
APHIDS: A Mobile Agent-Based Programmable

Hybrid Intrusion Detection System

Ken Deeter1, Kapil Singh1, Steve Wilson1, Luca Filipozzi2, and Son Vuong1

1 Department of Computer Science
2 Department of Electrical Engineering

University of British Columbia
Vancouver, Canada

Abstract. Intrusion detection systems are quickly becoming a stan-
dard requirement in building a network security infrastructure. Although
many established techniques and commercial products exist, their effec-
tiveness leaves room for improvement. We propose an intrusion detection
system architecture which takes advantage of the mobile agent paradigm
to implement a system capable of efficient and flexible distribution of
analysis and monitoring tasks, as well as integration of existing detec-
tion techniques. Our architecture defines a high-level application specific
scripting language to specify the interaction between monitoring agents
and analysis agents.

1 Introduction

Intrusion detection systems (IDS) are quickly becoming a standard component
of network security architectures, complementing conventional techniques such
as firewalls, encryption, and authentication. The purpose of an IDS is to detect
and report unusual and malicious behavior in a network – often caused by the
intentional circumvention of an existing security measure by a malicious user.

This task requires a system to be able to characterize patterns in the context
of a complex network environment. As networks gain in size, complexity, and
variation, the task of analyzing different parts of the network and maintaining
a cohesive view of the entire system becomes increasingly difficult. While the
initial problems of performance have been overcome, the effectiveness of current
intrusion detection systems remains limited. The primary difficulties include the
management and correlation large amounts of data and the frequent occurrences
of false positives – when a system identifies harmless behavior as malicious.

This paper pressents a novel IDS architecture, which we call APHIDS, that
employs mobile agents to perform monitoring and analysis in a distributed and
timely manner. This architecture delegates data capture and detection tasks
to existing monitoring systems. Distributed search and analysis tasks are im-
plemented with mobile agents, and the system provides a high level scripting
facility to define how analysis results from these agents should be combined and
reported. Our approach is complementary to existing IDS techniques – it aims



to effectively combine the strengths of existing technologies to provide more
effective results.

This paper is structured as follows: the following section provides a back-
ground for readers not familiar with intrusion detection and the mobile agent
paradigm. Section 3 summarizes our motivations and design goals for the system.
Section 4 details our system architecture and section 4.2 introduces our automa-
tion system known as distributed correlation scripts. Finally, several conclusions
and ideas for future work are offered.

2 IDS Background and Related Work

Intrusion detection techniques are largely classified into two areas: misuse de-
tection and anomaly detection. In the misuse approach, malicious behavior is
characterized and expressed in machine readable form, and the IDS checks for
the existence of this behavior using a deterministic method. The work of spec-
ifying the malicious behavior is left entirely to the developers and users of the
system. An example of such a system is the Snort network IDS [1]. Snort is
configured using a database of signatures which characterize network packets
that are potentially malicious. Using this database, Snort monitors a network
connection and logs all occurrences of network packets that match any of the
configured signatures. As is the case with any misuse based system, however,
Snort cannot detect events for which no signatures have been developed.

Anomaly detection refers to an approach where a system is trained to learn
the “normal behavior” of a network. An alarm is raised when the network is ob-
served to deviate from this learned definition of normality. This type of system
is theoretically capable of detecting unknown attacks, overcoming a clear limita-
tion of the misuse approach. However, because an alarm is based on a detected
change in an abstract representation of the network behavior, information about
the root cause of the deviation may be difficult to infer.

Intrusion detection systems are also traditionally classified as either network-

based or host-based. Network-based systems monitor network traffic and inspect
packet transmissions for suspicious behavior. A network-based system can be
used to provide detection for multiple hosts by locating the monitoring compo-
nent appropriately (at a network ingress point, for example). Host-based systems
operate on single hosts, and operate on low-level system data, such as patterns
of system calls, file access, or process usage. They can monitor for suspicious
behavior, or they can scan configurations to detect potential vulnerabilities.

Log correlation refers to the process by which an IDS combines captured data
that is distributed both spatially and temporally, and tries to extract significant
and broad patterns. For example, a similar type of attack detected at different
points in time may indicate an automated, coordinated attack. Likewise, an event
detected at different monitoring locations may be indicative of a distributed
attack. In general, the more data that can be collected related to a specific event,
the easier it is for a security administrator to respond in an effective manner. The



automatic correlation process reduces the need for an administrator to search
through large log files manually, saving valuable time.

The established approach to the log correlation process involves the collection
of distributed sensor data into a central location, and the application of searching
and data aggregation techniques to discover patterns.

2.1 Agent-Based IDS Research

The applicability of mobile agents and software agents to intrusion detection
has been explored in several other projects. The AAFID [2] [3] system from Pur-
due University’s COAST Laboratory (now CERIAS) introduced an autonomous
agent-based IDS, which formed a reference for comparison for many of the mo-
bile agent-based systems introduced since. Related work on this system has been
reported recently as well [4].

The key differentiating factor between the AAFID approach and the mobile
agent-based approach is the mobility of the agents participating in the IDS. Many
independent projects have explored the advantages of the mobility aspect of
mobile agents in the context of intrusion detection. The IDA system [5] employs
mobility to identify the source of attacks. Systems which use mobile agents to
model biological immune systems have been proposed [6] and elaborated on[7].
The Micael system [8] and the MA-IDS system [9] both use mobile agents to
aggregate distributed information related to attacks. The Sparta system [10]
uses mobile agents to provide a query like functionality to reconstruct patterns
of related events distributed across multiple hosts. The MAIDS project at Iowa
State University explored the usage of dynamic agent composition techniques
to create an array of lightweight agents to perform a full range of IDS-related
tasks.

The APHIDS architecture presented in this paper represents a variation
of the existing mobile agent-based approaches (with some similarities to the
SPARTA and MAIDS systems). Our system shares a common goal of exploiting
the mobility of the agents to perform distributed correlation. It differs, however,
in the mechanism by which these mobile agents are coordinated and combined.
APHIDS provides a scripting capability that aims to automate evidence gath-
ering tasks that system administrators would otherwise perform manually. Our
system also attempts to utilize and integrate existing IDS technologies and im-
plementations instead of replacing their functionality.

3 Motivation

The initial motivation for our work is to address limitations of current IDS sys-
tems by taking advantage of the mobile agent paradigm. Specifically, we address
the following limitations of conventional centralized approaches to the log cor-
relation task:

– Bandwidth Scalability: The bandwidth required to collect large, distributed
data sets from distributed sensors can pose a significant overhead cost, af-
fecting network performance.



– Processing Scalability: The processing capability of the centralized approach
is limited by the computational power of a single analysis center, even though
other resources may be available.

– Analysis Delay: In the centralized approach, logs are collected only period-
ically, delaying results by at most one collection and analysis cycle. Long
delays can hamper a timely and effective response.

– Integration: Existing commercial IDS’s are sold and developed as stand-
alone products, and they do not support aggregation of data between various
systems. 3

4 APHIDS Framework

4.1 Network-level Architecture

From a deployment perspective, the structure of our system is trivial. It requires
the placement of an agent engine at every relevant location, including network
monitoring devices, web servers and other service-providing hosts, as well as
hosts running other IDS systems4. APHIDS is realized as a distributed layer
which operates on top of a set of distributed agent engines. This design allows
us to access network components in a uniform and efficient manner, and allows
all of our system components to take advantage of the benefits provided by the
agent platform. Mobile agents are used for monitoring the output from other IDS
systems, for querying the log files and system state, and for reporting results.
These various agents are coordinated using a distributed correlation script, which
is described in section 4.2.

4.2 Distributed Correlation Scripts

A key feature of our system is that it allows the specification of coordinated
analysis tasks using a high-level specification language. This language is used to
define a Distributed Correlation Script (DCS), which associates a trigger event

with a series of analysis tasks to be performed when the event is detected. A
collection of these scripts is provided as input to the system.

4.3 Detection and Analysis

Our system’s detection and analysis procedure for a particular attack can be
broken down into the three following steps:

1. Detection of a trigger event5

3 Competing commercial IDS’s have no incentive to cooperate with each other, even
though the data they each collect may yield better results when combined.

4 Our architecture also requires the existence of one a system console, used for system
configuration and display of analysis results

5 A trigger event is an abstract concept that simply refers to any suspicious event
occurring on the network. The exact definition of a trigger event is left up to a
trigger agent that is programmed to detect it.



Fig. 1. This diagram shows the interactions between agents in our system. After de-
ployment, trigger agents notify the script agent of occurrences of trigger events. The
script agent then launches task agents which migrate to appropriate locations to per-
form analysis, the results of which are returned to the script agent. The script agent
finally conditionally raises an alarm and generates a report

2. Collection and Analysis of data related to this event
3. Reporting the event

Each DCS specifies exactly one trigger agent (along with some initialization
parameters) and the types of analysis that should be performed based on a
trigger notification from that agent. The tasks are specified by referring to mobile
agents called task agents that implement each type of analysis task.

When a particular script is enabled, an agent is created to manage it. This
script agent is responsible for instantiating the trigger agent, launching the task
agents, and storing the data returned by these various agents. When a trigger
agent detects that a trigger event has occurred, it sends a set of values describing
the event back to the script agent to which it is associated. The script agent
in turn launches task agents according to the script specification. The values
received from the trigger agent are made available to these analysis agents. Data
returned from each task agent is stored by the script agent and is made available
to subsequently launched task agents. The manner in which these values are
passed to task agents is determined in each script, allowing for different forms
of collaboration to be specified by writing different scripts.

After all the task agents have completed, the script agent can make a decision
to report an alarm. This decision process is also specified in the script (the details
are described in the following subsection). This entire process is illustrated in
fig. 1.

These scripts allow users and developers to freely mix and match existing
monitoring and analysis agents. The correlation task represented by each script
is capable of considering data and conditions from distributed sources.

4.4 Script Syntax

The syntax of a distributed correlation script is shown and described below:



Trigger <TriggerAgent>(<Parameters>...) : <RetValueName> {

Task <DataTaskAgent>(<Parameters> ...) : <RetValueName>

:

}

alarm {

<ConditionTaskAgent>(<Parameters> ...) : <ConditionValueName>

:

condition((<ConditionValueName> AND <ConditionValueName>)

OR (NOT <ConditionValueName>))

}

A script is composed of a combination of a Trigger block and alarm block.
The Trigger block specifies a trigger agent name, along with initialization pa-
rameters. The trigger block contains a list of task agents that are to be launched
when a trigger event notification is recieved. Each task is specified with the
Task keyword, the name of the agent which performs the task, and configura-
tion parameters for that agent. We refer to the agents within this block as data

collection agents.

To facilitate the sharing of results between agents (including information re-
lated to the trigger event returned by the trigger agent), each agent is allowed
to return an associative array of values, which is referenced by the identifier pro-
vided after the colon following the agent’s invocation (notated by <RetValueName>).

In the alarm block, a second set of task agents are specified. These agents
however, can only return a boolean value, and are used only to check for the
existence of certain conditions in the network. These agents are referred to as
condition checking agents. The return value of these condition checking agents
are also named and referenced by a variable name provided at the end of the
each agent’s invocation.

Finally, the alarm block concludes with a condition statement. The state-
ment is composed of an arbitrary boolean combination of condition values de-
fined in the same alarm block. This condition determines whether an alarm is
generated for this event.

A design decision was made to ensure that none of the analysis or monitor-
ing implementations are directly specified in a DCS. Instead, a script can only
refer to an agent that implements the required functionality. This choice allows
complex monitoring and analysis tasks to be implemented in a more suitable
language (e.g. Java). We wished to avoid replicating an entire programming lan-
guage to allow complex computational operations to be specified in the scripts
themselves. This design also allows the system to be extended in a straightfor-
ward manner. For example, new trigger and task agents can be defined after
the APHIDS is initially deployed, and new scripts referring to those agents can
be incorporated on the fly, without requiring any changes to the existing set of
scripts and agents.



4.5 Analysis Scenarios

To illustrate the practical usage of a DCS we present two analysis scenarios that
can be handled by a DCS.

In the first example we consider the following scenario: an attacker from
host A has gained access to a SSH account on one of several protected servers.
In an attempt to infiltrate other hosts, the attacker performs a portscan (also
from host A) of the network. This scenario would be detected by APHIDS by
deploying the following script:

Trigger SnortPortScan() : PS {

Task ArgusFindConnections(PS.source, PS.timeRange) : FC

}

alarm {

LoginCheck(PS.source, FC.targets, PS.timeRange) : C1

condition(C1)

}

This script would first deploy a trigger agent written to capture notifications
of a port scan from a Snort system. Once the port scan is detected the trigger
agent would notify the script agent. The script agent would then deploy a data
collection agent to perform the ArgusFindConnections() task. The PS.source

argument is passed in from the trigger agent to tell the data collector where
the port scan originated, as well as the PS.timeRange argument to tell the
agent what time range to look for connections (we would be interested in a time
before the port scan occurred). The data collection agent would then migrate to
a host running the Argus network monitor, and discover that a number of SSH
connections have been made from the host A to a local host (or possibly several
hosts). Based on this information, a condition checking agent implementing the
LoginCheck() task is deployed. This agent uses the parameter FC.targets, to
sequentially move to the hosts that host A has connected to, and checks for login
attempts from PS.source. In our example the login from the attacker would be
found which would raise our alarm. As a result, the system administrator would
be alerted to the fact that a certain user launched a port scan and accessed the
network successfully, indicated a potential security breach. The administrator
could then investigate further and may discover a compromised user account.

For our second example we consider the following scenario: an attacker makes
an unusually high number of connections to a server on the monitored network,
possibly with the intent to perform a denial of service attack against a host, or
inidicating that the attacking host has been infected with a virus or worm. The
following script would respond to this attack:

Trigger ConnectionOverLoad(): CL {

Task CheckUserNames(CL.target, CL.source) : CN

}

alarm {

UserCount(CN.nameList) : C1



condition(C1)

}

This script would deploy a trigger agent that implements an anomaly-type
detection method or interfaces with an external detection system. Once the rate
of connections from a certain host reached a defined threshold the trigger agent
would report back to the script agent. In response, the CheckUserNames() data
collection agent would be invoked to collect the list of user names that have
logged into CL.target from CL.source. Finally, the UserCount() agent would
be deployed to confirm whether a particular user has performed an extraordi-
narily large number of logins. If a suspect is found, an alarm will be raised. The
system administrator could respond by enabling process accounting and auditing
for the user in question.

As can be seen from our examples, the actual analysis tasks in our system are
always performed by mobile agents that have access to system libraries and that
can be written in an expressive programming language. The DCS mechanism
only provides a mechanism to coordinate these agents, and combine their results
in a simple manner useful for intrusion detection.

5 Discussion

First, we address the specific limitations described by the central approach.

– Bandwidth Scalability: APHIDS uses a remote evaluation technique based
on mobile agents to remove the need to transfer log data from sensors to an
analysis center. If analysis agents are sufficiently small (typically less than
20 kilobytes) when compared to the log data size (often several gigabytes),
then bandwidth savings can be realized.

– Performance Scalability: Because mobile agents perform distributed search
and analysis, the processing work related to each incident is inherently dis-
tributed, reducing the amount of work done per host and removing a single
host bottleneck.

– Analysis Delay: Because each incident is analyzed immediately, the upper
bound on the delay between an incident occurence and its corresponding
report depends only on the processing time needed for analysis of one inci-
dent, as well as the time needed to transfer and collect related data. Delay
can be further reduced by launching data collection agents in parallel where
possible.

– Integration: Our architecture’s use of an agent engine guarantees that new
components (new IDS’s, monitoring systems, etc.) can be integrated without
requiring global changes. Our system provides a uniform layer to analysis
agents allowing them to effectively combine data from different sensors.

Next we identify other benefits that are realized by our framework:

– Because of the distributed and integrative nature of our framework, it can
be adapted to an existing security infrastructure.



– Distributed correlation scripts are able to capture the expert knowledge of
security administrator by automating the standard investigative procedures
that are performed in response to an incident.

– APHIDS is able to discover and utilize greater amounts contextual infor-
mation when processing an incident, allowing it to potentially make more
informed decisions.

– Our framework is extensible. For example, a user can introduce new types
of trigger, script, and data collection agents, as well as provide new scripts
to combine existing agents in novel manners.

The mobile agent approach has several disadvantages which must also be
kept in mind:

– Virtualization and serialization routines required for agent mobility cause
performance overhead that may be significant without proper design consid-
eration.

– Security of the agent system must be considered, including the potential to
perform a denial-of-service attack by intentionally triggering analysis agents.

6 Conclusions and Future Work

We have presented a mobile agent-based architecture for a programmable IDS
which incorporates existing IDS technologies. Our next direct step will be to
complete our prototype implementation of the DCS system.

To our knowledge, our IDS architecture is the first mobile agent-based archi-
tecture with a explicit primary goal to use mobile agents to form a middle-ware
which ties together separate network and host-based intrusion detection systems.
By using a mobile agent platform that allows us to incorporate object-oriented
design techniques, we are able to treat the agent engines as an uniform interface
for agents to access data generated by each type of monitoring system.

Our system architecture realizes the scalability of mobile agent-based ap-
proaches, and addresses flexibility, extensibility, and delay limitations of existing
approaches. Our two examples presented in section 4.5 illustrate how APHIDS
can incorporate both misuse and anomaly approaches by implementing agents
that employ each technique.

As our current work focuses on the distributed correlation implementation,
in the future we would like to investigate enhancement of the detection portion
of the framework. Detection mechanisms are modularized by the trigger agent,
allowing for the investigation of new detection techniques. This abstraction also
allows the framework to incorporate advanced finite state machine-based de-
tection systems such as the Bro system [11] and STAT-based systems [12]. We
intend for APHIDS to become a useful framework for experimenting with new
intrusion detection techniques, while making the advantages of the mobile agent
paradigm available to new implementations.



7 Acknowledgments

This research is supported in part by the Directorate of Telecom Engineering and
Certification of the Department of Industry Canada. We would like to thank Pe-
ter Chau, Os Monkewich and Sergio Gonzalez Valenzuela for fruitful discussions
and for reviewing the drafts of the paper.

References

1. Roesch, M.: Snort – lightweight intrusion detection system for networks. In:
Proceedings of USENIX LISA’99. (1999)

2. Crosbie, M., Spafford, G.: Defending a computer system using autonomous agents.
In: 8th National Information Systems Security Conference. (1996)

3. J S Balasubramaniyan, J.O.G.F., Isacoff, D., Spafford, E., Zamboni, D.: An archi-
tecture for intrusion detection using autonomous agents. Technical Report 98/05,
COAST Laboratory, Purdue University (1998)

4. Wu, Y.S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system
(cids): A framework for accurate and efficient ids. In: Proceedings of the 19th
Annual Computer Security Applications Conference (ACSAC’03). (2003)

5. Asaka, M., Taguchi, A., Goto, S.: The implementation of ida: An intrusion detec-
tion agent system. In: Proceedings of the 11th FIRST Conference. (1999)

6. Faukia, N., Billard, D., Harms, J.: Computer system immunity using mobile agents.
In: HP Openview University Association 8th Annual Workshop. (2001)

7. Faukia, N., Hassas, S., Fenet, S., Albequerque, P.: Combining immune system
and social insect metaphors: A paradimg for intrusion detection and response sys-
tem. In: Proceedings of the 5th International Workshop for Mobile Agents for
Telecommunication Applications. (2003)

8. Duarte de Queiroz, J., Fernando Rust da Costa Carmo, L., Pirmez, L.: Micael:
An autonomous mobile agent system to protect new generation networked appli-
cations. In: 2nd Annual Workshop on Recent Advances in Intrusion Detection.
(1999)

9. Li, C., Song, Q., Zhang, C.: Ma-ids architecture for distributed intrusion detec-
tion using mobile agents. In: Proceedings of the 2nd International Conference on
Information Technology for Application (ICITA 2004). (2004)

10. Kruegel, C., Toth, T.: Sparta – a mobile agent based intrusion detection system.
In: Proceedings of the IFIP Conference on Network Security (I-NetSec). (2001)

11. Paxson, V.: Bro: A system for detecting network intruders in real-time. Computer
Networks 31 (1999) 2435–2463

12. Vigna, G., Kemmerer, R.A.: Netstat: A network-based intrusion detection system.
Journal of Computer Security 7 (1999)


