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Abstract

A worm automatically replicates itself across the netwakd may infect millions of servers in a short period of timeisl|
conceivable that the cyber-terrorists may use a wide-gpngam to cause major disruption to the Internet economy. ivhecent
research concentrates on propagation models and earlyngabut the defense against worms is largely an open problfm
propose a distributed anti-worm architecture (DAW) thabendtically slows down or even halts the worm propagatiotiwian
ISP (Internet Service Provider) network. New defense tiegles are developed based on the behavioral differenceebatmormal
hosts and worm-infected hosts. Particularly, a worm-itgfeétost has a much higher connection-failure rate whemdaaly scans
the Internet. This property allows DAW to set the worms afrarn the normal hosts. We propose a temporal rate-limitritlgm
and a spatial rate-limit algorithm, which makes the speeglas propagation configurable by the parameters of the defsystem.

The effectiveness of the new techniques is evaluated acallytand by simulations.
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. INTRODUCTION

Ever since the Morris worm showed the Internet communityther first time in 1988 that a worm could
bring the Internet down in hours [1], new worm outbreaks haseurred periodically. Take a few examples.
On July 19, 2001, the code-red worm (version 2) infected ntioa@ 250,000 hosts in just 9 hours [2], [3].
Soon after, the Nimda worm raged on the Internet [4]. On JanR8, 2003, a worm called SQLSlammer
[5] caused widespread network congestion across Asia,gewrnd the Americas. Santy worm, W32/Zafi.D,
variants of W32/Sober, variants of W32/MyDoom, variants of ViB&®)le, and W32/Sasser were reported last
year. A new MySQL UDF worm was reported early this year. Wohage beaten out viruses to become the
top infectors of the Internet. A single worm is capable ofoauatically infecting millions of hosts in a short
period of time, causing enormous damage [6]. It can steditbeminformation, remove files, slow down the

network, or use the infected hosts to launch other attacks.



2

The most common way for a worm to propagate is to exploit arggdoophole in certain version(s) of a
service software to take control of the machine and copif itser. For example, the Morris worm exploited
a bug infingerand a trap door irsendmailof BSD 4.2/4.3. It also propagated through .rhosts/hosts/eq
and password guessing. The code-red worm took advantageudfiea-overflow problem [7], [8] in the index
server of IS 4.0/5.0. Typically a worm-infected host sctresInternet for vulnerable systems. It chooses an
IP address, attempts a connection to a service port (e.g.po€B0 in the case afode red, and if successful,
carries out the attack. The above process repeats withetitfeandom addresses. As more and more machines
are compromised, more and more copies of the worm are wotkiggther to reproduce themselves. An
explosive epidemic is developed across the Internet.

There are few answers to the worm threat. One solution istthpghe software and eliminate the security
defects [2], [4], [5]. That did not work because (1) softwhtgs seem always increase as computer systems
become more and more complicated, and (2) not all people tm@vbabit of keeping an eye on the patch
releases. The patch for the security hole that led to the $pi8er worm was released half a year before the
worm appeared, and still tens of thousands of computers wireted. Intrusion detection systems and anti-
virus software may be upgraded to detect and remove a knowm wouters and firewalls may be configured
to block the packets whose content contains worm signatbreghose happen after a worm has spread and
been analyzed.

Much recent research on Internet worms concentrates oragabipn modeling [6], [9], [10], [11], [12],
[13] and early warning [11], [14], [15], [16]. The defenseaatst worms is still an open problem. Moore et
al. studied the effectiveness of worm containment tectgieto@ddress blacklisting and content filteringnd
concluded that such systems must react in a matter of mianisnterdict nearly all Internet paths in order
to be successful [12]. Park et al. investigated worm contaimt methods in power-law Internet topologies
and with partial deployment [17], [18]. Williamson propds® modify the network stack such that the rate
of connection requests to distinct destinations is bourjdd®y [20]. It restricts a normal host in the same
way it restricts a worm-infected host. Moreover, the apphobecomes effective only after the majority of
all Internet hosts is upgraded with the new network stacke T&Brea approach [21] has a similar problem
and can be easily circumvented by a worm that employs an gargout mechanism. Staniford studied the
containment of random scanning worms on a large enterpeiseonk [22]. The model assumes the existence
of a containment method that can block out an infected hdst @fscans around 10 addresses. However,

such a method (without collateral damage of blocking notmaaks) is not given in the paper. Schechter et al.
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[23] proposed a credit-based algorithm to limit the scaa odita host, whose credit (i.e., allowance of making
connections) is increased by one for each successful chonenade and decreased by one for each failed
connection made. This algorithm can be circumvented by f@ctied host that scans while making successful
connections at the same rate. The signature-based defgstees require the worm samples to be captured
before the attack signature can be generated [24], [25], [28].

In this paper, we propose a distributed anti-worm architec(DAW), which is designed for an Internet ser-
vice provider (ISP) to provide anti-worm service to its amsers. (From an ISP’s point of view, the neighbor
ISPs are also customers.) DAW is deployed at the ISP edgersputhich are under the same administrative
control. It incorporates a number of new techniques thatitonthe scanning activity within the ISP net-
work, identify the potential worm threats, restrict the egp@f worm propagation, and even halt the worms by
blocking out scanning sources.

The proposed defense system separates the worm-infecsésifrmm the normal hosts based on their be-
havioral differences. Particularly, a worm-infected hbas a much higher connection-failure rate when it
randomly scans the Internet, whereas a normal user deattymaih valid addresses due to the use of DNS
(Domain Name System). This and other properties allow ugsigrh the entire defense architecture based on
the inspection of failed connection requests, which noy ocatluces the system overhead but also minimizes
the disturbance to normal users. Combining a temporal r@iedlgorithm and a spatial rate-limit algorithm,
DAW is able to tightly restrict the worm’s scanning activityhile allowing the normal hosts to make success-
ful connections at any rate. One important contribution 8i\Dis to make the speed of worm propagation
configurable, no longer by the parameters of worms but by #rarpeters of DAW. While the actual values
of the parameters should be set based on the ISP traffictisiatiwe analyze the impact of these parameters
on the performance of DAW and use simulations to study theiakle value ranges. The parameter settings
used in this paper to evaluate the proposed algorithms argechbased on the experimental data from real
networks.

The rest of the paper is organized as follows. Section Il iless the worm propagation model. Section Il
analyzes the differences between normal hosts and womted hosts. Section IV presents the proposed dis-
tributed anti-worm architecture. Section V studies addiil issues associated with DAW. Section VI addresses

the inter-ISP worm infection. Section VII presents the dation results. Section VIII draws the conclusion.



I[I. MODELING WORM PROPAGATION

Based on the mathematical theory of infectious diseases [28], [30], Kephart and White proposed a
classic epidemiological model of computer viruses [31]isThodel was later used to analyze the propagation

behavior of Code-Red-like worms by Staniford et al. [6] and kéoet al. [32]. It can be written as

T = 0 i) ®

wherei(t) is the fraction of vulnerable hosts that are infected wipeet to time, and/ is the rate at which
a worm-infected host detects other vulnerable hosts.

First we formally deduce the value 6f Some notations are defined as followsis the rate at which an
infected host scans the address spacas the size of the address spadeis the total number of vulnerable
hosts.

At time ¢, the number of infected hostsi§) - V, and the number of vulnerable but uninfected hosts is
(1 —i(t))V. The probability for one scan message to hit an uninfectéaevable hostip = (1 — i(¢))V/N.

For an infinitely small periodi, i(t) changes byli(t). During that time, there are = r - i(¢) - V - dt scan
messages and the number of newly infected hostsjs= r-i(t)-V-dt-(1—i(t))V/N = r-i(t)-(l—z‘(t))%dt.l

Therefore,

. 2)
di(t) V. :
— =1 - (1)
The above equation agrees perfectly with our simulatioonb:i®y the equation, we have
Y (t—to)
: e'N
W T
Let the number of initially infected hosts bei(0) = v/V, and we have, = — - In . The time it takes
for a percentage (> v/V') of all vulnerable hosts to be infected is
N « v
= 1 —1
He) T-V(nl—Oé nV—v> @)
Suppose the worm attack starts from one infected host.l. We have
N  aV-1)
t(a) = 1 4
() PV 1-a @)

'Whendt — 0, the probability of multiple scan messages hitting the same host beconmggtheg
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The time predicted by Eq. (4) can be achieved only under ideatlitions. In reality, worms propagate
slower due to a number of reasons. First, once a large nunithersts are infected, the aggressive scanning
activities often cause widespread network congestionscandequently many scan messages are dropped.
Second, when a worm outbreak is announced, many system igthatiors shut down vulnerable servers or
remove the infected hosts from the Internet. Third, somegyyf worms enter dormant state after being active
for a period of time. Due to the above reasons, the code reddpnuch slower than the calculation based on
Eq. (4). A more sophisticated model that considers the firstfactors can be found in [10], which fits better
with the observed code-red data. An analytical active worapagation model (AAWP) based on discrete
times was proposed in [11], which addressed the localizadrsng strategy.

Practically it is important to slow down the worm propagatin order to give the Internet community
enough time to react when a new worm emerges. Eq. (4) pointsmoupossible approaches: decreasing
causeg(«a) to increase inverse-proportionally; increasiiNgcauseg(«) to increase proportionally. In this
paper, we use the first approach to slow down the worms, waljgng on a different technique to halt the
propagation. The idea is to block out the infected hosts agkkrsure that the scanning activity of an infected

host does not last for more than a periodXdf. Under such a constraint, the propagation model becomes

Voo .
— = (i) = i(t — AT))(1 = (1)) (5)

The above equation can be derived by following the same gdroeghat derives Eqg. (2), except that at titne
the number of infected hosts(&t) —i(t — AT)) - V instead ofi(t) - V.

Theorem 1:0f AT < (1 — %)%, the worm will be stopped before a percentagef all vulnerable hosts
are infected.

Proof: Each infected host send&AT" scan messages, and causA§' ¥ (or less due to duplicate hits) new

infections. For the worm to stop, we neeﬁTK < 1. The total infections before the worm stops is no more

than;EoOv(rAT%)i = ATV If AT < (1—-2)%, we haveW < oV. Namely, the worm stops before
a percentage of the vulnerable hosts are infected. O

I1l. FAILURE RATE

We present a new approach that measures the scanningiestiwt monitoring the failed connection re-
guests, excluding those due to network congestion. Ouusissan focuses on the worms that spread via TCP,

which accounts for the majority of Internet traffic. Howevtire techniques can be easily applied to some



avg. daily failure ratg worst daily failure rate

per host per host
Net 1 (five Class C nets) 2.54 52
Net 2 (one Class C net 7.72 77
Net 3 (two Class C nets) 2.79 63

avg. daily failure ratg worst daily failure rate
of the whole network of the whole network

Net 1 (five Class C nets) 670 880

Net 2 (one Class C net 86 135

Net 3 (two Class C nets) 95 162
TABLE |

EXPERIMENTAL RESULTS. DAILY FAILURE RATES OF NORMAL HOSTS THE DAILY FAILURE RATE OF A HOST IS THE NUMBER
OF FAILED CONNECTIONS MADE BY THE HOST DURING A DAY

UDP-based worms as well. We do not claim to handle all worm&nfiples of what we do not consider are
email worms and hit-list worms.

When a source host makes a connection request, a SYN paclegitivosa destination address. The con-
nection fails if the destination host does not exist or dagdiaten on the port that the request is sent to. In
the former case, an ICMP host-unreachable packet is retwionde source host; in the latter case, a RESET
packet is returned.These packets are callégilure replies The rate of failed connections made by a host is
called thefailure rate, which can be measured by monitoring the failure repliesdhasent back to the host.

The failure rate of a normal host is likely to be low. For mastelnet applications (www, telnet, ftp,
etc.), a user types a machine name instead of a raw IP addrédsntify a server. The machine name is
resolved by Domain Name System (DNS) for the IP address. 1SN not find the address of a given
name, the application will not make the connection. Hengstyping or stale web links do not result in failed
connections. Moreover, a typical user has a list of favaities (servers) to which most connections are made.
Since those sites are known to work most of the time, therfarate for such a user will be low. If a connection
fails due to network congestion, it does not affect the mesamant of the failure rate because no ICMP host-
unreachable or RESET packet is returned. We monitored ttepartmental networks on campus for a week.
Table | shows our measured daily failure rates, which arg serall. Failed connections made from a host to
the same address in the same day is counted only once.

On the other hand, the failure rate of a worm-infected hosikédy to be high. Most connections made

2For a UDP service, an ICMP port unreachable packet is returned fifcigis not listening on the UDP port.
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by a worm will fail if the destination addresses are randopibked. Consider the infamous code-red worm,
which uses 99 parallel threads to scan the Internet. We eeadlits random scan and found that 99.6% of all
connections made to random addresses on TCP port 80 failsisT kize failure rate is 99.6% of the scanning
rate. For worms targeting at software less popular than weless, this figure will be even higher. The relation

between the scanning ratend the failure rate; of a worm is

whereV” is the number of hosts that listen on the attacked pottis)/’ << N, we have
TR (6)

Hence, measuring the failure rate of a worm gives a good itheatats scanning rate. Given the worm’s
aggressive scanning behavior, its failure rate is likelypéohigh, which sets it apart from the normal hosts.
More importantly, an approach that restricts the failute will restrict the scanning rate, which slows down
the worm propagation.

A worm may be deliberately designed to have a slow propagadite in order to evade the detection, which

will be addressed in Section IV-H.

IV. A DISTRIBUTED ANTI-WORM ARCHITECTURE
A. Objectives

This section presents a distributed anti-worm architec{W). Below are our main objectives.
« Slowing down the worm propagation to allow human reactioreti It took the code red just a few hours to
achieve wide infection. More recent worms spread muchifaGter goal is to prolong that time to tens of days
or even stop the worm propagation.
« Detecting potential worm activities and identifying likedffending hosts, which provides the security man-
agement team with valuable information in analyzing anchtexing the worm threat.
« Minimizing the performance impact on normal hosts and nautBarticularly, a normal host should be able
to make successful connections at any rate, and the progemsi storage requirements on a router should be

minimized.

3y < V' because not every host listens on the attacked port(s) is vulnerable.
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B. DAW Overview

Most businesses, institutions, and homes access the éht@eninternet service providers (ISPs). An ISP
network interconnects its customer networks, and roue$Rtiraffic between them. The purpose of DAW is
to provide an ISP-based anti-worm service that slows or st@ws Internet worms from spreading among the
customer networks. DAW is practically feasible becaus@migdementation is within a single administrative
domain. It also has strong business merit since a large ISBufficient incentive to deploy such a system in
order to gain marketing edge against its competitors.

As illustrated in Figure 1, DAW consists of two software canpnts: a DAW agent that is deployed on
all edge routers of the ISP and a management station thactoliata from the agents. Each agent monitors
the connection-failure replies sent to the customer nétwhtait the edge router connects to. It identifies the
offending hosts in the customer network and measures thikird rates. If the failure rate of a host exceeds a
pre-configured threshold, the agent randomly drops a mimimumber of connection requests from that host
in order to keep its failure rate under the threshold. A teraprate-limit algorithm and a spatial rate-limit
algorithm are used to constrain any worm activity to a lovelewer the long term, while accommodating the
temporary aggressive behavior of normal hosts. Each ageioidically reports the observed scanning activity
and the potential offenders to the management station. Airagus, steady increase in the gross scanning
activity raises the flag of a possible worm attack. The woroppgation is further slowed or even stopped by
blocking the hosts whose failure rates are persistently.hig

Each edge router reads a configuration file from the managestagion about which addressg€&nd which
ports P that it should monitor.S consists of all or some addresses belonging to the custoeteork. It
provides a means to exempt certain addresses from DAW fearels or other purposes. consists of the port
numbers to be protected such as 80/8080 for www and 23 faettdirshould exclude the applications that are

not suitable for DAW. An example is a hypothetical applioatruns with an extremely high failure rate, making



A | defining the maximum failure rate allowed for an addresS in

Q | controlling the maximum number of failed connection regsieowed for an address per day

® | controlling the total number of failed connection requediswed for a network per day

n | defining the number of days before the infected hosts ar&kétbc

TABLE Il
DAW PARAMETERS

normal hosts undistinguishable from worms targeting ataghgication. While DAW is not designed for all
applications, it is very effective in protecting the netwaervices whose clients require human interactions
such as web browsing, which makes a greater distinctiondetwmormal hosts and worm-infected hosts.

Throughout the paper, when we say “a router receives a ctinongequest”, we refer to a connection request
that enters the ISP from a customer network, with a sourceeaddnS and a destination port i#?. When
we say “a router receives a failure reply”, we refer to a falteply that leaves the ISP to a customer network,
with a destination address fand a source port i? (if it is a TCP RESET packet).

This paper does not address the worm activity within a custametwork. A worm-infected host is not
restricted in any way to infect other vulnerable hosts ofshme customer network. DAW works only against
the inter-network infections. The scanning rate of an itdddosts is defined as the number of connection
requests sent by per unit of time to addresses outside of the customer netwhekes resides.

If a customer network has multiple edge routers with the si8Rethe DAW agent should be installed on all
edge routers. If a customer network has connections witkrd8Ps that do not implement DAW, the network
can be infected via those ISPs but is then restricted in dprgdahe worm to other customers of the ISP that
does implement DAW. For the purpose of simplicity, we do raisider multi-homed networks in the analysis.

We discuss the details of DAW below. Some system parameteitsted in Table Il for quick reference.

C. Measuring Failure Rate

Each edge router measures the failure rates for the addrbstanging to the customer network that the
router connects to.

A failure-rate record consists of addresdfield s, afailure ratefield f, atimestamgield ¢, and afailure
counterfield c. The initial values off andc are zeros; the initial value ¢fis the system clock when the record

is created. Whenever the router receives a failure reply,farcalls the following function, which update’s
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each timeeis increased by 1005 is a parameter between 0 and 1.

UpdateFailure RateRecord()

Q) c—c+1

(2) if (c is a multiple of 100)

(3) f' < 100/(the current system clock t)
4)  if (c = 100)

) f=1r

(6) dse

(7) feBxf+A=08)xf

(8) t «— the current system clock

It is unnecessary to create individual failure-rate resdiod those hosts that occasionally make a few failed
connections. An edge router maintains a hash tahleEach table entry is a failure-rate record without the
address field. When the router receives a failure reply, itifstination address does not have its own failure
record, the router hashes the address to a table enkfyaind calls Updaté-ailure Rate Record() on that entry.
Each entry therefore measures the combined failure rateugfhly A/| H| addresses, wher is the size of
the customer network arjd! | is the size of the hash table.

Only when the rate of a hash-table entry exceeds a thresh{dg., one per second), the router creates
failure-rate records for individual addresses of the enthyfailure-rate record is removed if its counter

registers too few failed connections in a period of time.

D. Basic Rate-Limit Algorithm

Let F\ be the set of addresses whose failure rates are largenthBwery address i, has an individual
failure-rate record because the hash-table entry thatitheas maps to must have a rate exceedirigpr each
s € F), the router reduces its the failure rate belbwy rate-limiting the connection requests framA token
bucket is used. Letize be the bucket sizépkens be the number of tokens, amntine be a timestamp whose

initial value is the system clock when the algorithm starts.

Upon receipt of a failure reply to
(1) tokens < tokens — 1

Upon receipt of a connection request frem
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(2) At « the current system clock time
(3) tokens <« min{tokens + At x \, size}
(4) time < the current system clock

(5) if (tokens > 1)

(6) forward the request
(7) dse
(8) drop the request

We want to emphasize that the above algorithm with two subresiis not a traditional token-bucket algo-
rithm that buffers the traffic bursts and releases them ateal fitate. The purpose of our algorithm is not to
shape the flow of incoming failure replies but to restrict‘ttreation” of the failure replies. It ensures that the
failure rate of any address stays belowA. This effectively restricts the scanning rate of any wonfected
host according to Eq. (6). Consequently, the speed of wormpggation is no longer determined by the worm
parameters set by the attackers, but by the DAW parameteby ske ISP administrators. In the rest of the
section, we will propose more advanced rate-limit algongto give the defenders greater control.

All rate-limit algorithms in the paper are performed on indual addresses. They are not performed on the
failure-rate records in the hash table; otherwise, reguUestn many innocent hosts would have been blocked
when one scan source was mapped to the same hash-table entry.

Our basic rate-limit algorithm restricts the failure ratg bot the success rate; a host can make successful
connections at any rate. In comparison, Williamson’s agpindbounds the rate of successful connections in
the same way it bounds the rate of worm scan [19], [20].

Next, we explore the temporal behavior difference betwemmal hosts and worm-infected hosts to further

tighten the worm scan rate by a temporal rate-limit algaonith

E. Temporal Rate-Limit Algorithm

A normal user behaves differently from a worm that scansnkermet tirelessly, day and night. A user may
generate a failure rate close xdor a short period of time, but that can not last for every nenn 24 hours
of a day. While we sek large enough to accommodate temporary aggressivenessirahoehavior, the rate
over a long period can be tightened appropriately, whicls s affect a normal user but reduces the long-run

average scan rate of a worm-infected host. (Ldte the system parameter that controls the maximum number
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of failed connection requests allowed for an address per ldetyD be the time of a day{2 can be set much
smaller tham\D.

At the start of each day, the counter3 ¢f all failure-rate records and hash-table entries aretreszeros.
The value ot always equals the number of failed requests that have hagmkming the day. We now require
that a hash-table entry creates failure-rate records twitslual addresses when eithér> )\ orc > Q.

A temporal rate-limit algorithm is designed to bound the maxm number of failed requests per day. Let
Fy be the set of addresses that satisfy the following two candit Vs € Fy,, (1) s has an individual failure-
rate record, and (2) either the failure ratesa$ larger tham or the counter of reaches$2/2. It is obvious that

F\ C Fq.

Upon receipt of a failure reply te

(1) tokens <« tokens — 1

Upon receipt of a connection request frem
(2) At « the current system clock time

@) if(c<9Q/2)

4) tokens «— min{tokens + At x \, size}
(5) dse

Q — ¢ — max{tokens, 0}
(6) N — the end of the day- time

(7) tokens «— min{tokens + At x X', size}
(8)  time < the current system clock

(9) if (tokens > 1)

(20) forward the request
(11) dse
(12) drop the request

The temporal rate-limit algorithm constrains both the maxin failure rate and the maximum number of
failed requests per day. When it is used, the basic rate-afgirithm is not necessary. Beforereaches
1/2, the failure rate can be as high as After that, the algorithm spreads the remaining “quof@™<{ ¢ —
max{tokens, 0}) on the rest of the day, which ensures that connections wilbbwarded throughout the day.
Line 6 ensures that the algorithm never blocks a host coelgleBecause normal hosts rarely make failed

connections, the impact of the algorithm on normal hostxpeeted to be insignificant. It should also be
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pointed out that the algorithm places no restriction on thecess rate.A normal host can make successful
connections at any rate during the day (e.g., browsing therftesweb sites that are up) because the constraint
is on failure replies only

Theorem 2:When the temporal rate-limit algorithm is used, the numbeiadire replies for any address
does not excee?l2 + 7" in a day, where is the rate at which the host makes connection request? amthe
round trip delay in the ISP.

The proof can be found in the appendiXl” is normally small because the typical round trip delay axros
the Internet is in tens or hundreds of milliseconds. Herfc®, £ 100, the average scanning rate of a worm
is effectively limited to abou2Q2/D = 0.14/min. In comparison, Williamson’s experiment showed that the
scanning rate of the code red was at I€ast/ sec [19], which is more than 85,000 times faster. Yet, it took the
code red hours to spread, suggesting the promising patehtiaing the temporal rate-limit algorithm to slow
down worms.

Additional system parameters that specify the maximum rersbf failed requests in longer time scales
(week or month) can further increase the worm propagatioa.ti

In practice, all system parameters in DAW should be set baséige ISP’s traffic measurement. They should
be larger than the worst-case numbers of a normal host. Bonge, our 7-day measurement on the campus
network shows that the maximum number of failed connectipna normal host during a day is only 77. For

this network (2 = 100 is appropriate.

F. Recently Failed Address List

If a major web server such as Yahoo or CNN is down, an edge roudgrobserve a significant surge in
failure replies even though there is no worm activity. Tovedhis problem, each edge router maintains a
recently failed address list (RFAL), which is emptied at tlegibning of each day. When the router receives
a failure reply from address, it matchesi against the addresses in RFAL dlfs in the list, the router skips
all DAW-related processing. Otherwise, it inseftgito RFAL before processing the failure reply. If RFAL is
full, d replaces the oldest entry in the list.

When a popular server is down, if it is frequently accessedhbybsts in the customer network, the server’s
address is likely to be in RFAL and the failure replies from skeever will not be repetitively counted. Hence,
the number of failed requests allowed for a normal host pgcda be much larger thdn. It effectively places

no restriction on keeping trying a number of favorite sitest tare temporarily down. On the other hand, given
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the limited size of RFAL and the much larger space of IP34)( the random addresses picked by worms have

a negligibly small chance to fall in the list.

G. Spatial Rate-Limit Algorithm

Refer back to Table I. Consider Netl whose sizé is 5 x 256 = 1, 280. Even though there was one normal
host making 52 failed connections during a day, not everydidghat. The daily number of failed connections
from Netl was at most 880. If we s@t= 100 to accommodate the aggressive behavior of some normal hosts
the combined daily failure rate of the whole network can gatgned far less thaA2 (= 128, 000) without
adverse impact on other normal hosts.

The proposed temporal rate-limit algorithm regulates eadividual infected host. DAW uses a spatial rate-
limit algorithm to constrain the combined scanning ratelbindected hosts in a customer network. A failure
reply will be first processed by the temporal algorithm arehthy the spatial algorithm if it is activated.

Let ® be a system parameter that controls the total number ofifeglguests allowed for a customer network
per day. It may vary for different customer networks basedhair sizes. Once the number of addresses
inserted to RFAL exceedB, the system starts to create failure-rate records for dilestes that receive failure
replies, and activates the spatial algorithm. If there aterhany records, it retains those with the largest
counters. Leffy be the set of addresses whose counters exceed a small tdregka., 20), which excludes
the obvious normal hosts. L&t be the total number of failure replies sentfg since the spatial algorithm is
activated. The spatial rate-limit algorithm is performedyoon addresses ify. Its pseudo code is the same
as that of the temporal algorithm except thaf2, andc are replaced by, ®, andtc, respectively. If there
are a large number of infected hosts, causing the spatialitiigh to drop an excessive amount of requests, the
router should temporarily block the addresses whose &ilate records have the largest counters.

Theorem 3:When the spatial rate-limit algorithm is used, the total nemdf failure replies per day for all
infected hosts in a customer network is bounde@®y+ mr'T', wherem is the number of addresses i,

r’" is the scanning rate of an infected host after the tempot&llirait algorithm is applied, an@’ is the round
trip delay of the ISP.

The proof is omitted, which is very similar to the proof of Tem 2 in the appendixnr'T is likely to be
small because both andT are small. Below we analyze how the valuefoWill affect the worm propagation
based on a simplified model. A more general model will be use¢de simulations.

Suppose there arfevulnerable customer networks, each Wit/ vulnerable hosts. Once a host is infected,
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we assume all other vulnerable hosts of the same customeérfacted immediately because DAW does not
restrict the scanning activity within the customer netwdslased on Theorem 3, the combined scanning rate
of all vulnerable hosts in a customer networka® +m»'1T") /D ~ 2®/D. Letj(t) be the fraction of customer
networks that are infected by the worm with respect to ttme

At time t, the number of infected customer networkg (s) - £, and the number of uninfected networks is
(1 — j(t))k. The probability for one scan message to hit an uninfectédevable host and thus infect the
network where the host resides(is— j(¢))V/N. For an infinitely small periodit, j(¢) changes byij(t).
During that time, there ar%@ - j(t) - k - dt scan messages and the number of newly infected networks is
2 j(t) - k-dt- (1—j(t)V/N =22 j(t) - (1 — j(t))%Edt. * Therefore,

20 Vk

kedj(t) = o - 5(t) - (1= (1) 3rdi
dj_(tt) _ %j(t)(l Q)
6%(75—150)

.
~—~
~
SN—
I

1 4 evp (t-10)

Assume there is one infection at time 0. We haye- —g/—% In ﬁ The time it takes to infect percent of all

networks is
~ ND  alk-1)
2.-Vo 1l -«

Suppose an ISP wants to ensure that the timexfpercent of networks to be infected is at leastays. The

value of® should satisfy the following condition.

b < N lna(k:—l)
2-Vy -«

which is not related to how the worm behaves.

H. Blocking Persistent Scanning Sources

The edge routers are configured to block out the addressesewdnuntersd) reach(2 for n consecutive
days, where: is a system parameter. By Eq. (5) and Theorem 1, the worm patipagnay be stopped if the
infected hosts are blocked out aftedays of activity.

The worm propagates slowly under the temporal rate-lingjpathm and the spatial rate-limit algorithm.
It gives the administrators sufficient time to study theficabf the hosts to be blocked, perform analysis to

determine whether a worm infection has occurred, and dedgher to approve or disapprove the blocking.

4The probability of multiple external infections of the same network is negligiiiendt — 0.
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Once the threat of a worm is confirmed, the edge routers magdteicted to reduce, which increases the
chance of fully stopping the worm.

Suppose a worm scans more tHamddresses per day. The worm propagation can be completglyest
if each infected customer network makes less than one ne&stioh on average before its infected hosts are
blocked. The number of addresses scanned by the infectésifrm® a single network during days is about
2n® by Theorem 3. Each message has a maximum probabilify/af to infect a new host. Hence, the
condition to stop a worm is

Vv
nd— <1
"IN

The expected total number of infected networks is bounded by

] V.. 1
Yonb—) = ———
z‘=0( " N> 1—2n®%

When2n<1>% > 1, the worm may not be stopped by the above approach alone. ovibe significance of
blocking infected hosts should not be under-estimatedraakes the worm-propagation time longer and gives
human or other automatic tools more reaction time.

If the scanning rate of a worm is beldw per day, the infected hosts will not be blocked. DAW relies on
a different approach to address this problem. During eaghataedge router measures the total number of
connection requests, denoted@a&:), and the total number of failure replies, denoted a&). Note that only
the requests and replies that mattland P (Section IV-B) are measured. The router sends these nunters t
the management station at the end of the day. The managetagom sneasures the following ratio

Zng(e)
Y n.(e)

ecE

whereF is the set of edge routers. If the ratio increases signifigémt a number of days, it signals a potential
worm threat. That is because the increase in failed reqsesslily outpaces the increase in issued requests,
which is possibly the result of more and more hosts beingteféby worms.

The management station then instructs the edge routeremtif potential offenders whose counter$ (
have the highest values. Additional potential offendersfaund as follows. After a vulnerable server is
infected via a port that it listens to, the server normallgrscthe Internet on the same port to infect other
servers. Based on this observation, when an edge routeves@RESET packet (with source ppjtto an
address in its customer network, it sends a SYN packet to checki#f also listening on porp. If it is, the

router markss as a potential offender and creates a failure-rate recdndshwmeasures the number of failed
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connections froms. At the end of each day, the management station collectsdtential offenders from
all edge routers. Those with the largest counters are piesén the administrators for traffic analysis. The
management station may instruct the edge routers to black ththe worm threat is confirmed.

Although a blocked host can n@isueconnection requests before it is unblocked, it eaneptconnection
requests at any rate and its return packets of the acceptedciions are not blocked. Namely, its role of a
server is unchanged.

An alternative to complete blocking is to apply a differesmhall2 value (e.g., 20) on those addresses, which
restricts the worm-infected hosts more tightly while legycertain room against false positives since the hosts

can still make as many successful connections as they wéhtpecasional failures.

V. ADDITIONAL ISSUES
A. Overhead

First, to implement DAW, an edge router needs to processexdium requests and failure replies, which
account for a tiny fraction of all traffic passing through tioaiter (Table 111). To identify the packet type, the
router needs to check the next-protocol field in the IP headdrthen the type or flags in the next header,
which is not expensive. Second, all DAW operations are vaenpke, which is evident from the pseudo code
of algorithms. Third, the number of failure records kept BAW is likely to be small. Failure-rate records
are only maintained for a subset of addresses on the custuwheork. Records are removed if they register
too few failed connections in a period of time after creatiddormal hosts rarely make failed connections.
As an example, the average number of failed connectionsgnmadifferent addresses) is less than 5 per host
per day on the UF campus network. Therefore, most normakhaidit not have records. The number of
failure-rate records grows with the number of worm-infedtests, which must be monitored anyway. Finally,
we performed a simulation on a low-end Dell-PC “edge rou{@rd0GHz/512M), which is able to process
2.0 x 10° connection requests per second under DAW, when the numbailwk-rate records is 1,000. Due

to space limitation, we defer more detailed performanceistuto the future work.

B. Forged Failure Replys

To prevent forged failure replies from being counted, ongr@ach is to keep a table of recent connection
requests from any source addressSimo any destination port i during the past 45 seconds (roughly the

MRTT of TCP). S and P are defined in Section IV-B. Each table entry contains a soadckeess, a source
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port, a destination address, and a destination port, fgergia connection request. Only those failure replies
that match the table entries are counted. An alternativeoagp is to extend the failure-rate record by adding
two fields: one ) counting the number of connection requests froand the othery) counting the number

of successful connections, i.e., TCP SYN/ACK packets sentwderes is the address field of the record. An
invariant is maintained such that the number of failed catioas plus the number of successful connections
does not exceed the number of connection requests; #e;,< x. A failure reply is counted{ < c+ 1) only

when the invariant is not violated.

C. Failure Reply Suppression

Many firewalls are configured to suppress failure repliesti®darly, because attacks routinely use ICMP
as a reconnaissance tool, many organizations block outbtLidP host-unreachable packets. While those
ICMP packets should not be seen by their destinations, treyngvortant to DAW. To solve this problem,
for the customers that fully participate in DAW, when theiefalls suppress ICMP host-unreachable packets,
they are required to send FailLog messages instead, wheatoanted and then suppressed by the edge routers

before leaving the ISP.

D. Warhol Worm and Flash Worm

The Warhol worm and the Flash worm are hypothetical wormdistlin [6], which describes a number of
highly effective techniques that the future worms mightigs@afect the Internet in a very short period of time,
leaving no room for human actions.

In order to improve the chance of infection during the initiaase, the Warhol worm first scans a pre-made
list of (e.g., 10000 to 50000) potentially vulnerable hpsthich is called ahit-list. After that, the worm
performspermutation scanningvhich divides the address space to be scanned among tlegemhfeosts. One
way to generate a hit-list is to perform a scan of the Intebefbre the worm is released [6]. Consider the
worm propagation in an ISP that deploys DAW. To generate-stitor the ISP, it will take aboulv/2(2 days.
Suppos€? = 100 and N = 2%, That would be 229.8 years. A distributed scan would recaivery large
number of cooperative hosts in order to cut this time dowrerE&¥the hit-list can be generated by a different
means, the permutation scanning is less effective under.Ninstance, even after 1000 vulnerable hosts
are infected, they can only probe abadto x 202 = 6 x 10° addresses a day if only the temporal rate-limit

algorithm is considered. The number can be much smalleei§giatial algorithm is taken into consideration.
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outbound neighbor ISP

edge router B = shadow station

inbound DAW ISP

Fig. 3. shadow station

Suppose the size of the ISPJ4% ~ 1.68 x 107, which is far larger thas x 10°. Duplicate hits are not a
serious problem, which means the gain by permutation sognsismall. Without DAW, it will be a different
matter. If the scanning rate #)0/sec, it takes less than 6 hours for 1000 infected hosts to mé&kerobes,
and duplicate hits are very frequent.

The Flash worm assumes a hit-lisincluding most servers that listen on the targeted port.cdderandom
scanning is completely avoided; the worm scans only theesdess in.. As more and more hosts are infected,
L is recursively split among the newly infected hosts, whicarsonly the assigned addresses frbmThe
Flash worm may require a prescan of the entire address spéoelit is released. Such a prescan takes too

long under DAW.

VI. INTER-ISP INFECTION

The techniques developed in Section 1V can effectively slown or even halt the worm propagation within
the same ISP, but they are less effective against the infeétom outside of the ISP. New techniques are

developed in this section to solve the inter-ISP infectiovbfem.

A. Performance Issue and Shadow Station

An ISP that deploys the DAW system is calleBAW ISR Each neighbor ISP is treated as a special customer
network. From the DAW ISP’s point of view, its neighbor ISRpresent the rest of the Internet and therefore
represent the much larger external address space, whiclksonégin a very large population of worm-infected
hosts, possibly in the number of hundreds of thousands. r&igshows an edge router that connects to a
neighbor ISP. We use “outbound” to mean the direction froen@AW ISP to the neighbor ISP and “inbound”
the opposite direction. The edge router performs the DAV¢tion by monitoring the outbound failure replies
and rate-limit the inbound connection requests.

Based on the netflow records from the main gateway of the Usityeof Florida, we found that the SYN

packets (connection requests) account for only 4.86% qgfadkets and, in terms of bytes per second, they
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percentage of packets that are SYN 4.86%
percentage of traffic volume (in bytes) that are SYN.277%

TABLE I
EXPERIMENTAL RESULTS SYN TRAFFIC THROUGH THE MAIN GATEWAY OFUF
account for only 0.277% of the traffic volume, as shown in @bl The number of failure replies is much
smaller than the number of connection requests. Therel#®¢/ only process a small fraction of the packets
passing the edge router. Moreover, the temporal/spagali#thms are very simple.

Nevertheless, we propose to offload the DAW function frometige router to a shadow station, which is
illustrated in Figure 3. More specifically, for each outbdiumilure reply whose source address belongs to
the DAW ISP, the edge router forwards a copy to the shadowostafor each inbound connection request
whose destination address belongs to the DAW ISP, the eddernedirects it to the shadow station, where
all DAW-related operations are performed. The connectemuests that pass the rate-limit algorithms will be
sent back to the edge router and then routed into the DAW ISP.

Shadow stations may also be implemented for edge routdrsdhaect to large enterprise networks.

B. Anti Inter-ISP Infection

The local customer networks of the DAW ISP have relativelalbmddress spaces that can be watchdoged
by the temporal and the spatial rate-limit algorithms. Hesvethese algorithms are less effective when they
are implemented on the edge routers connecting to the n@dBPs. Suppose there are a million infected
hosts on the Internet and the DAW ISP is a Class A network, whad®?* = 16,777,216 addresses. The
temporal algorithm allows each infected host to scan Wfxaddresses per day. I = 100, then 200 million
addresses are scanned in a single day, which is far moretikaotal number of addresses in the DAW ISP.
The spatial algorithm will not solve the problem, either.als because, in order to avoid blocking normal
hosts, the algorithm is not applied on failure records whumenters are below a threshold (e.g., 20). Hence,
one million external infected hosts would be allowed to sgauto 20 million addresses per day, still more than
the total number of addresses in the DAW ISP.

To deal with the inter-ISP infection problem, we developiiddal defense mechanisms as follows. The
shadow station maintains a bit map (calfedure bitmap, where each bit represents an address of the DAW
ISP. The size of the failure bitmap is 2 Megabytes for a clagsefwork. All bits are reset to zero at the

beginning of a day. When an outbound failure reply is receitied bit for the source address is set to one,
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meaning that the address may have been scanned. By defaudihdldow station runs the temporal/spatial
algorithms in the normal mode. However, when a noticeabteqgroof the DAW ISP has been scanned and the
percentage of the failure bitmap set to one rea¢h@ghich is a system parameter such as 0.1%), the shadow
station enters thaggressive modes worm propagation may potentially be undergoing.

One way to implement the aggressive mode is to perform thiga$péyorithm on all failure records instead
of only those whose counters are above the threshold. Thi®aph is likely to block some normal hosts that
happen to make failed connections. A more sophisticatetbapp is based on the observation that all known
worms do not kill the service software they infect for twoseas: (1) the infection is performed on a thread
or child process of the server, which neither blocks nosklie entire service; and (2) the stealth requirement
of worm propagation makes it undesirable to disrupt thees&rnormal operations. Therefore the infected
hosts are open on the port that they scan. This observatiobecatilized to aim the spatial algorithm towards

a narrow population of likely offenders. The algorithm foetaggressive mode is is described below.

Upon receipt of a connection request from an external addres
(1) if (s € F3)

(2) perform the spatial rate-limit algorithm on the request

(3) else

4) if (s is open at the destination port of the request)

(5) create a failure record ferwith ¢ = 0

(6) adds to Fp

(7) perform the spatial rate-limit algorithm on the request
(8) else

(9) forwards the request back to the edge router

The remaining problem is Line 4, how to determine i§ open at a specific popt We use the cryptographic
cookie approach. The shadow station sends a forged coaneetjuest t& at portp. The request carries a
cookie, e.g., SYN cookie [33] stored in the sequence numeler &f the TCP header. The cookie is generated
as a keyed hash af p, a secret, a timestamp, etc. Note that the shadow statiediestore the half-opened
connection because it is a forged connection request. NVihshort timeout period (e.g., one secndf

a connection reply (e.g., SYN/ACK) comes back frenand the cookie (in the acknowledgement field) is

The Internet round trip delay is typically in tens or hundreds of millisecandgrding to our experiment of pinging random addresses.
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correctly verified, thers is open atp; if a failure reply (e.g., RESET) comes back franand the cookie is
correctly verified, or no reply comes back, theis not open ap.

The number of connection requests forged by the shadowstatibounded by the number of connection
requests it receives. The latter accounts for a small podfdghe overall traffic, as demonstrated in Table 111
Consequently, the forged traffic volume is insignificant amd traffic is introduced only when the shadow

station enters the aggressive mode.

VII. SIMULATION

We use simulations to evaluate the performance of DAW. Waeilsita an ISP that performs the algorithms
of DAW to protect its customer networks. Each data point im filgures is the average of 2,000 simulation
runs.

The simulation setup is described as follows. The size ofi@# address space 28*. The number of
vulnerable servers targeted by a worm is 1 million on the whioternet. The number of vulnerable customer
networks in the ISP i¢ = 2000. The average number of vulnerable hosts in these networks=i$.° The
numbers of vulnerable servers in different networks follmvexponential distribution, suggesting a scenario
where most customer networks have five or less vulnerabieserbut some have large numbers of such
servers. Suppose the worm uses a Nimda-like algorithm graeasively searches the local-address space. We
assume that once a vulnerable host of a customer networeidénl, all vulnerable hosts of the same network
are infected immediately. We also ignore the packet deléngs& are conservative assumptions because they
make the worm propagates faster. If DAW works well underetessumptions, it should work even better in
practice. Unless specified otherwise, the default DAW patamns are\ = 1/sec,2? = 100, & = 1000, and
n = 7 days. They are chosen based on Table I. We will vary each mdeanm a wide range to study the
performance trend of DAW. The scan rate of an infected hasgtisitl 0/ sec, which is in fact not an important
parameter because the performance of DAW is insensitiveetavbrm scanning rate due to rate limiting.

Subsections VII-A through VII-E study the worm propagatiwithin the ISP, starting from one infected
customer network. We take an incremental approach by fwestigating the effectiveness of the temporal or
spatial rate-limit algorithm alone, then putting them tibgge, and finally, applying the whole DAW. Subsection

VII-F shows the misblocking ratio of a normal host. Subsati|l-G studies the inter-ISP worm propagation.

5The ISP hasﬁ of the Internet address space. Discounting the unusable addresssayéd, multicast, private, unallocated addresses), we let

the ISP have; of all vulnerable hosts.
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Fig. 4. worm-propagation comparison

A. Propagation-Time Comparison

Figure 4 compares the fractiafy) of vulnerable hosts that are infected over tima five different cases:
1) no algorithm is used, 2) the basic rate-limit algorithnmiplemented on the edge routers, 3) the temporal
rate-limit algorithm is implemented, 4) both the tempornadl apatial rate-limit algorithms are implemented,
or 5) DAW (i.e., Temporal, Spatial, and blocking persistecéinning sources) is implemented. Note that all
algorithms limit the failure rates, not the connection resfuates, and the spatial rate-limit algorithm is applied
only on the hosts whose failure counters exceed a threshel®0. Two graphs show the simulation results
in different time scales. The lefthand graph is from 0 to 18rspand the righthand is from 0 to 100 days. The
shape of the curve “No Algorithm” depends on the worm’s saagmate, which is 10/sec in our simulation.
The other four curves are independent of the worm’s scamaiteg they depend only on DAW'’s parameters,
i.e., A\, 2, &, andn. The figure shows that the basic rate-limit algorithm slowe/ the worm propagation
from minutes to hours, while the temporal rate-limit al¢fam slows down the propagation to tens of days. The
spatial rate-limit algorithm makes further improvementtop of that — it takes the worm 41 days to infect
5% of the vulnerable hosts, leaving sufficient time for hunma@rvention. Moreover, with persistent scanning

sources being blocked after 7 days, DAW is able to stop thenymyppagation at(t) = 0.005.

B. Temporal Rate-Limit Algorithm Alone

Figure 5 demonstrates the performance of the temporaliraitealgorithm with respect to the parameter
The y axis is the time it takes the worm to infect 5% of vulnégdinsts (calle®% propagation timg

As expected, the propagation time decreases Whamcreases. The figure also shows that the temporal
algorithm alone already performs very well for modest-s&@s. Wherk = 2000, z = 5 andQ2 = 100, the

5% propagation time is 24.5 days. Note tlais not the number of customer networks, but the number of
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customer networks that have vulnerable hosts. If the tatallver of vulnerable hostg (x z) in the ISP stays
the same, the algorithm works better for a larger

While Q2 determines the maximum long-term failure rate that is adldvior a host, the other parameter
determines the maximum short-term failure ratehas little impact on the propagation time, which mostly

depends on the worm’s long-term scanning rate, not the ¢bort rate. The simulation results forare

omitted to save space.

C. Spatial Rate-Limit Algorithm Alone

Figure 6 shows the 5% propagation time of the spatial raté@-klgorithm (alone) with respect to the pa-
rameterd. The algorithm works well only when both the density of vubdde hostsX x z) and the value of

® are not too large. Wheh = 2000, = = 5 and® = 1000, the 5% propagation time is 6.3 days. In general,

the spatial algorithm should not be used alone.

D. Temporal and Spatial Rate-Limit Algorithms Together

We emphasize that the temporal algorithm and the spatiatitign are not designed to replace each other.
For customer networks with few vulnerable hosts, the tempaigorithm can effectively limit the scan rate
because it places the limit on each infected host. In thig,ct® spatial algorithm is less effective. For
customer networks with many vulnerable hosts, the spdtakighm places a total limit on all infected hosts
from a customer network. In this case, the temporal algorithless effective. Therefore, the two algorithms
are complementary to each other and should be used together.

Table IV shows the 5% propagation time under various camaktivhen both temporal and spatial algorithms

are implemented. Depending on the values ahdz, the propagation time ranges from 5.5 days to 64.7 days.
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k z | & =500 |=1000 | =1500 | = 2000 | = 2500 | = 3000 | = 3500 | = 4000
1000| 5 64.7 54.2 50.2 48.6 48.6 48.3 49.2 48.8
2000| 5 31.7 26.5 24.8 24.8 24.2 23.9 24.1 23.8
3000 5 21.9 16.7 15.8 15.0 15.2 14.9 15.3 15.2
1000| 10 29.1 22.2 20.9 20.6 19.0 18.9 18.8 19.1
2000 10 14.2 9.4 8.6 8.9 8.4 8.8 8.6 8.7
3000| 10 8.0 5.8 5.7 5.8 5.5 5.7 5.9 5.8

TABLE IV
5% PROPAGATION TIME (DAYS) FOR“T EMPORAL + SPATIAL”
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Fig. 7. stop worm propagation by blocking Fig. 8. propagation time before the worm is stopped

To ensure a large propagation time, a very large ISP maytipariis customers into multiple defense zones of
modest sizes. The rate-limit algorithms can be implemeatethe boundary of each zone, consisting of the
edge routers to the customer networks of the zone and themaht@uters connecting to other zones. In this

way, k x z can be kept modest.

E. DAW

Because DAW blocks persistent scanning sources, it mays¢éopdrm propagation, depending on the value
of n. Figure 7 shows the final infection percentage among theevable hosts before all infected hosts are
blocked. Even when a largeis selected and the final infection percentage is large, libekimg is still very
useful because it considerably slows down the worm propagat shown in Figure 8. For instance, when
k = 3000, z = 10 andn = 10, the final infection percentage is about 80%. However, it take the worm 27
days to achieve that. Some propagation times are smallnBtarice, when = 1, the propagation time is just
one day. That is because the final infection percentagereragty small and the worm is quickly blocked out

in a day.
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F. Misblocking Legitimate Connection Requests

In order to avoid misblocking legitimate connections magabrmal hosts, the values of the DAW param-
eters should be set larger than the worst-case numbers ofreahbost based on traffic measurement, which
may be different for the customer networks. If the paransedee set too small, misblocking can happen.

Consider a normal host in a customer network with= 100. We study four cases: (1) the failure rgte
of the host is 50 per day, i.ef, = 50/D; (2) f = 100/D; (3) f = 150/D, and all failed connections are
made to different addresses that have not been visited byastyin the customer network before; and (4)
f =150/D, but the failed connections are made to less than 100 diffeddresses that have not been visited
before. We assume that, after the normal host is blockedijlist@p making failed connections but instead
making successful connections to the servers that are kimlwe up. Figure 9 shows the simulation results.
The misblocking ratio stays zero ff < € or the number of different addresses to which the host maiesif
connections is less than. If f >  and the failed connections are made to different addrebs¢site not
visited before, the host will eventually be blocked (at tA¢hlhour in the figure). However, if the host stops
making failed connections to new addresses, its misblgatatio will drop back to zero.

From Figure 5, we know that the worm propagation time can beeased by settin@ smaller. However, if

the value of is set too small, misblocking can happen.

G. DAW against External Worm Attack

A more realistic simulation setup should include worm itife within the ISP and from outside. Three
neighbor ISPs represent the rest of the Interfefior a neighbor ISP is ten times that of a customer network.
Assume the worm initially starts from the Internet and it irdected all vulnerable hosts outside of the ISP.

Some vulnerable hosts within the ISP will be infected by tktemmal attackers and then they will try to spread



27

50

- k=1000z= 5——
° ) k=2000z= 5
> & 40 k=3000z= 5=
£ > k=1000 z = 10--=
g g k = 2000 z = 10---=---
) S 30+ k=3000z=10"----
o c
c 2 .-
2 I3 . Le-
8 g 20 e
£ o
T 1 :
£ 8 10f
- e
0 L L
1 2 3 4 5 6 7 8 9 10
n (days)
Fig. 10. Inter-ISP worm propagation with respechito
35
T 30
g g ¥
[ S ey
E 25 [
g £
g o6t c 20}
c S
s g
= 15t
3 04r g
£ <] 10 + k=1000z= 5——
IS = k=2000z= 5
E o02f g ol k=3000z= 5-x
= k=1000 z = 10--=
k =2000 z = 10---=---
0r ‘ ‘ ‘ ‘ k=30002=10—2- or , k=30002=10;---- ‘ ‘ ‘
0.0010.0020.0030.0040.005 0.006 0.007 0.0080.009 0.01 0.0010.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
theta theta

Fig. 11. Inter-ISP worm propagation with respectto

the worm internally. The temporal/spatial algorithms {vilie aggressive-mode enhancement) are used to rate-
limit the external attackers. We show how well DAW contrdig infection from both external and (shortly
after) internal sources. Note that the goal is not to cortlrelworm propagation on the whole Internet but to
control the propagation within the ISP.

The lefthand graph of Figure 10 shows the final infection eetage in the ISP and the righthand graph
shows the propagation time before all infected hosts arekbh While the final infection percentages are
quite high whenk x z or n is large, the propagation times are also reasonably lardgs i important in
practice because, when the news of a widely-spread Intaroieh breaks out (less than a day in the case of
code red or SQLSlammer), the ISP has the time to take actibes the remedy is published by the Internet
security community (e.g., CERT).

Figure 11 repeats the simulation with respect t(See Section VI for explanation). The performance of

DAW remains well even wheé reached % of the ISP address space.
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VIIl. CONCLUSION

This paper proposes a distributed anti-worm architectD®N), which integrates a number of new tech-
niques that detect, slow down, and even stop the worm prdéipaga an internetwork. Our primary goal is to
automate the anti-worm defense, which is largely a manwalgss today. DAW detects possible worm attacks
by the edge routers monitoring the local scanning activily the management station monitoring the global
scanning activity. The scanning rate is measured basedeoraté of failed connection requests, which sets
the worm-infected hosts apart from the normal hosts. DAWIgssssufficient time for human reaction by the
use of a temporal rate-limiting algorithm that constraims maximum scanning speed of any infected host
and a spatial rate-limit algorithm that constrains the ciot scanning rate of all infected hosts in a network.
We evaluate the performance of DAW both analytically andibyugations, which demonstrates that DAW is

highly effective in damping the propagation of Internet msr
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APPENDIX: PROOF OFTHEOREM 2

We first prove thatokens + ¢ < Q holds for an arbitrary at any time of the day. It holds initially when
the algorithm is activated onwith tokens = 0 andc < /2. The value ofc or tokens changes only after
the router receives either a failure reply or a connectiguest. In the former caséykens is decreased by
one due to the execution of the temporal rate-limit algonitlandc is increased by one due to the execution
of UpdateFailure RateRecord(). Hence(tokens + c) stays the same. Now consider the router receives a
connection request. The valuestokens before and after receiving the packet are denoted/as:s_be fore

andtokens_after, respectively. Supposekens_be fore + ¢ < ). Based on Lines 6-7, we have

tokens_after

= min{tokens_before + At x X', size}

Q — ¢ — tokens_before
the end of the day- time

< tokens_before + At X

< tokens_before + (2 — ¢ — tokens_before)
<Q-c
Thereforetokens_after + ¢ < €.

Next we prove thatokens > —rT at the end of the day. Consider the case thatns < 1 at the end of
the day. Without losing generality, suppasgéens > 1 before timety, 0 < tokens < 1 aftert, due to the
execution of Line 1, and themkens stays less than one for the rest of the day. Afgeall connection requests
from s are blocked (Line 12). For all requests sent betgre T, the failure replies must have already arrived
beforet,. There are at mostl’ requests sent between— 1T andt,. Therefore, there are at mast’ failure
replies arriving aftet,. We know thatokens > 0 att,. Hencetokens > —rT at the end of the day. Because
tokens + ¢ < 2 holds at any timeg < Q + 7" at the end of the day.

The counter equals the number of failure replies received during thealtr the failure-rate record for
is created. Before that, there are at madtilure replies counted by the hash-table entry thataps to. In

the worst case all those replies are forTherefore, the total number of failure replies tois no more than

20 + rT.



