notion of security is weaker in the sense that the first notion implies the second
but not vice versa.

4 The Randomized Iterate of a One-Way Function

As mentioned in Section 2, the use of randomized iterations lies at the core of
our generator. We formally define this notion:

Definition 41 (The kth Randomized Iterate of f) Let f : {0, 1}n → {0, 1}n

and let H be an efficient family of pairwise-independent hash functions7 from
{0, 1}n to {0, 1}n. For input x ∈ {0, 1}n and h1, . . . , hk−1 ∈ H define the kth

Randomized Iterate fk : {0, 1}n ×Hk → Im(f) recursively as:

fk(x, h1, . . . , hk) = f(hk(fk−1(x, h1, . . . , hk−1)))

where f0(x) = f(x). For convenience we denote h = (h1, . . . , hk).
Another handy notation is the kth explicit randomized iterate f̂k : {0, 1}n ×

Hk → Im(f)×Hk defined as:

f̂k(x, h) = (fk(x, h), h)

Remark: In the definition randomized iterate we define f0(x) = f(x). This was
chosen for ease of notation and consistency with the results for general OWFs
in [HHR05]. For the construction presented in this paper one can also define
f0(x) = x, thus saving a single application of the function f .

4.1 The Last Randomized Iterate is (sometimes) Hard to Invert

We now formally state and prove the key observation, that there exists a set
of inputs of significant weight for which it is hard to invert the kth randomized
iteration even if given access to all of the hash functions leading up to this point.

7 Pairwise independent hash functions where defined in, e.g. [CW77].

Lemma 42 Let f : {0, 1}n → {0, 1}n be a one-way function with security 2−φn,
and let fk and H be as defined in Definition 41.

Let

Sk def=
{

(x, h) ∈ ({0, 1}n ×Hk) | Df (fk(x, h) = max
j∈[k]

Df (f j(x, h))
}

Then,
1. The set Sk has density at least 1

k .
2. For every ppt A,

Pr
(x,h)← Sk

[A(fk(x, h), h) = fk−1(x, h)] ≤ 2−O(φn)

where the probability is also taken over the random coins of A.
More precisely, given a ppt A that runs in time TA and inverts the last
iteration over Sk with probability ε(n) one can construct an algorithm that
runs in time TA +poly(n) and inverts the OWF f with probability ε(n)3

32k(k+1)n .

Proof:
Proving (1): By the pairwise independence of the randomizing hash functions
h = (h1, . . . , hk) we have that for each 0 ≤ i ≤ k, the value f i(x, h) is inde-
pendently and randomly chosen from the distribution f(Un). Thus, simply by
a symmetry argument, the kth (last) iteration is has the heaviest preimage size
with probability at least 1

k . Thus Pr(x,h)← (Un,Hk)[(x, h) ∈ Sk] ≥ 1
k .

Proving (2): Suppose for sake of contradiction that there exists an efficient
algorithm A that given (fk(x, h), h) computes fk−1(x, h) with probability ε(n)
over Sk (for simplicity we simply write ε). In particular A inverts the last-
iteration of f̂k with probability at least ε, that is

Pr
(x,h)← Sk

[f(h(A(f̂k(x, h)))) = fk(x, h)] ≥ ε

Our goal is to use this procedure A in order to break the one-way function f .
This goal s achieved by the following procedure:

MA on input z ∈ Im(f):

1. Choose a random h = (h1, . . . , hk) ∈ Hk.
2. Apply A(z, h) to get an output y.
3. If f(hk(y)) = z output hk(y), otherwise abort.

We prove that MA succeeds in inverting f with sufficiently high probability.
We focus on the following set of outputs, on which A manages to invert their
last-iteration with reasonably high probability.

TA =
{

(y, h) ∈ Im(f̂k) | Pr[f(hk(A(y, h)) = y] > ε/2
}

A simple Markov argument shows that the set TA has reasonably large density
(the proof is omitted).

Claim 43
Pr

(x,h)← (Un,Hk)
[f̂k(x, h) ∈ TA] ≥ ε

2
.

Moreover, since the density of Sk is at least 1
k , it follows that Pr(x,h)← (Un,Hk)[f̂1(x, h) ∈

TA

∧
(x, h) ∈ Sk] ≥ ε/2k. We now make use of the following Lemma, that relates

the density of a set with respect to pairs (fk(x, h), h) where the value of fk(x, h)
is actually generated using the given randomizing hash functions h (i.e. the pair
is an output of f̂k) as opposed to the density of the same set with respect to
pairs consisting of a random output of f concatenated with an independently
chosen hash functions.

Lemma 44 For every set T ⊆ Im(f̂k), if

Pr
(x,h)← (Un,Hk)

[f̂k(x, h) ∈ T
∧

(x, h) ∈ Sk] ≥ δ

then
Pr

(z,h)← (f(Un),Hk)
[(z, h) ∈ T] ≥ δ2/2(k + 1)n

To conclude the proof of Lemma 42, take T = TA and δ = ε/2k, and Lemma 44
yields that Pr(z,h)← (f(Un),Hk)[(z, h) ∈ TA] ≥ ε2

16k(k+1)n . On each of these inputs
A succeeds with probability ε/2, thus altogether MA manages to invert f with
probability ε3

32k(k+1)n .

Proof: (of Lemma 44) Divide the outputs of the function f into n slices accord-
ing to their preimage size. The set T is divided accordingly into n subsets. For
every i ∈ [n] define the ith slice Ti =

{
(z, h) ∈ T | Df (z) = i

}
. We divide Sk into

corresponding slices as well, define the ith slice as Sk
i =

{
(x, h) ∈ Sk | Df (fk(x, h)) = i

}
(note that since Sk

i ⊆ Sk, for each (x, h) ∈ Sk
i and thus for each 0 ≤ j < k it

holds that Df (f j(x, h)) ≤ Df (fk(x, h)) = i). The proof of Lemma 44 follows the
methods from [HHR05], used to obtain a similar argument in the case of regular
functions. The method follows by studying the collision-probability of f̂k when
restricted to Sk

i (we work separately on each slice). Denote this as:

CP (f̂k(Un,Hk)
∧

Sk
i) = Pr

(x0,h0),(x1,h1)
[f̂k(x0, h0) = f̂k(x1, h1)

∧
(x0, h0), (x1, h1) ∈ Sk

i]

We first give an upper-bound on this collision-probability (we note that the
following upper-bound also holds when only one of the input pairs, e.g. (x0, h0),
is required to be in Sk

i). Recall that f̂k(x, h) includes the hash functions h in
its output, thus, for every two inputs (x0, h0) and (x1, h1), in order to have
a collision we must first have that h0 = h1 which happens with probability

(1/ |H|)k. Now, given that h0 = h1 = h (with h ∈ Hk being uniform), we require
also that fk(x0, h) equals fk(x1, h).

If f(x0) = f(x1) then a collision is assured. Since it is required that (x0, h0) ∈
Sk

i it holds that Df (f(x0)) ≤ Df (fk(x1, h)) = i and therefore
∣∣f−1(f(x0))

∣∣ ≤ 2i.
Thus, the probability for that x1 ∈ f−1(f(x0)) (and thus of f(x0) = f(x1)) is
at most 2i−n. Otherwise, there must be an i ∈ [k] for which f i−1(x0, h) 6=
f i−1(x1, h) but f i(x0, h) = f i(x1, h). Since f i−1(x0, h) 6= f i−1(x1, h), then due
to the pairwise-independence of hi, the values hi(f i−1(x0, h)) and hi(f i−1(x1, h))
are uniformly random values in {0, 1}n, and thus f(hi(f i−1(x0, h))) = f(hi(f i−1(x1, h)))
also happens with probability at most 2i−n. Altogether:

CP (f̂k(Un,Hk)
∧

Sk
i) ≤ 1

|H|k
k∑

i=0

2i−n ≤ k + 1

|H|k 2n−i
(1)

On the other hand, we give a lower-bound for the above collision-probability.
We seek the probability of getting a collision inside Sk

i and further restrict our
calculation to collisions whose output lies in the set Ti (this further restriction
may only reduce the collision probability and thus the lower bound holds also
without the restriction). For each slice, denote δi = Pr[f̂k(x, h) ∈ Ti

∧
(x, h) ∈

Sk
i]. In order to have this kind of collision, we first request that both inputs are

in Sk
i and generate outputs in Ti, which happens with probability δ2

i . Then once
inside Ti we require that both outputs collide, which happens with probability
at least 1

|Ti| . Altogether:

CP (f̂k(Un,Hk)
∧

Sk
i) ≥ δ2

i

1
|Ti|

(2)

Combining Equations (1) and (2) we get:

|Ti| 2i−n−1

|H|k
≥ δ2

i

2(k + 1)
(3)

However, note that when taking a random output z and independent hash func-
tions h, the probability of hitting an element in Ti is at least 2i−n−1/ |H|k
(since each output in Ti has preimage at least 2i−1). But this means that
Pr[(z, h) ∈ Ti] ≥ |Ti| 2i−n−1/ |H| and by Equation (3) we deduce that Pr[(z, h) ∈
Ti] ≥ δ2

i /2(k + 1). Finally, the probability of hitting T is Pr[(z, h) ∈ T] =∑
i Pr[(z, h) ∈ Ti] ≥

∑
i δ2

i /2(k + 1). Since
∑

i δ2
i ≥ (

∑
i δi)2/n and (by defini-

tion)
∑

i δi = δ, it holds that Pr[(z, h) ∈ T] ≥ δ2/2(k + 1)n as claimed.

A Hardcore Function for the Randomized Iterate A hardcore function
of the kth randomized iteration is simply taken as the GL hardcore function
([GL89]). The number of bits taken in this construction depends on the hardness
of the function at hand (that is the last iteration of the randomized iterate). Thus
combining Lemma 42 regarding the hardness of inverting the last iteration, and
the Goldreich-Levin Theorem on hardcore functions we get the following lemma:

Lemma 45 Let f : {0, 1}n → {0, 1}n be a one-way function with security 2−φn,
and let fk and H be as defined in Definition 41. Let s = d φ

20ne and take hc = gls
to be the Goldreich-Levin hardcore function which outputs s hardcore bits.

Then, for every polynomial k, there exist a set Sk ⊆ {0, 1}n ×Hk, of density
at least 1

k such that for any ppt A,

Pr[A(f̂k(x, h), r) = hc(fk−1(x, h, r) | (x, h) ∈ Sk] < 2−O(φn).

In other words, hc is a hardcore function for the kth randomized iterate over the
set Sk with µhc ≤ 2−φn/20 security.8

5 The Multiple Randomized Iterate

In this section we consider the function fk which consists of m independent
copies of the randomized iterate fk.

Construction 51 (The kth Multiple Randomized Iterate of f) Let m, k ∈
N, and let fk and H be as in Construction 41. We define the kth Multiple Ran-
domized Iterate fk : {0, 1}mn ×Hmk → Im(f)m as:

fk(x, H) = fk(x1,H1), . . . , fk(xm,Hm),

where x ∈ {0, 1}mn and H ∈ Hm×k. We define the kth explicit multi randomized

iterate f̂k as:

f̂k(x,H) = fk(x,H),H

For each of the m outputs of fk we look at its hardcore function hc. By
Lemma 45 it holds that m/k of these m hardcore strings are expected to fall

inside the “hard-set” of f̂k (and thus are indeed pseudorandom given f̂k(x, H)).
The next step is to invoke a randomness extractor on a concatenation of one
bit from each of the different independent hardcore strings. The output of the
extractor is taken to be of length m

4k . The intuition being that with high proba-
bility, the concatenation of single bits from the different outputs of hc contains
at least m/2k “pseudoentropy”. Thus, the output of the extractor should form a
pseudorandom string. Therefore, the output of the extractor serves as a hardcore

function of the multiple randomized iterate f̂k.

Construction 52 (Hardcore Function for the Multiple Randomized Iterate)

Let f be a one-way function with security µf and let m, k ∈ N. Let s, f̂k and hc be
as Construction 51 and Lemma 45 yield w.r.t. f,m and k. Let εExtk : N → [0, 1]
and let Extk : {0, 1}n ×{0, 1}m → {0, 1}dm

4k e be a (bm
k c, εExtk)-strong extractor.

8 The constant 1/20 in the security is an arbitrary choice. It was chosen simply as a
constant of the form 1/a · b where a > 3 and b > 6 (which are the constants from
Lemma 42 and the GL Theorem.

We define hck : Dom(fk)× {0, 1}2n → {0, 1}dm
4k e as

hck(x, H, r, y) = wk
1 (x, H, r, y), . . . , wk

s (x,H, r, y),

where x ∈ {0, 1}mn, H ∈ Hm×k, r ∈ {0, 1}2n and y ∈ {0, 1}n, and for any i ∈ [s]

wk
i (x,H, r, y) = Extk((hc(fk(x1,H1), r)i, . . . , (hc(fk(xm,Hm), r)i, y).

The following lemma implies that, for the proper choice of m and k, it holds

that hck−1 is a hardcore function of f̂k.

Lemma 53 Let hc be a hardcore function of the randomized iterate fk over
the set Sk (as in Lemma 45), and denote its security by µhc. Let hck−1, ρk

and εExtk be as in Construction 52 and suppose that ρk and εExtk are such
that 2s(ρk + εExtk) < µhc. Then hck−1 is a hardcore function of the multiple

randomized iterate f̂k with security µ
hck−1 < poly(m,n)µα

hc for some constant
α > 0.

Lemma 53 is derived as a corollary of the following Lemma 54. This derivation
is similar to the proof of Corollary A2.

Lemma 54 Let f be a one-way function with security µf . For choices of m, k ∈
N, let Extk, εExtk , f̂k and hck be as in Construction 52. Denote by ρk the prob-
ability that less than bm

2k c samples out of m independent samples in Dom(fk),
are in some fixed set of density 1/k.

If there exists an algorithm A that distinguishes between

(f̂k(x,H), hck−1(y, r, x), r, y) and (fk(x, H), z, r, y)z ← Ud m
4k

e with probability εA

and also (εA/s− ρk + εExtk)/m− 2−n > 2n/3,
then there exists an algorithm MA that runs in time polynomial in n, m

εA/s−ρk+ε
Extk

and the running time of f̂k, hck−1 and A, that distinguishes between
(f̂k(x, h), hc(fk−1(x, h), r), r) and (f̂k(x, h), z, r)z ← Us

with probability k−1
2k −

2−n.

At the heart of the proof lies a uniform extraction Lemma. that is presented
in Appendix A.
Proof: (of Lemma 54) By a standard hybrid argument there exists an index
i ∈ [s], and an algorithm A′ that runs in time polynomial in n, and the running

time of f̂k, hck−1 and A, and distinguishes between

(f̂k(x,H), wk−1
1 (x,H, r, y), . . . , wk−1

i (x,H, r, y), r, y) and

(f̂k(x,H), wk−1
1 (x,H, r, y), . . . , wk−1

i−1 (x,H, r, y), z, r, y)z ← Ud m
4k

e with probability

εA/s. Recalling the definitions of f̂k and the wk−1’s, we have that he following
pair of distributions can be inverted (using Extk) to the above one.
(f̂k(x1,H1), hc(fk−1(x1,H1), r)1,...,i−1, . . . , f̂k(xm,Hm), hc(fk−1(xm,Hm), r)1,...,i−1,

wk−1
i (x,H, r, y), r, y) and

(f̂k(x1,H1), hc(fk−1(x1,H1), r)1,...,i−1, . . . , f̂k(xm,Hm), hc(fk−1(xm,Hm), r)1,...,i−1,
z, r, y)z ← Ud m

4k
e .

Hence there exists an algorithm A′′, with essentially the same running time
of A′, and distinguishes between the above pair of distributions with proba-
bility εA/s. The crux of the proof is that the definition of wi matches the
settings of the uniform extraction Lemma (Lemma A1) (by setting f(x, h) =
(f̂k(x, h), hc(fk−1(x, h))1,...,i−1) and b(x, h) = hc(fk−1(x, h))i). Therefore, algo-
rithm A′′ can be used to construct an algorithm MA that runs in time polynomial

n, m
εA/s−ε

Extk−ρk and in the running time of f̂k, hck and A and distinguishes

(f̂k(x, h), hc(fk−1(x, h))1,...,i, r) from (f̂k(x, h), hc(fk−1(x, h))1,...,i−1, z, r)z ← Us

with probability k−1
2k . Since the value of i is also polynomially computable (with

success probability 1−2−n), MA distinguishes between (f̂k(x, h), hc(fk−1(x, h)), r)
and (f̂k(x, h), z, r)z ← Us

with probability k−1
2k − 2−n.

6 A Pseudorandom Generator from Exponentially Hard
One-Way Functions

We are now ready to present our pseudorandom generator. After deriving a hard-
core function for the multiple randomized iterate, the generator is similar to the
construction from regular one-way function. That is, run randomized iterations
and output hardcore bits. The major difference in our construction is that, for
starters, it uses hardcore functions rather than hardcore bits. More importantly,
the amount of hardcore bits extracted at each iteration is not constant and
deteriorates with every additional iteration.

Construction 61 (The Pseudorandom Generator) Let m, ` ∈ N and let f

be a one-way function with security µf . Let s and hck be as Construction 52
yields w.r.t. f and m. We define G as

G(x,H, r, y) = hc1(x,H, r, y) . . . , hc`(x,H, r, y),H, r, y

where x ∈ {0, 1}mn, H ∈ Hm×s, r ∈ {0, 1}2n and y ∈ {0, 1}n.

Theorem 62 Let φ : N → [0, 1] and let f be a one-way function with security
µf = 2−φ(n)n. Let δ > 2−

φ(n)n
20 . Let ` ∈ poly(n) be such that

∑`
j=1

1
j > φ(n)

80 and

let m = 8` log(φ(n)n
δ). Then G presented in Construction 61 is a pseudorandom

generator with input length O(n`m) and security poly(n)δα, where α > 0 is a
constant.

With the appropriate choice of parameters we get the statements mentioned
in the introduction, as summarized in the following Corollary:

Corollary 63 Let C > 0 be a constant, Theorem 62 yields the following pseu-
dorandom generators,

– For δ = 2−
C
20 n and µf = 2−Cn - G is pseudorandom generator with security

2−C′n (where C ′ > 0 is a constant) and input length O(n2).
– For δ = 2−log2(n) and µf = 2−Cn - G is pseudorandom generator with

security 2−Ω(log2(n)) and input length O(n log(n)2).
– For δ = 2−log2(n) and µf = 2−Cn/log(n), G is pseudorandom generator with

security 2−Ω(log2(n)) and input length O(n1+ 160
C log(n)2).9

Proof: (of Corollary 63) The security of the different pseudorandom generators
is immediate by Theorem 62. Since 2 > φ(n)

80

∑`
j=1

1
j > φ(n)

80 log(`) it follows that

` < 2
160

φ(n) . Hence for all different values of µf , it holds that ` and therefore G
is polynomial. It is left to calculate the different values of n · ` · m in order to
determine the input length of G in the different cases. Note that in all cases the
dominating factor in the value of m is log(1/δ).

– δ = 2−
C
20 n and µf = 2−Cn - ` is clearly a constant and m = O(n), therefore

the input length is O(n log(n)2).
– δ = 2−log2(n) and µf = 2−Cn - ` is, again, a constant and m = O(log(n)2),

therefore the input length is O(n log(n)2).

– δ = 2−log2(n) and µf = 2−Cn/log(n), ` < 2
160 log(n)

C = n
160
C and m =

O(log(n)2), therefore the input length is O(n1+ 160
C log(n)2).

Proof: (of Theorem 62) Since ` is polynomial in n then clearly so is m, it follows
by the definition of hck that the running time of G is polynomial as well. We next
show that G stretches its input. The input length of G is m |x|+ |H|+ |r|+ |y|,
while the output length is sm(

∑`
j=1d

1
4j e)+ |H|+ |r|+ |y| which is, by the choice

of `, greater than mn+ |H|+ |r|+ |y|. Finally, since |x| = n, the latter sum equals
to the input length of G. Note that since the input length of G is dominated by
the description of H it is in O(n`m).

It is left to calculate the security of G. By a standard hybrid argument an
algorithm A that runs in time TA and breaks G with probability εA, implies
the existence of an algorithm A′ that runs in time polynomial in TA and distin-
guishes for some (efficiently computable) index k ∈ [`] between
(hck(x, H, r, y), . . . , hc`(x,H, r, y),H, r, y) and (Udm

4k e, hck+1(x,H, r, y) . . . , hc`(x,H, r, y),H, r, y)

with probability εA/`. Since given f̂k(x, H), r and y it is easy to compute
hck+1(x,H, r, y), . . . , hc`(x,H, r, y), then there exists an algorithm A′′ that also

runs in time polynomial in TA and distinguishes between (f̂k(x, H), hck−1(x, H, r, y), r, y)

9 Thus this choice of parameters is only useful when C > 160
6

.

and (fk(x,H), Udm
4k e, r, y) with probability εA/`. By our choice of m and Cher-

noff’s bound we have that ρk < ρl < δ
φ(n)n . Similarly for the proper choice of

extractor 10, we have that Extk < Extl < δ
φ(n)n .

Recall that for µf = 2−φ(n)n, it holds that s, the output length of hc, equals
dφ(n)n/20e and that µhc < 2−

φ(n)n
20 < δ. Since 2s(Extk+ρk) < dφ(n)n/20e 2

φ(n)nδ <

δ, then Lemma 53 yields that εA′′
TA′′

< poly(n)δα for some constant α > 0. Since
εA′′ ≥ εA/` and since ` is polynomial in n and the running time of A′′ is polyno-
mial in the running time of A, it follows that εA

TA
< poly′(n)δα′

for some constant
α′ > 0.

References

[BM82] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo random bits. In 23th Annual Symposium on Foundations of Com-
puter Science, pages 112–117, 1982.

[CW77] I. Carter and M. Wegman. Universal classes of hash functions. In 9th ACM
Symposium on Theory of Computing, pages 106–112, 1977.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33(2):792–807, 1986.

[GKL93] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom
generators. SIAM Journal of Computing, 22(6):1163–1175, 1993.

[GL89] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions.
In 21st ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[HHR05] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized it-
erate. Electronic Colloquium on Computational Complexity (ECCC), TR05-
135, 2005.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom gen-
erator from any one-way function. SIAM Journal of Computing, 29(4):1364–
1396, 1999.

[HL92] A. Herzberg and M. Luby. Pubic randomness in cryptography. In Advances
in Cryptology - CRYPTO ’92, Lecture Notes in Computer Science, volume
740, pages 421–432. Springer, 1992.

[Hol05] T. Holenstein. Key agreement from weak bit agreement. In Proceedings of
the 37th ACM Symposium on Theory of Computing, pages 664–673, 2005.

[Hol06] Thomas Holenstein. Pseudorandom generators from one-way functions: A
simple construction for any hardness. In 3rd Theory of Cryptography Con-
ference – (TCC ’06), Lecture Notes in Computer Science. Springer-Verlag,
2006.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from
one-way functions. In 21st ACM Symposium on the Theory of Computing,
pages 12–24, 1989.

[Lev87] L. A. Levin. One-way functions and pseudorandom generators. Combinator-
ica, 7:357–363, 1987.

10 For example, for a random h ∈ H (where H is a family of pairwise independent hash
functions), Ext(x, h) = (h(x), h) is a suitable strong extractor.

[LR88] M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal of Computing, 17(2):373–386, 1988.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences (JCSS), 52(1):43–52, 1996.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In 23rd IEEE
Symposium on Foundations of Computer Science, pages 80–91, 1982.

A A Uniform Extraction Lemma

The following lemma is a generalization of the (uniform version) of Yao’s XOR
lemma. Given m independent “δ-hard” bits (i.e., it is hard to predict each bit
with probability better than 1 − δ/2), we would like to extract approximately
δm pseudorandom bits out of them. The version we present here generalizes
[HILL99, Lemma 6.5]). In particular the original lemma required the hardcore
predicate to have a hardcore-set (i.e., a subset of inputs such that the value of
the predicate is unpredictable (computationally) over this subset), where in the
following lemma this property is no longer required. In addition, the original
lemma was tailored for the specific function and predicate it was used with,
where the following lemma suits any hard predicate. Finally, the original lemma
is stated using an efficient family of pairwise-independent hash functions, where
the following lemma is stated using explicit extractors. The lemma is proven
using Holenstein’s “uniform hardcore lemma” [Hol05].

Lemma A1 (A Uniform Extraction Lemma) Let f : {0, 1}n → {0, 1}`(n)

and b : {0, 1}n → {0, 1} be a polynomial-time computable functions, let δ ∈ [0, 1]
be noticeable, let εExt, εA, δ ∈ [0, 1] and let m, k, r, d ∈ N. Let ρ be the probability
that when taking m independent samples in {0, 1}n less than k samples are in
some fixed set of density δ. Let Ext : {0, 1}m × {0, 1}d → {0, 1}r be a (k, εExt)-
strong-extractor and let D and ξ be the following distributions,
D = (f(x1), . . . , f(xm), y, Ext(y, bs(x1), . . . , bs(xm)))(x1,...,xm)← Unm,y ← Ud

,
ξ = (f(x1), . . . , f(xm), y, z),(x1,...,xm)← Unm,y ← Ud,z ← Ur

.
Finally, let A be an algorithm that runs in time TA and distinguishes between D
and ξ with probability εA.

Then if εA−εExt−ρ
m − 2−n > 2−n/3, then there exists an algorithm MA that

runs in time poly(n, m
εA−εExt−ρ , TA) and distinguishes between (f(x), b(x))x← Un

and (f(x), y)x← Un,y ← U with probability 1−δ
2 .

Corollary A2 Let Sn ⊆ {0, 1}n be a set of density 2δ, and let µb be the secu-
rity of b w.r.t. f and the uniform distribution over Sn. Let hc(x1, . . . , xm, y) def=
(Ext(y, bs(x1), . . . , bs(xm)), y) and let fk(x1, . . . , xm, y) def= (x1), . . . , f(xm).

Let µhc be the security of hc w.r.t. fk. Assuming that µb > 2(ρ+εExt) , then
µhc < poly(n, m)(µb

δ)α for some constant α > 0.

Proof: (of Corollary A2) Assume not. Let p(n, m
εA−εExt−ρ , TA) be the polyno-

mial whose existence is guaranteed by Lemma A1, clearly p(n, m
εA−εExt−ρ , TA) <

q(m,n)(TA

ε)1/α for some positive polynomial q and constant α > 0. By the con-
tradiction assumption there exists an algorithm A with running time TA that dis-
tinguishes between D and χ with probability εA such that εA

TA
≥ 2q(n, m)(µb

δ)α.
Since clearly εA > µb, then εA − εExt − ρ ≥ εA/2 and therefore p(n, m

εA−εExt−ρ , TA) <

p(n, 2m
εA

, TA) < q(n, m)(TA

εA
)1/α ≤ q(n, m) 1

2q(n,m)
δ
µb

= δ
2µb

.

By Lemma A1 there exists an algorithm MA that runs in time TMA < δ
2µb

and distinguishes between Pn = (f(x), b(x))x← Un and Qn = (f(x), y)x← Un,y ← U

with probability 1
2 − δ/2. Clearly,

∆MA(Pn, Qn) ≤ Prx← {0,1}n [x /∈ Sn]/2 + ∆MA(Pn, Qn|x ∈ Sn)/2 · Prx← {0,1}n [x ∈ Sn] ≤
(1− 2δ)/2 + ∆MA(Pn, Qn|x ∈ Sn).

Therefore, εMA
def= ∆MA(Pn, Qn|x ∈ Sn) ≥ (2δ − δ)/2 = δ/2. Hence εMA

TMA
>

δ/2
δ/2µb

= µb. Thus, a contradiction to the hardness assumption of b is derived.

Proof: (of Lemma A1) For a given set S ⊆ {0, 1}n of density δ, we define the
following, not necessarily efficiently computable, predicate Q : {0, 1}n → {0, 1}.

Q(x) =
{

U1 x ∈ S,
b(x) otherwise. (4)

For any i ∈ {0, . . . ,m}, the ith hybrid of D is defined as:

Di = (f(x1), . . . , f(xm), y, Ext(y, b(x1), . . . , b(xi), Q(xi+1), . . . , Q(xm))),

where x1, . . . , xm ∈ {0, 1}n and y ∈ {0, 1}d. Note that Dm is simply D. On
the other hand, D0 is ε-close to ξ as long as at least k of the random inputs
are in S. Thus altogether the statistical difference between D0 and ξ is at most
ρ + ε. Hence, by a standard hybrid argument we deduce that there exists a j ∈
{0, . . . ,m− 1} such that A distinguishes between Dj and Dj+1 with probability
(εA−ρ+ ε)/m. Moreover, Since Dj and Dj+1 are identical given that xj+1 /∈ S,
it follows that A achieves this distinguishing probability between Dj and Dj+1

also when it is given that xj+1 ∈ S. Finally, note that the only difference between
Dj and Dj+1 given that xj+1 ∈ S is whether the (j + 1)th input to Ext is b(xj)
or a random input.

The following algorithm given oracle to the characteristic function χS of any
set of density δ, distinguishes between (f(x), b(x))x← S and (f(x), y)x← S,y ← U

with probability (εA − ρ + ε)/m− 2−n.

MA with oracle χS:

1. Using χS , find a j ∈ {0, . . . ,m− 1} such that, with probability at least
1− 2−n, A distinguishes between Dj and Dj+1 with success probability at
least (εA − ρ + ε)/m.

2. Sample B, an instance of Dj (again using χS).
3. Return the circuit that on input (y, b) replaces f(xj+1) and b(xj+1) in B

by y and b respectively and outputs A(B).

We conclude by quoting the following lemma due to Holenstein, which guar-
antees the existence of an algorithm that runs in time polynomial in n, m

(εA−εExt−ρ)

and the running time of MA, and distinguishes between (f(x), b(x))x← Un
and

(f(x), y)x← Un,y ← U with probability 1−δ
2 .

Lemma A3 [Hol05, Lemma 2.5] Let f : {0, 1}n → {0, 1}`(n), b : {0, 1}n →
{0, 1}, δ : N → [0, 1] and γ : N → [0, 1] be polynomial-time computable functions,
where δ is noticeable and γ > 2−n/3.

Further, assume that there exists an oracle algorithm A() such that, for in-
finitely many n’s, the following holds: For any set S ⊆ {0, 1}n with density δ,
AχS outputs a circuit C satisfying

Ex[∆C((f(x), b(x))x← Sn
, (f(x), y)x← Sn,y ← U)] ≥ γ/2

where the expectation is over the randomness of A.
Then, there is an algorithm MA, which call A as a black-box poly(n, 1/γ)

times that distinguishes between (f(x), b(x))x← {0,1}n and (f(x), y)x← {0,1}n,y ← U

with probability 1−δ
2 .

