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Abstract—The rapid development of Radio Frequency 

Identification (RFID) technology creates the challenge of optimal 
deployment of an RFID network. The RFID network planning 
(RNP) problem involves many constraints and objectives and has 
been proven to be NP-hard. The use of evolutionary computation 
(EC) and swarm intelligence (SI) for solving RNP has gained 
significant attention in the literature, but the algorithms proposed 
have seen difficulties in adjusting the number of readers deployed 
in the network. However, the number of deployed readers has an 
enormous impact on the network complexity and cost. In this 
paper, we develop a novel particle swarm optimization (PSO) 
algorithm with a tentative reader elimination (TRE) operator to 
deal with RNP. The TRE operator tentatively deletes readers 
during the search process of PSO and is able to recover the 
deleted readers after a few generations if the deletion lowers tag 
coverage. By using TRE, the proposed algorithm is capable of 
adaptively adjusting the number of readers used in order to 
improve the overall performance of RFID network. Moreover, a 
mutation operator is embedded into the algorithm to improve the 
success rate of TRE. In the experiment, six RNP benchmarks and 
a real-world RFID working scenario are tested and four 
algorithms are implemented and compared. Experimental results 
show that the proposed algorithm is capable of achieving higher 
coverage and using fewer readers than the other algorithms. 
 

Index Terms—Particle swarm optimization (PSO), radio 
frequency identification (RFID), redundant reader elimination, 
RFID network planning (RNP) 
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I. INTRODUCTION 
adio Frequency Identification (RFID), a developing 
automatic identification (Auto-ID) technology, has 

attracted significant attention in recent years [1]-[5]. Identified 
as one of the top ten contributory technologies in the 21st 
century, RFID technology is expected to be widely used in 
various fields such as logistic, supply chain management, asset 
management, and counterfeit prevention [6]. A typical RFID 
system consists of three components, namely, (1) an RF tag 
which is a small electronic data carrying device attached to the 
item to be identified, (2) a reader to send and receive data to and 
from the tag via radio frequency signals, and (3) a host 
computer system to process and distribute data. 

Due to the limited interrogation range of the communication 
between the reader and the tag, many RFID systems involve 
multiple readers. This gives rise to some questions in the 
deployment of an RFID network, e.g., how many readers 
should be deployed, where these readers are to be placed, and 
what the parameter setting for each reader should be. The RFID 
network planning (RNP) problem is an important issue in RFID 
applications and is also a challenging task because it has to 
meet many requirements such as coverage, Quality of Service 
(QoS), and cost efficiency. The previous manual trial-and-error 
approach is time-consuming and a waste of labor. Moreover, as 
the radio signal propagation is invisible to human eyes, it is 
difficult to quantitatively and qualitatively evaluate the 
performance of RFID deployments [6]. With the development 
of computer and automation technology, the tedious manual 
approach is going to be replaced by scientific computing. In 
addition, as a cost-efficient planning of RFID network aims at 
covering all the items with minimum number of readers, RNP is 
an NP-hard problem [7][8]. Due to the problem complexity [9], 
traditional deterministic algorithms are unable to solve 
practical large-scale RNP instances in acceptable time. 

In the past two decades, Evolutionary Computation (EC) and 
Swarm Intelligence (SI) techniques have gained increasing 
attention. The corresponding algorithms are shown to have the 
following advantages: (1) conceptual simplicity (the algorithms 
have simple iterative processes inspired by nature), (2) high 
efficiency (they are capable of finding optimal/near-optimal 
solutions in short computing time), (3) flexibility (with small 
changes they can be applied to solve various problems), (4) 
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robustness (they are persistent under perturbations or 
conditions of uncertainty), (5) having potential to use domain 
knowledge and to hybridize with other techniques, etc. Due to 
these advantages, EC and SI have been applied in a wide range 
of industrial applications [10]-[16]. Recently, many EC and SI 
algorithms have been proposed and developed to solve the RNP 
problem, such as particle swarm optimization (PSO) algorithms 
[7][17][18], genetic algorithms (GA) [18]-[20], bacterial 
foraging algorithms (BFA) [21][22], evolutionary strategy (ES) 
[18], and differential evolution (DE) [23]. Notice that those 
works considered static RNP problem in which the positions of 
tags and readers are fixed and the signal attenuation is constant. 
This paper also deals with static RNP problem. 

For static RNP, coverage problem is the most important 
sub-problem to tackle. Compared with the area coverage 
problem, the point coverage problem is more commonly seen 
[7][17]-[22]. This is because the target of most RFID systems is 
to identify items (tags) within a geographic area. Among the 
works dealing with the point coverage problem of RNP, [7], 
[19], [20], and [21] consider discrete working areas. The area is 
discretized into a finite number of grids to contain readers and 
tags. On the contrary, [17], [18], and [22] deal with continuous 
working areas in which the readers and tags can be placed 
anywhere.  

Due to the fact that the network complexity and the cost of an 
RFID system highly depend on the number of deployed readers, 
minimizing the number of readers is a crucial task in planning 
an RFID network. However, as traditional EC and SI 
techniques are population-based search algorithms using 
“fixed” representation (which means the dimensionality of their 
search space is fixed), they encounter some difficulties in 
adjusting the number of readers during the search process. In 
the literature, only a few works consider reducing the number 
of readers deployed in the network [7][19][20]. These works 
are all based on discrete working areas and require that a set of 
candidate reader sites is predefined. Moreover, the algorithms 
proposed in [7][19][20] are not capable of optimizing the 
number of readers and the coordinates and radiated power of 
each reader simultaneously. Due to their inflexibility, they are 
suitable only to tackle some ad hoc RFID applications. 

On the other hand, none of the algorithms based on 
continuous working areas is capable of adjusting the number of 
readers during the optimization, because it is hard to define 
candidate reader sites in continuous working areas. Even 
though some of the authors confirmed that determining the 
number of deployed readers is necessary in planning an RFID 
network [17][18], all the works based on continuous RNP 
model use predefined and fixed number of readers in their 
optimization. However, estimating the number of readers 
needed in the network by human experience is tough and 
inaccurate. 

In this paper, we develop a PSO algorithm to solve the RNP 
problem on continuous working area. Different from previous 
works, by designing a novel operator embedded in the 
optimization process, the number of readers deployed in the 
network can be adjusted and reduced. The operator is named 

tentative reader elimination (TRE). On the premise that the 
current tag coverage is 100%, TRE deletes the reader which 
covers the fewest tags in the network tentatively. In this way, 
the number of readers in the network is reduced by one, and at 
the same time the network coverage may decrease. If the 
coverage can reach 100% once again in a few generations with 
the evolution of PSO, the elimination of the reader is 
considered as permanent. Otherwise, TRE recovers the deleted 
reader. The algorithm performs TRE several times during its 
search process in order to minimize the number of readers 
required to guarantee full coverage. Moreover, along with TRE, 
a mutation operator is also adopted in the proposed algorithm to 
repel premature convergence. 

Almost all the previous algorithms for RNP apply a 
weighted-sum method to combine the multiple objectives of 
RNP into one and then optimize the combined objective. 
However, as different objectives have different units and 
dimensions, setting the weight for each objective needs extra 
works. It is to be noticed that although RNP involves multiple 
objectives, the priority levels of these objectives are clear in 
specific applications. Hence, it will be simple and effective to 
judge which solution is better in a hierarchical manner, i.e., we 
compare the objectives one by one according to their priorities 
until one solution wins. Accordingly, the pBest and gBest 
solutions of PSO algorithms can be easily evaluated. Therefore, 
in this paper, we adopt the hierarchical approach in the 
evaluation process of our proposed PSO algorithm to handle 
the multiple objectives of RNP.  

The advantages of our work are summarized as follows: (1) 
using a novel redundant reader elimination mechanism to 
intelligently adjust the number of deployed readers; (2) solving 
the RNP problem in a more comprehensive way (the number of 
readers, the coordinates and transmitted power of each reader 
are optimized simultaneously); (3) Considering four objectives 
in the optimization and using the hierarchical approach to 
handle the objectives simply and effectively. 

In the experiment of this paper, six different RNP instances 
are tested. Four algorithms, including two traditional PSO 
algorithms without reader elimination, and the global and the 
local versions of the proposed PSO with TRE, are compared. 
Results show that the proposed PSO with a von Neumann 
topology outperforms the other algorithms, which is very 
effective and efficient for solving RNP. Furthermore, we apply 
the proposed algorithm to optimize the RNP in the workshops 
of Changsha Chushunzhiye (CSZY) Ltd. and obtain promising 
results. This success shows the significance of the proposed 

Fig. 1. Basic components of a typical RFID system. 
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algorithm for the automated industrial system. 
The rest of this paper is organized as follows: Section II 

formulates the RNP problem. Section III introduces particle 
swarm optimization. Section IV presents the proposed PSO 
algorithm with full implementation details. Experimental tests 
are carried out in Section V, with results thoroughly analyzed. 
In Section VI, a real-world application is conducted, followed 
by conclusions drawn in Section VII. 

 

II. MODEL OF RFID NETWORK PLANNING 
An illustration of a typical RFID system is shown in Fig. 1, 

which is composed of a host computer system, one or more 
RFID readers, and a number of tags. The function of RFID 
system is mainly based on the wireless communication between 
the reader and the tag. The tag contains identification and some 
other information, while the reader reads/writes the information. 
This communication is carried out by using electromagnetic 
waves at radio frequencies (RF waves).  

A. RFID Tag 
The tags in RFID systems are microchips storing 

identification and other information. According to the power 
supply principle, RFID tags can be divided into two categories: 
active tags and passive tags. An active tag has its own power 
source (e.g., battery) and can broadcast the information to 
readers by itself, which enables the tag to have a relatively long 
communication range. However, it has a limited life cycle 
because the battery could be used out. Moreover, the cost of 
deploying an active RFID system is very high. These are why 
active tags have not been used as widely as passive tags in 
RFID applications. 

Passive RFID tags do not need any power source. Instead, 
they receive power from the signal radiated by readers and 
build backscatter communication. In this case, the 
establishment of the communication between a reader and a tag 
should comply with two constraints: (1) in order to establish 
reader-to-tag communication the power received by the tag 
should be larger than a threshold value Tt, and then (2) in 
tag-to-reader communication the power received by the reader 
should be larger than another threshold, termed Tr, to guarantee 
that the reader is sensitive to the signal reflected by the tag. 
Backscatter communication has a relatively short range. But as 
passive tags have unlimited life-span and are cost-efficient, 

they have been widely adopted in various RFID systems 
nowadays.  

B. Link Budget 
In backscatter communication, the reader and the tag use 

their own antennas to send data signal to each other [24][25]. 
The transmission process and link budget calculation are 
shown in Fig. 2 and described as follows. Suppose a 
line-of-sight (LOS) communication is built, the power 
available to the tag is 

t 1 r t[dBm] [dBm] [dBi] [dBi] [dB]P P G G L= + + −          (1) 
where P1 is the transmitted power of the reader, Gr is the gain of 
the reader antenna, Gt is the gain of the tag antenna, and L is the 
attenuation factor which can be calculated by Friis transmission 
equation [19][26]-[29]. 

2[dB] 10log (4 ) [dB]nL dπ λ δ⎡ ⎤= +⎣ ⎦                   (2) 

Fig. 2. Transmission process and link budget calculation. 
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Fig. 3. Example of a 50 m × 50 m working area with 30 RFID tags. 

 
TABLE I 

NOTATIONS IN THE FORMULATION OF RNP 

Symbols Descriptions 

RS the set of deployed readers 

TS the set of tags 

PTr,t 
the power received by tag t from 
reader r 

PRt,r 
the backscatter power received by 
reader r from tag t 

Tt 
the threshold value of tag to build 
reader-to-tag communication 

Tr 
the threshold value of reader to 
build tag-to-reader communication 

Nt 
the number of tags distributed in the 
working area 

Nmax 
the total number of readers which 
could be deployed in the network 

Nred 
the number of redundant readers 
found by the algorithm 

Nr 
the number of the readers deployed 
in the network 

PSr 
the amount of power transmitted by 
reader r 
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As RFID systems are always placed in indoor environments, 
multipath loss is considered. In Eq. (2), λ is the wavelength; d is 
the physical distance between the two devices; n varies from 
1.5 to 4 due to different environmental conditions; δ stands for 
other wireless transmission impairments including cable loss, 
polarization loss, etc. 

The backscatter power Pb sent by the tag can be calculated by 
considering an important coefficient of the tag, the reflection 
coefficient tagΓ , which indicates the reflected power in 

proportion to the received power Pt. As shown in Fig. 2, 
starting with power 2

b tag t( )P P= Γ (in watt), the tag-to-reader 

communication is built. By using the Friis transmission 
equation the received power by the reader is calculated as 

r b t r[dBm] [dBm] [dBi] [dBi] 20log(4 ).P P G G dπ λ= + + −   (3) 

C. Problem Formulation 
Fig. 3 shows an example of a 50 m × 50 m working area 

containing 30 RFID tags. The task of RFID network planning is 
to deploy several RFID readers in the working area in order to 
achieve the following goals. The notations used in formulating 
the problem are listed in Table I. 

1) Tag coverage 
Improving the level of coverage is always the paramount 

goal in planning an RFID network. In many applications, full 
coverage, i.e., all tags being covered by at least one reader, is 
needed. Define RS as the set of deployed readers and TS as the 
set of tags. As the reader-to-tag communication and the 
tag-to-reader communication are both taken into consideration, 
for any tag t ∈TS , it is covered if and only if there is a reader 

1r ∈ RS  satisfying 
1, tr tPT T≥  and a reader 2r ∈ RS  satisfying 

2, rt rPR T≥ . Here 
1,r tPT  is the power received by tag t from 

reader r1 which can be calculated by Eq. (1); 
2,t rPR is the 

backscatter signal received by reader r2 from tag t according to 
Eq. (3); and Tt and Tr are the sensitivity threshold values of the 
tag and the reader respectively.  

The coverage rate of the network can be defined as 

t( ) 100%tCOV Cv t N
∈

= ×∑ TS                     (4) 

1 21 2 , t , r1,    if , ,    
( )

0,    otherwise
r t t rr r PT T PR T

Cv t
∃ ∈ ≥ ∧ ≥⎧⎪= ⎨

⎪⎩

RS
     (5) 

where tN = TS is the number of tags distributed in the 
working area.  

2) The Number of Readers 
The network complexity and the cost of an RFID system 

strongly depend on the number of readers deployed in the 
system. Therefore, on the premise that the coverage goal is 
achieved, the minimization of the number of readers is very 
important in RNP. Suppose that Nmax is the total number of 
available readers that could be deployed in the network while 
Nred is the number of redundant readers found by the algorithm. 
Then the number of the readers deployed in the RFID network 
(the readers belonging to RS) to achieve service is 

r max redN N N= = −RS .                         (6) 
3) Interference 

The overlapped covering area of densely deployed readers 
has interference when several readers interrogate a tag at the 
same time. The interference will result in misreading and lower 
the QoS of the RFID system. Therefore, interference avoidance 
is also an important task in RNP. The total amount of 
interference in an RFID network is defined as the sum of the 
interference value at each tag, which is given by 

( )tITF tγ
∈

= ∑ TS                                 (7) 

, , , t( ) max{ },  r t r t r tt PT PT r PT Tγ = − ∈ ∧ ≥∑ RS .      (8) 
It can be observed that only when tag t is covered by exactly 
one reader, the interference level at t equals to zero. 

4) The Sum of Transmitted Power 
From the perspective of energy-saving, the sum of 

transmitted power of all readers should be reduced as much as 
possible. But according to Eqs. (1) and (3), the interrogation 
range of a reader strongly depends on its transmitted power, 
which means that reducing transmitted power may disturb the 
coverage of the network. Therefore, power-saving is the 
objective with the lowest priority in planning an RFID network. 
The total amount of transmitted power of all readers is given by 

 rrPOW PS
∈

= ∑ RS                             (9) 

where PSr is the amount of power transmitted by reader r.  
  

III.  PARTICLE SWARM OPTIMIZATION 
Particle swarm optimization (PSO), which was first 

proposed by Kennedy and Eberhart in 1995, is a famous 
population-based search algorithm. The algorithm emulates the 
swarm behavior of bird flocking or fish schooling and belongs 
to the Swarm Intelligence (SI). In PSO, each individual 
(particle) flies through the problem space with a velocity. The 
speed and direction of the velocity is adjusted based on the 
particle’s previous best experience (self-cognitive) and the 
historical best experience in its neighborhood 
(social-influence). In this way, the particle has a tendency to fly 
towards a promising area in the search space. PSO algorithm is 
easy to implement, and has advantages of high efficiency, fast 
convergence, strong robustness, etc. The algorithm has 
undergone extensive improvements [30]-[35] and been widely 
used in various systems [14][15][36][37] in recent years. 

A. Global PSO 
The particle swarm is composed of M particles, each of 

which has a velocity vector 1 2[ , , , ]D
i i i iV V V V= , a position 

vector 1 2[ , , , ]D
i i i iX X X X= , and a previous best position 

vector 1 2[ , , , ] ( 1, 2, , )D
i i i ipBest pBest pBest pBest i M= = . 

At the same time, the whole swarm maintains a global best 
position vector 1 2[ , , , ]DgBest gBest gBest gBest=  recording 
the best position found by all particles. Here D is the 
dimensionality of the search space.  
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The key issue of PSO is the update of particle’s velocity and 
position, which is defined as 

1 1

2 2

( )

        ( )

d d d d d
i i i i

d d d
i

V V c rand pBest X

c rand gBest X

ω= × + × × −

+ × × −
         (10) 

d d d
i i iX X V= +                                (11) 

where 1, 2, ,d D=  represents each dimension of the search 
space; 1,2, ,i M=  is the index of each particle; ω is called 

inertia weight; c1 and c2 are acceleration coefficients; 1
drand  

and 2
drand  are random numbers uniformly distributed in [0, 

1].  
It can be observed that the update of particle’s velocity and 

position is based on two elements: (1) d
iVω × , the inertia part 

to avoid particle changing velocity abruptly, and (2) 

1 1 2 2( ) ( )d d d d d d
i i ic rand pBest X c rand gBest X× × − + × × − ,the 

cognitive part which can be interpreted as external force to pull 
the particle fly towards better position. Inertia weight ω plays 
an important role of balancing the exploration and exploitation 
of PSO algorithm. A good performance is achieved by using a 
large ω (e.g., 0.9) at beginning to explore the search space, and 
gradually reducing ω to a lower value (e.g., 0,4) to refine the 
solution. Among the cognitive part, 1 1 (d d

ic rand pBest× × −  

)d
iX  stands for the particle learning from its own flying 

experience, while 2 2 ( )d d d
ic rand gBest X× × −  determines 

how the particle is influenced by the swarm’s search experience. 
Acceleration coefficients c1 and c2 define the relative weight of 
the self-cognitive and social-influence, which are commonly 
set as 1 2 2.0c c= =  in the literature. 

The overall procedure of PSO algorithm is described as 
follows. 

Step 1) In the initialization, the velocities and positions of M 
particles are randomly generated. 

Step 2)  For each particle i, evaluate the fitness according to 
the objective function(s). If the fitness is better than particle i’s 
previous best fitness, update pBesti and further compare the 
fitness with the global best fitness found so far. Then, update 
gBest accordingly.   

Step 3)  Particles update their velocities and positions 
according to Eqs. (10) and (11). 

Step 4)  Loop to Step 2) until a stopping criterion such as the 
maximum number of generations or sufficient solution 
accuracy is met.  

B. Local PSO 
In Subsection A, the traditional PSO algorithm with a global 

topology is introduced. As shown in Fig. 4(a), the global 
topology can be conceptualized to be a fully connected graph, 
by which the neighborhood of each particle is the whole swarm. 
The gBest found by the swarm guides the search of all particles.  

Different from the global topology, in a local topology, 
particles have smaller neighborhoods. For example, in the ring 
topology shown in Fig. 4(b), the neighborhood of each particle 
consists of itself and another two particles directly connected to 
the particle. Fig. 4(c) shows the von Neumann topology in 
which each particle has four neighbors consisting of the 
particles above, below, to the left, and to the right. When using 
a local topology, each particle keeps track of a local best 
position 1 2[ , , , ]D

i i i ilBest lBest lBest lBest=

 

found in its 
neighborhood. The velocity update is then modified as 

 

Fig. 4. Neighborhood topologies. 
 

 

Fig. 5. Flowchart of the proposed PSO algorithm for RFID network 
planning. 
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1 1

2 2

( )

        ( )

d d d d d
i i i i

d d d
i i

V V c rand pBest X

c rand lBest X

ω= × + × × −

+ × × −
.         (12) 

As more than one local optimum could be preserved in the 
search process, local topology preserves the diversity of swarm 
and helps to repel premature convergence. Meanwhile, the 
swarm with a local topology converges more slowly than that 
using the global topology because the search is not so “greedy”. 
The ring topology which has the smallest neighborhood is the 
slowest. The von Neumann topology, in which each particle 
has four neighbors, is shown to provide a good balance of 
diversity and convergence. PSO algorithms with the von 
Neumann topology have general good performance in various 
applications. 

IV. PSO ALGORITHM FOR RFID NETWORK PLANNING 
In this paper, we develop a PSO algorithm for solving RNP, 

whose flowchart is shown in Fig. 5. It can be observed that, in 
addition to the general procedure of PSO, the tentative reader 
elimination (TRE) and the mutation operator are embedded into 
the algorithm. Detailed implementations of the algorithm are 
proposed and described in this section. Moreover, it is to be 
noticed that the proposed PSO algorithm is able to employ 
either the global topology or a local topology.  

A. Particle Representation 
The control variables of RNP include the number of 

deployed readers, the positions of these readers, and the 
radiated power of each reader. To solve the RNP problem, 
these variables should be encoded into particle’s representation. 
We employ a representation that each particle is characterized 
by a D = 3Nmax dimensional real number vector (as introduced 
in Section II, Nmax is the total number of available readers that 
could be deployed in the network). In the representation, 2Nmax 
dimensions indicate the coordinates of the Nmax readers in the 
2-dimensional working area, and the other Nmax dimensions 
denote the transmitted power of each reader (which determines 
the interrogation range). Then, the ith particle in the swarm is in 
the form of 

max max max1 1 1 2 2 2[ , , , , , , , , , ]N N N
i i i i i i i i i iX x y p x y p x y p=     (13) 

where ( , )k k
i ix y  and k

ip  are the coordinates and radiated power 
of reader k (k = 1, 2, …, Nmax). 

It can be noticed that Nr, the number of actually deployed 
readers, is not encoded into each particle. Instead, in the 
proposed algorithm, the whole swarm maintains an Nmax 
dimensional Boolean vector max1 2[ , , , ]NON on on on=  with 

each {0,1}kon ∈  ( max1, 2, ,k N= ) standing for whether the 
kth reader is deployed in the network. As a result, we 

have max
r 1
=

N k
k

N on
=∑ . ON is updated according to the TRE 

operator described in Subsection C. We do not encode this 
reader-switching vector into each particle because it is 
improper to do so, as is shown in the following example. 
Suppose that particle 1 is the global best particle in which the 

5th reader is eliminated from the network, and particle 2 still 
uses the 5th reader. In the update of particle 2, it learns from 
particle 1, including learning the coordinates and power of the 
5th reader. However, the information of the 5th reader in 
particle 1 is invalid, which gives a wrong guidance for particle 
2. 

B. Initialization 
In the initialization, the positions of all particles are 

randomly generated, with each ( , )k k
i ix y  being a random point 

in the working area and k
ip  being a random value within the 

transmitted power range of readers (k = 1, 2, …, Nmax). The 
velocity of each particle is also randomly generated, while the 
maximum velocity of each dimension is empirically set to be 
20% of the variable range [31][38][39]. Besides, the 
reader-switching vector is set as ON = [1, 1, …, 1]

 

, which 
denotes that all the Nmax readers are initially deployed in the 
network. The pBesti of each particle is set the same as its 
current position, while the gBest vector is initialized to be the 
current best pBesti. 

C. Fitness Evaluation 
As described in Section II, the objectives of RNP include 

maximizing tag coverage (defined by Eqs. (4) and (5)), 
minimizing the number of readers (defined by Eq. (6)), 
minimizing interference (defined by Eqs. (7) and (8)), and 
minimizing total transmitted power (defined by Eq. (9)), in an 
order of decreasing importance. Accordingly, the algorithm 
handles these four objectives in a hierarchical manner. The 
evaluation process of each particle is described as follows. 

Step 1) Calculate the COV, Nr, ITF, POW values of the 
particle’s current position according to Eqs. (4)-(9). 

Step 2) If the current COV is larger than the particle’s 
Procedure TRE 

If recoverGen = 0  
If fullCoverage = true 

Delete Reader; 
fullCoverage = false; 
recoverGen = maxRG; 

Else 
                Recover Reader; 

End if 
Else 

recoverGen = recoverGen – 1; 
End if 

End procedure 
 
Procedure Delete Reader 
     Choose a reader k from set RS – {the reader deleted in the last round} 
which covers the fewest tags; 
     Update the reader-switching vector ON by setting onk = 0; 
     Nr = Nr – 1; 
End procedure 
 
Procedure Recover Reader 
     Update the reader-switching vector ON by setting onk = 1; 
     Nr = Nr + 1; 
End procedure 

Fig. 6. Pseudo code for the proposed TRE operator. 
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previous best COV, go to Step 6); if the two values are equal, go 
to Step 3); otherwise, end the evaluation process. 

Step 3) If the current Nr is smaller than the particle’s previous 
best Nr, go to Step 6); if the two values are equal, go to Step 4); 
otherwise, end the evaluation process. 

Step 4) If the current ITF is smaller than the particle’s 
previous best ITF, go to Step 6); if the two values are equal, go 
to Step 5); otherwise, end the evaluation process. 

Step 5) If the current POW is smaller than the particle’s 
previous best POW, go to Step 6); otherwise, end the evaluation 
process. 

Step 6) Set the pBest vector of the particle the same as its 
current position.  

Step 7) Update the gBest (for global PSO) or lBest (for local 
PSO) in the same way as updating the pBest.  

D. Tentative Reader Elimination 
The TRE operator is used to control the reader-switching 

vector max1 2[ , , , ]NON on on on=  held by the swarm. To 
reduce the number of deployed readers as many as possible 
without disturbing the tag coverage, TRE tentatively deletes 
one reader in the current running reader set in each round. 

The pseudo code for the TRE operator is shown in Fig. 6, 
where fullCoverage represents whether there is at least one 
particle that obtains 100% tag coverage, maxRG is a control 
parameter that stands for the maximum number of recovering 
generations. As shown in Fig. 6, on the premise that a solution 
with full coverage has been found, the reader k which covers 
the fewest tags in the network is deleted by TRE. The 
corresponding onk in ON is set to be 0 and Nr is reduced by one. 
In this way, the coverage of the RFID network may decrease. In 
the next maxRG generations, if the coverage can reach 100% 
once again by using fewer readers, the elimination of the reader 
is considered to be permanent and the TRE operator has 
successfully reduced one redundant reader in the network. 
Otherwise, the deleted reader is recovered.  

ON, the reader-switching vector, plays a role in the update of 
each particle i ( 1, 2, ,i M= ). For each onk = 0 in ON 

( max1, 2, ,k N= ), the corresponding dimensions k
ix , k

iy , 

and k
ip  in particle i which represent the coordinates and 

transmitted power of reader k will not be updated. This prevents 
particles from learning invalid information and also saves the 
computational cost. More importantly, it guarantees that the 
reader elimination in TRE is tentative and could be recovered. 

E. Mutation 
Mutation is one of the main operators in genetic algorithms. 

In recent years, many PSO researchers have embedded 
mutation operator into PSO algorithms in order to repel 
premature convergence and to improve the performance 
[40]-[42]. In the proposed PSO algorithm with TRE, mutation 
is not only a performance enhancement but also an 
indispensable operator. The reason is illustrated as follows. In 
the early stage of the algorithm, as a relatively large number of 
readers are deployed, the required transmitted power of these 

readers is low. Therefore, in the early evolution, along with the 
convergence of particles, the swarm may discard some “genes” 
representing large transmitted power. The deletion of these 
genes leads to a difficulty of reader elimination, because in 
order to guarantee the coverage of the network with fewer 
readers, larger transmitted power of these readers is in need. 
Therefore, a mutation operator is embedded in the algorithm so 
as to restore the lost genes. 

The procedure of the mutation is very simple. In each 
generation of the algorithm, a particle i in the swarm is 
randomly picked ( 1,2, ,i M= ), and then a dimension d 
( 1,2, ,d D= ) of particle i’s position Xi is randomly chose to 
undergo a modification given by 

( , )d d
i iX X random α α= + −Δ Δ                      (14) 

where αΔ  is the mutation range. Besides, when d
iX  goes 

beyond the predefined variable range [lboundd, uboundd] after 
the mutation, it is set to be the boundary value.  
 

V. EXPERIMENTAL TESTS AND DISCUSSIONS 

A. Experimental Setup 
In the experiment, six RNP instances, namely C30, C50, 

C100, R30, R50, and R100, are tested. All these instances are 
based on a 50 m × 50 m working area, among which C30 and 
R30 contain 30 tags, C50 and R50 contain 50 tags, and C100 
and R100 distribute 100 tags in the working area. Instances 
C30, C50, and C100 have clustered distributed tags, which are 
relatively easy to solve. In contrast, R30, R50, and R100 are 
difficult instances in which the tags are distributed uniformly. 
(For public use, the benchmark instances are presented in web 
page: http://www.ai.sysu.edu.cn/GYJ/RFID/TII/.)Moreover, it 
is to be noticed that, the more tags are placed in the working 
area, the harder the problem is to solve. Twelve readers, whose 
transmitted power is adjustable from 20 to 33 dBm (0.1 to 2 
watt), are available to be deployed in the Network, i.e., Nmax = 
12. In the backscatter communication, radio frequency is 915 
MHz (with wavelength equal to 0.328 m), the sensitivity 
thresholds of tags and readers are t 14 dBmT = −  and 

r 80 dBmT = −  respectively, the reader antenna gain Gr is 6.7 
dBi, and the tag antenna gain Gt is 3.7 dBi. 

In this paper, four algorithms are implemented and compared, 
among which GPSO is the traditional PSO with the global 
topology, VNPSO is the traditional PSO with the von Neumann 
topology, and accordingly, GPSO-RNP and VNPSO-RNP are 
the global and von Neumann versions of the proposed PSO 
embedded with TRE and mutation. For all the algorithms, the 
population size is set as M = 20, the maximum number of 
generations is set to be 20,000, inertia weight ω is initialized to 
0.9 and linearly decreased to 0.4, acceleration coefficients are 
set as 1 2 2.0c c= = . For GPSO and VNPSO, as they cannot 
adjust the number of readers during the optimization, the 
number of readers deployed in the network is fixed to be six. 
Notice that we do not deploy all the twelve readers in the 
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network for the two algorithms, because the excessive use of 
readers leads to bad experimental results of GPSO and VNPSO. 
For GPSO-RNP and VNPSO-RNP, the number of deployed 
readers is set to be 12 in the initialization and reduced by TRE 
during the optimization. Besides, maxRG is set to be 500, and 

αΔ  is set to be 20% of the variable range. For each instance, 
all the algorithms perform 50 times independently to obtain 
statistical results. 

B. Experimental Results and Analyses 
Table II-Table VII show the experimental results for 

instances C30, C50, C100, R30, R50, and R100 respectively, 
where the mean and best results obtained by the four algorithms 
are reported. In the optimization of instances C30 and C50, all 
the four algorithms can guarantee full coverage of the network 
in all runs. Moreover, by embedding TRE and mutation, 
GPSO-RNP and VNPSO-RNP use much fewer RFID readers 
than GPSO and VNPSO do. When solving instances C100 and 
R30, GPSO and VNPSO cannot provide full coverage in each 
run, whereas the mean coverage obtained by the proposed 
VNPSO-RNP is 100%. GPSO-RNP performs worse than 
VNPSO-RNP, but still outperforms GPSO and VNPSO. In 

TABLE II 
COMPARISONS OF THE RESULTS OF THE FOUR ALGORITHMS FOR SOLVING INSTANCE C30 

Algorithm Mean best t-test 
Coverage ReaderNum Interference Power Coverage ReaderNum Interference Power 

GPSO 100.00% 6 0.000 35.074 100.00% 6 0 31.865 ReaderNum+
VNPSO 100.00% 6 0.000 34.762 100.00% 6 0 31.951 ReaderNum+

GPSO-RNP 100.00% 3.18 0.000 35.511 100.00% 3 0 33.948 ReaderNum+
VNPSO-RNP 100.00% 3.04 0.000 35.034 100.00% 3 0 33.535  

 
TABLE III 

COMPARISONS OF THE RESULTS OF THE FOUR ALGORITHMS FOR SOLVING INSTANCE C50 

Algorithm Mean best t-test 
Coverage ReaderNum Interference Power Coverage ReaderNum Interference Power 

GPSO 95.60% 6 0.000 35.170 100.00% 6 0 31.852 Coverage+ 
VNPSO 99.20% 6 0.000 35.023 100.00% 6 0 31.742 Coverage+ 

GPSO-RNP 100.00% 5.04 0.000 36.244 100.00% 5 0 33.418 ns 
VNPSO-RNP 100.00% 5.06 0.000 36.565 100.00% 5 0 34.522  

 
TABLE IV 

COMPARISONS OF THE RESULTS OF THE FOUR ALGORITHMS FOR SOLVING INSTANCE C100 

Algorithm Mean best t-test Coverage ReaderNum Interference Power Coverage ReaderNum Interference Power 
GPSO 98.34% 6 0.002 38.652 100.00% 6 0 37.374 Coverage+ 

VNPSO 99.72% 6 0.000 38.167 100.00% 6 0 36.803 ReaderNum+
GPSO-RNP 100.00% 5.16 0.000 38.800 100.00% 5 0 37.513 ReaderNum+

VNPSO-RNP 100.00% 5.04 0.000 38.513 100.00% 5 0 37.449  
 

TABLE V 
COMPARISONS OF THE RESULTS OF THE FOUR ALGORITHMS FOR SOLVING INSTANCE R30 

Algorithm Mean best t-test Coverage Readers Interference Power Coverage Readers Interference Power 
GPSO 92.13% 6 0.000 38.849 100.00% 6 0 38.842 Coverage+ 

VNPSO 94.53% 6 0.000 38.849 100.00% 6 0 38.656 Coverage+ 
GPSO-RNP 99.87% 7.46 0.002 39.821 100.00% 6 0 39.265 ReaderNum+

VNPSO-RNP 100.00% 6.86 0.003 40.143 100.00% 6 0 39.574  
 

TABLE VI 
COMPARISONS OF THE RESULTS OF THE FOUR ALGORITHMS FOR SOLVING INSTANCE R50 

Algorithm Mean best t-test 
Coverage Readers Interference Power Coverage Readers Interference Power 

GPSO 92.52% 6 0.000 39.692 98.00% 6 0 40.520 Coverage+ 
VNPSO 93.96% 6 0.000 39.690 98.00% 6 0 39.595 Coverage+ 

GPSO-RNP 99.84% 8.26 0.012 40.652 100.00% 7 0 40.315 Coverage+ 
VNPSO-RNP 100.00% 7.66 0.030 40.667 100.00% 7 0 40.080  

 
TABLE VII 

COMPARISONS OF THE RESULTS OF THE FOUR ALGORITHMS FOR SOLVING INSTANCE R100 

Algorithm Mean best t-test 
Coverage Readers Interference Power Coverage Readers Interference Power 

GPSO 91.18% 6 0.014 40.074 95.00% 6 0 40.098 Coverage+ 
VNPSO 94.14% 6 0.012 40.333 97.00% 6 0.043605 40.657 Coverage+ 

GPSO-RNP 99.74% 9.24 0.118 41.505 100.00% 8 0 40.925 Coverage+ 
VNPSO-RNP 100.00% 8.44 0.242 41.462 100.00% 8 0 41.031  
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addition, it can be observed from Table VI and Table VII that 
GPSO and VNPSO with fixed number of readers cannot reach 
100% coverage even in their best runs. On the contrary, 
GPSO-RNP and VNPSO-RNP can obtain much better results 
than GPSO and VNPSO for optimizing instances R50 and 
R100. VNPSO-RNP is the only algorithm that guarantees 
100% network coverage for all the instances in all runs. 
Moreover, the best result of VNPSO-RNP shows that it is able 
to provide solution with interference equals to 0. That means, 
each tag in the network is covered by one and only one reader, 
which greatly improves the QoS of the system.  

We also compare the results of VNPSO-RNP with those of 
GPSO, VNPSO, and GPSO-RNP by hypothesis testing method 
in order to check the significance of the improvement brought 
by VNPSO-RNP. Two-sample t-test with 98 degrees of 
freedom at level α = 0.05 is performed for each instance. The 
last columns of Table II-Table VII show the t-test results, where 
“Coverage+” means that the coverage obtained by 
VNPSO-RNP is significantly higher than that obtained by the 
other algorithm. Then, if the difference of coverage is not 
significant, the differences of other objectives are compared. In 
this way, “ReaderNum+” in Table II-Table VII stands for that 

the number of readers used by VNPSO-RNP is significantly 
fewer than that used by the other algorithm. Besides, if the 
differences of the results yielded by the two algorithms are not 
significant considering all the four objectives, we place an “ns” 
in the cell. The t-test results show that for all the instances, the 
proposed VNPSO-RNP algorithm can obtain much higher 
coverage or fewer readers than GPSO and VNPSO. Moreover, 
for optimizing five out of the six instances, VNPSO-RNP 
significantly outperforms GPSO-RNP. This is because, by 
using the von Neumann topology, the particle swarm is capable 
of maintaining diversified information in the search process 
and has stronger global search ability. VNPSO-RNP is not easy 
to get trapped into local optimum and therefore obtain better 
mean results. 

Fig. 7 and Fig. 8 show the reader locations and radiated 
power contours for the six instances, in which the best results 
obtained by VNPSO and VNPSO-RNP are compared in a 
visible way. A contour in the figures represents the points with 
the same radiated power (which equals to the value assigned to 
that contour). It can be seen in Fig. 7 and Fig. 8 that the power 
peaks in the working area are the points where the readers are 
placed. Then, the signal strength decreases with respect to the 
distance to the readers. For the area having no superposition of 
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Fig. 7. Reader distribution and radiated power contour for C30, C50, and C100 obtained by VNPSO and VNPSO-RNP. 
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signals, the radiated power contours are circles. As the tag 
sensitivity threshold is -14 dBm, the tags located within the 
contour marked -14 are covered by readers. The figures clearly 
show that VNPSO have redundant readers when solving C30, 
C50 and C100, and on the other hand it cannot provide full 
coverage for R50 and R100. The proposed VNPSO-RNP 
outperforms VNPSO for five out of the six instances. Only 
when optimizing R30, the results obtained by the two 
algorithms are similar. But from Table V we can see that, for 
solving R30, VNPSO cannot guarantee a full coverage in every 
run and its average result is worse than that of VNPSO-RNP. 

These results illustrate the drawbacks of previous works 
using fixed number of readers in the optimization. Because the 
required number of readers is hard to estimate, on the one hand 
deploying too many readers in the network is not cost-efficient, 
and on the other hand a shortage of readers cannot guarantee 
the coverage of the network. In contrast, the TRE operator 
allows the algorithm to begin with a relatively large number of 
readers, then adaptively delete redundant readers during the 
optimization, and finally obtain a high coverage by using a 
proper number of readers. This is the reason why the proposed 
GPSO-RNP and VNPSO-RNP outperform GPSO and VNPSO. 
 

VI. APPLICATION IN AN INDUSTRIAL COMPANY 

A. Application Background 
Changsha Chushunzhiye (CSZY) Ltd. is one of the largest 

machine-tool manufacturing bases in south central China, 
which has over 30 years manufacturing history. Equipped with 
115 sets of equipments, CSZY produces 7,000 tons of castings, 
steel structure parts, and other spare parts per year.  

In the past, CSZY’s job shops adopted a manual 
pen-and-paper mode to record its processed parts, which has 
two shortcomings. First, for each job shop, an officer should be 
employed to supervise the manufacturing work. The officers 
spent lots of time checking and recoding the processed parts 
one by one, and were extremely busy when several jobs were 
finished at the same time. Second, as human errors cannot be 

 tag
 reader

 tag
 reader

 tag
 reader

-14 -14

-14

-14

-14

-8.0

-8.0

-8.0
-8.0

-2.04.0

-14

-8.0
-8.0

-2.0

-2.0

-2.0 -2.0

-2.0

4.0

4.0

4.0

4.0

4.0

10

10

0 10 20 30 40 50
0

10

20

30

40

50

y

x

 tag
 reader

 tag
 reader

 tag
 reader

(a) VNPSO for R30

(d) VNPSO-RNP for R30

(b) VNPSO for R50

(e) VNPSO-RNP for R50

(c) VNPSO for R100

(f) VNPSO-RNP for R100

-14

-14 -14

-14

-14

-8.0

-8.0

-2.0

-8.0

-2.0

-2.0

4.0

-8.0

-8.0

-8.0

-2.0

-2.0

-2.0

4.0

4.0

4.0

4.0

10

10

0 10 20 30 40 50
0

10

20

30

40

50

y

x

-14
-14

-14

-14 -8.0

-8.0
-14

-8.0

-14

-2.0

-2.0

-8.0
-14

4.0

4.0

-8.0

-8.0

-8.0

-2.0

-2.0

-2.0

-2.0
4.0

4.0

4.0

4.0

0 10 20 30 40 50
0

10

20

30

40

50

y

x

-14

-14

-14

-14
-14

-8.0

-8.0
-8.0

-8.0

-2.0

-14

-2.0

-2.0

-14-2.0

-8.0

4.0

4.0

4.0

10

10

-8.0

-8.0

-8.0-2.0

-2.0

-2.0

4.0

4.0

4.0

4.010

0 10 20 30 40 50
0

10

20

30

40

50

y

x

-14

-14

-14

-14

-14
-14-14

-8.0

-2.0
4.010

-8.0

-8.0

-8.0

-8.0

-2.0

-2.0

-2.0

-8.0
-2.0

4.0

4.0

4.0

-2.0 4.0

10

10

10

4.0

0 10 20 30 40 50
0

10

20

30

40

50

y
x

-14

-14

-14 -14

-14-14

-14
-8.0

-8.0
-14

-8.0

-14
-14

-2.04.0

-8.0

-8.0

-8.0

-2.0

-2.0

-2.0

-2.0

-2.0

4.0

4.0

4.0

4.0

4.0

10

10

10

10

10

0 10 20 30 40 50
0

10

20

30

40

50

y

xUncovered Tags

 

Fig. 8. Reader distribution and radiated power contour for R30, R50, and R100 obtained by VNPSO and VNPSO-RNP. 
 

TABLE VIII 
THE RESULT OF VNPSO-RNP FOR THE REAL-WORLD CASE 
Coverage ReaderNum Interference Power 

100% 3 0 35.783 
 

TABLE IX 
DETAILED PLANNING FOR THE REAL-WORLD CASE 

Reader ID Coordinates Radiated Power Number of 
Covered Points

1 (26.81,  0.31) 24.341 3 
2 (11.51, 10.32) 31.819 9 
3 (44.23, 8.07) 33.000 6 
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avoided, the company has found that the recordings were 
sometimes incomplete and inaccurate. 

To improve efficiency and reduce human mistakes, CSZY 
seeks to find an RFID-enabled automated solution including: 

(1) Install RFID tags on all parts being processed; 
(2) Deploy RFID readers to read/write the tags attached to 

the parts being processed on the workbenches; 
(3) Minimize the number of deployed readers; 
(4) Replace existing paper forms with electronic 

spreadsheets; 
(5) Develop job shop surveillance software.  
It can be observed that CSZY needs an integrated solution to 

realize automatic information recording, in which the RFID 
network planning is a crucial issue. As the experimental results 
in Section V have shown that VNPSO-RNP is very promising 
for RNP, we apply the proposed algorithm to solve the RNP in 
each job shop of CSZY. In the following Subsection B, the 
optimization of the RNP in a specified job shop of CSZY is 
presented. 

B. Experiments and Results 
The job shop layout is shown in Fig. 9(a), with a 60 m × 18 m 

working area containing 18 machines. Tags are attached to the 
items being processed on the workbenches of those machines. 

It is required that the signals radiated by the RFID readers cover 
the testing points on the workbenches in the job shop.  

The proposed VNPSO-RNP algorithm is applied to optimize 
the number of readers used and the coordinates and radiated 
power of each reader, with parameters the same as those in 
Section V. Table VIII shows the optimization results, while 
Table IX presents the corresponding deployment information. 
Then, a schematic diagram of the RFID network is shown in 
Fig. 9(b). It can be seen that, by deploying three RFID readers, 
each testing point is covered by exactly one reader, and the 
surveillance task in the job shop is accomplished. To 
summarize, the benefits of the solution produced by the 
proposed algorithm are three-fold: 1) achieving full coverage; 2) 
being cost-efficient; 3) excluding signal interference. 
 

VII. CONCLUSION 
In this paper, a PSO algorithm is developed for optimizing 

RFID network planning. The algorithm does not need to 
artificially estimate the number of readers deployed in the 
network, which is always difficult and inaccurate. Instead, by 
embedding the tentative reader elimination (TRE) operator, the 
algorithm is capable of intelligently adjusting the number of 
deployed readers during the optimization process. Therefore, it 
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Fig. 9. Illustration of the job shop layout and the corresponding RFID network planning produced by VNPSO-RNP. 
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can begin with a relatively large number of readers in order to 
guarantee that full coverage of the network can be reached and 
then eliminate the redundant readers to improve cost-efficiency. 
Besides, a mutation operator is adopted in the algorithm in 
order to add diversity to the algorithm as well as to improve the 
success rate of TRE. Four objectives, namely maximizing tag 
coverage, minimizing the number of deployed readers, 
interference, and total transmitted power, are considered in the 
algorithm and handled in a hierarchical fashion.  

In the experiment, the global version and the local version 
(with the von Neumann topology) of the proposed PSO are 
implemented, with performance compared with traditional 
global and local PSO algorithms for solving RNP. 
Experimental results and comparisons verify the effectiveness 
and efficiency of proposed algorithm. In addition, the algorithm 
has been successfully used for automatic information recording 
in practice. It is a powerful technique for RFID network 
planning.  

Future work is to develop dynamic PSO algorithm or some 
other online techniques for solving dynamic RNP problems 
with tags and readers in motion. 
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