
1

DAW: A Distributed Anti-Worm System

Shigang Chen Yong Tang

Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

352 392 2713 (phone), 352 392 1220 (fax),{sgchen, yt1}@cise.ufl.edu

Abstract

A worm automatically replicates itself across the networksand may infect millions of servers in a short period of time. It is

conceivable that the cyber-terrorists may use a wide-spread worm to cause major disruption to the Internet economy. Much recent

research concentrates on propagation models and early warning, but the defense against worms is largely an open problem. We

propose a distributed anti-worm architecture (DAW) that automatically slows down or even halts the worm propagation within an

ISP (Internet Service Provider) network. New defense techniques are developed based on the behavioral difference between normal

hosts and worm-infected hosts. Particularly, a worm-infected host has a much higher connection-failure rate when it randomly scans

the Internet. This property allows DAW to set the worms apartfrom the normal hosts. We propose a temporal rate-limit algorithm

and a spatial rate-limit algorithm, which makes the speed ofworm propagation configurable by the parameters of the defense system.

The effectiveness of the new techniques is evaluated analytically and by simulations.
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I. I NTRODUCTION

Ever since the Morris worm showed the Internet community forthe first time in 1988 that a worm could

bring the Internet down in hours [1], new worm outbreaks haveoccurred periodically. Take a few examples.

On July 19, 2001, the code-red worm (version 2) infected morethan 250,000 hosts in just 9 hours [2], [3].

Soon after, the Nimda worm raged on the Internet [4]. On January 25, 2003, a worm called SQLSlammer

[5] caused widespread network congestion across Asia, Europe and the Americas. Santy worm, W32/Zafi.D,

variants of W32/Sober, variants of W32/MyDoom, variants of W32/Bagle, and W32/Sasser were reported last

year. A new MySQL UDF worm was reported early this year. Wormshave beaten out viruses to become the

top infectors of the Internet. A single worm is capable of automatically infecting millions of hosts in a short

period of time, causing enormous damage [6]. It can steal sensitive information, remove files, slow down the

network, or use the infected hosts to launch other attacks.
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The most common way for a worm to propagate is to exploit a security loophole in certain version(s) of a

service software to take control of the machine and copy itself over. For example, the Morris worm exploited

a bug infinger and a trap door insendmailof BSD 4.2/4.3. It also propagated through .rhosts/hosts.equiv

and password guessing. The code-red worm took advantage of abuffer-overflow problem [7], [8] in the index

server of IIS 4.0/5.0. Typically a worm-infected host scansthe Internet for vulnerable systems. It chooses an

IP address, attempts a connection to a service port (e.g., TCPport 80 in the case ofcode red), and if successful,

carries out the attack. The above process repeats with different random addresses. As more and more machines

are compromised, more and more copies of the worm are workingtogether to reproduce themselves. An

explosive epidemic is developed across the Internet.

There are few answers to the worm threat. One solution is to patch the software and eliminate the security

defects [2], [4], [5]. That did not work because (1) softwarebugs seem always increase as computer systems

become more and more complicated, and (2) not all people havethe habit of keeping an eye on the patch

releases. The patch for the security hole that led to the SQLSlammer worm was released half a year before the

worm appeared, and still tens of thousands of computers wereinfected. Intrusion detection systems and anti-

virus software may be upgraded to detect and remove a known worm, routers and firewalls may be configured

to block the packets whose content contains worm signatures, but those happen after a worm has spread and

been analyzed.

Much recent research on Internet worms concentrates on propagation modeling [6], [9], [10], [11], [12],

[13] and early warning [11], [14], [15], [16]. The defense against worms is still an open problem. Moore et

al. studied the effectiveness of worm containment technologies (address blacklisting and content filtering) and

concluded that such systems must react in a matter of minutesand interdict nearly all Internet paths in order

to be successful [12]. Park et al. investigated worm containment methods in power-law Internet topologies

and with partial deployment [17], [18]. Williamson proposed to modify the network stack such that the rate

of connection requests to distinct destinations is bounded[19], [20]. It restricts a normal host in the same

way it restricts a worm-infected host. Moreover, the approach becomes effective only after the majority of

all Internet hosts is upgraded with the new network stack. The LaBrea approach [21] has a similar problem

and can be easily circumvented by a worm that employs an earlytimeout mechanism. Staniford studied the

containment of random scanning worms on a large enterprise network [22]. The model assumes the existence

of a containment method that can block out an infected host after it scans around 10 addresses. However,

such a method (without collateral damage of blocking normalhosts) is not given in the paper. Schechter et al.
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[23] proposed a credit-based algorithm to limit the scan rate of a host, whose credit (i.e., allowance of making

connections) is increased by one for each successful connection made and decreased by one for each failed

connection made. This algorithm can be circumvented by an infected host that scans while making successful

connections at the same rate. The signature-based defense systems require the worm samples to be captured

before the attack signature can be generated [24], [25], [26], [27].

In this paper, we propose a distributed anti-worm architecture (DAW), which is designed for an Internet ser-

vice provider (ISP) to provide anti-worm service to its customers. (From an ISP’s point of view, the neighbor

ISPs are also customers.) DAW is deployed at the ISP edge routers, which are under the same administrative

control. It incorporates a number of new techniques that monitor the scanning activity within the ISP net-

work, identify the potential worm threats, restrict the speed of worm propagation, and even halt the worms by

blocking out scanning sources.

The proposed defense system separates the worm-infected hosts from the normal hosts based on their be-

havioral differences. Particularly, a worm-infected hosthas a much higher connection-failure rate when it

randomly scans the Internet, whereas a normal user deals mostly with valid addresses due to the use of DNS

(Domain Name System). This and other properties allow us to design the entire defense architecture based on

the inspection of failed connection requests, which not only reduces the system overhead but also minimizes

the disturbance to normal users. Combining a temporal rate-limit algorithm and a spatial rate-limit algorithm,

DAW is able to tightly restrict the worm’s scanning activity, while allowing the normal hosts to make success-

ful connections at any rate. One important contribution of DAW is to make the speed of worm propagation

configurable, no longer by the parameters of worms but by the parameters of DAW. While the actual values

of the parameters should be set based on the ISP traffic statistics, we analyze the impact of these parameters

on the performance of DAW and use simulations to study their suitable value ranges. The parameter settings

used in this paper to evaluate the proposed algorithms are chosen based on the experimental data from real

networks.

The rest of the paper is organized as follows. Section II describes the worm propagation model. Section III

analyzes the differences between normal hosts and worm-infected hosts. Section IV presents the proposed dis-

tributed anti-worm architecture. Section V studies additional issues associated with DAW. Section VI addresses

the inter-ISP worm infection. Section VII presents the simulation results. Section VIII draws the conclusion.
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II. M ODELING WORM PROPAGATION

Based on the mathematical theory of infectious diseases [28], [29], [30], Kephart and White proposed a

classic epidemiological model of computer viruses [31]. This model was later used to analyze the propagation

behavior of Code-Red-like worms by Staniford et al. [6] and Moore et al. [32]. It can be written as

di(t)

d(t)
= βi(t)(1 − i(t)) (1)

wherei(t) is the fraction of vulnerable hosts that are infected with respect to timet, andβ is the rate at which

a worm-infected host detects other vulnerable hosts.

First we formally deduce the value ofβ. Some notations are defined as follows.r is the rate at which an

infected host scans the address space.N is the size of the address space.V is the total number of vulnerable

hosts.

At time t, the number of infected hosts isi(t) · V , and the number of vulnerable but uninfected hosts is

(1 − i(t))V . The probability for one scan message to hit an uninfected vulnerable host isp = (1 − i(t))V/N .

For an infinitely small perioddt, i(t) changes bydi(t). During that time, there aren = r · i(t) · V · dt scan

messages and the number of newly infected hosts isn×p = r·i(t)·V ·dt·(1−i(t))V/N = r·i(t)·(1−i(t))V 2

N
dt.1

Therefore,

V · di(t) = r · i(t) · (1 − i(t))
V 2

N
dt

di(t)

dt
= r

V

N
i(t)(1 − i(t))

(2)

The above equation agrees perfectly with our simulations. Solving the equation, we have

i(t) =
er V

N
(t−t0)

1 + er V

N
(t−t0)

Let the number of initially infected hosts bev. i(0) = v/V , and we havet0 = − N
r·V

ln v
V −v

. The time it takes

for a percentageα (≥ v/V ) of all vulnerable hosts to be infected is

t(α) =
N

r · V
(ln

α

1 − α
− ln

v

V − v
) (3)

Suppose the worm attack starts from one infected host.v = 1. We have

t(α) =
N

r · V
ln

α(V − 1)

1 − α
(4)

1Whendt → 0, the probability of multiple scan messages hitting the same host becomes negligible.
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The time predicted by Eq. (4) can be achieved only under idealconditions. In reality, worms propagate

slower due to a number of reasons. First, once a large number of hosts are infected, the aggressive scanning

activities often cause widespread network congestions andconsequently many scan messages are dropped.

Second, when a worm outbreak is announced, many system administrators shut down vulnerable servers or

remove the infected hosts from the Internet. Third, some types of worms enter dormant state after being active

for a period of time. Due to the above reasons, the code red spread much slower than the calculation based on

Eq. (4). A more sophisticated model that considers the first two factors can be found in [10], which fits better

with the observed code-red data. An analytical active worm propagation model (AAWP) based on discrete

times was proposed in [11], which addressed the localized scanning strategy.

Practically it is important to slow down the worm propagation in order to give the Internet community

enough time to react when a new worm emerges. Eq. (4) points out two possible approaches: decreasingr

causest(α) to increase inverse-proportionally; increasingN causest(α) to increase proportionally. In this

paper, we use the first approach to slow down the worms, while relying on a different technique to halt the

propagation. The idea is to block out the infected hosts and make sure that the scanning activity of an infected

host does not last for more than a period of∆T . Under such a constraint, the propagation model becomes

di(t)

dt
= r

V

N
(i(t) − i(t − ∆T ))(1 − i(t)) (5)

The above equation can be derived by following the same procedure that derives Eq. (2), except that at timet

the number of infected hosts is(i(t) − i(t − ∆T )) · V instead ofi(t) · V .

Theorem 1:If ∆T < (1 − v
αV

) N
rV

, the worm will be stopped before a percentageα of all vulnerable hosts

are infected.

Proof: Each infected host sendsr∆T scan messages, and causesr∆T V
N

(or less due to duplicate hits) new

infections. For the worm to stop, we needr∆T V
N

< 1. The total infections before the worm stops is no more

than
∞

Σ
i=0

v(r∆T V
N

)i = v

1−r∆T V

N

. If ∆T < (1− v
αV

) N
rV

, we have v

1−r∆T V

N

< αV . Namely, the worm stops before

a percentageα of the vulnerable hosts are infected. 2

III. FAILURE RATE

We present a new approach that measures the scanning activities by monitoring the failed connection re-

quests, excluding those due to network congestion. Our discussion focuses on the worms that spread via TCP,

which accounts for the majority of Internet traffic. However, the techniques can be easily applied to some
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avg. daily failure rate worst daily failure rate

per host per host

Net 1 (five Class C nets) 2.54 52

Net 2 (one Class C net) 7.72 77

Net 3 (two Class C nets) 2.79 63

avg. daily failure rate worst daily failure rate

of the whole network of the whole network

Net 1 (five Class C nets) 670 880

Net 2 (one Class C net) 86 135

Net 3 (two Class C nets) 95 162

TABLE I

EXPERIMENTAL RESULTS: DAILY FAILURE RATES OF NORMAL HOSTS. THE DAILY FAILURE RATE OF A HOST IS THE NUMBER

OF FAILED CONNECTIONS MADE BY THE HOST DURING A DAY.

UDP-based worms as well. We do not claim to handle all worms. Examples of what we do not consider are

email worms and hit-list worms.

When a source host makes a connection request, a SYN packet is sent to a destination address. The con-

nection fails if the destination host does not exist or does not listen on the port that the request is sent to. In

the former case, an ICMP host-unreachable packet is returnedto the source host; in the latter case, a RESET

packet is returned.2 These packets are calledfailure replies. The rate of failed connections made by a host is

called thefailure rate, which can be measured by monitoring the failure replies that are sent back to the host.

The failure rate of a normal host is likely to be low. For most Internet applications (www, telnet, ftp,

etc.), a user types a machine name instead of a raw IP address to identify a server. The machine name is

resolved by Domain Name System (DNS) for the IP address. If DNS can not find the address of a given

name, the application will not make the connection. Hence, mistyping or stale web links do not result in failed

connections. Moreover, a typical user has a list of favoritesites (servers) to which most connections are made.

Since those sites are known to work most of the time, the failure rate for such a user will be low. If a connection

fails due to network congestion, it does not affect the measurement of the failure rate because no ICMP host-

unreachable or RESET packet is returned. We monitored three departmental networks on campus for a week.

Table I shows our measured daily failure rates, which are very small. Failed connections made from a host to

the same address in the same day is counted only once.

On the other hand, the failure rate of a worm-infected host islikely to be high. Most connections made
2For a UDP service, an ICMP port unreachable packet is returned if thehost is not listening on the UDP port.
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by a worm will fail if the destination addresses are randomlypicked. Consider the infamous code-red worm,

which uses 99 parallel threads to scan the Internet. We emulated its random scan and found that 99.6% of all

connections made to random addresses on TCP port 80 fails. That is, the failure rate is 99.6% of the scanning

rate. For worms targeting at software less popular than web servers, this figure will be even higher. The relation

between the scanning rater and the failure raterf of a worm is

rf = (1 −
V ′

N
)r

whereV ′ is the number of hosts that listen on the attacked port(s).3 If V ′ << N , we have

rf ≈ r (6)

Hence, measuring the failure rate of a worm gives a good idea about its scanning rate. Given the worm’s

aggressive scanning behavior, its failure rate is likely tobe high, which sets it apart from the normal hosts.

More importantly, an approach that restricts the failure rate will restrict the scanning rate, which slows down

the worm propagation.

A worm may be deliberately designed to have a slow propagation rate in order to evade the detection, which

will be addressed in Section IV-H.

IV. A D ISTRIBUTED ANTI-WORM ARCHITECTURE

A. Objectives

This section presents a distributed anti-worm architecture (DAW). Below are our main objectives.

• Slowing down the worm propagation to allow human reaction time. It took the code red just a few hours to

achieve wide infection. More recent worms spread much faster. Our goal is to prolong that time to tens of days

or even stop the worm propagation.

• Detecting potential worm activities and identifying likely offending hosts, which provides the security man-

agement team with valuable information in analyzing and countering the worm threat.

• Minimizing the performance impact on normal hosts and routers. Particularly, a normal host should be able

to make successful connections at any rate, and the processing and storage requirements on a router should be

minimized.
3
V ≤ V

′ because not every host listens on the attacked port(s) is vulnerable.
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Fig. 1. Distributed Anti-Worm Architecture
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Fig. 2. An edge router monitors the failure replies for the cus-

tomer it connects to.

B. DAW Overview

Most businesses, institutions, and homes access the Internet via Internet service providers (ISPs). An ISP

network interconnects its customer networks, and routes the IP traffic between them. The purpose of DAW is

to provide an ISP-based anti-worm service that slows or evenstops Internet worms from spreading among the

customer networks. DAW is practically feasible because itsimplementation is within a single administrative

domain. It also has strong business merit since a large ISP has sufficient incentive to deploy such a system in

order to gain marketing edge against its competitors.

As illustrated in Figure 1, DAW consists of two software components: a DAW agent that is deployed on

all edge routers of the ISP and a management station that collects data from the agents. Each agent monitors

the connection-failure replies sent to the customer network that the edge router connects to. It identifies the

offending hosts in the customer network and measures their failure rates. If the failure rate of a host exceeds a

pre-configured threshold, the agent randomly drops a minimum number of connection requests from that host

in order to keep its failure rate under the threshold. A temporal rate-limit algorithm and a spatial rate-limit

algorithm are used to constrain any worm activity to a low level over the long term, while accommodating the

temporary aggressive behavior of normal hosts. Each agent periodically reports the observed scanning activity

and the potential offenders to the management station. A continuous, steady increase in the gross scanning

activity raises the flag of a possible worm attack. The worm propagation is further slowed or even stopped by

blocking the hosts whose failure rates are persistently high.

Each edge router reads a configuration file from the management station about which addressesS and which

portsP that it should monitor.S consists of all or some addresses belonging to the customer network. It

provides a means to exempt certain addresses from DAW for research or other purposes.P consists of the port

numbers to be protected such as 80/8080 for www and 23 for telnet. It should exclude the applications that are

not suitable for DAW. An example is a hypothetical application runs with an extremely high failure rate, making
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λ defining the maximum failure rate allowed for an address inS

Ω controlling the maximum number of failed connection requests allowed for an address per day

Φ controlling the total number of failed connection requestsallowed for a network per day

n defining the number of days before the infected hosts are blocked

TABLE II

DAW PARAMETERS

normal hosts undistinguishable from worms targeting at theapplication. While DAW is not designed for all

applications, it is very effective in protecting the network services whose clients require human interactions

such as web browsing, which makes a greater distinction between normal hosts and worm-infected hosts.

Throughout the paper, when we say “a router receives a connection request”, we refer to a connection request

that enters the ISP from a customer network, with a source address inS and a destination port inP . When

we say “a router receives a failure reply”, we refer to a failure reply that leaves the ISP to a customer network,

with a destination address inS and a source port inP (if it is a TCP RESET packet).

This paper does not address the worm activity within a customer network. A worm-infected host is not

restricted in any way to infect other vulnerable hosts of thesame customer network. DAW works only against

the inter-network infections. The scanning rate of an infected hosts is defined as the number of connection

requests sent bys per unit of time to addresses outside of the customer networkwheres resides.

If a customer network has multiple edge routers with the sameISP, the DAW agent should be installed on all

edge routers. If a customer network has connections with other ISPs that do not implement DAW, the network

can be infected via those ISPs but is then restricted in spreading the worm to other customers of the ISP that

does implement DAW. For the purpose of simplicity, we do not consider multi-homed networks in the analysis.

We discuss the details of DAW below. Some system parameters are listed in Table II for quick reference.

C. Measuring Failure Rate

Each edge router measures the failure rates for the addresses belonging to the customer network that the

router connects to.

A failure-rate record consists of anaddressfield s, a failure ratefield f , a timestampfield t, and afailure

counterfield c. The initial values off andc are zeros; the initial value oft is the system clock when the record

is created. Whenever the router receives a failure reply fors, it calls the following function, which updatesf
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each timec is increased by 100.β is a parameter between 0 and 1.

UpdateFailureRateRecord( )

(1) c ← c + 1

(2) if (c is a multiple of 100)

(3) f ′ ← 100/(the current system clock− t)

(4) if (c = 100)

(5) f ← f ′

(6) else

(7) f ← β × f + (1 − β) × f ′

(8) t ← the current system clock

It is unnecessary to create individual failure-rate records for those hosts that occasionally make a few failed

connections. An edge router maintains a hash tableH. Each table entry is a failure-rate record without the

address field. When the router receives a failure reply, if thedestination address does not have its own failure

record, the router hashes the address to a table entry inH and calls UpdateFailureRateRecord() on that entry.

Each entry therefore measures the combined failure rate of roughlyA/|H| addresses, whereA is the size of

the customer network and|H| is the size of the hash table.

Only when the rate of a hash-table entry exceeds a thresholdλ (e.g., one per second), the router creates

failure-rate records for individual addresses of the entry. A failure-rate record is removed if its counterc

registers too few failed connections in a period of time.

D. Basic Rate-Limit Algorithm

Let Fλ be the set of addresses whose failure rates are larger thanλ. Every address inFλ has an individual

failure-rate record because the hash-table entry that the address maps to must have a rate exceedingλ. For each

s ∈ Fλ, the router reduces its the failure rate belowλ by rate-limiting the connection requests froms. A token

bucket is used. Letsize be the bucket size,tokens be the number of tokens, andtime be a timestamp whose

initial value is the system clock when the algorithm starts.

Upon receipt of a failure reply tos

(1) tokens ← tokens − 1

Upon receipt of a connection request froms
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(2) ∆t ← the current system clock− time

(3) tokens ← min{tokens + ∆t × λ, size}

(4) time ← the current system clock

(5) if (tokens ≥ 1)

(6) forward the request

(7) else

(8) drop the request

We want to emphasize that the above algorithm with two subroutines is not a traditional token-bucket algo-

rithm that buffers the traffic bursts and releases them at a fixed rate. The purpose of our algorithm is not to

shape the flow of incoming failure replies but to restrict the“creation” of the failure replies. It ensures that the

failure rate of any address inS stays belowλ. This effectively restricts the scanning rate of any worm-infected

host according to Eq. (6). Consequently, the speed of worm propagation is no longer determined by the worm

parameters set by the attackers, but by the DAW parameters set by the ISP administrators. In the rest of the

section, we will propose more advanced rate-limit algorithms to give the defenders greater control.

All rate-limit algorithms in the paper are performed on individual addresses. They are not performed on the

failure-rate records in the hash table; otherwise, requests from many innocent hosts would have been blocked

when one scan source was mapped to the same hash-table entry.

Our basic rate-limit algorithm restricts the failure rate but not the success rate; a host can make successful

connections at any rate. In comparison, Williamson’s approach bounds the rate of successful connections in

the same way it bounds the rate of worm scan [19], [20].

Next, we explore the temporal behavior difference between normal hosts and worm-infected hosts to further

tighten the worm scan rate by a temporal rate-limit algorithm.

E. Temporal Rate-Limit Algorithm

A normal user behaves differently from a worm that scans the Internet tirelessly, day and night. A user may

generate a failure rate close toλ for a short period of time, but that can not last for every minute in 24 hours

of a day. While we setλ large enough to accommodate temporary aggressiveness in normal behavior, the rate

over a long period can be tightened appropriately, which does not affect a normal user but reduces the long-run

average scan rate of a worm-infected host. LetΩ be the system parameter that controls the maximum number
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of failed connection requests allowed for an address per day. Let D be the time of a day.Ω can be set much

smaller thanλD.

At the start of each day, the counters (c) of all failure-rate records and hash-table entries are reset to zeros.

The value ofc always equals the number of failed requests that have happened during the day. We now require

that a hash-table entry creates failure-rate records for individual addresses when eitherf > λ or c > Ω.

A temporal rate-limit algorithm is designed to bound the maximum number of failed requests per day. Let

FΩ be the set of addresses that satisfy the following two conditions: ∀s ∈ FΩ, (1) s has an individual failure-

rate record, and (2) either the failure rate ofs is larger thanλ or the counter ofs reachesΩ/2. It is obvious that

Fλ ⊆ FΩ.

Upon receipt of a failure reply tos

(1) tokens ← tokens − 1

Upon receipt of a connection request froms

(2) ∆t ← the current system clock− time

(3) if (c ≤ Ω/2)

(4) tokens ← min{tokens + ∆t × λ, size}

(5) else

(6) λ′ ← Ω − c − max{tokens, 0}
the end of the day− time

(7) tokens ← min{tokens + ∆t × λ′, size}

(8) time ← the current system clock

(9) if (tokens ≥ 1)

(10) forward the request

(11) else

(12) drop the request

The temporal rate-limit algorithm constrains both the maximum failure rate and the maximum number of

failed requests per day. When it is used, the basic rate-limitalgorithm is not necessary. Beforec reaches

Ω/2, the failure rate can be as high asλ. After that, the algorithm spreads the remaining “quota” (Ω − c −

max{tokens, 0}) on the rest of the day, which ensures that connections will be forwarded throughout the day.

Line 6 ensures that the algorithm never blocks a host completely. Because normal hosts rarely make failed

connections, the impact of the algorithm on normal hosts is expected to be insignificant. It should also be
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pointed out that the algorithm places no restriction on the success rate..A normal host can make successful

connections at any rate during the day (e.g., browsing the favorite web sites that are up) because the constraint

is on failure replies only.

Theorem 2:When the temporal rate-limit algorithm is used, the number offailure replies for any address

does not exceed2Ω + rT in a day, wherer is the rate at which the host makes connection requests andT is the

round trip delay in the ISP.

The proof can be found in the appendix.rT is normally small because the typical round trip delay across

the Internet is in tens or hundreds of milliseconds. Hence, if Ω = 100, the average scanning rate of a worm

is effectively limited to about2Ω/D = 0.14/min. In comparison, Williamson’s experiment showed that the

scanning rate of the code red was at least200/sec [19], which is more than 85,000 times faster. Yet, it took the

code red hours to spread, suggesting the promising potential of using the temporal rate-limit algorithm to slow

down worms.

Additional system parameters that specify the maximum numbers of failed requests in longer time scales

(week or month) can further increase the worm propagation time.

In practice, all system parameters in DAW should be set basedon the ISP’s traffic measurement. They should

be larger than the worst-case numbers of a normal host. For example, our 7-day measurement on the campus

network shows that the maximum number of failed connectionsby a normal host during a day is only 77. For

this network,Ω = 100 is appropriate.

F. Recently Failed Address List

If a major web server such as Yahoo or CNN is down, an edge routermay observe a significant surge in

failure replies even though there is no worm activity. To solve this problem, each edge router maintains a

recently failed address list (RFAL), which is emptied at the beginning of each day. When the router receives

a failure reply from addressd, it matchesd against the addresses in RFAL. Ifd is in the list, the router skips

all DAW-related processing. Otherwise, it insertsd into RFAL before processing the failure reply. If RFAL is

full, d replaces the oldest entry in the list.

When a popular server is down, if it is frequently accessed by the hosts in the customer network, the server’s

address is likely to be in RFAL and the failure replies from theserver will not be repetitively counted. Hence,

the number of failed requests allowed for a normal host per day can be much larger thanΩ. It effectively places

no restriction on keeping trying a number of favorite sites that are temporarily down. On the other hand, given
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the limited size of RFAL and the much larger space of IPv4 (232), the random addresses picked by worms have

a negligibly small chance to fall in the list.

G. Spatial Rate-Limit Algorithm

Refer back to Table I. Consider Net1 whose size isA = 5×256 = 1, 280. Even though there was one normal

host making 52 failed connections during a day, not every host did that. The daily number of failed connections

from Net1 was at most 880. If we setΩ = 100 to accommodate the aggressive behavior of some normal hosts,

the combined daily failure rate of the whole network can be tightened far less thanAΩ (= 128, 000) without

adverse impact on other normal hosts.

The proposed temporal rate-limit algorithm regulates eachindividual infected host. DAW uses a spatial rate-

limit algorithm to constrain the combined scanning rate of all infected hosts in a customer network. A failure

reply will be first processed by the temporal algorithm and then by the spatial algorithm if it is activated.

Let Φ be a system parameter that controls the total number of failed requests allowed for a customer network

per day. It may vary for different customer networks based ontheir sizes. Once the number of addresses

inserted to RFAL exceedsΦ, the system starts to create failure-rate records for all addresses that receive failure

replies, and activates the spatial algorithm. If there are too many records, it retains those with the largest

counters. LetFΦ be the set of addresses whose counters exceed a small threshold τ (e.g., 20), which excludes

the obvious normal hosts. Lettc be the total number of failure replies sent toFΦ since the spatial algorithm is

activated. The spatial rate-limit algorithm is performed only on addresses inFΦ. Its pseudo code is the same

as that of the temporal algorithm except thats, Ω, andc are replaced byFΦ, Φ, andtc, respectively. If there

are a large number of infected hosts, causing the spatial algorithm to drop an excessive amount of requests, the

router should temporarily block the addresses whose failure-rate records have the largest counters.

Theorem 3:When the spatial rate-limit algorithm is used, the total number of failure replies per day for all

infected hosts in a customer network is bounded by2Φ + mr′T , wherem is the number of addresses inFΦ,

r′ is the scanning rate of an infected host after the temporal rate-limit algorithm is applied, andT is the round

trip delay of the ISP.

The proof is omitted, which is very similar to the proof of Theorem 2 in the appendix.mr′T is likely to be

small because bothr′ andT are small. Below we analyze how the value ofΦ will affect the worm propagation

based on a simplified model. A more general model will be used in the simulations.

Suppose there arek vulnerable customer networks, each withV/k vulnerable hosts. Once a host is infected,
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we assume all other vulnerable hosts of the same customer areinfected immediately because DAW does not

restrict the scanning activity within the customer network. Based on Theorem 3, the combined scanning rate

of all vulnerable hosts in a customer network is(2Φ+mr′T )/D ≈ 2Φ/D. Let j(t) be the fraction of customer

networks that are infected by the worm with respect to timet.

At time t, the number of infected customer networks isj(t) · k, and the number of uninfected networks is

(1 − j(t))k. The probability for one scan message to hit an uninfected vulnerable host and thus infect the

network where the host resides is(1 − j(t))V/N . For an infinitely small perioddt, j(t) changes bydj(t).

During that time, there are2Φ
D

· j(t) · k · dt scan messages and the number of newly infected networks is

2Φ
D

· j(t) · k · dt · (1 − j(t))V/N = 2Φ
D

· j(t) · (1 − j(t))V k
N

dt. 4 Therefore,

k · dj(t) =
2Φ

D
· j(t) · (1 − j(t))

V k

N
dt

dj(t)

dt
=

2V Φ

ND
j(t)(1 − j(t))

j(t) =
e

2V Φ

ND
(t−t0)

1 + e
2V Φ

ND
(t−t0)

Assume there is one infection at time 0. We havet0 = − ND
2V Φ

ln 1
k−1

. The time it takes to infectα percent of all

networks is

t(α) =
ND

2 · V Φ
ln

α(k − 1)

1 − α

Suppose an ISP wants to ensure that the time forα percent of networks to be infected is at leastγ days. The

value ofΦ should satisfy the following condition.

Φ ≤
N

2 · V γ
ln

α(k − 1)

1 − α

which is not related to how the worm behaves.

H. Blocking Persistent Scanning Sources

The edge routers are configured to block out the addresses whose counters (c) reachΩ for n consecutive

days, wheren is a system parameter. By Eq. (5) and Theorem 1, the worm propagation may be stopped if the

infected hosts are blocked out aftern days of activity.

The worm propagates slowly under the temporal rate-limit algorithm and the spatial rate-limit algorithm.

It gives the administrators sufficient time to study the traffic of the hosts to be blocked, perform analysis to

determine whether a worm infection has occurred, and decidewhether to approve or disapprove the blocking.
4The probability of multiple external infections of the same network is negligiblewhendt → 0.
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Once the threat of a worm is confirmed, the edge routers may be instructed to reducen, which increases the

chance of fully stopping the worm.

Suppose a worm scans more thanΩ addresses per day. The worm propagation can be completely stopped

if each infected customer network makes less than one new infection on average before its infected hosts are

blocked. The number of addresses scanned by the infected hosts from a single network duringn days is about

2nΦ by Theorem 3. Each message has a maximum probability ofV/N to infect a new host. Hence, the

condition to stop a worm is

2nΦ
V

N
< 1

The expected total number of infected networks is bounded by

∞

Σ
i=0

(2nΦ
V

N
)i =

1

1 − 2nΦ V
N

When2nΦ V
N

≥ 1, the worm may not be stopped by the above approach alone. However, the significance of

blocking infected hosts should not be under-estimated as itmakes the worm-propagation time longer and gives

human or other automatic tools more reaction time.

If the scanning rate of a worm is belowΩ per day, the infected hosts will not be blocked. DAW relies on

a different approach to address this problem. During each day, an edge routere measures the total number of

connection requests, denoted asnc(e), and the total number of failure replies, denoted asnf (e). Note that only

the requests and replies that matchS andP (Section IV-B) are measured. The router sends these numbers to

the management station at the end of the day. The management station measures the following ratio

Σ
e∈E

nf (e)

Σ
e∈E

nc(e)

whereE is the set of edge routers. If the ratio increases significantly for a number of days, it signals a potential

worm threat. That is because the increase in failed requestssteadily outpaces the increase in issued requests,

which is possibly the result of more and more hosts being infected by worms.

The management station then instructs the edge routers to identify potential offenders whose counters (c)

have the highest values. Additional potential offenders are found as follows. After a vulnerable server is

infected via a port that it listens to, the server normally scans the Internet on the same port to infect other

servers. Based on this observation, when an edge router receives a RESET packet (with source portp) to an

addresss in its customer network, it sends a SYN packet to check ifs is also listening on portp. If it is, the

router markss as a potential offender and creates a failure-rate record, which measures the number of failed
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connections froms. At the end of each day, the management station collects the potential offenders from

all edge routers. Those with the largest counters are presented to the administrators for traffic analysis. The

management station may instruct the edge routers to block them if the worm threat is confirmed.

Although a blocked host can notissueconnection requests before it is unblocked, it canacceptconnection

requests at any rate and its return packets of the accepted connections are not blocked. Namely, its role of a

server is unchanged.

An alternative to complete blocking is to apply a different,smallΩ value (e.g., 20) on those addresses, which

restricts the worm-infected hosts more tightly while leaving certain room against false positives since the hosts

can still make as many successful connections as they want, with occasional failures.

V. A DDITIONAL ISSUES

A. Overhead

First, to implement DAW, an edge router needs to process connection requests and failure replies, which

account for a tiny fraction of all traffic passing through therouter (Table III). To identify the packet type, the

router needs to check the next-protocol field in the IP headerand then the type or flags in the next header,

which is not expensive. Second, all DAW operations are very simple, which is evident from the pseudo code

of algorithms. Third, the number of failure records kept forDAW is likely to be small. Failure-rate records

are only maintained for a subset of addresses on the customernetwork. Records are removed if they register

too few failed connections in a period of time after creation. Normal hosts rarely make failed connections.

As an example, the average number of failed connections (made to different addresses) is less than 5 per host

per day on the UF campus network. Therefore, most normal hosts will not have records. The number of

failure-rate records grows with the number of worm-infected hosts, which must be monitored anyway. Finally,

we performed a simulation on a low-end Dell-PC “edge router”(2.40GHz/512M), which is able to process

2.0 × 106 connection requests per second under DAW, when the number offailure-rate records is 1,000. Due

to space limitation, we defer more detailed performance studies to the future work.

B. Forged Failure Replys

To prevent forged failure replies from being counted, one approach is to keep a table of recent connection

requests from any source address inS to any destination port inP during the past 45 seconds (roughly the

MRTT of TCP).S andP are defined in Section IV-B. Each table entry contains a sourceaddress, a source
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port, a destination address, and a destination port, identifying a connection request. Only those failure replies

that match the table entries are counted. An alternative approach is to extend the failure-rate record by adding

two fields: one (x) counting the number of connection requests froms and the other (y) counting the number

of successful connections, i.e., TCP SYN/ACK packets sent tos, wheres is the address field of the record. An

invariant is maintained such that the number of failed connections plus the number of successful connections

does not exceed the number of connection requests, i.e.,c+ y ≤ x. A failure reply is counted (c ← c+1) only

when the invariant is not violated.

C. Failure Reply Suppression

Many firewalls are configured to suppress failure replies. Particularly, because attacks routinely use ICMP

as a reconnaissance tool, many organizations block outbound ICMP host-unreachable packets. While those

ICMP packets should not be seen by their destinations, they are important to DAW. To solve this problem,

for the customers that fully participate in DAW, when their firewalls suppress ICMP host-unreachable packets,

they are required to send FailLog messages instead, which are counted and then suppressed by the edge routers

before leaving the ISP.

D. Warhol Worm and Flash Worm

The Warhol worm and the Flash worm are hypothetical worms studied in [6], which describes a number of

highly effective techniques that the future worms might useto infect the Internet in a very short period of time,

leaving no room for human actions.

In order to improve the chance of infection during the initial phase, the Warhol worm first scans a pre-made

list of (e.g., 10000 to 50000) potentially vulnerable hosts, which is called ahit-list. After that, the worm

performspermutation scanning, which divides the address space to be scanned among the infected hosts. One

way to generate a hit-list is to perform a scan of the Internetbefore the worm is released [6]. Consider the

worm propagation in an ISP that deploys DAW. To generate a hit-list for the ISP, it will take aboutN/2Ω days.

SupposeΩ = 100 andN = 224. That would be 229.8 years. A distributed scan would requirea very large

number of cooperative hosts in order to cut this time down. Even if the hit-list can be generated by a different

means, the permutation scanning is less effective under DAW. For instance, even after 1000 vulnerable hosts

are infected, they can only probe about1000 × 2Ω = 6 × 105 addresses a day if only the temporal rate-limit

algorithm is considered. The number can be much smaller if the spatial algorithm is taken into consideration.
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Suppose the size of the ISP is224 ≈ 1.68 × 107, which is far larger than6 × 105. Duplicate hits are not a

serious problem, which means the gain by permutation scanning is small. Without DAW, it will be a different

matter. If the scanning rate is200/sec, it takes less than 6 hours for 1000 infected hosts to make232 probes,

and duplicate hits are very frequent.

The Flash worm assumes a hit-listL including most servers that listen on the targeted port. Hence, random

scanning is completely avoided; the worm scans only the addresses inL. As more and more hosts are infected,

L is recursively split among the newly infected hosts, which scan only the assigned addresses fromL. The

Flash worm may require a prescan of the entire address space before it is released. Such a prescan takes too

long under DAW.

VI. I NTER-ISP INFECTION

The techniques developed in Section IV can effectively slowdown or even halt the worm propagation within

the same ISP, but they are less effective against the infection from outside of the ISP. New techniques are

developed in this section to solve the inter-ISP infection problem.

A. Performance Issue and Shadow Station

An ISP that deploys the DAW system is called aDAW ISP. Each neighbor ISP is treated as a special customer

network. From the DAW ISP’s point of view, its neighbor ISPs represent the rest of the Internet and therefore

represent the much larger external address space, which maycontain a very large population of worm-infected

hosts, possibly in the number of hundreds of thousands. Figure 3 shows an edge router that connects to a

neighbor ISP. We use “outbound” to mean the direction from the DAW ISP to the neighbor ISP and “inbound”

the opposite direction. The edge router performs the DAW function by monitoring the outbound failure replies

and rate-limit the inbound connection requests.

Based on the netflow records from the main gateway of the University of Florida, we found that the SYN

packets (connection requests) account for only 4.86% of allpackets and, in terms of bytes per second, they
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percentage of packets that are SYN 4.86%

percentage of traffic volume (in bytes) that are SYN0.277%

TABLE III

EXPERIMENTAL RESULTS: SYN TRAFFIC THROUGH THE MAIN GATEWAY OFUF

account for only 0.277% of the traffic volume, as shown in Table III. The number of failure replies is much

smaller than the number of connection requests. Therefore,DAW only process a small fraction of the packets

passing the edge router. Moreover, the temporal/spatial algorithms are very simple.

Nevertheless, we propose to offload the DAW function from theedge router to a shadow station, which is

illustrated in Figure 3. More specifically, for each outbound failure reply whose source address belongs to

the DAW ISP, the edge router forwards a copy to the shadow station; for each inbound connection request

whose destination address belongs to the DAW ISP, the edge router redirects it to the shadow station, where

all DAW-related operations are performed. The connection requests that pass the rate-limit algorithms will be

sent back to the edge router and then routed into the DAW ISP.

Shadow stations may also be implemented for edge routers that connect to large enterprise networks.

B. Anti Inter-ISP Infection

The local customer networks of the DAW ISP have relatively small address spaces that can be watchdoged

by the temporal and the spatial rate-limit algorithms. However, these algorithms are less effective when they

are implemented on the edge routers connecting to the neighbor ISPs. Suppose there are a million infected

hosts on the Internet and the DAW ISP is a Class A network, whichhas224 = 16, 777, 216 addresses. The

temporal algorithm allows each infected host to scan up to2Ω addresses per day. IfΩ = 100, then 200 million

addresses are scanned in a single day, which is far more than the total number of addresses in the DAW ISP.

The spatial algorithm will not solve the problem, either. That is because, in order to avoid blocking normal

hosts, the algorithm is not applied on failure records whosecounters are below a threshold (e.g., 20). Hence,

one million external infected hosts would be allowed to scanup to 20 million addresses per day, still more than

the total number of addresses in the DAW ISP.

To deal with the inter-ISP infection problem, we develop additional defense mechanisms as follows. The

shadow station maintains a bit map (calledfailure bitmap), where each bit represents an address of the DAW

ISP. The size of the failure bitmap is 2 Megabytes for a class Anetwork. All bits are reset to zero at the

beginning of a day. When an outbound failure reply is received, the bit for the source address is set to one,
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meaning that the address may have been scanned. By default, the shadow station runs the temporal/spatial

algorithms in the normal mode. However, when a noticeable portion of the DAW ISP has been scanned and the

percentage of the failure bitmap set to one reachesθ (which is a system parameter such as 0.1%), the shadow

station enters theaggressive mode, as worm propagation may potentially be undergoing.

One way to implement the aggressive mode is to perform the spatial algorithm on all failure records instead

of only those whose counters are above the threshold. This approach is likely to block some normal hosts that

happen to make failed connections. A more sophisticated approach is based on the observation that all known

worms do not kill the service software they infect for two reasons: (1) the infection is performed on a thread

or child process of the server, which neither blocks nor kills the entire service; and (2) the stealth requirement

of worm propagation makes it undesirable to disrupt the server’s normal operations. Therefore the infected

hosts are open on the port that they scan. This observation can be utilized to aim the spatial algorithm towards

a narrow population of likely offenders. The algorithm for the aggressive mode is is described below.

Upon receipt of a connection request from an external address s

(1) if (s ∈ FΦ)

(2) perform the spatial rate-limit algorithm on the request

(3) else

(4) if (s is open at the destination port of the request)

(5) create a failure record fors with c = 0

(6) adds to FΦ

(7) perform the spatial rate-limit algorithm on the request

(8) else

(9) forwards the request back to the edge router

The remaining problem is Line 4, how to determine ifs is open at a specific portp. We use the cryptographic

cookie approach. The shadow station sends a forged connection request tos at portp. The request carries a

cookie, e.g., SYN cookie [33] stored in the sequence number field of the TCP header. The cookie is generated

as a keyed hash ofs, p, a secret, a timestamp, etc. Note that the shadow station does not store the half-opened

connection because it is a forged connection request. Within a short timeout period (e.g., one second5), if

a connection reply (e.g., SYN/ACK) comes back froms and the cookie (in the acknowledgement field) is
5The Internet round trip delay is typically in tens or hundreds of millisecond,according to our experiment of pinging random addresses.
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correctly verified, thens is open atp; if a failure reply (e.g., RESET) comes back froms and the cookie is

correctly verified, or no reply comes back, thens is not open atp.

The number of connection requests forged by the shadow station is bounded by the number of connection

requests it receives. The latter accounts for a small portion of the overall traffic, as demonstrated in Table III.

Consequently, the forged traffic volume is insignificant and this traffic is introduced only when the shadow

station enters the aggressive mode.

VII. S IMULATION

We use simulations to evaluate the performance of DAW. We simulate an ISP that performs the algorithms

of DAW to protect its customer networks. Each data point in the figures is the average of 2,000 simulation

runs.

The simulation setup is described as follows. The size of theISP address space is224. The number of

vulnerable servers targeted by a worm is 1 million on the whole Internet. The number of vulnerable customer

networks in the ISP isk = 2000. The average number of vulnerable hosts in these networks isz = 5.6 The

numbers of vulnerable servers in different networks followan exponential distribution, suggesting a scenario

where most customer networks have five or less vulnerable servers, but some have large numbers of such

servers. Suppose the worm uses a Nimda-like algorithm that aggressively searches the local-address space. We

assume that once a vulnerable host of a customer network is infected, all vulnerable hosts of the same network

are infected immediately. We also ignore the packet delay. These are conservative assumptions because they

make the worm propagates faster. If DAW works well under these assumptions, it should work even better in

practice. Unless specified otherwise, the default DAW parameters areλ = 1/sec,Ω = 100, Φ = 1000, and

n = 7 days. They are chosen based on Table I. We will vary each parameter in a wide range to study the

performance trend of DAW. The scan rate of an infected host isset at10/sec, which is in fact not an important

parameter because the performance of DAW is insensitive to the worm scanning rate due to rate limiting.

Subsections VII-A through VII-E study the worm propagationwithin the ISP, starting from one infected

customer network. We take an incremental approach by first investigating the effectiveness of the temporal or

spatial rate-limit algorithm alone, then putting them together, and finally, applying the whole DAW. Subsection

VII-F shows the misblocking ratio of a normal host. Subsection VII-G studies the inter-ISP worm propagation.
6The ISP has 1

256
of the Internet address space. Discounting the unusable addresses (reserved, multicast, private, unallocated addresses), we let

the ISP have 1

100
of all vulnerable hosts.
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Fig. 4. worm-propagation comparison

A. Propagation-Time Comparison

Figure 4 compares the fractioni(t) of vulnerable hosts that are infected over timet in five different cases:

1) no algorithm is used, 2) the basic rate-limit algorithm isimplemented on the edge routers, 3) the temporal

rate-limit algorithm is implemented, 4) both the temporal and spatial rate-limit algorithms are implemented,

or 5) DAW (i.e., Temporal, Spatial, and blocking persistentscanning sources) is implemented. Note that all

algorithms limit the failure rates, not the connection request rates, and the spatial rate-limit algorithm is applied

only on the hosts whose failure counters exceed a thresholdτ = 20. Two graphs show the simulation results

in different time scales. The lefthand graph is from 0 to 18 hours, and the righthand is from 0 to 100 days. The

shape of the curve “No Algorithm” depends on the worm’s scanning rate, which is 10/sec in our simulation.

The other four curves are independent of the worm’s scanningrate; they depend only on DAW’s parameters,

i.e., λ, Ω, Φ, andn. The figure shows that the basic rate-limit algorithm slows down the worm propagation

from minutes to hours, while the temporal rate-limit algorithm slows down the propagation to tens of days. The

spatial rate-limit algorithm makes further improvement ontop of that — it takes the worm 41 days to infect

5% of the vulnerable hosts, leaving sufficient time for humanintervention. Moreover, with persistent scanning

sources being blocked after 7 days, DAW is able to stop the worm propagation ati(t) = 0.005.

B. Temporal Rate-Limit Algorithm Alone

Figure 5 demonstrates the performance of the temporal rate-limit algorithm with respect to the parameterΩ.

The y axis is the time it takes the worm to infect 5% of vulnerable hosts (called5% propagation time).

As expected, the propagation time decreases whenΩ increases. The figure also shows that the temporal

algorithm alone already performs very well for modest-sizeISPs. Whenk = 2000, z = 5 andΩ = 100, the

5% propagation time is 24.5 days. Note thatk is not the number of customer networks, but the number of
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Fig. 6. effectiveness of the spatial rate-limit algorithm

customer networks that have vulnerable hosts. If the total number of vulnerable hosts (k × z) in the ISP stays

the same, the algorithm works better for a largerk.

While Ω determines the maximum long-term failure rate that is allowed for a host, the other parameterλ

determines the maximum short-term failure rate.λ has little impact on the propagation time, which mostly

depends on the worm’s long-term scanning rate, not the short-term rate. The simulation results forλ are

omitted to save space.

C. Spatial Rate-Limit Algorithm Alone

Figure 6 shows the 5% propagation time of the spatial rate-limit algorithm (alone) with respect to the pa-

rameterΦ. The algorithm works well only when both the density of vulnerable hosts (k × z) and the value of

Φ are not too large. Whenk = 2000, z = 5 andΦ = 1000, the 5% propagation time is 6.3 days. In general,

the spatial algorithm should not be used alone.

D. Temporal and Spatial Rate-Limit Algorithms Together

We emphasize that the temporal algorithm and the spatial algorithm are not designed to replace each other.

For customer networks with few vulnerable hosts, the temporal algorithm can effectively limit the scan rate

because it places the limit on each infected host. In this case, the spatial algorithm is less effective. For

customer networks with many vulnerable hosts, the spatial algorithm places a total limit on all infected hosts

from a customer network. In this case, the temporal algorithm is less effective. Therefore, the two algorithms

are complementary to each other and should be used together.

Table IV shows the 5% propagation time under various conditions when both temporal and spatial algorithms

are implemented. Depending on the values ofk andz, the propagation time ranges from 5.5 days to 64.7 days.
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k z Φ = 500 = 1000 = 1500 = 2000 = 2500 = 3000 = 3500 = 4000

1000 5 64.7 54.2 50.2 48.6 48.6 48.3 49.2 48.8

2000 5 31.7 26.5 24.8 24.8 24.2 23.9 24.1 23.8

3000 5 21.9 16.7 15.8 15.0 15.2 14.9 15.3 15.2

1000 10 29.1 22.2 20.9 20.6 19.0 18.9 18.8 19.1

2000 10 14.2 9.4 8.6 8.9 8.4 8.8 8.6 8.7

3000 10 8.0 5.8 5.7 5.8 5.5 5.7 5.9 5.8

TABLE IV

5% PROPAGATION TIME (DAYS) FOR “T EMPORAL + SPATIAL ”
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To ensure a large propagation time, a very large ISP may partition its customers into multiple defense zones of

modest sizes. The rate-limit algorithms can be implementedon the boundary of each zone, consisting of the

edge routers to the customer networks of the zone and the internal routers connecting to other zones. In this

way,k × z can be kept modest.

E. DAW

Because DAW blocks persistent scanning sources, it may stop the worm propagation, depending on the value

of n. Figure 7 shows the final infection percentage among the vulnerable hosts before all infected hosts are

blocked. Even when a largen is selected and the final infection percentage is large, the blocking is still very

useful because it considerably slows down the worm propagation as shown in Figure 8. For instance, when

k = 3000, z = 10 andn = 10, the final infection percentage is about 80%. However, it will take the worm 27

days to achieve that. Some propagation times are small. For instance, whenn = 1, the propagation time is just

one day. That is because the final infection percentage is extremely small and the worm is quickly blocked out

in a day.
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F. Misblocking Legitimate Connection Requests

In order to avoid misblocking legitimate connections made by normal hosts, the values of the DAW param-

eters should be set larger than the worst-case numbers of a normal host based on traffic measurement, which

may be different for the customer networks. If the parameters are set too small, misblocking can happen.

Consider a normal host in a customer network withΩ = 100. We study four cases: (1) the failure ratef

of the host is 50 per day, i.e.,f = 50/D; (2) f = 100/D; (3) f = 150/D, and all failed connections are

made to different addresses that have not been visited by anyhost in the customer network before; and (4)

f = 150/D, but the failed connections are made to less than 100 different addresses that have not been visited

before. We assume that, after the normal host is blocked, it will stop making failed connections but instead

making successful connections to the servers that are knownto be up. Figure 9 shows the simulation results.

The misblocking ratio stays zero iff ≤ Ω or the number of different addresses to which the host makes failed

connections is less thanΩ. If f > Ω and the failed connections are made to different addresses that are not

visited before, the host will eventually be blocked (at the 11th hour in the figure). However, if the host stops

making failed connections to new addresses, its misblocking ratio will drop back to zero.

From Figure 5, we know that the worm propagation time can be increased by settingΩ smaller. However, if

the value ofΩ is set too small, misblocking can happen.

G. DAW against External Worm Attack

A more realistic simulation setup should include worm infection within the ISP and from outside. Three

neighbor ISPs represent the rest of the Internet.Φ for a neighbor ISP is ten times that of a customer network.

Assume the worm initially starts from the Internet and it hasinfected all vulnerable hosts outside of the ISP.

Some vulnerable hosts within the ISP will be infected by the external attackers and then they will try to spread



27

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

fin
al

 in
fe

ct
io

n 
pe

rc
en

ta
ge

n (days)

k = 1000 z =   5
k = 2000 z = 10
k = 3000 z = 20
k = 1000 z =   5
k = 2000 z = 10
k = 3000 z = 20

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

to
ta

l p
ro

pa
ga

tio
n 

tim
e 

(d
ay

s)

n (days)

k = 1000 z =   5
k = 2000 z =   5
k = 3000 z =   5
k = 1000 z = 10
k = 2000 z = 10
k = 3000 z = 10

Fig. 10. Inter-ISP worm propagation with respect ton

0

0.2

0.4

0.6

0.8

1

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

fin
al

 in
fe

ct
io

n 
pe

rc
en

ta
ge

theta

k = 1000 z =   5
k = 2000 z =   5
k = 3000 z =   5
k = 1000 z = 10
k = 2000 z = 10
k = 3000 z = 10 0

5

10

15

20

25

30

35

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

to
ta

l p
ro

pa
ga

tio
n 

tim
e 

(d
ay

s)

theta

k = 1000 z =   5
k = 2000 z =   5
k = 3000 z =   5
k = 1000 z = 10
k = 2000 z = 10
k = 3000 z = 10

Fig. 11. Inter-ISP worm propagation with respect toθ

the worm internally. The temporal/spatial algorithms (with the aggressive-mode enhancement) are used to rate-

limit the external attackers. We show how well DAW controls the infection from both external and (shortly

after) internal sources. Note that the goal is not to controlthe worm propagation on the whole Internet but to

control the propagation within the ISP.

The lefthand graph of Figure 10 shows the final infection percentage in the ISP and the righthand graph

shows the propagation time before all infected hosts are blocked. While the final infection percentages are

quite high whenk × z or n is large, the propagation times are also reasonably large. This is important in

practice because, when the news of a widely-spread Internetworm breaks out (less than a day in the case of

code red or SQLSlammer), the ISP has the time to take actions when the remedy is published by the Internet

security community (e.g., CERT).

Figure 11 repeats the simulation with respect toθ (See Section VI for explanation). The performance of

DAW remains well even whenθ reaches1% of the ISP address space.



28

VIII. C ONCLUSION

This paper proposes a distributed anti-worm architecture (DAW), which integrates a number of new tech-

niques that detect, slow down, and even stop the worm propagation in an internetwork. Our primary goal is to

automate the anti-worm defense, which is largely a manual process today. DAW detects possible worm attacks

by the edge routers monitoring the local scanning activity and the management station monitoring the global

scanning activity. The scanning rate is measured based on the rate of failed connection requests, which sets

the worm-infected hosts apart from the normal hosts. DAW ensures sufficient time for human reaction by the

use of a temporal rate-limiting algorithm that constrains the maximum scanning speed of any infected host

and a spatial rate-limit algorithm that constrains the combined scanning rate of all infected hosts in a network.

We evaluate the performance of DAW both analytically and by simulations, which demonstrates that DAW is

highly effective in damping the propagation of Internet worms.
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APPENDIX: PROOF OFTHEOREM 2

We first prove thattokens + c ≤ Ω holds for an arbitrarys at any time of the day. It holds initially when

the algorithm is activated ons with tokens = 0 andc ≤ Ω/2. The value ofc or tokens changes only after

the router receives either a failure reply or a connection request. In the former case,tokens is decreased by

one due to the execution of the temporal rate-limit algorithm, andc is increased by one due to the execution

of UpdateFailureRateRecord(). Hence,(tokens + c) stays the same. Now consider the router receives a

connection request. The values oftokens before and after receiving the packet are denoted astokens before

andtokens after, respectively. Supposetokens before + c ≤ Ω. Based on Lines 6-7, we have

tokens after

= min{tokens before + ∆t × λ′, size}

≤ tokens before + ∆t ×
Ω − c − tokens before

the end of the day− time

≤ tokens before + (Ω − c − tokens before)

≤ Ω − c

Therefore,tokens after + c ≤ Ω.

Next we prove thattokens ≥ −rT at the end of the day. Consider the case thattokens < 1 at the end of

the day. Without losing generality, supposetokens ≥ 1 before timet0, 0 ≤ tokens < 1 after t0 due to the

execution of Line 1, and thentokens stays less than one for the rest of the day. Aftert0, all connection requests

from s are blocked (Line 12). For all requests sent beforet0 − T , the failure replies must have already arrived

beforet0. There are at mostrT requests sent betweent0 − T andt0. Therefore, there are at mostrT failure

replies arriving aftert0. We know thattokens ≥ 0 at t0. Hence,tokens ≥ −rT at the end of the day. Because

tokens + c ≤ Ω holds at any time,c ≤ Ω + rT at the end of the day.

The counterc equals the number of failure replies received during the dayafter the failure-rate record fors

is created. Before that, there are at mostΩ failure replies counted by the hash-table entry thats maps to. In

the worst case all those replies are fors. Therefore, the total number of failure replies fors is no more than

2Ω + rT .


