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Social Context: Supporting Interaction Awareness  
in Ubiquitous Environments

Minh H. Tran, Jun Han, Member, IEEE Computer Society, Alan Colman 

Abstract—In ubiquitous computing environments, certain entities 
(or actors) often need to interact with each other in achieving a 
joint goal in a dynamically changing context. To perform such 
interactions in a seamless manner, the actors need to be aware of 
not only their physical context (e.g. location) but also their 
changing relationships with respect to the particular task or goal. 
The latter interaction-oriented context, which we refer to as 
social context, has significant impacts on the way actors manage 
their adaptive behavior. However, very little research has focused 
on supporting such social context in ubiquitous environments. 
This paper presents our novel approach to modeling and 
realizing social context. Social context is modeled as a managed 
composition of loosely-coupled roles with their interaction 
relationships expressed as contracts. In addition, it is modeled 
from an individual actor’s perspective to allow for possible 
differences in the actors’ perception of the relationships. The 
social contexts of an actor are externalized from the actor itself to 
achieve easy management of the actors’ adaptive behavior 
concerning interaction. A layered system architecture is 
introduced to realize the approach and demonstrate the 
development of automotive telematics systems that are physically 
and socially context-aware. 

Index Terms—Context-awareness, adaptation, social context, 
pervasive computing, software architecture, SOA 

I.  INTRODUCTION 
he most profound technologies are those that 
disappear. They weave themselves into the fabric of 

everyday life until they are indistinguishable from it” [27] 
Weiser’s vision of ubiquitous computing 18 years ago still 
stands as a challenge for today’s technology. Using 
heterogeneous devices and infrastructure, applications need to 
seamlessly support user access to information and user 
collaboration in a ubiquitous manner. One of the challenges lies 
in the development of context-aware applications that are able 
to adapt to changes in the operating environment and user 
requirements.  

In these early days of ubiquitous computing, context-aware 
applications are stand-alone applications that react to 
contextual cues picked up from the environment. Such context 
cues or context facts form the physical context relevant to the 
application behavior, including location, identity, time, 
temperature, battery level, and so on. The recent proliferation 
of networking and mobile technologies opens the way for 
context-aware actors to interact with each other to achieve a 

joint goal that is not attainable by a single actor alone. Those 
actors such as human users, services and autonomous agents, 
may be independent, heterogeneous, distributed and mobile. 
Thus, supporting their interactions in a seamless manner to 
achieve the joint goal while still maintaining their own 
objectives poses two main challenges.  

First, in addition to physical context, context-aware actors 
need to take into account social context that mediates the 
changing interactions between actors. Like physical context, 
interaction-oriented social context is dynamic and plays an 
important role in forming the situation in which actors operate. 
But unlike physical context, social context is not simply 
acquired directly from physical and virtual sensors. It requires 
an understanding of constructed relationships, obligations and 
constraints underlying the interactions between collaborating 
actors. Many aspects of social context, such as its topology, 
interaction constraints and non-functional requirements, may 
need to change in response to the changes of cooperative goals, 
relationships between actors and acquired physical context 
facts. Thus, it is also necessary to model the inter-dependence 
between social context and physical context.  

The heterogeneity of ubiquitous environments means that 
context-aware actors could operate in different contexts with 
their own perspectives and will not necessarily perceive a given 
context in a same way. Each actor could have its own partial 
and perspective view of the social context that reflects the 
actor’s objectives and its relevant role in the interaction. Most 
existing research on context awareness is based on an implicit 
assumption of a common and unified representation of context 
facts (e.g., ontology). Only few researchers such as Benerecetti 
et al. [3] view context as a subjective concept and model it 
relatively from the actor’s perspective based on its goal. 
Furthermore, research from related disciplines, such as CSCW 
[16], has shown that the rationale for actors to participate in a 
group could be different with respect to their objectives. 
However, current research on context awareness does not 
address this level of complexity in context modeling. 

Second, the architecture of context-aware systems needs to 
provide adequate support for the development and deployment 
of explicit models of social context. Conventional architectures 
of context-aware actors can be seen as having three layers (see 
Fig. 1). At Layer 1, physical and virtual sensors are controlled 
to capture various types of data. This raw data is then 
propagated to a middle layer (Layer 2) which transforms 
sensed data into meaningful context facts using abstract 
physical context models, interpreters and aggregators. At the 
top level (Layer 3), context-aware applications acquire context 
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facts from Layer 2 using context query languages (e.g., SQL-, 
RDF- or XML-based languages [8]). The applications adapt 
their behavior in response to changes of physical context. This 
layering paradigm allows separating system components into 
levels of abstractions to reduce the complexity of system 
development. These layers are implemented and managed 
separately, and the implementation details of a lower layer are 
hidden from the upper layer.  

 
Such a conventional approach to context aware architectures 

has shortcoming in modeling social context. Although physical 
context is explicitly modeled at Layer 2, constructed 
relationships between actors, their interaction constraints and 
adaptation logic are not modeled explicitly at Layer 3. The 
relationships and interaction constraints are often directly 
hardwired in the application implementation making the 
applications hard to maintain and change. 

In order to achieve scalability and greater interaction-
oriented adaptability in such environments, the implementation 
of complex context inference and adaptation logic should be 
externalized from context-aware actors and managed 
separately. In this paper, we present an innovative approach to 
address the above challenges by providing: a systematic and 
explicit model of social context, and a layered system 
architecture realizing the model and enabling the development 
and deployment of physically and socially context-aware 
systems. 

The paper is structured as follows. Section 2 presents 
motivating scenarios from the context-aware automotive 
telematics domain. Section 3 analyzes the requirements for 
modeling and realizing social context. Sections 4 and 5 present 
our approach to, respectively, modeling social context and 
defining a layered architecture in a way that addresses those 
requirements. Section 6 presents a prototype implementation of 
a context-aware automotive telematics system using our 
approach. Section 7 reviews related research. Section 8 
concludes the paper and highlights future work. 

II. MOTIVATING SCENARIO 
This section motivates the research by showing a number of 

situations where context-aware automotive telematics is used to 
support interaction between a vehicle and other heterogeneous 
actors. Such interaction is commonly referred to as V2X (see 
Fig. 2), where X represents users’ portable devices, other 
vehicles, road-side infrastructure or information services. 

 
Fig. 2. V2X interactions. 

Let us consider that a group of people rent two cars and drive 
from Melbourne to Sydney, Australia. The two cars are 
equipped with context-aware telematics systems (or telematics 
for short) that allow V2X interactions as follows: 

Vehicle-to-portable device: The passengers exchange 
music and video between their portable devices (e.g., mobiles, 
mp3 players, laptop, etc.) and in-vehicle infotainment systems.  

Vehicle-to-vehicle: The telematics systems allow cars to 
sense and talk to each other. Neighboring cars exchange 
information (e.g., travel distance, speed, etc.) to improve road 
safety and avoid congestion. In particular, the two cars as 
mentioned above could form a cooperative convoy of which 
one car plays the role of leading car and the other following 
car. The leading car chooses a travel route and the following 
car follows it. During the trip, the cars frequently keep each 
other updated of their travel distance and notify the other of 
any mechanical breakdown.  

Vehicle-to-infrastructure: The telematics interact with 
road-side infrastructure to exchange information about traffic 
and road condition (e.g., speed limit, accident occurrence, road 
work delay, and road surface condition). This information is 
used to improve safety and enhance driver experience.  

Vehicle-to-service: While on the road, the drivers use a 
number of services provided by the car rental company and 
other service providers (e.g., road side assistance, emergency 
service, fleet monitoring, travel guide, and fuel watch). 

The abovementioned interactions illustrate the dynamic 
relationships between heterogeneous actors, including users’ 
portable devices, cars, roadside units, service providers, and so 
on. The relationships could be formed in either an ad-hoc 
manner (e.g., between a user’s portable device and an in-car 
infotainment system through Bluetooth, and between 
neighboring cars through Dedicated Short Range 
Communication (DSRC)), or in a dynamically changed and 
controlled manner (e.g., between two cars in a cooperative 
convoy). Those actors could dynamically join or leave a group. 
Their functional behavior and non-functional attributes could 
also be dynamically adjusted. 

Layer 3: Context-aware Systems 
(Functional Implementation, Adaptation Logic) 

Layer 2: Physical Context Management 
(Middleware layer) 

Layer 1: Sensors 
(Physical and virtual sensors) 

Fig. 1. Conventional architectural view of context-aware systems  
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III. REQUIREMENTS ANALYSIS 
We identify two sets of requirements that are associated with 

the two research challenges highlighted in Section 1.  

Requirements for social context modeling: Social context 
needs to explicitly capture constructed relationships and 
interaction constraints between actors. This set of constructed 
relationships and constraints needs to be managed, and 
modeled subjectively from an actor’s perspective. 

Social context is the set of norms, rules, obligations and 
understandings that influence an individual’s action with 
respect to a group in a particular situation. Individuals need an 
understanding of the given social context in order to interact 
effectively with others in that context. Social contexts can be 
designed or can be emergent. A social context with goals can 
be viewed as an organization. Organizational theory addresses 
the structuring of organizations in order to more effectively 
achieve those goals (e.g., [18]). As such, organizations are 
typically viewed as a managed network of roles that 
decompose the abstract functions of the organization into 
descriptions that can be performed by role-players (e.g., people, 
subsystems, other organizations). 

We adopt this view of organization as a composition 
structure of dynamic relationships between roles in order to 
model social context in software systems. Organizational roles 
are defined in terms of their relationships with other 
organizational roles and resources. These roles are loosely-
coupled elements whose interaction relationships need to be 
managed and coordinated to meet changing requirements and 
changing environments. In addition, these roles are first class 
entities and as such they are separate from the actors who play 
those roles. In mobile and ubiquitous systems this separation 
between well-defined roles and actors is beneficial given the 
dynamic nature of the system’s composition and the common 
situation where actors are unavailable.  

We further extend this software composition as an 
organization to support the subjectivity of social context 
modeling. In addition to sharing any common view of group 
interaction, an actor may have their own perception of the 
group with respective to their roles. Social context models need 
to accommodate this. Thus, we model social context from an 
actor’s perspective. This subjective view also determines the 
non-functional constraints that the actor agrees to provide and 
demands from the others. Furthermore, a social context is 
owned by the actor from whom the perspective is modeled (i.e., 
the actor has an ultimate control of its social contexts). While 
there may exist no centralized global view of interaction, the 
models of interaction held by different individuals need to be 
compatible for cooperative goals to be achieved. In the absence 
of any unified view of interaction, social context models 
therefore need to be able to be shared and negotiated between 
parties to the interaction. 

Requirements for system architecture: The architecture of 
context-aware systems needs to externalize the management of 

social context from the implementation of actors. The 
architecture also needs to support the adaptability of social 
context, and needs to be easily deployable. 

As actors in ubiquitous environments become open, 
distributed and autonomous, one key approach to supporting 
adaptation is to provide a management capability. This 
management subsystem is responsible for managing the 
relationships between actors as well as coordinating their 
adaptive behavior. However, in the conventional architecture 
view such management capability is often directly hard-wired 
into the actors. Although using techniques such as 
configuration and rules supports decoupling the 
implementation to a certain extent, the tasks of developing 
context-aware systems are still burdensome. This is because the 
conventional architecture view fails to separate the 
implementation of functional actors from the management of 
their relationships and adaptive behavior. To overcome this 
problem, the architecture needs to manage social context in a 
similar manner to it handles physical context. As shown in 
Layer 2 of Fig. 1, the physical context management layer 
provides abstractions allowing the applications to acquire 
context facts without understanding the details of how those 
facts are collected. Similarly, the architecture needs to 
externalize the management of social context from the actors 
themselves.  

In addition, the architecture needs to support the adaptability 
of social context. Context-aware actors could adapt their own 
behavior through some forms of reflection. For example, the 
actors maintain the abstraction of their social contexts. Through 
explicit models of social context, actors could dynamically 
change interaction constraints that they have formed with other 
actors, and the behavior that they adhere to. Furthermore, the 
architecture needs to allow social context models to be easily 
deployable and configurable (i.e., deployability) to meet 
changes in user requirements and environment conditions. 

IV. SOCIAL CONTEXT MODELING 
Addressing the requirements for social context modeling, we 

follow three basic principles: first-order representation of 
interaction relationships between loosely coupled actors, 
separation of functional and management operations, and 
subjectivity of the context. First, social context is a structured 
composition of roles whose interaction relationships are 
expressed through contracts, and actors are modeled separately 
from roles they play but are bound to the roles. Second, 
interactions between roles are coordinated and controlled 
through a separate management subsystem. Third, social 
context represents an actor’s subjective view of the interaction 
relationships.  

A. Conceptual Model of Social Context 
Following the meta-model for creating adaptive software 

organizations described in [6], we model social context as a 
self-managed composite comprising four key elements: 
functional role, contract, player and organizer role as seen in 
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Fig. 3. A context-aware actor could own many social contexts. 
Each social context is composed of functional roles, contracts 
and a single organizer role. A contract expresses 
interdependencies between two functional roles. A context-
aware actor (as a player) performs functions defined by a 
functional or organizer role. 

Context-aware 
Actor

Social 
Context

Functional 
Role

Contract

Organizer 
Role

Player
1

bound to

1

0..*

2

forms

0..*

0..*

owns

bound to

 
Fig. 3. A meta-model of social context. 

Using these concepts, Fig. 4 presents a model of the convoy 
social context viewed from the leading car’s perspective. The 
model encapsulates interactions that the leading car has with 
other actors in the cooperative convoy. The social context 
comprises five functional roles (LeadingCar, FollowingCar, 
NeighboringCar, Infrastructure and RentalCompany), four 
contracts (C1, ...C4) and an organizer role. 

 
 Functional Role: 

Functional roles represent expected functional interactions of 
participating actors with respect to the social context. For 
example, the LeadingCar and FollowingCar roles represent the 
two cars engaged in the cooperative convoy; and the 
NeighboringCar role represents other surrounding cars that are 
located within a close proximity to the leading car. These 
functional roles are, in essence, place holders or abstract 
functional definitions for corresponding players. A role’s 
definition is an aggregation of permitted and obligated 
operations specified in contracts that associate the role with 
other functional roles. Functional roles are internal to the social 

context composite in contrast to external players (introduced 
later in subsection 3). The roles’ definitions are exposed 
allowing players to be bound to them at runtime. 
 Contract: 

Interdependencies between functional roles are expressed 
through contracts. The contracts are central to a social context 
as they perform a number of key functions, including forming 
and managing the topology, mediating interactions, triggering 
the acquisition of context facts and monitoring performance 
with respect to interaction obligations. Each contract specifies 
the interaction relationships between two roles, including terms 
related to atomic interactions carried out by the roles, their 
obligations, temporal constraints of interactions, and so on. As 
illustrated in Table I, the general form of a contract includes the 
following: 

TABLE I: AN EXAMPLE OF THE CONTRACT BETWEEN TWO CARS. 
Contract ID C1: ConvoyLeaderFollower; 
Parties  A: LeadingCar; 
 B: FollowingCar; 
Physical Context Fact Providers 
 A_onBoardUnit: anyURI; 
 B_onBoardUnit: anyURI; 
 Timer: anyURI; 
 RoadAdvisory: anyURI; 
Social Context Fact Providers 
 convoy: C1.StateTracker; //built-in provider 
Interaction Clauses 
 i1: {convoyAvailable, AtoB }; 
 i2: {joinRequest, BtoA, joinResponse }; 
 i3: {notifyPosition}; 
 i4: {leaveConvoy}; 
 i5: {routeUpdate, AtoB, routeAccept}; 
 i6: {notifyMechanicalIssue}; 
Conversation Clauses (Temporal Constraints): 

c1: {i1 precedes i2 globally}; 
c2: {i2 leadsto i5 globally}; 

Obligations 
 o1: {i2, Timer, duration, < , 30, seconds}; 
 o2: {i3, Timer, periodic, =, 60, seconds}; 
Context Rules: 
 r1: {Set Maximum Desired Distance: 
  when i3.OnNotificationReceived; 
  if ?convoy.state = ACTIVE && 
   A_onBoardUnit.Raining = TRUE; 
  do  A.setMaxDesiredDistance(100)}; 
 r2: {Notify Mechanical Issue: 
  when A_onBoardUnit.OnNotificationReceived; 
  if ?convoy.state = ACTIVE && 
   A_onBoardUnit.TroubleCode = TRUE; 
  do  A.i6}; 
• Contract’s identifier and abbreviated qualifier (e.g., “C1: 
ConvoyLeaderFollower”). 
• Entities that include contracted parties (i.e., party A or B), 
any physical context fact providers (e.g. the internal 
A_onBoardUnit or external RoadAdvisory identified by unique 
URIs) and social context fact providers (e.g., the internal 
StateTracker). 

Fig. 4. A model of cooperative convoy social context. 

LeadingCar 

FollowingCar  

RentalCompany 

Infrastructure 

NeighboringCar C1 C2 C3 

C4 

Organizer Role 
Car 1 

Car Rental 
Company 

Car 3 Car 2 
Traffic Mgmt System 

 

Social context 
Player Functional role plays 

Contract Management channel Organizer role 



Paper #32    5

• Interaction clauses that are permitted atomic message 
exchanges between the contracted parties. A clause’s definition 
includes an identifying message signature, a direction of the 
message (i.e., AtoB, BtoA or either) and the message exchange 
pattern (i.e., one-way or request-response). If the direction is 
not specified, either party could send the message. If a response 
signature is not specified then the message is one-way. For 
example, i1 specifies a one-way message convoyAvailable that 
is sent from A to B. i2 specifies a request-response interaction 
that involves B sends a joinRequest message to A, and A sends 
a joinResponse message to B. 
• Conversation clauses that are acceptable sequences of 
interactions defined by temporal constraints in the Interaction 
Rule Specification (IRS) language [14]. For example, c1 
specifies that a message indicating a convoy is available must 
be received before (i.e., precedes) a request to join the convoy.  
• Obligations that can be attached to interactions. In 
particular, real-time temporal obligations are related to a 
requirement to send a message in response to some other 
message, as is the case with request-response interaction 
clauses or leadsto conversation clauses. Obligations use 
performance providers (e.g. timer) to help evaluate if an 
obligation has been met. For example, o1 states that the leading 
car must respond to a joinRequest message with a 
joinResponse within 30 seconds. o2 states that the cars must 
send each other their positions periodically every 60 seconds. 
• Context rules define Event-Condition-Action (ECA) rules 
[17] that evaluate a social situation. The events that can trigger 
this evaluation can be the receipt of a message, a timed event or 
the firing of another rule in a chain of rules. A social situation 
that is evaluated by the rule can be a combination of social and 
physical context facts. The context facts that make up a social 
situation condition are provided by context providers. As social 
context is a model of relationships expressed in the contracts, 
social context facts are some abstraction of the state of 
activities across those contracts. An example of internal social 
context provider could be a task state machine that identifies 
task instances from a sequence of interactions and provides 
abstract representation of the state of those tasks (e.g. 
convoy.state = SUSPENDED). Physical context providers 
sense external conditions (in our example weather conditions or 
accidents) and provide operations for querying that 
information. These providers may provide information of any 
state of interest in the environment (e.g. traffic conditions) or 
any entity (e.g. the motor vehicle). The action involved in such 
rules can result in modifying/setting of operational parameters 
in the parties of the contract (e.g. setMaxDesiredDistance(x)) 
or firing of other rules such as those in general clauses that alter 
the state of the contract. In the example, r1 states that when the 
social state of the convoy is active and it is raining then the 
maximum distance between the vehicles should be set to 100 
meters. r2 states that when a notification is received from a 
physical context fact provider A_onBoardUnit, if the convoy is 
active and A_onBoardUnit notifies any diagnostic trouble 

code, then the leading car needs to send a notification message 
i6: {notifyMechanicalIssue} to the following car. 
 Player: 

We define the concept of players to separate the abstract 
concept of roles in social context from the actual actors that 
play the roles. Players are external to the social context. 
Examples of players include human users, autonomous agents, 
composite services, devices or databases. Context awareness 
can be added to players by binding them to a social context that 
models at runtime the relationships between players, and senses 
the states of relevant interactions and physical context through 
its contracts. To be able to respond to changes in physical and 
social contexts, a player needs to be sensitive to those changes 
by polling or through notification. 
 Organizer Role: 

Another key principle of our modeling approach is the self-
managed capability of social context. A context-aware actor 
manages its own social context. This is achieved through an 
organizer role. The organizer role is internal to a social context 
and responsible for managing the social context’s topology, 
regulating the social context by creating and changing 
contracts, and binding players to functional roles. The 
organizer role has the capability to change the topology by 
creating and removing functional roles and contracts, and by 
adding and revoking conditions specified in the contracts. At 
runtime, the organizer role could accept, reject and terminate 
bindings between functional roles and players. The principle of 
separation between a role and player is also applied to the 
organizer role, though the role is played by a context-aware 
actor who owns the social context. The role exposes a 
management interface that contains operational and contractual 
methods for manipulating the composition of the social 
context, monitoring the performance of contracted roles, and 
negotiating binding with external players. The reader is 
referred to [15] for an in-depth discussion of a management 
interface that is required for a self-managed composite. 

B. Subjectivity of Social Context 
One of the key principles and novelty of our modeling 

approach is the subjective view of social context. This allows 
two collaborating actors to have different perceptions of the 
collaboration that are reflected on their roles and constructed 
relationships with other actors in the group.  

Take a scenario of two cars in the cooperative convoy as an 
example, both cars need to interact with each other and with 
other actors including Infrastructure (IF), NeighboringCar 
(NC) and RentalCompany (RC). But specifically for the 
leading car, in addition to these roles it needs to interact with a 
travel guide service (i.e., the TravelGuide role highlighted in 
Fig. 5). This requirement is to fulfill one of its obligations, i.e., 
obtaining a travel route for the convoy.  

As shown in Fig. 5, SC1 and SC2 are social context 
representing relationships between the two cars modeled from 
Car 1 and Car 2’s perspectives (omitting the organizer roles 
and external players bound to the IF, NC and RC roles for 
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simplicity). Interactions between the cars are mediated by these 
social contexts in the sense that both cars include the 
representation of the other in their own social context. In SC1, 
the LeadingCar role is played by Car 1 whilst the FollowingCar 
role is played by a contextualized Car 2 (i.e., a composition of 
Car 2 and SC2). Similarly, in SC2 the FollowingCar role is 
played by Car 2, and the LeadingCar role is played by a 
contextualized Car 1 (i.e., a composition of Car 1 and SC1). In 
order to establish the binding between the two contextualized 
actors, an agreement needs to be reached. For example, 
conditions specified in the contract RSC1-1 of SC1 are consistent 
with those defined in RSC2-1 of SC2.  

V. ARCHITECTURE SUPPORTING SOCIAL CONTEXT  
In the previous section, we have presented a new modeling 

approach to represent social context that captures both 
functional and non-functional aspects of interactions between 
actors. In this section, we present a system architecture that we 
have developed for realizing such explicit models of social 
context. The principles of our architecture are the 
externalization of the social context management, adaptability 
of social context, and ease of deployment (i.e., deployability). 

A. Externalization of Social Context Management 
We extend the conventional architecture view of context-

aware systems shown in Fig. 1 to externalize the social 
contexts and their management. As a result, the architecture 
that we have developed consists of four main layers (Fig. 6).  

In comparison to Fig. 1, Layer 3 (highlighted in Fig. 6) is an 
additional layer that is responsible for the management of 
social context and adaptation. This layer is able to support 
social contexts of heterogeneous actors. Multiple social context 
models are deployed and controlled independently as runtime 
self-managed composites. A context-aware actor could have 
one or more social contexts. Interaction between the actor and 
its social context models is loosely coupled and based on a 

document-based messaging style and event-driven interaction. 
Well-defined messages (e.g., SOAP messages) are exchanged 
between the actor and the social context composites. Typically, 
a message contains a message header and a body. The header 
provides information about the characteristics of the massage 
(e.g., the target destination, policy, message signature, etc.) that 
can be used by both the actor and the composite. The body 
contains data that is specific to operations of the actor. A 
runtime social context composite acts as a message router that 
(1) receives messages from one player, (2) evaluates conditions 
specified in associated contracts, and (3) passes the messages to 
another player. These processes are triggered by events such as 
message received, notification of context fact change, 
notification of performance level, timer, and so on. 

Fig. 7 illustrates the processes that a message is sent from 
Player A to Player B via a social context consisting of Role A, 
Role B and Contract C. First, Player A sends a message M to 
Role A. Upon arrival of the message, Role A might need to 
check the security setting to ensure that only authorized players 
could send requests. As Role A could form more than one 
contract with other roles of the social context, it needs to match 
the message against the appropriate contract using the rules 
contained with the runtime social context composite. When the 
message M is received by Contract C, this event triggers a 
number of actions such as assessing interaction constraints, 
acquiring context facts, and evaluating performance. Contract 
C then forwards1 M to Role B which then passes the message 
to Player B. 

 
                                                           

1 Note that additional information could be added into the header of the initial 
message M. 
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Fig. 5. Two cars interact through their social contexts. 
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Fig. 7. Message-based interaction via social context. 

Player 
B 

Player 
A 

Layer 4: Context-aware Actors (users, agents, applications …) 
 

 

Layer 2: Physical Context Management 

Layer 1: Sensors (Physical and virtual sensors) 

Layer 3:  
Social Context 
Management SCM 

SCM 

SCM 

SCM 
Social context 
Model (SCM) 

Fig. 6. Architecture for social context and adaptation. 



Paper #32    7

B. Social Context-mediated Adaptation 
As the physical context and interaction relationships 

between actors dynamically change, the relevant social 
contexts need to adapt in response to those changes. The 
adaptation of social context is performed by the organizer of 
the social context. Social context supports adaptation in the 
following ways: 
• Changes of topology: Addition and removal of functional 

roles and contracts is carried out. For instance, in the 
convoy social context, a third vehicle could join the context 
while the convoy is already on the way; or a break-down 
vehicle might leave the convoy before reaching the 
destination; these situations lead to changes relationships 
between the roles and contracts. 

• Changes of contracts: Interaction constraints, obligations 
and conditions specified in a contract may change. For 
instance, a desired distance between two cars reduces, say 
from 300m to 100m when the road is wet. Contracted roles 
are informed of such changes in the contract. 

• Changes of binding between roles and players: The same 
functional role can be played by different players at 
different times. The binding between the role and the 
players is dynamic. For instance, the Infrastructure role 
could be played by different traffic management systems in 
the convoy at different times as the vehicle moves from one 
jurisdiction to another. 

C. Deployability of Social Context 
The objective of externalizing the management of social 

context and adaptation logic from the actor is to achieve an 
ease of deployment (referred to as deployablilty). Not only can 
running social contexts be easily configured, but new social 
contexts can also be deployed to enhance behavior of context-
aware actors. Moreover, this architecture also allows services 
to be built without prior knowledge of the social context to 
which they will be bound.  

Prior to this research, we have developed the Role-Oriented 
Adaptive Design (ROAD) framework [5, 6] which is a 
modeling and implementation framework for adaptive software 
architectures. ROAD is a well-established framework that 
provides relevant constructs that can be extended for modeling 
and deploying social context. In addition, ROAD provides 
capability for monitoring and managing social context at 
runtime (e.g., altering the topology and interaction constraints). 
We adopt ROAD as the underlying framework for the design 
and deployment of social context for context-aware actors. Fig. 
8 shows the process of designing and deploying social context 
using the ROAD framework and supporting toolkits. 

ROADdesigner (Fig. 9) is a graphical modeling tool 
supporting the design of social context models. ROADdesigner 
is implemented as a plug-in for Eclipse. The software 
developer uses ROADdesigner to build a social context model 
by dragging and dropping model components (i.e., roles and 
contracts) onto a canvas representing the social context 
composite. Properties and constraints are added to the 

contracts. Endpoint references to candidate actors can also be 
specified at design time. The well-formedness of the model is 
enforced by a pre-defined schema. If the validation is 
successful, the social context model could be translated into an 
XML document, using the Eclipse modeling frameworks (i.e., 
EMF/GEF). ROADfactory can then create runtime ROAD 
composites (e.g., classes for roles and contracts, etc.), using 
JAXB (Java Architecture for XML Binding). ROADfactory 
integrates the Drools2 engine to define and fire ECA rules. 

 
Fig. 9. ROADdesigner supports social context modeling. 

Each social context is implemented as a runtime self-
managed ROAD composite that is able to (1) handle requests 
received from actors; (2) check security settings for authorized 
access; (3) allocate requests into a message queue; (4) forward 
messages to roles; (5) evaluate conditions specified in the 
contracts and (6) send responses to relevant actors, as 
illustrated in Fig. 10. Currently, social context composites are 
deployed into a Web Service environment. Social context 
composites are deployed as Web services to a Web container 
(e.g., Apache Axis Web Container). A social context composite 
is able to bind actors (Web services) which meet specific 
functional and non-functional requirements, to the functional 
roles of the social context. Interaction between social context 

                                                           
2 http://www.jboss.org/drools/ 

Fig. 8. Design and deployment processes of social context. 
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composites and those actors is supported by exchanging SOAP 
messages. Any changes (mostly non-functional requirements) 
could be made at run-time, resulting in an updated composite. 
Importantly, changes to the topology of social context need to 
conform to the social context schema. 

 

VI. PROTOTYPE IMPLEMENTATION 
We have developed a Context-aware Automotive Telematics 

(CAT) prototype to demonstrate how the proposed social 
context model and architecture could be applied in building 
context-aware applications, as seen in Fig. 11. CAT supports 
coordination between two cars of a cooperative convoy, and 
interaction between the cars and service providers. CAT is 
implemented as a Web-based application that uses the Google 
Maps APIs to display a car’s geographic position. CAT 
acquires physical context facts from external Web services 
(WS). We implemented four WSs to simulate (1) information 
about distance between two cars, (2) information about road 
condition and accident, (3) information about onboard 
diagnostic, and  (4) information about the nearest available 
garage that is provided by a road-side assistance system.  

CAT was developed based on the concept of social context 
that we have presented in this paper. Social context models for 
each the two cars were constructed. The XML documents 
representing those models were used to initiate and populate 
runtime roles and contracts classes. At run-time, CAT acquires 
context facts from the WSs. Based on conditions defined in the 
contract, appropriate information is overlaid on the CAT 
screen. For example, if a distance is greater than the maximum 

desired distance, say 300m, a warning is shown, recommending 
the driver to slow down. In the situation of hazardous condition 
(e.g., a wet road), CAT recommends the drivers to reduce the 
maximum distance, to say, 100m. In addition, CAT allows non-
functional attributes can be adjusted at runtime (e.g., the driver 
of the leading car can change the desired maximum distance 
between to cars, and so on). 

 
Fig. 11. Prototype of context-aware automotive telematics. 

VII. RELATED WORK AND COMPARATIVE ANALYSIS 
Within the scope of this paper, our review of related research 

particularly focuses on studies that are related to the two 
research challenges: (1) social context modeling, and (2) 
system architectures for context-aware systems. In this section, 
we also present a comparative analysis of the relevant 
approaches to highlight the contributions of our research. 

A. Social Context Modeling 
To reduce the complexity of engineering context-aware 

applications, one major research focus is on context modeling. 
There have been a number of context modeling techniques  
available in the literature, such as a graphical approach [12], a 
mark-up scheme approach [9],  an object-oriented model [22], 
logic-based models [20], and ontology-based models [4, 26]. 
However, such approaches were developed to model physical 
context (e.g., representing context facts and relationships 
between context facts). They provide limited support for 
modeling social context (i.e., interaction-oriented context). For 
example, key-value models are simple and easy to use in 
distributed systems but highly limited in supporting 
sophisticated structure. Mark-up scheme models are useful in 
expressing a hierarchical structure of attributes, but limited in 
defining interaction constraints and dependencies. An 
ontology-based approach is useful in representing the global 
knowledge about the relationships between context facts (e.g., 
using the is-a association). However, to the best of our 
knowledge, there is no study on the use of ontology in 
supporting the subjectivity of context models. The reader is 
referred to Strang and Linnhoff-Popien [24] for more detail 
descriptions of those context modeling approaches.  

1 6 

Fig. 10. Architecture of self-managed social context composites. 
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Strang and Linnhoff-Popien define a set of requirements 
(e.g., distributed composition, partial validation, richness and 
quality of information, etc.) that are particularly important for 
physical context modeling.  Complement to these requirements, 
we have defined a set of requirements that are particularly 
important to social context modeling, including:  interaction 
relationships (rel), the separation of functional and 
management concerns (sep), and subjectivity (sub), as 
discussed earlier. Table II analyses the extent to which relevant 
context modeling approaches can be used to model social 
context, with respect to these three requirements. 

 TABLE II: COMPARISON OF CONTEXT MODELING APPROACHES WITH RESPECT 
TO REQUIREMENTS FOR SOCIAL CONTEXT MODELING  

(key: ++ comprehensive, + partial, – none) 
Approaches - Requirements rel sep sub 

Key-value model – – – 

Graphical model + + – 

Object-oriented model + + ++ 

Mark-up model + + – 

Ontology-based model ++ + + 

Logic-based model +   + + 

Interaction-oriented model (social context) ++ ++ ++ 

B. Architecture for Context-Aware Systems  
Another major research focus in context-aware computing is 

on architectures for developing context-aware applications.  
The aim of the architectures is to push as much as possible the 
acquisition, management and dissemination of context 
information into a context infrastructure. Dey et al. [7] 
developed a basic framework to support acquisition and 
interpretation of context information from sensors by using 
toolkits. Hong and Landay [13] advocated using a service 
infrastructure approach to deploy context-aware applications. 
In this approach, the tasks of gathering, processing and 
managing context information are encapsulated as services that 
are accessible to any context-aware devices and applications. 
Becker et al. developed the peer-to-peer pervasive computing 
(3PC) framework which consists of both a middleware (BASE) 
[2] and a component model (PCOM) [1]. According to 3PC, a 
system is viewed as a tree of components. Adaptation is seen as 
switching of sub-trees using search and selection based on the 
description of component interfaces and requirements. While 
having such supporting infrastructure is important, it provides 
limited support for managing the dynamicity and complexity of 
social context. The management of interactions and adaptive 
behavior is still built-in the applications themselves. Moreover, 
relationships between entities, interaction constraints and 
adaption are not modeled explicitly. Their implementation is 
hard-wired directly into the applications. Henricksen and 
Indulska [10] presented a software architecture that separates 
an adaption layer from an application layer. But, the adaptation 
layer merely deals with reasoning context facts and 
preferences. No adaption logic relating to changes of 

constructed relationships and interaction constraints is 
provided. ICrafter [19] is a service framework that supports 
user access to heterogeneous services in interactive workspaces 
(i.e., physically co-located technology-rich ubiquitous 
computing environments). ICrafter supports the deployment of 
services to such workspaces and dynamically generates 
appropriate user interfaces to those services for user devices. 
Gaia [21] is another service framework for context-aware 
systems that coordinates services and devices in smart spaces. 
Although Gaia is useful in dynamically aggregating services 
and applications in the context of smart spaces, such active 
spaces are typically too constrained (i.e., Gaia provides limited 
support for scalability and mobility) 

Supporting social context in pervasive systems has gained 
attentions from the research community. Zimmermann et al. 
[28] proposed a framework for context-aware systems that 
supports personalization. The framework includes a semantic 
layer that captures the current situation of a user’s interactions, 
including social dependencies. The semantic layer contains a 
sub-layer for entity relationships. However, this framework 
presents very limited discussion on how this sub-layer is 
modeled and supported. Wang et al. [25] examined the role of 
social group as a source of context information in pervasive 
environment. The authors developed a context-aware group 
membership scheme, as an example of social context, to 
support group members’ perceptions of how devices can be 
used to support group interaction. Their system was reported to 
be feasible, but the modeling approach and architecture is 
application-specific and lacks design implications for other 
aspects of social context. Schmidt and Terrenghi [23] studied 
the relationships between ubiquitous systems and physical 
artifacts. The findings were reported useful in designing several 
domestic display appliances. However, the study is limited in 
addressing the design requirements catering for constructed 
relationships between context-aware systems. 

TABLE III: COMPARISON OF ARCHITECTURES FOR CONTEXT-AWARE 
SYSTEMS (key: ++ comprehensive, + partial, – none) 

Architectures - Requirements ext adp dep 

Dey et al.’s Context Toolkits [7] + – – 

Becker et al.’s 3PC/BASE [1, 2] + + + 

Ponnekanti et al.’s Icrafter [19] + + ++ 

Henricksen et al.’s PACE [11] ++ + + 

Roman et al.’s Gaia [21] + + + 

Our layered architecture ++ ++ ++ 

As discussed earlier, conventional system architectures are 
useful in reducing the complexity of developing context-aware 
systems. They support a strict separation between the 
acquisition of context data from sensors and the use of the 
context for adaptation by context-aware actors. However, the 
conventional architectures are limited in separating the 
management of interaction-based social context and adaptation 
from the implementation of the actors themselves. Table III 
compares the fulfillment of relevant architectures with respect 
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to three requirements: externalization of management from the 
actors (ext), adaptability of a social context model (adp), and 
deployability (dep). 

VIII. CONCLUSIONS AND FUTURE WORK 
This paper has presented an innovative approach to 

developing context-aware systems, particularly in supporting 
their adaptation in response to changes in the relationships 
between the relevant actors (e.g., human users, applications, 
and agents). We have introduced the concept of social context 
to model the interactions between actors. Social context 
captures relationships and interaction obligations that a 
context-aware actor has with other actors with respective to 
their joint goals, from the individual actor’s perspective. A 
social context is modeled as an organized composition of 
interrelated functional roles whose interdependencies are 
expressed through contracts. These contracts define functional 
operations and non-functional requirements that obligate the 
contracted roles. Each social context is managed by its own 
organizer role. Both functional roles and the organizer role are 
played by external players (i.e., the corresponding actors or 
other entities) at run-time via functional and management 
interfaces. As such, a context-aware actor owns and manages 
its social contexts and uses them as proxies to interact with 
others. We have also introduced a layered architecture that 
explicitly externalizes the management and adaptation of social 
context from the actors. We have demonstrated the realization 
and application of our approach in implementing context-aware 
automotive telematics systems. 

As future work, we will focus on other aspects of social 
context management, including sharing and reusing of social 
contexts, privacy, and management of multiple social contexts 
of an actor. We will also enhance the functionalities of 
software toolkits for modeling and deploying social context, 
and conduct quantitative evaluations of the approach. 
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