
Paper #32 1

Social Context: Supporting Interaction Awareness
in Ubiquitous Environments

Minh H. Tran, Jun Han, Member, IEEE Computer Society, Alan Colman

Abstract—In ubiquitous computing environments, certain entities
(or actors) often need to interact with each other in achieving a
joint goal in a dynamically changing context. To perform such
interactions in a seamless manner, the actors need to be aware of
not only their physical context (e.g. location) but also their
changing relationships with respect to the particular task or goal.
The latter interaction-oriented context, which we refer to as
social context, has significant impacts on the way actors manage
their adaptive behavior. However, very little research has focused
on supporting such social context in ubiquitous environments.
This paper presents our novel approach to modeling and
realizing social context. Social context is modeled as a managed
composition of loosely-coupled roles with their interaction
relationships expressed as contracts. In addition, it is modeled
from an individual actor’s perspective to allow for possible
differences in the actors’ perception of the relationships. The
social contexts of an actor are externalized from the actor itself to
achieve easy management of the actors’ adaptive behavior
concerning interaction. A layered system architecture is
introduced to realize the approach and demonstrate the
development of automotive telematics systems that are physically
and socially context-aware.

Index Terms—Context-awareness, adaptation, social context,
pervasive computing, software architecture, SOA

I. INTRODUCTION
he most profound technologies are those that
disappear. They weave themselves into the fabric of

everyday life until they are indistinguishable from it” [27]
Weiser’s vision of ubiquitous computing 18 years ago still
stands as a challenge for today’s technology. Using
heterogeneous devices and infrastructure, applications need to
seamlessly support user access to information and user
collaboration in a ubiquitous manner. One of the challenges lies
in the development of context-aware applications that are able
to adapt to changes in the operating environment and user
requirements.

In these early days of ubiquitous computing, context-aware
applications are stand-alone applications that react to
contextual cues picked up from the environment. Such context
cues or context facts form the physical context relevant to the
application behavior, including location, identity, time,
temperature, battery level, and so on. The recent proliferation
of networking and mobile technologies opens the way for
context-aware actors to interact with each other to achieve a

joint goal that is not attainable by a single actor alone. Those
actors such as human users, services and autonomous agents,
may be independent, heterogeneous, distributed and mobile.
Thus, supporting their interactions in a seamless manner to
achieve the joint goal while still maintaining their own
objectives poses two main challenges.

First, in addition to physical context, context-aware actors
need to take into account social context that mediates the
changing interactions between actors. Like physical context,
interaction-oriented social context is dynamic and plays an
important role in forming the situation in which actors operate.
But unlike physical context, social context is not simply
acquired directly from physical and virtual sensors. It requires
an understanding of constructed relationships, obligations and
constraints underlying the interactions between collaborating
actors. Many aspects of social context, such as its topology,
interaction constraints and non-functional requirements, may
need to change in response to the changes of cooperative goals,
relationships between actors and acquired physical context
facts. Thus, it is also necessary to model the inter-dependence
between social context and physical context.

The heterogeneity of ubiquitous environments means that
context-aware actors could operate in different contexts with
their own perspectives and will not necessarily perceive a given
context in a same way. Each actor could have its own partial
and perspective view of the social context that reflects the
actor’s objectives and its relevant role in the interaction. Most
existing research on context awareness is based on an implicit
assumption of a common and unified representation of context
facts (e.g., ontology). Only few researchers such as Benerecetti
et al. [3] view context as a subjective concept and model it
relatively from the actor’s perspective based on its goal.
Furthermore, research from related disciplines, such as CSCW
[16], has shown that the rationale for actors to participate in a
group could be different with respect to their objectives.
However, current research on context awareness does not
address this level of complexity in context modeling.

Second, the architecture of context-aware systems needs to
provide adequate support for the development and deployment
of explicit models of social context. Conventional architectures
of context-aware actors can be seen as having three layers (see
Fig. 1). At Layer 1, physical and virtual sensors are controlled
to capture various types of data. This raw data is then
propagated to a middle layer (Layer 2) which transforms
sensed data into meaningful context facts using abstract
physical context models, interpreters and aggregators. At the
top level (Layer 3), context-aware applications acquire context

“T

M. H. Tran (corresponding author), J. Han and A. Colman are with Faculty
of Information and Communication Technologies, Swinburne University of
Technologies, PO Box 218, Hawthorn, Vic 3122, Australia (phone: +61-3-
92148394; fax: +61-3-98190823; email: {mtran,jhan,acolman}@swin.edu.au).

Paper #32 2

facts from Layer 2 using context query languages (e.g., SQL-,
RDF- or XML-based languages [8]). The applications adapt
their behavior in response to changes of physical context. This
layering paradigm allows separating system components into
levels of abstractions to reduce the complexity of system
development. These layers are implemented and managed
separately, and the implementation details of a lower layer are
hidden from the upper layer.

Such a conventional approach to context aware architectures

has shortcoming in modeling social context. Although physical
context is explicitly modeled at Layer 2, constructed
relationships between actors, their interaction constraints and
adaptation logic are not modeled explicitly at Layer 3. The
relationships and interaction constraints are often directly
hardwired in the application implementation making the
applications hard to maintain and change.

In order to achieve scalability and greater interaction-
oriented adaptability in such environments, the implementation
of complex context inference and adaptation logic should be
externalized from context-aware actors and managed
separately. In this paper, we present an innovative approach to
address the above challenges by providing: a systematic and
explicit model of social context, and a layered system
architecture realizing the model and enabling the development
and deployment of physically and socially context-aware
systems.

The paper is structured as follows. Section 2 presents
motivating scenarios from the context-aware automotive
telematics domain. Section 3 analyzes the requirements for
modeling and realizing social context. Sections 4 and 5 present
our approach to, respectively, modeling social context and
defining a layered architecture in a way that addresses those
requirements. Section 6 presents a prototype implementation of
a context-aware automotive telematics system using our
approach. Section 7 reviews related research. Section 8
concludes the paper and highlights future work.

II. MOTIVATING SCENARIO
This section motivates the research by showing a number of

situations where context-aware automotive telematics is used to
support interaction between a vehicle and other heterogeneous
actors. Such interaction is commonly referred to as V2X (see
Fig. 2), where X represents users’ portable devices, other
vehicles, road-side infrastructure or information services.

Fig. 2. V2X interactions.

Let us consider that a group of people rent two cars and drive
from Melbourne to Sydney, Australia. The two cars are
equipped with context-aware telematics systems (or telematics
for short) that allow V2X interactions as follows:

Vehicle-to-portable device: The passengers exchange
music and video between their portable devices (e.g., mobiles,
mp3 players, laptop, etc.) and in-vehicle infotainment systems.

Vehicle-to-vehicle: The telematics systems allow cars to
sense and talk to each other. Neighboring cars exchange
information (e.g., travel distance, speed, etc.) to improve road
safety and avoid congestion. In particular, the two cars as
mentioned above could form a cooperative convoy of which
one car plays the role of leading car and the other following
car. The leading car chooses a travel route and the following
car follows it. During the trip, the cars frequently keep each
other updated of their travel distance and notify the other of
any mechanical breakdown.

Vehicle-to-infrastructure: The telematics interact with
road-side infrastructure to exchange information about traffic
and road condition (e.g., speed limit, accident occurrence, road
work delay, and road surface condition). This information is
used to improve safety and enhance driver experience.

Vehicle-to-service: While on the road, the drivers use a
number of services provided by the car rental company and
other service providers (e.g., road side assistance, emergency
service, fleet monitoring, travel guide, and fuel watch).

The abovementioned interactions illustrate the dynamic
relationships between heterogeneous actors, including users’
portable devices, cars, roadside units, service providers, and so
on. The relationships could be formed in either an ad-hoc
manner (e.g., between a user’s portable device and an in-car
infotainment system through Bluetooth, and between
neighboring cars through Dedicated Short Range
Communication (DSRC)), or in a dynamically changed and
controlled manner (e.g., between two cars in a cooperative
convoy). Those actors could dynamically join or leave a group.
Their functional behavior and non-functional attributes could
also be dynamically adjusted.

Layer 3: Context-aware Systems
(Functional Implementation, Adaptation Logic)

Layer 2: Physical Context Management
(Middleware layer)

Layer 1: Sensors
(Physical and virtual sensors)

Fig. 1. Conventional architectural view of context-aware systems

Models Interpreters Repositories Aggregators …

Bluetooth

GPRS

3G

WiFi

Paper #32 3

III. REQUIREMENTS ANALYSIS
We identify two sets of requirements that are associated with

the two research challenges highlighted in Section 1.

Requirements for social context modeling: Social context
needs to explicitly capture constructed relationships and
interaction constraints between actors. This set of constructed
relationships and constraints needs to be managed, and
modeled subjectively from an actor’s perspective.

Social context is the set of norms, rules, obligations and
understandings that influence an individual’s action with
respect to a group in a particular situation. Individuals need an
understanding of the given social context in order to interact
effectively with others in that context. Social contexts can be
designed or can be emergent. A social context with goals can
be viewed as an organization. Organizational theory addresses
the structuring of organizations in order to more effectively
achieve those goals (e.g., [18]). As such, organizations are
typically viewed as a managed network of roles that
decompose the abstract functions of the organization into
descriptions that can be performed by role-players (e.g., people,
subsystems, other organizations).

We adopt this view of organization as a composition
structure of dynamic relationships between roles in order to
model social context in software systems. Organizational roles
are defined in terms of their relationships with other
organizational roles and resources. These roles are loosely-
coupled elements whose interaction relationships need to be
managed and coordinated to meet changing requirements and
changing environments. In addition, these roles are first class
entities and as such they are separate from the actors who play
those roles. In mobile and ubiquitous systems this separation
between well-defined roles and actors is beneficial given the
dynamic nature of the system’s composition and the common
situation where actors are unavailable.

We further extend this software composition as an
organization to support the subjectivity of social context
modeling. In addition to sharing any common view of group
interaction, an actor may have their own perception of the
group with respective to their roles. Social context models need
to accommodate this. Thus, we model social context from an
actor’s perspective. This subjective view also determines the
non-functional constraints that the actor agrees to provide and
demands from the others. Furthermore, a social context is
owned by the actor from whom the perspective is modeled (i.e.,
the actor has an ultimate control of its social contexts). While
there may exist no centralized global view of interaction, the
models of interaction held by different individuals need to be
compatible for cooperative goals to be achieved. In the absence
of any unified view of interaction, social context models
therefore need to be able to be shared and negotiated between
parties to the interaction.

Requirements for system architecture: The architecture of
context-aware systems needs to externalize the management of

social context from the implementation of actors. The
architecture also needs to support the adaptability of social
context, and needs to be easily deployable.

As actors in ubiquitous environments become open,
distributed and autonomous, one key approach to supporting
adaptation is to provide a management capability. This
management subsystem is responsible for managing the
relationships between actors as well as coordinating their
adaptive behavior. However, in the conventional architecture
view such management capability is often directly hard-wired
into the actors. Although using techniques such as
configuration and rules supports decoupling the
implementation to a certain extent, the tasks of developing
context-aware systems are still burdensome. This is because the
conventional architecture view fails to separate the
implementation of functional actors from the management of
their relationships and adaptive behavior. To overcome this
problem, the architecture needs to manage social context in a
similar manner to it handles physical context. As shown in
Layer 2 of Fig. 1, the physical context management layer
provides abstractions allowing the applications to acquire
context facts without understanding the details of how those
facts are collected. Similarly, the architecture needs to
externalize the management of social context from the actors
themselves.

In addition, the architecture needs to support the adaptability
of social context. Context-aware actors could adapt their own
behavior through some forms of reflection. For example, the
actors maintain the abstraction of their social contexts. Through
explicit models of social context, actors could dynamically
change interaction constraints that they have formed with other
actors, and the behavior that they adhere to. Furthermore, the
architecture needs to allow social context models to be easily
deployable and configurable (i.e., deployability) to meet
changes in user requirements and environment conditions.

IV. SOCIAL CONTEXT MODELING
Addressing the requirements for social context modeling, we

follow three basic principles: first-order representation of
interaction relationships between loosely coupled actors,
separation of functional and management operations, and
subjectivity of the context. First, social context is a structured
composition of roles whose interaction relationships are
expressed through contracts, and actors are modeled separately
from roles they play but are bound to the roles. Second,
interactions between roles are coordinated and controlled
through a separate management subsystem. Third, social
context represents an actor’s subjective view of the interaction
relationships.

A. Conceptual Model of Social Context
Following the meta-model for creating adaptive software

organizations described in [6], we model social context as a
self-managed composite comprising four key elements:
functional role, contract, player and organizer role as seen in

Paper #32 4

Fig. 3. A context-aware actor could own many social contexts.
Each social context is composed of functional roles, contracts
and a single organizer role. A contract expresses
interdependencies between two functional roles. A context-
aware actor (as a player) performs functions defined by a
functional or organizer role.

Context-aware
Actor

Social
Context

Functional
Role

Contract

Organizer
Role

Player
1

bound to

1

0..*

2

forms

0..*

0..*

owns

bound to

Fig. 3. A meta-model of social context.

Using these concepts, Fig. 4 presents a model of the convoy
social context viewed from the leading car’s perspective. The
model encapsulates interactions that the leading car has with
other actors in the cooperative convoy. The social context
comprises five functional roles (LeadingCar, FollowingCar,
NeighboringCar, Infrastructure and RentalCompany), four
contracts (C1, ...C4) and an organizer role.

 Functional Role:

Functional roles represent expected functional interactions of
participating actors with respect to the social context. For
example, the LeadingCar and FollowingCar roles represent the
two cars engaged in the cooperative convoy; and the
NeighboringCar role represents other surrounding cars that are
located within a close proximity to the leading car. These
functional roles are, in essence, place holders or abstract
functional definitions for corresponding players. A role’s
definition is an aggregation of permitted and obligated
operations specified in contracts that associate the role with
other functional roles. Functional roles are internal to the social

context composite in contrast to external players (introduced
later in subsection 3). The roles’ definitions are exposed
allowing players to be bound to them at runtime.
 Contract:

Interdependencies between functional roles are expressed
through contracts. The contracts are central to a social context
as they perform a number of key functions, including forming
and managing the topology, mediating interactions, triggering
the acquisition of context facts and monitoring performance
with respect to interaction obligations. Each contract specifies
the interaction relationships between two roles, including terms
related to atomic interactions carried out by the roles, their
obligations, temporal constraints of interactions, and so on. As
illustrated in Table I, the general form of a contract includes the
following:

TABLE I: AN EXAMPLE OF THE CONTRACT BETWEEN TWO CARS.
Contract ID C1: ConvoyLeaderFollower;
Parties A: LeadingCar;
 B: FollowingCar;
Physical Context Fact Providers
 A_onBoardUnit: anyURI;
 B_onBoardUnit: anyURI;
 Timer: anyURI;
 RoadAdvisory: anyURI;
Social Context Fact Providers
 convoy: C1.StateTracker; //built-in provider
Interaction Clauses
 i1: {convoyAvailable, AtoB };
 i2: {joinRequest, BtoA, joinResponse };
 i3: {notifyPosition};
 i4: {leaveConvoy};
 i5: {routeUpdate, AtoB, routeAccept};
 i6: {notifyMechanicalIssue};
Conversation Clauses (Temporal Constraints):

c1: {i1 precedes i2 globally};
c2: {i2 leadsto i5 globally};

Obligations
 o1: {i2, Timer, duration, < , 30, seconds};
 o2: {i3, Timer, periodic, =, 60, seconds};
Context Rules:
 r1: {Set Maximum Desired Distance:
 when i3.OnNotificationReceived;
 if ?convoy.state = ACTIVE &&
 A_onBoardUnit.Raining = TRUE;
 do A.setMaxDesiredDistance(100)};
 r2: {Notify Mechanical Issue:
 when A_onBoardUnit.OnNotificationReceived;
 if ?convoy.state = ACTIVE &&
 A_onBoardUnit.TroubleCode = TRUE;
 do A.i6};
• Contract’s identifier and abbreviated qualifier (e.g., “C1:
ConvoyLeaderFollower”).
• Entities that include contracted parties (i.e., party A or B),
any physical context fact providers (e.g. the internal
A_onBoardUnit or external RoadAdvisory identified by unique
URIs) and social context fact providers (e.g., the internal
StateTracker).

Fig. 4. A model of cooperative convoy social context.

LeadingCar

FollowingCar

RentalCompany

Infrastructure

NeighboringCar C1 C2 C3

C4

Organizer Role
Car 1

Car Rental
Company

Car 3 Car 2
Traffic Mgmt System

Social context
Player Functional role plays

Contract Management channel Organizer role

Paper #32 5

• Interaction clauses that are permitted atomic message
exchanges between the contracted parties. A clause’s definition
includes an identifying message signature, a direction of the
message (i.e., AtoB, BtoA or either) and the message exchange
pattern (i.e., one-way or request-response). If the direction is
not specified, either party could send the message. If a response
signature is not specified then the message is one-way. For
example, i1 specifies a one-way message convoyAvailable that
is sent from A to B. i2 specifies a request-response interaction
that involves B sends a joinRequest message to A, and A sends
a joinResponse message to B.
• Conversation clauses that are acceptable sequences of
interactions defined by temporal constraints in the Interaction
Rule Specification (IRS) language [14]. For example, c1
specifies that a message indicating a convoy is available must
be received before (i.e., precedes) a request to join the convoy.
• Obligations that can be attached to interactions. In
particular, real-time temporal obligations are related to a
requirement to send a message in response to some other
message, as is the case with request-response interaction
clauses or leadsto conversation clauses. Obligations use
performance providers (e.g. timer) to help evaluate if an
obligation has been met. For example, o1 states that the leading
car must respond to a joinRequest message with a
joinResponse within 30 seconds. o2 states that the cars must
send each other their positions periodically every 60 seconds.
• Context rules define Event-Condition-Action (ECA) rules
[17] that evaluate a social situation. The events that can trigger
this evaluation can be the receipt of a message, a timed event or
the firing of another rule in a chain of rules. A social situation
that is evaluated by the rule can be a combination of social and
physical context facts. The context facts that make up a social
situation condition are provided by context providers. As social
context is a model of relationships expressed in the contracts,
social context facts are some abstraction of the state of
activities across those contracts. An example of internal social
context provider could be a task state machine that identifies
task instances from a sequence of interactions and provides
abstract representation of the state of those tasks (e.g.
convoy.state = SUSPENDED). Physical context providers
sense external conditions (in our example weather conditions or
accidents) and provide operations for querying that
information. These providers may provide information of any
state of interest in the environment (e.g. traffic conditions) or
any entity (e.g. the motor vehicle). The action involved in such
rules can result in modifying/setting of operational parameters
in the parties of the contract (e.g. setMaxDesiredDistance(x))
or firing of other rules such as those in general clauses that alter
the state of the contract. In the example, r1 states that when the
social state of the convoy is active and it is raining then the
maximum distance between the vehicles should be set to 100
meters. r2 states that when a notification is received from a
physical context fact provider A_onBoardUnit, if the convoy is
active and A_onBoardUnit notifies any diagnostic trouble

code, then the leading car needs to send a notification message
i6: {notifyMechanicalIssue} to the following car.
 Player:

We define the concept of players to separate the abstract
concept of roles in social context from the actual actors that
play the roles. Players are external to the social context.
Examples of players include human users, autonomous agents,
composite services, devices or databases. Context awareness
can be added to players by binding them to a social context that
models at runtime the relationships between players, and senses
the states of relevant interactions and physical context through
its contracts. To be able to respond to changes in physical and
social contexts, a player needs to be sensitive to those changes
by polling or through notification.
 Organizer Role:

Another key principle of our modeling approach is the self-
managed capability of social context. A context-aware actor
manages its own social context. This is achieved through an
organizer role. The organizer role is internal to a social context
and responsible for managing the social context’s topology,
regulating the social context by creating and changing
contracts, and binding players to functional roles. The
organizer role has the capability to change the topology by
creating and removing functional roles and contracts, and by
adding and revoking conditions specified in the contracts. At
runtime, the organizer role could accept, reject and terminate
bindings between functional roles and players. The principle of
separation between a role and player is also applied to the
organizer role, though the role is played by a context-aware
actor who owns the social context. The role exposes a
management interface that contains operational and contractual
methods for manipulating the composition of the social
context, monitoring the performance of contracted roles, and
negotiating binding with external players. The reader is
referred to [15] for an in-depth discussion of a management
interface that is required for a self-managed composite.

B. Subjectivity of Social Context
One of the key principles and novelty of our modeling

approach is the subjective view of social context. This allows
two collaborating actors to have different perceptions of the
collaboration that are reflected on their roles and constructed
relationships with other actors in the group.

Take a scenario of two cars in the cooperative convoy as an
example, both cars need to interact with each other and with
other actors including Infrastructure (IF), NeighboringCar
(NC) and RentalCompany (RC). But specifically for the
leading car, in addition to these roles it needs to interact with a
travel guide service (i.e., the TravelGuide role highlighted in
Fig. 5). This requirement is to fulfill one of its obligations, i.e.,
obtaining a travel route for the convoy.

As shown in Fig. 5, SC1 and SC2 are social context
representing relationships between the two cars modeled from
Car 1 and Car 2’s perspectives (omitting the organizer roles
and external players bound to the IF, NC and RC roles for

Paper #32 6

simplicity). Interactions between the cars are mediated by these
social contexts in the sense that both cars include the
representation of the other in their own social context. In SC1,
the LeadingCar role is played by Car 1 whilst the FollowingCar
role is played by a contextualized Car 2 (i.e., a composition of
Car 2 and SC2). Similarly, in SC2 the FollowingCar role is
played by Car 2, and the LeadingCar role is played by a
contextualized Car 1 (i.e., a composition of Car 1 and SC1). In
order to establish the binding between the two contextualized
actors, an agreement needs to be reached. For example,
conditions specified in the contract RSC1-1 of SC1 are consistent
with those defined in RSC2-1 of SC2.

V. ARCHITECTURE SUPPORTING SOCIAL CONTEXT
In the previous section, we have presented a new modeling

approach to represent social context that captures both
functional and non-functional aspects of interactions between
actors. In this section, we present a system architecture that we
have developed for realizing such explicit models of social
context. The principles of our architecture are the
externalization of the social context management, adaptability
of social context, and ease of deployment (i.e., deployability).

A. Externalization of Social Context Management
We extend the conventional architecture view of context-

aware systems shown in Fig. 1 to externalize the social
contexts and their management. As a result, the architecture
that we have developed consists of four main layers (Fig. 6).

In comparison to Fig. 1, Layer 3 (highlighted in Fig. 6) is an
additional layer that is responsible for the management of
social context and adaptation. This layer is able to support
social contexts of heterogeneous actors. Multiple social context
models are deployed and controlled independently as runtime
self-managed composites. A context-aware actor could have
one or more social contexts. Interaction between the actor and
its social context models is loosely coupled and based on a

document-based messaging style and event-driven interaction.
Well-defined messages (e.g., SOAP messages) are exchanged
between the actor and the social context composites. Typically,
a message contains a message header and a body. The header
provides information about the characteristics of the massage
(e.g., the target destination, policy, message signature, etc.) that
can be used by both the actor and the composite. The body
contains data that is specific to operations of the actor. A
runtime social context composite acts as a message router that
(1) receives messages from one player, (2) evaluates conditions
specified in associated contracts, and (3) passes the messages to
another player. These processes are triggered by events such as
message received, notification of context fact change,
notification of performance level, timer, and so on.

Fig. 7 illustrates the processes that a message is sent from
Player A to Player B via a social context consisting of Role A,
Role B and Contract C. First, Player A sends a message M to
Role A. Upon arrival of the message, Role A might need to
check the security setting to ensure that only authorized players
could send requests. As Role A could form more than one
contract with other roles of the social context, it needs to match
the message against the appropriate contract using the rules
contained with the runtime social context composite. When the
message M is received by Contract C, this event triggers a
number of actions such as assessing interaction constraints,
acquiring context facts, and evaluating performance. Contract
C then forwards1 M to Role B which then passes the message
to Player B.

1 Note that additional information could be added into the header of the initial
message M.

LeadingCar Car
2

RC

FollowingCar

IF

Fig. 5. Two cars interact through their social contexts.

SC2 RSC2-1

NC

LeadingCar

Car
1

FollowingCar

SC1
RSC1-1

IF NC RC

TravelGuide

Travel
Guide

Service

Role A Role B
message (M)

Constraints specification Physical context Performance level

message (M)

Contract C
1 3 2

 Message Routing References Security Policy

Fig. 7. Message-based interaction via social context.

Player
B

Player
A

Layer 4: Context-aware Actors (users, agents, applications …)

Layer 2: Physical Context Management

Layer 1: Sensors (Physical and virtual sensors)

Layer 3:
Social Context
Management SCM

SCM

SCM

SCM
Social context
Model (SCM)

Fig. 6. Architecture for social context and adaptation.

Paper #32 7

B. Social Context-mediated Adaptation
As the physical context and interaction relationships

between actors dynamically change, the relevant social
contexts need to adapt in response to those changes. The
adaptation of social context is performed by the organizer of
the social context. Social context supports adaptation in the
following ways:
• Changes of topology: Addition and removal of functional

roles and contracts is carried out. For instance, in the
convoy social context, a third vehicle could join the context
while the convoy is already on the way; or a break-down
vehicle might leave the convoy before reaching the
destination; these situations lead to changes relationships
between the roles and contracts.

• Changes of contracts: Interaction constraints, obligations
and conditions specified in a contract may change. For
instance, a desired distance between two cars reduces, say
from 300m to 100m when the road is wet. Contracted roles
are informed of such changes in the contract.

• Changes of binding between roles and players: The same
functional role can be played by different players at
different times. The binding between the role and the
players is dynamic. For instance, the Infrastructure role
could be played by different traffic management systems in
the convoy at different times as the vehicle moves from one
jurisdiction to another.

C. Deployability of Social Context
The objective of externalizing the management of social

context and adaptation logic from the actor is to achieve an
ease of deployment (referred to as deployablilty). Not only can
running social contexts be easily configured, but new social
contexts can also be deployed to enhance behavior of context-
aware actors. Moreover, this architecture also allows services
to be built without prior knowledge of the social context to
which they will be bound.

Prior to this research, we have developed the Role-Oriented
Adaptive Design (ROAD) framework [5, 6] which is a
modeling and implementation framework for adaptive software
architectures. ROAD is a well-established framework that
provides relevant constructs that can be extended for modeling
and deploying social context. In addition, ROAD provides
capability for monitoring and managing social context at
runtime (e.g., altering the topology and interaction constraints).
We adopt ROAD as the underlying framework for the design
and deployment of social context for context-aware actors. Fig.
8 shows the process of designing and deploying social context
using the ROAD framework and supporting toolkits.

ROADdesigner (Fig. 9) is a graphical modeling tool
supporting the design of social context models. ROADdesigner
is implemented as a plug-in for Eclipse. The software
developer uses ROADdesigner to build a social context model
by dragging and dropping model components (i.e., roles and
contracts) onto a canvas representing the social context
composite. Properties and constraints are added to the

contracts. Endpoint references to candidate actors can also be
specified at design time. The well-formedness of the model is
enforced by a pre-defined schema. If the validation is
successful, the social context model could be translated into an
XML document, using the Eclipse modeling frameworks (i.e.,
EMF/GEF). ROADfactory can then create runtime ROAD
composites (e.g., classes for roles and contracts, etc.), using
JAXB (Java Architecture for XML Binding). ROADfactory
integrates the Drools2 engine to define and fire ECA rules.

Fig. 9. ROADdesigner supports social context modeling.

Each social context is implemented as a runtime self-
managed ROAD composite that is able to (1) handle requests
received from actors; (2) check security settings for authorized
access; (3) allocate requests into a message queue; (4) forward
messages to roles; (5) evaluate conditions specified in the
contracts and (6) send responses to relevant actors, as
illustrated in Fig. 10. Currently, social context composites are
deployed into a Web Service environment. Social context
composites are deployed as Web services to a Web container
(e.g., Apache Axis Web Container). A social context composite
is able to bind actors (Web services) which meet specific
functional and non-functional requirements, to the functional
roles of the social context. Interaction between social context

2 http://www.jboss.org/drools/

Fig. 8. Design and deployment processes of social context.

Design Social
Context Model

(ROADdesigner)

Generate
XML Document

(Eclipse EMF/GEF)

XSD Model
Schema

verify

Create Classes of
Social Context
(ROADfactory)

Runtime Monitoring/
Adaptation

(Web Services)

Run-time

XSD

Design-time

Paper #32 8

composites and those actors is supported by exchanging SOAP
messages. Any changes (mostly non-functional requirements)
could be made at run-time, resulting in an updated composite.
Importantly, changes to the topology of social context need to
conform to the social context schema.

VI. PROTOTYPE IMPLEMENTATION
We have developed a Context-aware Automotive Telematics

(CAT) prototype to demonstrate how the proposed social
context model and architecture could be applied in building
context-aware applications, as seen in Fig. 11. CAT supports
coordination between two cars of a cooperative convoy, and
interaction between the cars and service providers. CAT is
implemented as a Web-based application that uses the Google
Maps APIs to display a car’s geographic position. CAT
acquires physical context facts from external Web services
(WS). We implemented four WSs to simulate (1) information
about distance between two cars, (2) information about road
condition and accident, (3) information about onboard
diagnostic, and (4) information about the nearest available
garage that is provided by a road-side assistance system.

CAT was developed based on the concept of social context
that we have presented in this paper. Social context models for
each the two cars were constructed. The XML documents
representing those models were used to initiate and populate
runtime roles and contracts classes. At run-time, CAT acquires
context facts from the WSs. Based on conditions defined in the
contract, appropriate information is overlaid on the CAT
screen. For example, if a distance is greater than the maximum

desired distance, say 300m, a warning is shown, recommending
the driver to slow down. In the situation of hazardous condition
(e.g., a wet road), CAT recommends the drivers to reduce the
maximum distance, to say, 100m. In addition, CAT allows non-
functional attributes can be adjusted at runtime (e.g., the driver
of the leading car can change the desired maximum distance
between to cars, and so on).

Fig. 11. Prototype of context-aware automotive telematics.

VII. RELATED WORK AND COMPARATIVE ANALYSIS
Within the scope of this paper, our review of related research

particularly focuses on studies that are related to the two
research challenges: (1) social context modeling, and (2)
system architectures for context-aware systems. In this section,
we also present a comparative analysis of the relevant
approaches to highlight the contributions of our research.

A. Social Context Modeling
To reduce the complexity of engineering context-aware

applications, one major research focus is on context modeling.
There have been a number of context modeling techniques
available in the literature, such as a graphical approach [12], a
mark-up scheme approach [9], an object-oriented model [22],
logic-based models [20], and ontology-based models [4, 26].
However, such approaches were developed to model physical
context (e.g., representing context facts and relationships
between context facts). They provide limited support for
modeling social context (i.e., interaction-oriented context). For
example, key-value models are simple and easy to use in
distributed systems but highly limited in supporting
sophisticated structure. Mark-up scheme models are useful in
expressing a hierarchical structure of attributes, but limited in
defining interaction constraints and dependencies. An
ontology-based approach is useful in representing the global
knowledge about the relationships between context facts (e.g.,
using the is-a association). However, to the best of our
knowledge, there is no study on the use of ontology in
supporting the subjectivity of context models. The reader is
referred to Strang and Linnhoff-Popien [24] for more detail
descriptions of those context modeling approaches.

1 6

Fig. 10. Architecture of self-managed social context composites.

Physical Context
Management Context Providers

Security
Policies

Msg Queue
…

2 3

Roles
4

Adaptation Logic …Organizer

Response Handler Request Handler

Contracts

5

Context-aware
Actors

A1 A2 A3 A4

…

…

Self-managed
Social Context Composite

……

Social Context
Management

External interactions Internal Interactions

Self-managed Social Context Composite

Paper #32 9

Strang and Linnhoff-Popien define a set of requirements
(e.g., distributed composition, partial validation, richness and
quality of information, etc.) that are particularly important for
physical context modeling. Complement to these requirements,
we have defined a set of requirements that are particularly
important to social context modeling, including: interaction
relationships (rel), the separation of functional and
management concerns (sep), and subjectivity (sub), as
discussed earlier. Table II analyses the extent to which relevant
context modeling approaches can be used to model social
context, with respect to these three requirements.

 TABLE II: COMPARISON OF CONTEXT MODELING APPROACHES WITH RESPECT
TO REQUIREMENTS FOR SOCIAL CONTEXT MODELING

(key: ++ comprehensive, + partial, – none)
Approaches - Requirements rel sep sub

Key-value model – – –

Graphical model + + –

Object-oriented model + + ++

Mark-up model + + –

Ontology-based model ++ + +

Logic-based model + + +

Interaction-oriented model (social context) ++ ++ ++

B. Architecture for Context-Aware Systems
Another major research focus in context-aware computing is

on architectures for developing context-aware applications.
The aim of the architectures is to push as much as possible the
acquisition, management and dissemination of context
information into a context infrastructure. Dey et al. [7]
developed a basic framework to support acquisition and
interpretation of context information from sensors by using
toolkits. Hong and Landay [13] advocated using a service
infrastructure approach to deploy context-aware applications.
In this approach, the tasks of gathering, processing and
managing context information are encapsulated as services that
are accessible to any context-aware devices and applications.
Becker et al. developed the peer-to-peer pervasive computing
(3PC) framework which consists of both a middleware (BASE)
[2] and a component model (PCOM) [1]. According to 3PC, a
system is viewed as a tree of components. Adaptation is seen as
switching of sub-trees using search and selection based on the
description of component interfaces and requirements. While
having such supporting infrastructure is important, it provides
limited support for managing the dynamicity and complexity of
social context. The management of interactions and adaptive
behavior is still built-in the applications themselves. Moreover,
relationships between entities, interaction constraints and
adaption are not modeled explicitly. Their implementation is
hard-wired directly into the applications. Henricksen and
Indulska [10] presented a software architecture that separates
an adaption layer from an application layer. But, the adaptation
layer merely deals with reasoning context facts and
preferences. No adaption logic relating to changes of

constructed relationships and interaction constraints is
provided. ICrafter [19] is a service framework that supports
user access to heterogeneous services in interactive workspaces
(i.e., physically co-located technology-rich ubiquitous
computing environments). ICrafter supports the deployment of
services to such workspaces and dynamically generates
appropriate user interfaces to those services for user devices.
Gaia [21] is another service framework for context-aware
systems that coordinates services and devices in smart spaces.
Although Gaia is useful in dynamically aggregating services
and applications in the context of smart spaces, such active
spaces are typically too constrained (i.e., Gaia provides limited
support for scalability and mobility)

Supporting social context in pervasive systems has gained
attentions from the research community. Zimmermann et al.
[28] proposed a framework for context-aware systems that
supports personalization. The framework includes a semantic
layer that captures the current situation of a user’s interactions,
including social dependencies. The semantic layer contains a
sub-layer for entity relationships. However, this framework
presents very limited discussion on how this sub-layer is
modeled and supported. Wang et al. [25] examined the role of
social group as a source of context information in pervasive
environment. The authors developed a context-aware group
membership scheme, as an example of social context, to
support group members’ perceptions of how devices can be
used to support group interaction. Their system was reported to
be feasible, but the modeling approach and architecture is
application-specific and lacks design implications for other
aspects of social context. Schmidt and Terrenghi [23] studied
the relationships between ubiquitous systems and physical
artifacts. The findings were reported useful in designing several
domestic display appliances. However, the study is limited in
addressing the design requirements catering for constructed
relationships between context-aware systems.

TABLE III: COMPARISON OF ARCHITECTURES FOR CONTEXT-AWARE
SYSTEMS (key: ++ comprehensive, + partial, – none)

Architectures - Requirements ext adp dep

Dey et al.’s Context Toolkits [7] + – –

Becker et al.’s 3PC/BASE [1, 2] + + +

Ponnekanti et al.’s Icrafter [19] + + ++

Henricksen et al.’s PACE [11] ++ + +

Roman et al.’s Gaia [21] + + +

Our layered architecture ++ ++ ++

As discussed earlier, conventional system architectures are
useful in reducing the complexity of developing context-aware
systems. They support a strict separation between the
acquisition of context data from sensors and the use of the
context for adaptation by context-aware actors. However, the
conventional architectures are limited in separating the
management of interaction-based social context and adaptation
from the implementation of the actors themselves. Table III
compares the fulfillment of relevant architectures with respect

Paper #32 10

to three requirements: externalization of management from the
actors (ext), adaptability of a social context model (adp), and
deployability (dep).

VIII. CONCLUSIONS AND FUTURE WORK
This paper has presented an innovative approach to

developing context-aware systems, particularly in supporting
their adaptation in response to changes in the relationships
between the relevant actors (e.g., human users, applications,
and agents). We have introduced the concept of social context
to model the interactions between actors. Social context
captures relationships and interaction obligations that a
context-aware actor has with other actors with respective to
their joint goals, from the individual actor’s perspective. A
social context is modeled as an organized composition of
interrelated functional roles whose interdependencies are
expressed through contracts. These contracts define functional
operations and non-functional requirements that obligate the
contracted roles. Each social context is managed by its own
organizer role. Both functional roles and the organizer role are
played by external players (i.e., the corresponding actors or
other entities) at run-time via functional and management
interfaces. As such, a context-aware actor owns and manages
its social contexts and uses them as proxies to interact with
others. We have also introduced a layered architecture that
explicitly externalizes the management and adaptation of social
context from the actors. We have demonstrated the realization
and application of our approach in implementing context-aware
automotive telematics systems.

As future work, we will focus on other aspects of social
context management, including sharing and reusing of social
contexts, privacy, and management of multiple social contexts
of an actor. We will also enhance the functionalities of
software toolkits for modeling and deploying social context,
and conduct quantitative evaluations of the approach.

ACKNOWLEDGMENT
This research was supported by the Australian Cooperative

Research Centre for Advanced Automotive Technology
(AutoCRC).

REFERENCES
[1] C. Becker, M. Handte, G. Schiele, and K. Rothermel, "PCOM - a

component system for pervasive computing," in Proc. of 2nd Conference
on Pervasive Computing and Communication, 2004, pp. 67-76.

[2] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel, "BASE: A Micro-
Broker-Based Middleware for Pervasive Computing," in Proc. of 1st
International Conference on Pervasive Computing and Communications,
2003, pp. 443- 451.

[3] M. Benerecetti, P. Bouquet, and M. Bonifacio, "Distributed Context-
Aware Systems," Human-Computer Interaction, vol. 16(2-4), pp. 213-
228, 2001.

[4] H. Chen, T. Finin, and A. Joshi, "An Ontology for Context-aware
Pervasive Computing Environments," The Knowledge Engineering
Review, vol. 18(3), pp. 197–207, 2003.

[5] A. Colman and J. Han, "Roles, Players and Adaptive Organisations,"
Applied Ontology: An Interdisciplinary Journal of Ontological Analysis
and Conceptual Modeling, vol. 2, pp. 105-206, 2007.

[6] A. Colman and J. Han, "Using Role-based Coordination to Achieve
Software Adaptability," Science of Computer Programming, vol. 64(2),
pp. 223-245, 2007.

[7] A. K. Dey, G. D. Abowd, and D. Salber, "A Conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications," Human-Computer Interaction, vol. 16(2-4), pp. 97-166,
2001.

[8] P. D. Haghighi, A. Zaslavsky, and S. Krishnaswamy, "An Evaluation of
Query Languages for Context-Aware Computing," in Proc. of 17th
International Conference on Database and Expert Systems Applications,
Krakow, Poland, 2007, pp. 455-462.

[9] A. Held, S. Buchholz, and A. Schill, "Modeling of Context Information
for Pervasive Computing Applications," in Proc. of 2nd Conference on
Pervasive Computing and Communications Workshops, Orlando,
Florida, 2004, pp. 43- 47.

[10] K. Henricksen and J. Indulska, "A Software Engineering Framework for
Context-Aware Pervasive Computing," in Proc. of 2nd Conference on
Pervasive Computing and Communications, 2004.

[11] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam,
"Middleware for Distributed Context-Aware Systems," On The Move To
Meaningful Internet Systems 2005, vol. 3760, pp. 846-863, 2005.

[12] K. Henricksen, J. Indulska, and A. Rakotonirainy, "Modeling Context
Information in Pervasive Computing Systems," in Proc. of 1st
International Conference on Pervasive Computing, 2002, pp. 79-117.

[13] J. I. Hong and J. A. Landay, "An Infrastructure Approach to Context-
aware Computing," Human-Computer Interaction, vol. 16(2-4), pp. 287-
303, 2001.

[14] Y. Jin and J. Han, "Consistency and Interoperability Checking for
Component Interaction Rules," in Proc. of 12th Asia-Pacific Software
Engineering Conference, Taipei, Taiwan, 2005, pp. 595-602.

[15] J. King and A. Colman, "A Multi Faceted Management Interface for
Web Services," in Proc. of the Australian Software Engineering
Conference, Gold Coast, Australia, 2009, pp 191-199.

[16] J. Lipnack and J. Stamps, Virtual Teams: People Working Across
Boundaries with Technology. New York, US: John Wiley & Sons, 2000.

[17] D. McCarthy and U. Dayal, "The Architecture of An Active Database
Management System " in Proc. of ACM SIGMOD International
Conference on Management of Data, Portland, Oregon, 1989, pp. 215-
224.

[18] H. Mintzberg, Structure in fives: designing effective organizations.
Englewood-Cliffs, New Jersey: Prentice Hall, 1983.

[19] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd,
"ICrafter: A Service Framework for Ubiquitous Computing
Environments," in Proc. of International Conference on Ubiquitous
Computing, Atlanta Georgia, 2001, pp. 56-75.

[20] A. Ranganathan and R. H. Campbell, "An Infrastructure for Context-
awareness based on First Order Logic," Personal and Ubiquitous
Computing, vol. 7(6), pp. 353–364, 2003.

[21] M. Román, C. Hess, R. Cerqueira, K. Nahrsted, and R. H. Campbell, "A
Middleware Infrastructure for Active Spaces," Pervasive Computing,
vol. 1(4), pp. 74-83, 2001.

[22] A. Schmidt, M. Beigl, and H.-W. Gellersen, "There is more to context
than location," Computers and Graphics, vol. 23(6), pp. 893-901, 1999.

[23] A. Schmidt and L. Terrenghi, "Methods and Guidelines for the Design
and Development of Domestic Ubiquitous Computing Applications," in
Proc .of 5th IEEE International Conference on Pervasive Computing and
Communications, 2007, pp. 97-107.

[24] T. Strang and C. Linnhoff-Popien, "A Context Modeling Survey," in
Workshop on Advanced Context Modelling, Reasoning and
Management, as part of the Sixth International Conference on
Ubiquitous Computing, Nottingham, England, 2004.

[25] B. Wang, J. Bodily, and S. K. S. Gupta, "Supporting persistent social
groups in ubiquitous computing environments using context-aware
ephemeral group service," in Proc. of 2nd Conference on Pervasive
Computing and Communications, 2004, pp. 287-296.

[26] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, "Ontology Based
Context Modeling and Reasoning using OWL," in Proc. of 2nd
Conference on Pervasive Computing and Communications Workshops,
Orlando, Florida, 2004.

[27] M. Weiser, "Computer for the 21st century," Scientific American, vol.
256(3), pp. 94-104, 1991.

[28] A. Zimmermann, M. Specht, and A. Lorenz, "Personalization and
Context Management," User Modeling and User-Adapted Interaction,
vol. 15(3-4), pp. 275-302, 2005.

