
A Machine Learning-based Approach for
Estimating Available Bandwidth

Ling-Jyh Chen
Institute of Information Science, Academia Sinica

Cheng-Fu Chou and Bo-Chun Wang
Department of Computer Science and Information Engineering, National Taiwan University

Abstract— In this paper, we propose a machine learning-based
approach for estimating available bandwidth. We evaluate the
approach via simulations using two probing models: a packet train
probing model and a pathChirp-like probing model. The simulation
results show that the former cannot yield accurate estimates in
our system; however, using the pathChirp-like probing model,
the proposed approach can estimate the available bandwidth
with moderate traffic overhead more accurately than two widely
used tools, pathChirp and Spruce. Moreover, we propose a
normalization method that improves our approach’s ability to
estimate available bandwidth, even if there are no samples with
similar properties to the measured path in the training dataset.
The effectiveness and simplicity of this novel approach make it a
promising scheme that goes a long way toward achieving accurate
estimation of available bandwidth on Internet paths.

I. INTRODUCTION

Estimating the available bandwidth of an Internet path is a
fundamental research problem in computer networking; hence,
a number of available bandwidth estimation techniques have
been proposed in recent years [2] [4] [5] [6] [9] [10] [11]
[14]. Such schemes can be divided into two main categories,
statistical cross-traffic models and self-induced congestion
models, according to their basic design principles.

More specifically, the statistical cross-traffic model mea-
sures the time interval between the arrival of any two suc-
cessive probing packets and uses dispersion measurements to
estimate the available bandwidth. In contrast, the self-induced
congestion model relies on the simple intuition that if the
probing rate exceeds the available bandwidth of the path,
the receiver will measure a dispersion larger than the initial
inter-packet gap. However, the above approaches have two
drawbacks: they are either inaccurate when network scenarios
are complex (e.g., multi-hopped, wired/wireless mixed, or with
multiple bottleneck links) or they behave intrusively (i.e., they
input a lot of probes into the network to obtain one estimate).
A feasible solution that can accurately estimate the available
bandwidth of Internet paths is thus highly desirable.

In this paper, we propose a machine learning-based ap-
proach for available bandwidth estimation. Using Support
Vector Machine (SVM) [3] as the machine learning tool,
we evaluate two probing models (a packet train model and
a pathChirp-like model) via simulations. The results show

This material is based upon work supported by the National Science Council
under grant number NSC 94-2218-E-001-002.

that the pathChirp-like probing model yields more accurate
estimation results than the packet train probing model, while
the proposed approach outperforms two widely used tools,
pathChirp and Spruce, in all test cases. Moreover, we propose
a normalization method that enables the proposed approach to
estimate the available bandwidth of a path, even if there are
no samples with similar properties to the measured path in the
training dataset.

The remainder of the paper is organized as follows. In
Section II, we discuss related work. In Section III, we present
the proposed approach and discuss the two probing models
employed. In Section IV, we evaluate the models and compare
the performance of the proposed approach with that of other
tools in terms of accuracy and overhead. We then present our
conclusions in Section V.

II. RELATED WORK

Cprobe [2], the first method to estimate the available band-
width of a network path in an end-to-end fashion, sends a
train of ICMP packets and estimates the available bandwidth
by measuring the dispersions at the receiver. The approach has
been extended by another tool called Pipechar [6].

Subsequent estimation schemes can be divided into two
categories, namely, statistical cross-traffic models and self-
induced congestion models. Statistical cross-traffic models
measure the time interval between the arrival of any two suc-
cessive probing packets at the receiver and use the dispersion
measurements to estimate the available bandwidth. Several
popular tools, such as Delphi [10], IGI [4], and Spruce [14]
are based on this concept.

More specifically, Delphi [10] sends a train of probes with
constant spacing, and uses the dispersion measurements at the
receiver to estimate the amount of cross traffic, and thereby
determine the available bandwidth. IGI [4] is similar to Delphi,
except that it iteratively probes the network by using different
transmission rates to alleviate the self-induced congestion
problem. In contrast, Spruce [14] uses a Poisson process to
probe the network with a number of packet pairs, and prevents
self-induced congestion by enlarging all inter-pair gaps. All
these tools make a strong assumption that there is only one
bottleneck link along the path, and the tightest link is exactly
the same as the bottleneck link. As a result, such methods
are likely to fail when networks become as diverse as todays
Internet.



Tools based on the self-induced congestion model rely on
the simple intuition that if the probing rate is lower than the
available bandwidth, the probe packets will not experience
additional queueing delay during transmission. On the other
hand, if the probing rate exceeds the available bandwidth, the
probing packets must be queued at some router along the path
such that the overall delivery latency will involve an additional
queueing delay. A number of tools fall into this category, such
as, TOPP [9], Pathload [5], and pathChirp [11].

TOPP [9] uses packet pairs transmitted at irregular intervals
to probe the network, and estimates the available bandwidth
based on the measured dispersion at the receiver. Pathload
[5], which uses a long CBR packet train to estimate available
bandwidth, varies the sending rate to approximate the available
bandwidth. Although this approach has proved accurate in
almost all test scenarios, its overhead is considered too high in
terms of time complexity and the amount of traffic input to the
network. Meanwhile, pathChirp [11], which uses exponentially
spaced probing chirps, is widely considered to be the most
efficient approach, and several refined variants, such as PTR
[4], have been proposed.

III. SYSTEM SETTING

A. Network Scenarios

A successful machine learning-based system must be able
to collect a sufficiently large amount of training data that is
representative of realistic Internet scenarios. However, it is
widely recognized that, due to the diversity and dynamics
of the Internet, collecting and verifying the correctness of
data about specific properties of such a large-scale network
is very difficult. Therefore, in this study, we do not collect the
training data directly from the Internet; instead, we use the NS-
2 simulator to create a representative network using realistic
network traces with well-established network traffic models,
and we monitor each link of the simulated network while
transmitting probing packets between selected node pairs.

More precisely, our network scenario is based on the Tiscali
topology of Rocketfuel’s trace [13]. This topology has 750
links and 506 nodes, of which 221 are end-users. The prop-
agation delay of each intermediate link is chosen randomly
and uniformly in a 10ms to 20ms range, and the buffer size
of each link is fixed at 20. Moreover, we assume that fifty
percent of the end-users use ADSL, while the remainder use
an academic network. The capacity of the links between the
core routers is 1,000Mbps. For the academic network links,
the capacity is 100Mbps, and for the ADSL links, it is 3Mbps
and 1Mbps for the download and upload links respectively.

In addition to the network topology, we generate network
traffic based on the measurement results reported in [7][12].
Specifically, [7] monitored the weekday traffic of a campus-
wide network, and classified the traffic types (i.e., web, P2P,
FTP, streaming, and other applications) by reading the headers
of captured packets. In [12], the session duration and the
packet size of each type of application were analyzed sta-
tistically using multiple network traces. Using these previous
findings, we let each node in our system decide whether or not

to generate a new flow every second based on a given network
utilization factor. When generating a new flow, the node first
determines the traffic type (i.e., web, P2P, FTP, or streaming)
in accordance with the distribution reported in [7], and then
calculates the session duration and the packet size based on the
measurement results in [12]. Thus, the generation of network
traffic in our simulation is expected to be representative of
realistic Internet scenarios.

B. Probing Models

We employ two probing models in our evaluation: the packet
train model and the pathChirp-like model. In the former, the
sender transmits eleven packets in one burst (i.e., back-to-
back) in each round; whereas in the latter, the sender transmits
a chirp of fifteen packets with a spread factor of γ = 1.2 such
that the lowest sending rate is five percent of the bottleneck
capacity. For each model, we randomly select a pair of nodes
(i.e., the sender and the receiver) and start transmitting probing
packets, each of which is 1,500 bytes. After a round finishes,
we record the available bandwidth (of the tightest link), the
path capacity (of the bottleneck link), the hop count along the
path, and the dispersion of every pair of contiguous packets
in each probe. Hence, there are ten dispersions in the packet
train model and fourteen in the pathChirp-like model. If a
packet is lost during transmission, we deem the corresponding
dispersion to be missing data.

C. Machine Learning Tool

Machine learning techniques can be classified into two
types: unsupervised learning and supervised learning. Unsu-
pervised learning techniques, such as the EM algorithm and
K-means clustering, treat input objects as a set of random
variables, and perform learning without receiving any feedback
from the environment. In contrast, the goal of supervised
learning techniques is to find a mapping function based on
the training data that can predict the system’s output for
any input data. Examples of this type of technique are the
K-Nearest Neighbor (k-NN) algorithm and Support Vector
Machine (SVM).

We use SVM, one of the most popular supervised techniques
as our machine-learning tool, and run it on the R statistical
computing platform [1]. The advantages of SVM are that it
can handle missing data caused by packet loss and also deal
with the regression problem. More precisely, SVM can inter-
polate/extrapolate the system output based on the properties of
the test input, even when the system output does not physically
exist in the training dataset. Furthermore, the computation
overhead of SVM is affordable, and it has been employed
in numerous applications because of its speed and accuracy.

IV. PERFORMANCE EVALUATION

A. Evaluation of the Packet Train Model

In the first set of simulations, we employ SVM as the
machine learning tool, and probe the network with the packet
train model. Using the network topology and traffic model
mentioned earlier, we collect 16,000 samples as the training



Fig. 1. The accuracy of the proposed machine learning-based approach
using the packet train model with 1Mbps, 3Mbps, and 100Mbps bottleneck
link capacities.

dataset and 1,500 samples as the test data. Each sample is the
probing result of a randomly selected node pair (i.e., a sender
and a receiver), and each probe consists of eleven back-to-
back packets. Specifically, for the training data, each sample is
comprised of the ten dispersions, the hop count, the bottleneck
capacity, and the tightest link’s available bandwidth. For the
test data, each sample is comprised of all above information,
except the available bandwidth. We divide the results into three
groups based on their bottleneck link capacity, and depict the
accuracy of the proposed approach in Cumulative Distribution
Function (CDF) curves, as shown in Fig. 1.

From Fig. 1, it is evident that the accuracy of the estimation
results is only acceptable when the bottleneck link capacity is
100Mbps, and the performance degrades substantially as the
bottleneck link capacity becomes narrow. However, from the
distribution of the training data of the 100Mbps bottleneck link
capacity, we observe that most samples are clustered in a re-
gion that has higher values of the real available bandwidth and
the estimated available bandwidth. In contrast, the distribution
of samples is more scattered when the bottleneck link capacity
is 1Mbps and 3Mbps. This observation explains the results
that the packet train model can only yield accurate available
bandwidth estimates when the training data and the test data
are clustered in the same region; if the samples are scattered,
the accuracy of this model is unacceptable. Unfortunately, due
to the dynamics and diversity of the Internet, the samples
are deemed to be scattered in reality. Thus, the packet train
probing model is clearly inappropriate for machine learning-
based available bandwidth estimation.

B. Evaluation of the pathChirp-like Model

Here, we evaluate the machine learning-based solution using
the pathChirp-like probing model, which probes the network
using chirps in the same way as pathChirp [11]. In our
evaluation, each chirp consists of 15 packets with a spread
factor γ equal to 1.2. Similar to the previous experiment,
we collect 16,000 samples as the training dataset and 1,500
samples as the test data; each training and test sample is the
probing result of a randomly selected source and receiver pair.

Fig. 2. Comparison of the proposed machine learning-based bandwidth
estimation method using the pathChirp-like model and the packet train model
(with two bottleneck link capacities: 1Mbps and 3Mbps).

Fig. 3. Comparison of the proposed machine learning-based bandwidth
estimation approach (using the pathChirp-like probing model), Spruce, and
pathChirp with different bottleneck link capacities (1Mbps and 3Mbps).

We compare the accuracy of the pathChirp-like probing model
with the packet train probing model on two bottleneck capacity
settings (i.e., 1Mbps and 3Mbps), as shown in Fig. 2.

The results in Fig. 2 clearly show that the pathChirp-
like model outperforms the packet train model in both test
cases. Moreover, when the bottleneck link is 3Mbps, 75%
of the pathChirp-like model’s estimation results fall within a
±10% error range, compared to only 25% of the packet train
model’s estimates. The reason for this phenomenon is that the
pathChirp-like model employs different inter-packet gaps in
a chirp to represent different sending rates. As a result, the
14 measured dispersions can indicate whether the available
bandwidth is larger or smaller than each corresponding send-
ing rate; whereas the 10 measured dispersions of the packet
train model do not have this capability. In addition, the packet
train model tends to cause self-congestion, which affects the
accuracy of the estimation. As the pathChirp-like model yields
more accurate available bandwidth estimates, we use it in the
proposed machine learning-based approach.

C. Comparison with Other Tools

We compare the accuracy of the proposed machine learning-
based approach using the pathChirp-like probing model with
two widely used tools, namely pathChirp [11] and Spruce [14].



We run 1,500 tests for both pathChirp and Spruce in the same
network scenario as the previous experiments, and divide the
results into two groups based on their bottleneck link capacity.

The comparison results, shown in Fig. 3, indicate that
both pathChirp and the proposed machine learning-based
approach substantially outperform Spruce in all test cases,
which confirms the results in [8] that Spruce-like techniques
can not provide accurate bandwidth estimation on multihop
paths. Moreover, the results show that the proposed method
consistently outperforms pathChirp in all cases. The reason is
that pathChirp only uses one round of probing to estimate the
available bandwidth, while the proposed approach estimates
the bandwidth using a database that includes a large number
of historical records.

D. Scale-Free Approach

There is a feasibility issue with regard to the proposed
approach in that it only collects training data from a very
limited network scenario (i.e., the number of nodes in the
network is limited, and the bottleneck link capacity of a
connection path is either 1Mbps, 3Mbps, or 100Mbps). In
contrast, the Internet is not only vast, but also dynamic in
terms of its diversity and complexity. The cost of building a
new database that covers all types of Internet scenarios would
be prohibitively expensive if it were possible. Therefore, we
propose a scale-free approach to normalize all properties of
our system so that we can use our database to estimate the
available bandwidth in other network scenarios.

The normalization process is implemented as follows. First,
for each training data sample, we divide the 14 dispersion
measurements by the sample’s corresponding initial inter-
packet gap, and replace the observation of the real available
bandwidth with the utilization of the bottleneck link. Second,
for each test data sample, we also divide the dispersion mea-
surements by the sample’s corresponding initial inter-packet
gap and input the results into the machine learning system. As
a result, the output of the SVM model represents the utilization
of the bottleneck link, and the available bandwidth estimate
is obtained by taking the product of the utilization and the
bottleneck link capacity.

Using the pathChirp-like probing model and the same
training database, we run two test cases (with 1,500 samples
in each case) on the same topology and traffic model with
two bottleneck capacities, 6 Mbps, and 50 Mbps, not included
in the training database. The evaluation results, shown in
Fig. 4, demonstrate that the proposed approach can accurately
estimate the available bandwidth. Specifically, over 50% of the
estimates are within a 10% error range, which is comparable
to the results of pathChirp and the proposed approach in
homogeneous network configurations (i.e., Fig. 3).

V. CONCLUSION AND FUTURE WORK

We propose a machine learning-based approach for estimat-
ing the available bandwidth of a network path. Using SVM as
the machine learning tool, we employ two probing models in
the proposed system and evaluate their accuracy in estimating

Fig. 4. Simulation results of the proposed approach after normalization.
The test samples were collected from network scenarios with 6Mbps and
50 Mbps bottleneck capacities, while the training data was collected from
network scenarios of 1, 3, and 100 Mbps bottleneck link capacities.

available bandwidth via simulations. The results show that the
pathChirp-like model outperforms the packet train model in
all test cases. Furthermore, by using the pathChirp-like model
in conjunction with SVM, the proposed method yields more
accurate estimates than two widely used tools, pathChirp and
Spruce. By normalizing all attributes in the system, we show
that this novel approach is capable of accurately estimating
available bandwidth, even if there are no samples with similar
properties to the measured path in the training dataset. Work on
evaluating the proposed approach on the Internet is ongoing.
We will report the results in the near future.

REFERENCES

[1] R project. http://www.R-project.org.
[2] R. Carter and M. Crovella. Measuring bottleneck link speed in packet-

switched networks. Performance Evaluation, 27(8):297–318, Oct. 1996.
[3] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20, 1995.
[4] N. Hu and P. Steenkiste. Evaluation and characterization of available

bandwidth probing techniques. In IEEE JSAC, August 2003.
[5] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement

methodology, dynamics, and relation with tcp throughput. In ACM
SIGCOMM, 2002.

[6] G. Jin, G. Yang, B. Crowley, and D. Agarwal. Network characterization
service (ncs). In IEEE HPDC, 2001.

[7] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: multilevel
traffic classification in the dark. In ACM SIGCOMM, 2005.

[8] L. Lao, C. Dovrolis, and M. Y. Sanadidi. The probe gap model
can underestimate the available bandwidth of multihop paths. ACM
SIGCOMM Computer Communication Review, 36:29–34, October 2006.

[9] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks. In
IEEE Globecom, 2000.

[10] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks, and
R. Baraniuk. Multifractal cross-traffic estimation. In ITC Seminar on
IP Traffic Measurement, 2000.

[11] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cot. pathchirp:
Efficient available bandwidth estimation for network paths. In PAM
Workshop, 2003.

[12] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service
mapping for qos: a statistical signature-based approach to ip traffic
classification. In ACM IMC, 2004.

[13] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. In ACM SIGCOMM, 2002.

[14] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of
available bandwidth estimation tools. In ACM IMC, 2003.


