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ABSTRACT

Knowledge bases and the Web of Linked Data have become
important assets for search, recommendation, and analytics.
Natural-language questions are a user-friendly mode of tap-
ping this wealth of knowledge and data. However, question
answering technology does not work robustly in this setting
as questions have to be translated into structured queries
and users have to be careful in phrasing their questions.
This paper advocates a new approach that allows questions
to be partially translated into relaxed queries, covering the
essential but not necessarily all aspects of the user’s input.
To compensate for the omissions, we exploit textual sources
associated with entities and relational facts. Our system
translates user questions into an extended form of structured
SPARQL queries, with text predicates attached to triple pat-
terns. Our solution is based on a novel optimization model,
cast into an integer linear program, for joint decomposition
and disambiguation of the user question. We demonstrate
the quality of our methods through experiments with the
QALD benchmark.

Categories and Subject Descriptors

H.3.3 [Information systems]: Information Search and Re-
trieval; I.2.1 [Artificial Intelligence]: Natural language in-
terfaces
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question answering; knowledge base; semantic search; dis-
ambiguation; usability

1. INTRODUCTION
Motivation:With the success of IBM’s Watson system [23],

natural-language question answering (QA) is being revived

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM 2013 San Francisco, California, USA

ACM 978-1-4503-2263-8/13/10 ...$15.00.

http://dx.doi.org/10.1145/2505515.2505677 .

as a key technology towards coping with the deluge of digi-
tal contents. Watson primarily tapped into textual contents,
with limited use of structured background knowledge. How-
ever, there is a strongly growing wealth of structured data
on the Web: large knowledge bases like dbpedia.org, free-
base.com, and yago-knowledge.org; billions of inter-linked
RDF triples from these and other sources, together forming
the Web of Linked Data [21]; hundreds of millions of Web
tables (e.g., accessible via research.google.com/tables);
and a large amount of RDF-style microdata embedded in
HTML pages (e.g., using the schema.org vocabulary).

This paper is about conveniently and effectively searching
this wealth of structured Web data, specifically, the RDF-
based world of Linked Data. Although there are structured
query languages like SPARQL that could, in principle, be
used to this end, such an approach is impractical for several
reasons: i) users are not familiar with the diverse vocabulary
of the data, ii) the data itself exhibits high heterogeneity so
that even a power-user would struggle with formulating the
right queries, iii) even a perfectly formulated query may fail
to find answers if the query vocabulary (predicates, classes,
entity names) does not match the data vocabulary. To bridge
the gap between users’ information needs and the underlying
data and knowledge, it has recently been proposed to take
natural-language questions as user input and automatically
translate these into structured queries, for example, in the
SPARQL language [40, 46, 35].

Example: Consider the question “Which music bands
covered songs written by the Rolling Stones?”, or in con-
veniently short form: “bands covering songs by the Stones”,
or in even more telegraphic style: “bands songs Stones”. An
ideal QA system for RDF data would automatically trans-
late this user input into a SPARQL query with the following
triple patterns:

?x type MusicBand .
?x performed ?y .
?y type Song .

RollingStones created ?y .

where ?x and ?y are variables, and the binding for ?x is the
query answer. Getting this translation right is all but an
easy task. Moreover, even this seemingly perfect query may
not work if the underlying data differs from the vocabulary
and structure of the query. For example, the class Song may



not be sufficiently populated; instead the data could make
more frequent use of the type Music. Similarly, the predicate
created may be used only for books, paintings, etc., and a
different predicate composed could be prevalent for music.
Finally, it could be that only individual people are listed
as composers (rather than bands), so that one would need
additional/alternative triple patterns:

?z composed ?y and
?z memberOf RollingStones .

Problem: Our goal in this paper is to improve QA over
RDF data in terms of robustness, by devising a method for
generating good queries that return answers even in such
hard situations. The solution must not come at the expense
of increasing the burden on the user (e.g., by a tedious pro-
cess of providing multiple question formulations). We would
like to increase the system’s robustness also by allowing users
to be informal if not sloppy in the way they express ques-
tions. For example, a variant of our example question could
be: “woman song-writer covered love ballads by the stones”.
A solution must identify the right sub-phrases like “woman
song-writer”, “covered”, “love ballad”, and “the stones” and
must automatically map them onto semantic targets of the
underlying data: types/classes, relations, and entities.

Approach: This paper presents a solution based on gen-
erating a set of query variants that cover the user question to
different extents. Thus, we do not need a perfect translation,
yet we can execute a query and return good answers. We still
face the problem that the noun phrases and verbal phrases
of the input are highly ambiguous and can be mapped to
different semantic targets. We address this issue by a joint
optimization for i) identifying the boundaries of the rele-
vant phrases (e.g., “woman song-writer” vs. “song-writer”)
and ii) jointly mapping all or a subset of these phrases onto
classes, relations, and entities. The optimization is cast into
an integer linear program with an appropriately designed
objective function and constraints.

Sometimes a better query is generated by leaving out in-
tractable parts of the user question. For example, “love bal-
lad”may not map to any class and even“woman song-writer”
may be too hard so that simply mapping it to the class Mu-
sician may be the best option. To compensate for such in-
complete translations, we tap into textual descriptions that
are often available with structured Web data. These could
be sources from which RDF triples have been gathered, texts
about entities from their Wikipedia articles or homepages,
or the contents that surround a table or microdata in a Web
page. We extend SPARQL triple patterns into the notion
of SPOX quad patterns that consist of the usual subject-
predicate-object (SPO) parts and a teXt component with
keywords or text phrases that need to be matched by the
textual descriptions associated with the SPO triples in the
data. For the example question, we could generate a query
with the quad patterns:

?x type singer {"woman", "song-writer"} .
?x performed ?y .

?y type Music {"love ballad"} .
RollingStones ?p ?y {"by"} .

Contribution: This paper makes the following contribu-
tions: i) extending the translation of natural-language ques-
tions into SPARQL queries by means of quad patterns with

textual conditions; ii) a model that allows generating re-
laxed queries that capture only parts of the user inputs in
SPO conditions and map other parts onto text conditions;
iii) an optimization method based on an integer linear pro-
gram that identifies the phrases to be mapped and com-
putes a joint mapping for disambiguation; iv) a strategy for
generating relaxed queries that return many answers and a
suitable run-time environment. and v) ultimately, improv-
ing the robustness of question-to-query translation without
impeding user convenience.

2. COMPUTATIONAL MODEL
RDF data and text: The Linked Data sources that we

operate on consist of subject-predicate-object (SPO) triples
following the RDF data model. Example triples are:

KeithRichards composed Angie .
Womack&Womack performed Angie .

Angie type Music .

As such data is often extracted or compiled from text-rich
Web pages such as Wikipedia articles or thematic Web por-
tals such as last.fm, we associate with each triple a textual
context, thus forming SPOX quadruples, quads for short. An
example quad could be

Angie type Music {"...a ballad which tells of the

end of a romance ..."} .

For Linked Data and for Web tables, such text extensions of
structured data are very natural and can be easily compiled.

We can query this kind of data+text combination by ex-
tending SPO triple patterns, the basic building block of the
SPARQL query language, with a search condition about key-
words or phrases: ?x type song {"love", "ballad"}. The
semantics of a quad pattern is that a data triple must sat-
isfy the SPO condition and its associated text context should
match (at least partially) the specified text condition.

Input questions: We interpret the user’s input question
as a sequence of phrases, where each phrase is a sub-sequence
of consecutive words. We run a part-of-speech (POS) tag-
ger and a dependency parser on the question. This way, we
generate a set of candidates for sub-phrases that could be
mapped to semantic items like classes, relations, or entities.
The candidate phrases can overlap; our optimization model
takes care of selecting a consistent subset of phrases (see
Section 3).

Phrases potentially corresponding to classes and entities
are detected using a large dictionary of surface forms. POS
tags guide the identification of candidate relation phrases.
We rely on an extension of the relational patterns in [16] and
extend these with common nouns from a dictionary. This ap-
proach produces heavily overlapping phrases. However, we
only consider consecutive words, to avoid speculating about
user intentions and to be robust against informal formula-
tions. We include long phrases, the rationale being that these
can sometimes be directly mapped to specific classes in the
data (e.g., matching Wikipedia category names).

Predicate-argument dependencies: Some phrases will
eventually be mapped to relations, so it is important to
identify their arguments. We restrict ourselves to binary re-
lations and aim to identify left/right arguments based on



the dependency parsing of the input question. For each of
the candidate phrases that could possibly denote a rela-
tion, we check for words that have particular dependencies
with words in the phrase. The words that these dependen-
cies point to are identified using the Stanford dependency
parser [29], and all pairs of phrases that contain these words
become candidates for left/right arguments of the potential-
relation phrase. This is relatively liberal, as the considered
dependencies can originate at different words of the phrase.
The rationale here is to minimize the risk that we miss rele-
vant dependencies; for selecting the correct argument struc-
ture, we rely on the optimization model (see Section 3).

Dependency parsing is essential for questions that refer
to multiple relationships. An example is “bands from the
US who covered songs by the Stones and the Beatles”. It is
vital to recognize that the phrase “covered”has the left-hand
argument “bands” and two right-hand arguments “songs by
the Stones” and “songs by the Beatles”.

Because we rely on translating questions to a triple-based
language, noun phrases can often stand for a relation and its
argument. An example is the question“songs by the Stones”.
Conceptually, the phrase“songs by”expresses both a relation
and a class (the answer type). If the phrase “songs by” is
mapped to the relation performed, then we also add a latent
concept phrase to stand for one of the two arguments of the
relation. This is needed since our optimization model (see
Section 3) constrains each phrase to map to at most one
semantic target in the data.

Additionally, some patterns, such as adjective forms of
countries and regions, and prepositions, can denote the ex-
istence of a relation that is unspecified. For example, a ques-
tion asking for “Swedish skateboarders” indicates the exis-
tence of a relation between Sweden and one or more members
of the class Skateboarder. This relation is not specified in
any token, so we generate a latent relation phrase to account
for this, which, if chosen, would correspond to a wild card
relation ?r. During query processing ?r will be bound to
relations such as bornIn, livesIn, etc. It is possible that
the knowledge has a class SwedishSkateboarders, the opti-
mization model would make the decision which of the two
interpretations of “Swedish skateboarders” to choose.

Answer type: To determine the output structure (corre-
sponding to the Select clause) for the query to be generated,
we need to infer the type of the answer(s) that the user ex-
pects, based on the question formulation. We use a sequence
of heuristics: i) if a question word like “who”, “where”, etc. or
“which” with a modifier is present, it determines the answer
type (i.e., person, location, etc., or the type of the modifier);
ii) without such words, the head noun of the question’s sub-
ject determines the output type (e.g., “bands”in“bands from
the US covering . . . ”) unless this is determined by the dis-
ambiguation model to be part of an entity phrase, in which
case iii) the first common noun occuring in the sentence that
maps to a class determines the answer type.

Output: The main task addressed in this paper is to se-
lect a subset of candidate phrases and map them onto seman-
tic target items, where possible targets are classes, relations,
and individual entities present in the underlying data and
knowledge sources. We assume that we have a comprehen-
sive dictionary of semantic items compiled from the data.
For a given phrase, the candidate targets are those semantic

items whose names or textual description (e.g., synonyms,
glosses, or salient keyphrases) overlap with the wording in
the phrase. For example, “the stones”would have candidates
like gemstones (a class), the Rolling Stones (an entity of type
MusicBand), etc. The candidates for the phrase“cover”would
include book covers (class), album covers (class), perform
(relation, between musician and song), treat a subject (re-
lation, e.g., between books and events), Thomas M. Cover
(entity), etc. Compared to many other disambiguation tasks
(e.g., for entity names), a major complexity faced here is the
wide range of possible interpretations where not even the
kind of semantic item is a priori clear.

More formally, given:

(i) a set P = {p1, p2, . . . } of possibly overlapping candi-
date phrases,

(ii) a set S = {s1, s2, . . . } of semantic target candidates as
input, and

(iii) a set of phrase dependencies
DP = {prel1(psubj1 , pobj1), prel2(psubj2 , pobj2), ...},

the desired output is:

(i) a selected subset P ∗ = {pi1 , pi2 , . . . } ⊆ P of phrases,

(ii) a functional mapping P ∗ → S, and

(iii) a set of semantic target dependencies
DS = {srel1(ssubj1 , sobj1), srel2(ssubj2 , sobj2)...}

that satisfy certain constraints.
We will discuss this task in Section 3. It is important to

note that the mapping can be partial regarding P : not every
phrase needs to be mapped (even if it does not overlap with
other phrases).

3. OPTIMIZATIONMODEL FORJOINTDE-

COMPOSITIONANDDISAMBIGUATION
We design an integer linear program (ILP) to jointly re-

solve the question decomposition and disambiguation prob-
lems. Our model couples the selection of phrases and their
mapping onto semantic targets. Importantly, we introduce
constraints that ensure that phrases are selected in a way
that preserves their phrase dependencies in the image of the
mapping onto semantic targets. This guarantees that we ar-
rive at a set of chosen semantic items that are naturally
grouped into triples and thus yield a well-formed SPARQL
query.

In addition to the sets P , S, DP and DS introduced in
the previous section, our model makes use of two kinds of
pre-computed weights: (i) s(i, j) denotes a prior score for
phrase pi mapping to semantic target sj , regardless of the
context, and (ii) r(k, l) denotes the semantic relatedness be-
tween semantic target items k and l, based on co-occurrences
in the underlying data and knowledge sources (Yago, DBpe-
dia, Wikipedia), to integrate the question context in scoring.

We now define the variables of the ILP, all of which are
0/1 decision variables:

• Xi indicates if phrase pi is selected.

• Yi,j indicates if the mapping pi 7→ sj is chosen.

• Zk is 1 if sk ∈ S appears in the image of the chosen
mapping.



• Zk,l is 1 if both Zk and Zl are set to 1.

• Qm,n,d indicates if the phrase pn is chosen as part of
the phrase dependency dm ∈ Dp, in role d ∈ {rel, subj, obj}.

• Tt indicates for semantic dependency srelt(ssubjt , sobjt)
if all three components are chosen, that is, Zrelt , Zsubjt ,
Zobjt are 1, and the corresponding SPARQL triple pat-
tern has a non-empty result in the underlying data.

The result of the ILP is a 0/1 assignment of the X, Y , Z,
Q, and T variables, from which a mapping P ∗ → S and a set
of semantic dependencies DS can be read off. The Q and T

variables couple the choice of phrases and their mapping to
semantic targets with the dependencies among phrases and
semantic items. This will ensure that the output consists of
meaningful triples, rather than mapping phrases to targets
independently. Moreover, the T variables also encode if a se-
mantic dependency in the output actually produces answers
when the corresponding triple pattern (alone) were executed
on the data. The objective function below rewards decisions
that lead to non-empty answers.

The following 0/1 constants are also used:

• Cj , Ej , and Rj are 0/1 constants indicating that the
semantic target sj is a class, entity, or relation, respec-
tively, where

∑
j
Cj + Ej +Rj = 1.

• trc indicates if the semantic relation sr and the concept
sc are type compatible.

P(t) is the set of all phrases that contain the token (word)
t. The set of latent concept phrases is Plat, and each latent
concept phrase plat ∈ Plat phrase is generated by a relation
phrase pr = gen(plat).

Objective function: The objective of the ILP is to max-
imize the following function:

α
∑

i,j
s(i, j)Yi,j + β

∑
r(k, l)Zk,l+

γ
∑

m,n,d
Qm,n,d + δ

∑
t
Tt

The first term aims for good phrase-target mappings if
each phrase were mapped separately. This is balanced against
the second term which rewards mappings that result in two
highly related entities being together in the mapping im-
age. The third term reflects the goal of capturing phrase
dependencies. The fourth term rewards decisions that lead
to triple patterns with non-empty answers. The coefficients
α, β, γ, δ are hyper-parameters to be tuned with a small
set of withheld training data, that is, pairs of questions and
good query translations.

Constraints: The model described until now can be seen
as a compact way to encode all possible interpretations of a
questions with respect to a knowledge base. Some interpre-
tations do not make sense, such as those where a type con-
straint is violated or a word is part of multiple phrases (tak-
ing into consideration latent ones). Other interpretations,
such as those that cannot be answered by the knowledge
base, should be less favored, everything else beging equal.
The optimization is subject to the following constraints which
both forbid nonsensical interpretations (1-12), and down-
weigh empty interpretations of a query (13, 14):

1. A phrase maps to at most one semantic target.
∑

j

Yij ≤ 1,∀i

2. If a mapping pi 7→ sj is chosen, then the target node
must be chosen

Yij ≤ Xi,∀j

3. If a mapping pi 7→ sj is chosen, then no phrase that
overlaps with pi can be chosen.

∑

i∈P(t)

Xi ≤ 1,∀t ∈ T

4. Zk,l is 1 iff both Zk and Zl are 1.

Zk,l + 1 = Zk + Zl,∀Zk,l

5. Xk is 1 and Zl is 1 iff Yk,l is 1.

Yk,l + 1 = Xk + Zl,∀Yk,l

6. Each semantic triple can contribute to each role once
at most.

∑

Qmnd

≤ 1,∀m, d

7. If Qm,n,d = 1 then the corresponding pn must be se-
lected (Xn = 1).

Qmnd ≤ Xn,∀m,d

8. Each chosen phrase dependency (encoded in the values
of the Q variables) must include a relation phrase.

Er ≥ Qmn′d +Xn′ + Yn′r − 2,∀m,n
′
, r, d = rel

9. Each semantic triple should have at least one class to
join with other semantic triples.

Cc1 + Cc2 ≥ Qmn′′d1 +Xn′′ + Yn′′′c1+
Qmn′′′d2 +Xn′′′ + Yn′′′c2 − 5,

∀m,n′′, n′′′, r, c1, c2, d1 = arg1, d2 = arg2

10. If any two Q variables have a token as part of two dif-
ferent mentions, at most one of the two can be chosen.

Qmnd +Qm′n′d′ ≤ 1,
∀n, n′, d, d′,m 6= m′, t ∈ pn, t ∈ pn′ , pn 6= pn′

11. Each relation in a chosen semantic dependency (en-
coded in values of the Q and Y variables) must have
a type signature that is compatible with the types of
its left and right arguments (classes or entities) in the
semantic dependency.

trc1 + trc2 ≥ Qmn′d1 +Xn′ + Yn′r+
Qmn′′d2 +Xn′′ + Yn′′′c1+
Qmn′′′d3 +Xn′′′ + Yn′′′c2 − 7

∀m,n′, n′′, n′′′, r, c1, c2,

d1 = rel, d2 = arg1, d3 = arg2

12. A latent concept phrase pl (see Section 2) can be se-
lected only if the generating relation phrase pr is also
selected.

Xl ≤ Xr,∀pl ∈ Plat, pr = gen(pl)



13. If a T variable is 1 then all variables X, Y , Z and Q

variables in the semantic dependency it encodes are
chosen.

Tt ≤ Xi,∀t,Xi, s.t. pi 7→ sj , sj part of Tt

Tt ≤ Zk, ∀t, Zk, s.t. sk part of Tt

Tt ≤ Yij ,∀t, Yij , s.t. pi 7→ sj , sj part of Tt

Tt ≤ Qtid,∀t, i, d, s.t. pi 7→ sjd , sjd part of Tt in role d

14. T variables corresponding to triple patterns that have
no matches in the data are set to 0.

Tt = 0,∀srelt(ssubjt , sobjt) with no matches in KB.

It is worth noting that the last constraint decreases the
score of an interpretation in a triple pattern with no results
in the KB, without forbidding such interpretations.

By iteratively adding a constraint that prevents the previ-
ous solution to the ILP (corresponding to an interpretation
of the question), we are able to generate multiple interpre-
tations of a question in descending order of their scores.

4. QUERY GENERATION
Much of the query to be generated will naturally fall out

from the computed mapping P ∗ → S and the semantic
dependencies DS . As we also identify a phrase for the an-
swer type (Section 2), we could now directly produce a set
of triple-pattern conditions and a Select clause for a full-
fledged SPARQL query. To ensure that the triple patterns
join in a proper manner (through shared variables), we sub-
stitute each class c by a variable ?c and add a triple pattern
?c type c. For example, with the mappings “bands” 7→ Mu-

sicBand, “cover” 7→ performed, “songs” 7→ Music, we would
first obtain the triple pattern MusicBand performed Music

and then expand it into:

?var1 performed ?var2 .
?var1 type MusicBand .

?var2 type Music.

As the mapping of phrases to classes or relations often comes
with a semantic generalization step (e.g., mapping “love bal-
lad”to Song or Music), we may even consider already mapped
phrases as candidates for additional text conditions. Finally,
even if the generated query captures most or all of the input
question, it may be overly specific and does not necessarily
return answers. Next we discuss how to overcome this issue.

5. QUERYEXTENSIONANDRELAXATION
Structured and keyword querying are two paradigms tra-

ditionally kept apart. We argue that a combination of both
works best in our QA setting. We combine them by generat-
ing SPOX quads rather than pure-SPARQL triple patterns
only. We start with the SPO query that is generated from
the outcome of the ILP-based optimization as explained in
Section 4. Then we apply three kinds of extension and re-
laxation techniques.

Text extension: The first technique identifies phrases or
words in phrases that are not mapped to any of the triple
patterns in the generated query. Some words may not be

part of any detected phrase. Others may belong to detected
phrases that, in the final disambiguation, could not be placed
into a semantic triple pattern, and are hence not part of the
structured query. Finally, it is possible that triple patterns
are generated but are not connected to the output variable
(Select clause) of the final query via join operations. To
avoid computing Cartesian products and hard-to-interpret
results, such triple patterns are discarded leading to “left-
over” phrases. In all three cases, the words are attached as
keywords to the triple pattern for the type of the query out-
put.

Empty-result relaxation:The second technique involves
triple patterns that lead to empty results when executed
against the underlying data. An empty-result SPO condi-
tion indicates either a disambiguation error or an overly
specific query that lacks coverage in the underlying data due
to poorly populated classes or relations. It is also possible
that every single SPO condition produces answers, but their
combination yields an empty result. An example is:

?x type Singer .
?x type Woman .

We may have many singers and many women in the data,
but no or only very few female singers. In such cases, it is
desirable to use only one of the two SPO conditions and cast
the other one into a text condition of a SPOX quad pattern:

?x type Singer {"woman"} .

We compute this form of relaxation in an iterative bottom-
up manner. The starting point is the single SPO pattern that
encodes the answer type: ?x type <class>. We then itera-
tively add triple patterns that have a join variable (initially
?x) in common with previously added triple patterns. We
check if the resulting query has an empty result: if so, the
last added pattern is removed. This proceeds until there are
no more patterns to be added. Words from phrases corre-
sponding to semantic targets that have been removed are
then added as keywords to the ?x type <class> pattern.

Extreme relaxation: The third technique that we con-
sider is to cast the entire question into a text condition with
an additional type filter on the result. The latter is derived
from the answer-type heuristics (Section 2). An example
would be

?x type Music {"band", "cover", "love", "ballad",

"by", "stones"} .

The iterative procedure for the result-emptiness relaxation
degrades into extreme relaxation if none of the considered
queries produces answers. Extreme relaxation is also used
when the ILP model does not produce any SPO triple pat-
terns at all. Extremely relaxed queries can still be highly
beneficial, most notably, when the query expresses a com-
plex class in the knowledge base. For example, a question
asking for “American rock bands that . . . ” can be answered
by

?x type AmericanRockMusicBands {"..."} .

6. RANKING
Relaxation entails that the query becomes less constrained,

returning a larger number of results. This necessitates rank-
ing the answers to make the output user-friendly. We employ



statistical language models [48] to rank query results. Our
specific approach, which we describe next, is inspired by El-
bassuoni et al. [13, 14].

Formally, a query Q = (q1, ...qn) consists of keyword-
augmented triple patterns of the form

qi =< sqi , pqi , oqi ,wqi > .

Analogously, a result T = (t1, ....tn) consists of keyword-
augmented triples of the form

ti =< sti , pti , oti ,wti > .

Here, wqi and wti are bags of keywords associated with the
triple pattern and triple, respectively. We further assume
that there is a substitution θ from the variables of Q to
resources in the knowledge base such that ∀i, θ(qi) = ti.

We use a query-likelihood approach to rank results match-
ing a query, which factors in salience of contained entities
as well as textual relevance. We define the probability of
generating the query Q from a result T as

P (Q | T ) =
n∏

i=1

P (qi | ti) ,

thus assuming that triple patterns are generated indepen-
dently. The probability of generating the triple pattern qi
from the corresponding triple ti in the result is defined as

P (qi | ti) = P (sqi , pqi , oqi , | sti , pti , oti)× P (wqi |wti) .

We thus assume, for tractability, that the structured and
textual part of triple patterns are generated independently.

For the generation of the structured part, we define

P (sqi , pqi , oqi | sti , pti , oti) = (1− β)P (sti) + β P (oti) .

The probabilities P (sti) and P (oti) reflect the salience of the
subject and object. The parameter β ∈ [0, 1] is set according
to whether sqi and/or oqi are variables in the triple pattern.

We use a unigram language model for the generation of
the textual part and define

P (wqi |wti) =
∏

v∈wqi

P (v |wti)

as the probability of generating the bag of keywords associ-
ated with the triple pattern qi from its counterpart in the
keyword-augmented triple ti.

In our concrete implementation, the probabilities P (sti)
P (oti) are estimated based on the number of incoming links
to the Wikipedia articles of sti and oti . The bag of key-
words wti in the keyword-augmented triple ti is a concate-
nation of the documents associated with its subject and ob-
ject. We associate with every entity from the knowledge base
such a document, which consists of its infobox, categories,
as well as its keyphrases (i.e., anchor texts of hyperlinks
to its Wikipedia article). All probabilities in our model are
smoothed taking into account global dataset statistics.

The above model considers a query result as a tuple of
triples T that match the query. The final result displayed to
the user is a projection of this query result. Duplicates in
the final result are filtered out, and we only report the one
having the highest query likelihood according to our model.

Intuitively, for a (relaxed) query with keyword-augmented
triple patterns, our model returns results that match the
(relaxed) structured part of the query in an order that favors
results with salient entities and relevant keywords.

7. EXPERIMENTAL EVALUATION

7.1 Setup
Data: We used two prominent sources from the Web of

Linked Data: the Yago (yago-knowledge.org) and DBpedia
(dbpedia.org) knowledge bases, together comprising several
hundred millions of RDF triples. As they link their entities
to Wikipedia URLs, we augment each RDF entity with the
textual description from the corresponding article. Our im-
plementation manages this data by storing the RDF parts
in PostgreSQL and the text parts in Lucene (with proper
linkage across the two).

As Yago and DBpedia entities reference each other via
sameAs links, our slice of Linked Data combines the rich
class system of Yago (with more than 300,000 classes in-
cluding all of WordNet) with the extensive fact collection of
DBpedia (with more than 400 million RDF triples derived
from Wikipedia infoboxes). Yago also provides a huge set of
name-entity and phrase-entity pairs through its rdfs:label

relation. This is the basis for our dictionary driving the gen-
eration of possible mappings from phrases to semantic tar-
gets. For classes as potential targets, we also incorporate
WordNet synsets. For mapping potential relation phrases
detected relying on POS tag patterns, we use the PATTY
collection [30], which provides paraphrases for the (RDF
properties) in DBpedia and Yago.

Benchmark:As our main test case, we adopted the bench-
mark from the 2nd Workshop on Question Answering over
Linked Data [35]. QALD-2 consists of 100 natural-language
test questions of two different flavors: factoid and list ques-
tions (plus 100 withheld questions for training). We dis-
carded questions that require counting or return literals (e.g.,
numbers) rather than entities as answers. For test questions,
this resulted in: a) 19 factoid questions that are supposed
to return exactly one correct result, and b) 30 list ques-
tions that produce sets of answers. Examples are “What
is the capital of Canada” for the former, and “people who
were born in Vienna and died in Berlin” for the latter. The
QALD-2 benchmark comes with manually compiled correct
answers. In the case of factoid questions, this is our ground
truth. In the case of list questions, this is what we refer to
as QALD ground truth. Some of the methods returned ad-
ditional answers that are correct but not included in the
QALD-2 ground truth. We manually assessed the correct-
ness of these extra answers, establishing an extended ground
truth answer set.

In addition, we experimented with the 48 telegraphic queries
used by Pound et al. [34]. 19 of these queries are not real
questions, but are merely entity lookups. They give a de-
scription of an entity and ask for disambiguation onto the
right entity in Yago/DBpedia/Wikipedia. An example is
“guernica picasso”. We excluded these lookup queries from
the test set. Among the remaining 29 true questions, we dis-
regarded 7 cases that request literals rather than entities as
answers. This left us with 22 true questions, further broken
down into 16 list questions and 6 factoid questions.

Performance measures: All the methods in our exper-
iments return ranked lists of answers. For factoid questions
with single correct answers, we use the established notion
of Mean Reciprocal Rank (MRR) [8] as our main measure of



quality. In addition, we also report on precision at a cut-off
rank of 10.

For list questions, we mainly report the Normalized Dis-
counted Cumulative Gain (NDCG) [28] as a measure com-
bining precision and recall with geometrically decreasing
weights of ranks. Additionally, we give numbers for preci-
sion at different cut-off ranks and for Mean Average Preci-
sion (MAP).

Measures with a cut-off k are evaluated by taking into
consideration that the system might produce less than k

results. This can happen when the generated query is unre-
laxed (structured only), or the expected result type has few
instances. For example, if for question q a list on n results
is returned and rel(e, q) is an indicator function equal to 1
if e is a correct result and 0 otherwise, then Precision@k is
computed as follows:

Precision@k(q) =

∑min(k,n)
i=1 rel(ei, q)

min(k, n)
.

This is accounted for in all other measures in Tables 1 and
2. Later in this section we will consider recall at a certain
cut-off. This is handeled differently, as we will explain.

Methods under comparison: We compare our method
against three opponents:

• SPOX+Relax: This is our full-fledged method with
text extension, relaxation, and ranking based on sta-
tistical language models.

• SPO: The first opponent and main baseline is the
generation and execution of purely structured queries.
This corresponds to the method of Yahya et al. [46].
Our implementation contains that prior method as a
special case.

• SPO+Relax: The second baseline is when we restrict
our framework to generate only structured SPO queries,
without consideration of text conditions. In this case,
the relaxation techniques can still choose to partially
cover the question to avoid being over-specific, but this
baseline does not include any keyword conditions. In
both SPO and SPOX+Relax, our ranking approach
will rely on salience, as there are no keywords.

• KW+Type: The third and simplest baseline is to
cast the entire question into keyword search return-
ing entities, but combine this with a filter on the lex-
cial type of the answers. This corresponds to enforc-
ing the extreme relaxation in our framework, where all
generated queries are of the form ?var type <class>

{"kw1", "kw2", ...}. For this special case, our LM-
based ranking is improved by using Lucene’s tf-idf-
based scores for the keyword matches. The reported
measures are based on this better ranking.

Parameters were tuned using the QALD-2 training set.

7.2 Results
Tables 1 and 2 show the results for the QALD-2 list and

factoid questions, respectively.
For list questions, the numbers, especially for our main

success metric NDCG, show the superiority of the SPOX+Relax
method, with an NDCG@10 of 0.51. Both variants with pure

NDCG Precision MAP
@10 @100 @10 @100 @100

QALD ground truth
SPOX+Relax 0.51 0.53 0.49 0.46 0.58
SPO+Relax 0.41 0.43 0.46 0.44 0.47
SPO 0.41 0.42 0.46 0.44 0.47
KW+Type 0.24 0.29 0.15 0.10 0.28
Extended ground truth
SPOX+Relax 0.60 0.54 0.60 0.48 0.65
SPO+Relax 0.42 0.42 0.49 0.46 0.50
SPO 0.42 0.41 0.49 0.45 0.46
KW+Type 0.30 0.41 0.23 0.13 0.34

Table 1: Results for QALD-2 list questions

MRR Precision @10
SPOX+Relax 0.72 0.55
SPO+Relax 0.54 0.50
SPO 0.53 0.50
KW+Type 0.15 0.02

Table 2: Results for QALD-2 factoid questions

SPO queries, which represent the prior state-of-the-art in
QA over Linked Data, perform significantly worse, with an
NDCG@10 of 0.41. The results for these two variants are
consistently close to each other, which shows that not con-
sidering keywords from the question in SPO+Relax limits
the quality of results.

These methods often miss important search conditions
from the input question, or generate overly specific queries.
The SPOX+Relax method, on the other hand, behaves more
robustly, because it judiciously chooses between structured
and keyword conditions in the query and also avoids quad
patterns with insufficient coverage in the data. The KW+Type
performed very poorly. Despite the manually specified type
constraints, these are still not enough to narrow down the
space of possible candidates, more structure was needed for
most questions.

As an example, take a list question asking for “Swedish
professional skateboarders”. We initially map it to the SPO
query

?x type Skateboarder .

?x ?r1 Sweden .

?x r2 ?y .

?y type Professional .

Although the query captures the question properly, it re-
turns no results, as the class Professional is sparsely pop-
ulated. Relaxation results in the SPOX query

?x type Skateboarder {"professional"} .

?x ?r1 Sweden .

which reurns a satisfactory result.
For factoid questions, the general trends are the same,

with SPOX+Relax being the clear winner with an MRR
score of 0.72, followed by SPO+Relax which scored 0.54.
However, the gains here less pronounced here compared to
list questions. SPO already performs well with an MRR of
0.53. For factoid questions, the main issue was answer types
that were not properly mapped because a different type,
with the same surface form as the one intended, was too



Precision Recall F1

List
SPOX+Relax@k = 1 0.50 0.15 0.23
SPOX+Relax@k = 10 0.49 0.41 0.45
SPOX+Relax@k = 100 0.46 0.48 0.47
SPOX+Relax@k = 500 0.44 0.58 0.50
SemSek 0.28 0.29 0.29
MHE 0.26 0.36 0.30
QAKis 0.15 0.16 0.15
Factoid
SPOX+Relax@k = 1 0.68 0.68 0.68
SPOX+Relax@k = 2 0.61 0.74 0.67
SPOX+Relax@k = 5 0.58 0.79 0.67
SPOX+Relax@k = 10 0.55 0.79 0.65
SemSek 0.71 0.78 0.74
MHE 0.52 0.57 0.54
QAKis 0.26 0.26 0.26

Table 3: Comparison to other systems in QALD-2
based on the QALD-2 ground truth

prominent. An example of a factoid question where our sys-
tem does not return satisfactory results is “Who developed
Skype?”. The expected answer is an orginization (SkypeTech-
nologies). Our system favors mapping “Who” to the class
person, which means that even with extreme relaxation,
which only preserves the type constraint, the correct answer
cannot be retrieved.

We also compared our results against the systems partic-
ipating in QALD-2: SemSek [2], MHE [41], and QAKis [9].
QALD-2 adopts set-based measures, whereas our system
performs ranked retrieval to compensate for relaxation. To
make our results comparable, we consider precision and re-
call at various cut-off thresholds k. We computed recall with
respect to the size of the ground truth result set, regardless
of k. This generally results in penalizing our system as at
most 10 relevant results can be returned when k = 10, re-
gardless of the total number of relevant results out there.
The official QALD-2 evaluation considers “partially right”
answers as good enough [41]. Table 3 shows the results.

For list questions, our system clearly outperforms other
systems on all measures. Questions here vary between those
that have a couple of answers and those that have more than
a hundred. As more results are viewed, there is rapid gain
in recall for each cut-off threshold, with little sacrifice of
precision, which speaks for the ranking approach.

For factoid questions, our system is outperformed only
by SemSek, but the margin is smaller than the gains we
make on list questions. The main issue is the same as the
one above, namely that of prominent classes taking over the
result type. This explains the gap between our results and
those of SemSek. Still, overall, our system greatly benefits
from falling back onto the excpeted result type for relxation,
despite these special cases.

For the telegraphic query workload of Pound et al. [34],
SPOX+Relax again turned out to be the best method in
our experiments. For factoid questions we achieved an MRR
of 0.83, and for list questions a precision@10 of 0.73. These
numbers are similar to those reported in [34].

Note, that the results are not directly comparable, as
that prior work used an old, smaller version of Yago as
its sole data source and reported only the combined per-

formance of all questions regardless of their nature (simple
entity lookups, factoid questions, difficult list questions).

Table 4 shows the results we obtained for some questions.
The first two questions are based on QALD-2, and the third
is from the telegraphic query workload of Pound et al. [34].

For the first two, we show the query generated initially,
the relaxed query, the number of results in each of the two
ground truths we consider, and the number of relevant re-
sults in the top 10 answers with respect to each of the two
ground truths (both return more than 10 answers). We dis-
cussed the first question earlier. The second one results in a
SPOX pattern query that includes a keyword component, as
the system could not map the verb“dwelt” to an appropriate
relation. This query returns satisfactory results to the user.

For the last query, despite the fact that the query gen-
erated fully captures the user’s intention, no results are re-
turned by DBpedia, hence the need for relaxation. The Pre-
cision@10 (again, this query returns more than 10 results)
is equal to 1.0 which means that all returned results are of
Grammy awarded guitarists.

8. RELATED WORK
Question answering (QA):Methods for natural-language

QA (see[12, 26, 27, 32, 36, 43] and references given there)
have traditionally cast questions into keyword queries in or-
der to retrieve relevant passages from the underlying cor-
pora and the Web. Then linguistic and statistical methods
are used to extract answer candidates from passages, and to
aggregate the evidence for candidate ranking and choosing
the best answer(s). Some prior work (e.g., the START sys-
tem [25]) made use of knowledge sources like the full text
of Wikipedia but did not tap into structured data or knowl-
edge. The IBM Watson system [23] recently achieved im-
pressive improvements in QA, but made only limited use
of structured data: 1) knowledge bases were used to answer
question fragments that can be mapped into structured form
with high confidence [10], and 2) checking lexical types of
candidate answers in knowledge bases was used to prune
spurious answers[10, 24].

Recently, research on QA over the Web of Linked Data
has been pursued, and the QALD benchmark for evaluat-
ing progress has been defined [35]. In this setting, natural-
language questions are mapped into structured queries, typ-
ically using the SPARQL language over RDF data [41]. The
translation is performed either based on question/query tem-
plates [15, 40, 44] or by using algorithms for word-sense dis-
ambiguation [46]. The latter is most closely related to this
paper. However, that prior work was limited to generating
pure SPARQL queries. In our experiments, we will compare
our approach to this baseline.

Keyword search: There is ample prior work on pure
keyword queries over structured data, especially, relational
databases (e.g., [1, 7, 18, 20, 47]). The semantics of such
queries is to find matches in attributes of several relational
records and then use foreign-key relationships to compute a
connected result graph that explains how the various key-
word matches relate to each other. One technique for this
model is to compute so-called group-Steiner trees and use
data statistics for ranking.

Telegraphic queries:None of the aforementioned keyword-
search methods attempts to map the user input into struc-



Ground truth Precision
answer size @10

Question Generated Query Relaxed QALD Extended QALD Extended

“Swedish professional
skateboarders”

?x type Skateboarder .
?x ?r1 Sweden .
?x r2 ?y .
?y type Professional .

?x type Skateboarder

{"professional"} .
?x ?r1 Sweden .

2 3 0.2 0.3

“Which Greek goddesses
dwelt on Mount Olympus?”

?x type Greek_goddesses

{"Olympus Mount dwelt"} .
Not Needed 7 20 0.4 0.8

“guitarists awarded a”
grammy”

?x type guitarist .
?x award Grammy_Award .

?x type guitarist

{"awarded Grammy }

Award"} .

Pound et al. [34]
telegraphic query
workload

1.0

Table 4: Examples of query generation and relaxation

tured predicates. Recent work on telegraphic queries [11,
33, 34, 37] pursues this very goal of translating such user
requests into SQL or SPARQL queries. The focus here is on
long keyword queries that describe entities or contain rela-
tional phrases that connect different entities and/or classes.
The main challenge is to decompose the user input and in-
fer an adequate query interpretation for often underspeci-
fied inputs such as “bands songs Stones”. [34] uses a trained
CRF for input decomposition and for mapping phrases onto
semantic items; the training is based on query logs. [37] de-
vised a probabilistic graphical model with latent variables
for this purpose. Although the goal of these works is not
really the same as ours, our experiments include the bench-
mark queries by [34] and a comparison to the performance
of their technique.

Ranking: Statistical language models (LM’s) [48] have
been used for ranking the results of entity search (e.g., [4,
6, 17, 31, 42]). Also random-walk-based models have been
developed for this purpose (e.g., [19, 38]). The typical set-
ting here is to take a keyword query as input and return
entities rather than documents, as evaluated in the TREC
Entity track [5]. Alternatively, the user could enter a struc-
tured SPARQL query or a combination of SPARQL and key-
word conditions, as currently pursued in the INEX Linked
Data track [45]. LM-based ranking was taken one step fur-
ther by [13, 14] who addressed the result ranking for full-
fledged SPARQL queries (as opposed to mere entity search)
with additional keyword conditions. We utilize this work and
adapted these LM’s to our setting.

9. CONCLUSION
With the explosion of structured data on the Web, trans-

lating natural-language questions into structured queries seems
the most intuitive approach. However, state-of-the-art meth-
ods are not very robust as they tend to produce sophisticated
queries that are correct translations yet return no answers
from the underlying data. To enhance the robustness, we
have proposed a new kind of optimization model followed
by a suite of query relaxation techniques. Our experimental
results with the QALD benchmark show that this approach
can significantly enhance the quality of question answering.
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