
EQUIVALENCES OF CLASSIFYING SPACES COMPLETED AT
ODD PRIMES

BOB OLIVER

Abstract. We prove here the Martino-Priddy conjecture for an odd prime p: the p-
completions of the classifying spaces of two groups G and G′ are homotopy equivalent
if and only if there is an isomorphism between their Sylow p-subgroups which preserves
fusion. A second theorem is a description for odd p of the group of homotopy classes
of self homotopy equivalences of the p-completion of BG, in terms of automorphisms
of a Sylow p-subgroup of G which preserve fusion in G. These are both consequences
of a technical algebraic result, which says that for an odd prime p and a finite group
G, all higher derived functors of the inverse limit vanish for a certain functor ZG on
the p-subgroup orbit category of G.

In an earlier paper [BLO1] in collaboration with Carles Broto and Ran Levi, we
reduced certain problems involving equivalences between p-completed classifying spaces
of finite groups to a question of whether certain obstruction groups vanish. The main
technical result of this paper is that these groups do always vanish when p is odd. The
proof of this result depends on the classification theorem for finite simple groups.

Fix a prime p and a finite group G. For any pair of subgroups P,Q ≤ G, let NG(P,Q)
denote the transporter :

NG(P,Q) = {x ∈ G | xPx−1 ≤ Q}.
The p-subgroup orbit category of G is the category Op(G) whose objects are the p-
subgroups of G, and where

MorOp(G)(P,Q) = Q\NG(P,Q) ∼= MapG(G/P,G/Q).

A p-subgroup P ≤ G is called p-centric if Z(P ) is a Sylow p-subgroup of CG(P ), or
equivalently if CG(P ) = Z(P )× C ′G(P ) for some subgroup C ′G(P ) of order prime to p.
Let

ZG : Op(G) −−−−−−→ Ab

denote the functor ZG(P ) = Z(P ) if P is p-centric in G, and ZG(P ) = 0 otherwise.
We refer to [BLO1, §6] for more details on how this is made into a functor.

This paper is centered around the proof of the following theorem.

Theorem A. For any odd prime p and any finite group G,

lim←−
i

Op(G)

(ZG) = 0 for all i ≥ 1.
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Theorem A is proven as Theorem 4.5 below. It was motivated by applications for
studying equivalences between p-completed classifying spaces of finite groups. Let G
and G′ be finite groups, and let S ≤ G and S ′ ≤ G′ be Sylow p-subgroups. An

isomorphism ϕ : S
∼=−−→ S ′ is called fusion preserving if for all P,Q ≤ S and all P

α−−→∼=
Q, α is conjugation by an element of G if and only if ϕ(P )

ϕαϕ−1

−−−→∼= ϕ(Q) is conjugation

by an element of G′.

The Martino-Priddy conjecture states that for any prime p, and any pair G,G′ of
finite groups, BG∧p ' BG′∧p if and only if there is a fusion preserving isomorphism
between Sylow p-subgroups of G and G′. The “only if” part of the conjecture was
proved by Martino and Priddy [MP], and follows from the bijection

Rep(P,G)
def
= Hom(P,G)/ Inn(G)

∼=−−−−−−→ [BP,BG∧p ]

for any p-group P and any finite group G (cf. [BLO1, Proposition 2.1]). Conversely,
by [BLO1, Proposition 6.1], given a fusion preserving isomorphism between Sylow p-
subgroups of G and G′, the obstruction to extending it to a homotopy equivalence
BG∧p ' BG′∧p lies in lim←−

2(ZG). Hence Theorem A implies:

Theorem B (Martino-Priddy conjecture at odd primes). For any odd prime p, and
any pair G and G′ of finite groups with Sylow p-subgroups S ≤ G and S ′ ≤ G′,

BG∧p ' BG′∧p if and only if there is a fusion preserving isomorphism S
∼=−−→ S ′.

We next turn to the question of self equivalences of BG∧p . For any space X, let
Out(X) denote the group of homotopy classes of self homotopy equivalences of X.
For any finite group G, any prime p, and any Sylow p-subgroup S ≤ G, let Autfus(S)
be the group of fusion preserving automorphisms of S, let AutG(S) be the group of
automorphisms induced by conjugation by elements of G (i.e., elements of NG(S)), and
set

Outfus(S) = Autfus(S)/AutG(S).

Theorem A, when combined with [BLO1, Theorem 6.2], gives the following description
of Out(BG∧p ).

Theorem C. For any odd prime p and any finite group G, with Sylow p-subgroup
S ≤ G,

Out(BG∧p ) ∼= Outfus(S).

Theorem A should be a special case of a more general vanishing result, formulated
here as Conjecture 2.2, where orbit categories of groups are replaced by orbit categories
of arbitrary “saturated fusion systems” in the sense of Puig [Pu]. We refer to [BLO2,
§1], and to the summary in Section 2 below, for definitions of saturated fusion systems.
Conjecture 2.2 would, in particular, imply the existence and uniqueness of linking
systems, hence of classifying spaces, associated to an arbitrary saturated fusion system
over a p-group. This has motivated us to state results here, as far as possible, in the
context of abstract saturated fusion systems. It is only at the end that we translate our
partial results to a condition on simple groups, which is then checked in the individual
cases.
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When p = 2, Theorem A is not true, since lim←−
1(ZG) can be nonzero. The simplest

counterexamples occur for G = PSL2(q), when q ≡ ±1 (mod 8). Recently, we have
proved that lim←−

i(ZG) = 0 for all i ≥ 2, when p = 2 and G is an arbitrary finite group.
This means that the Martino-Priddy conjecture does hold for p = 2, but that Theorem
C is not true (as formulated above) in this case. The proof for p = 2 not only requires
the classification theorem for finite simple groups, but also (in its current form) requires
a long, detailed case-by-case check when handling the simple groups of Lie type in odd
characteristic as well as the sporadic groups. For this reason, we have not tried to
incorporate it into this paper, but will write it up separately.

Section 1 contains general material about higher limits over orbit categories of finite
groups, and Section 2 some results about saturated fusion systems and higher limits
over their orbit categories. Concrete criteria for proving the acyclicity of ZF are then
set up in Section 3, where the problem is reduced to a question about “simple” fusion
systems (Proposition 3.8). Also, at the end of Section 3, there is a discussion of what
further results would be necessary to prove Conjecture 2.2 for odd primes. Finally,
in Section 4, we restrict attention to fusion systems of finite groups, and apply the
classification theorem for finite simple groups to finish the proof of Theorem A.

I would like to thank George Glauberman for his encouragement, and his efforts to
prove a result about p-groups (Conjecture 3.9 below) which would have led to a proof
of Conjecture 2.2 for odd p, and in particular to a “classification free” proof of Theorem
A. I also want to point out the importance to this work of Jesper Grodal’s techniques
in [Gr] for computing higher limits of functors on orbit categories. His main theorem,
while not used here directly, was used in many of the computations which led to this
proof. Finally, I thank Carles Broto and Ran Levi, not only for their collaboration in
the papers [BLO1] and [BLO2] which are closely connected to this one, but also for
introducing me to this problem in the first place.

General notation: We list, for easy reference, the following notation which will be
used throughout the paper.

• Sylp(G) denotes the set of Sylow p-subgroups of G

• Op(G) is the maximal normal p-subgroup of G

• Ωn(P ) = 〈g ∈ P | gpn = 1〉 (for a p-group P )

• NG(H,K) = {x ∈ G | xHx−1 ≤ K} (for H,K ≤ G)

• cx denotes conjugation by x (g 7→ xgx−1)

• HomG(H,K) (for H,K ≤ G) is the set of homomorphisms from H to K induced
by conjugation in G

• Rep(H,K) = Inn(K)\Hom(H,K) and RepG(H,K) = Inn(K)\HomG(H,K)

• AutG(H) = HomG(H,H), and OutG(H) = RepG(H,H) = AutG(H)/ Inn(H)

• A functor F : Cop →Ab is called acyclic if lim←−
i(F ) = 0 for all i > 0.
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1. Higher limits over orbit categories of groups

We first collect some tools for computing higher limits of functors over the orbit
category of a finite group G. Very roughly, these reduce to two general techniques. One
is to filter a functor by a sequence of subfunctors, such that each of the subquotients
vanishes except on one conjugacy class of p-subgroups of G. Proposition 1.1 then
gives some tools which are very effective when computing the higher limits of these
subquotients. The other method is to reduce computations to a situation, described in
Proposition 1.3, where the functor extends to a Mackey functor, and hence is acyclic
by a theorem of Jackowski and McClure [JM].

Fix a prime p, a finite group G, and a Z(p)[G]-module M . Let FM be the functor on
Op(G) defined by setting FM(P ) = MP (the fixed submodule), and define

Λ∗(G;M) = lim←−
∗

Op(G)

(FM).

These graded groups were shown in [JMO] to be very effective tools when computing
higher limits over functors on orbit categories. We first summarize the properties of
the Λ∗ which will be needed here.

Proposition 1.1. Fix a prime p. Then the following hold.

(a) For any finite group G and any functor F : Op(G)op −−→ Z(p)-mod which vanishes
except on subgroups conjugate to some given p-subgroup P ≤ G,

lim←−
∗

Op(G)

(F ) ∼= Λ∗(NG(P )/P ;F (P )).

(b) If G is a finite group, H C G is a normal subgroup which acts trivially on the
Z(p)[G]-module M , and p

∣∣|H|, then Λ∗(G;M) = 0.

(c) If G is a finite group, and H C G is a normal subgroup of order prime to p which
acts trivially on the Z(p)[G]-module M , then

Λ∗(G;M) ∼= Λ∗(G/H;M).

(d) If G is a finite group, and Op(G) 6= 1 (if G contains a nontrivial normal p-
subgroup), then Λ∗(G;M) = 0 for all Z(p)[G]-modules M .

Proof. See [JMO, Propositions 5.4, 5.5, & 6.1].

The idea now is to filter an arbitrary functor F : Op(G) → Z(p)-mod in such a
way that all quotient functors vanish except on one conjugacy class, and hence are
described via Proposition 1.1(a).

We next look for some conditions on a pair of finite groups H ≤ G, and a functor F
on Op(G), which reduce the computation of lim←−

∗(F ) to one of higher limits of a functor
over Op(N(H)/H). In general, for any small categories C and D and any functors

C Φ−−−−−−→ D F−−−−−−→ Ab,

there is an induced homomorphism

lim←−
D

∗(F )
Φ∗−−−−−−→ lim←−

C

∗(F ◦ Φ)
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defined as follows. Let I∗ be an injective resolution of F (in the category of functors

D → Ab), and let Î∗ be an injective resolution of F ◦ Φ. Since I∗ ◦ Φ is a resolution

of F ◦ Φ (though not injective), there is a chain homomorphism I∗ ◦ Φ
ψ∗−−→ Î∗ which

extends the identity on F ◦ Φ, and which is unique up to chain homotopy. Then Φ∗ is
the homology of the composite homomorphism

lim←−
D

(I∗) −−−−−−→ lim←−
C

(I∗ ◦ Φ)
lim(ψ∗)−−−−−−→ lim←−

C
(Î∗),

where the first map is induced by the universal property of inverse limits over C.

Lemma 1.2. Fix a finite group G and a p-subgroup Q ≤ G. Then there is a well
defined functor

Φ = ΦG
Q : Op(NG(Q)/Q) −−−−−−→ Op(G)

such that Φ(P/Q) = P for all P/Q ≤ NG(Q)/Q. Let T be the set of all p-subgroups
P ≤ G with the property

Q C P , and Q C xPx−1 for x ∈ G implies x ∈ NG(Q). (∗)

Then for any functor F : Op(G)op → Z(p)-mod which vanishes except on subgroups
G-conjugate to elements of T , the induced homomorphism

lim←−
∗

Op(G)

(F )
Φ∗−−−−−−→∼= lim←−

∗

Op(NG(Q)/Q)

(F ◦ Φ) (1)

is an isomorphism.

Proof. Clearly, Φ is well defined on objects. To see that it is well defined on morphisms,
recall first that

MorOp(G)(P, P
′) = P ′\NG(P, P ′),

where NG(P, P ′) is the set of all x ∈ G such that xPx−1 ≤ P ′. Hence for any pair of
objects P/Q and P ′/Q in Op(NG(Q)/Q),

MorOp(NG(Q)/Q)(P/Q, P
′/Q) = (P ′/Q)\NN(Q)/Q(P/Q, P ′/Q) ∼= P ′\NN(Q)(P, P

′)

⊆ P ′\NG(P, P ′) = MorOp(G)(P, P
′);

and Φ is defined on morphism sets to be this inclusion.

Composition with Φ is natural in F and preserves short exact sequences of functors.
Hence if F ′ ⊆ F is a pair of functors from Op(G) to Z(p)-mod, and the lemma holds
for F ′ and for F/F ′, then it also holds for F by the 5-lemma. Hence it suffices to
prove that (1) is an isomorphism when F vanishes except on the G-conjugacy class of
one subgroup P ∈ T . When P = Q, then (1) is precisely the isomorphism lim←−

∗(F ) ∼=
Λ∗(N(Q)/Q;F (Q)) of Proposition 1.1(a).

Now let P ∈ T be arbitrary. By condition (∗), Q C P , NG(P ) ≤ NG(Q), and F ◦ Φ
vanishes except on the Op(NG(Q)/Q)-isomorphism class of P/Q. Let

Ψ = Φ
N(Q)/Q
P/Q : Op(NG(P )/P ) −−−−−−→ Op(NG(Q)/Q)
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be the functor Ψ(R/P ) = R/Q for p-subgroups R ≤ NG(P ) ≤ NG(Q) containing P .
Then the following square commutes

lim←−
∗

Op(G)

(F )
Φ∗ → lim←−

∗

Op(N(Q)/Q)

(F ◦ Φ)

Λ∗(NG(P )/P ;F (P ))

(Φ◦Ψ)∗ ∼=
↓

== Λ∗(NG(P )/P ;F (P )) ,

Ψ∗ ∼=
↓

and the vertical maps are isomorphisms by Proposition 1.1(a) (see the proof of [JMO,
Lemma 5.4] for the precise description of the isomorphisms). This shows that Φ∗ is an
isomorphism.

The next proposition describes a different condition which implies the acyclicity of
a functor on the orbit category of a finite group.

Proposition 1.3. Fix a finite group G, a prime p, and a Z(p)[G]-module M , and let

H0M : Op(G)op −−−−−−→ Z(p)-mod,

be the functor defined by setting

H0M(P ) = H0(P ;M) = MP .

Let

F : Op(G)op −−−→ Z(p)-mod

be any subfunctor of H0M (thus F (P ) ≤ MP for all P ) which satisfies the following
“relative norm property”: for each pair of p-subgroups P ≤ Q ≤ G,

NQ
P

(
F (P )

) def
=
{ ∑

gP∈Q/P
gx
∣∣∣x ∈ F (P ) ≤MP

}
⊆ F (Q). (∗)

Then F is acyclic: lim←−
i(F ) = 0 for all i > 0.

Proof. The relative norms NQ
P make F into a proto-Mackey functor in the sense of

[JM], and hence it is acyclic by [JM, Proposition 5.14].

The following application of Proposition 1.3 plays an important role in Section 3. If
G is a finite group and S ∈ Sylp(G), then OS(G) ⊆ Op(G) denotes the full subcate-
gory whose objects are the subgroups of S (the inclusion is clearly an equivalence of
categories). As usual, a subgroup T ≤ S is called strongly closed in S with respect to
G if no element of T is G-conjugate to any element of SrT .

Recall that for any p-group P and any n ≥ 1, Ωn(P ) denotes the subgroup generated
by all x ∈ P such that xp

n
= 1.

Proposition 1.4. Fix a finite group G, a Sylow subgroup S ∈ Sylp(G), and a subgroup
T ≤ S which is strongly closed in S with respect to G. Let M be a finite Z(p)[G]-module,
and let

F : OS(G)op −−−−−−→ Ab
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be a subfunctor of H0M (in particular, F (P ) ≤ MP for all P ), which satisfies the
relative norm property:

NQ
P

(
F (P )

)
≤ F (Q) (∗)

for each pair of subgroups P ≤ Q ≤ S. Let F1 ⊆ F be the subfunctor

F1(P ) =

{
F (P ) if P ∩ T = 1

0 otherwise.

Assume NZ(T )·Ω1(M) = 0. Then lim←−
i

OS(G)

(F1) = 0 for all i ≥ 1.

Proof. Note first that F1 is a functor: if P, P ′ ≤ S are G-conjugate, then P ∩ T = 1 if
and only if P ′ ∩ T = 1 since T is strongly closed.

Assume lim←−
n(F1) 6= 0 for some n ≥ 1. We must prove that NZ(T )·Ω1(M) 6= 0. This

will be shown by induction on n.

Let ΩkF ⊆ F be the pk-torsion subfunctor in F ; i.e., (ΩkF )(P ) = Ωk(F (P )) for each
P . Then for some k, lim←−

n(ΩkF/Ωk−1F ) 6= 0. This functor ΩkF/Ωk−1F satisfies all of
the hypotheses of the proposition with respect to the Fp[G]-module Ωk(M)/Ωk−1(M) ⊆
Ω1(M). It thus suffices to prove the proposition when M = Ω1(M); i.e., when pM = 0.

Without loss of generality, we can assume M = F (1). Define a functor F ⊆ F by
setting

F (P ) = F (P ) ∩ (NP∩T ·M)

for all P ≤ S. We claim that F still satisfies condition (∗) above. To see this, fix
subgroups P ≤ Q ≤ S, set P ′ = P ∩ T C P and Q′ = Q ∩ T C Q, and set Q′′ = PQ′.
Then P ′ = P ∩Q′, so coset representatives for Q′/P ′ are also representatives for Q′′/P .
Hence

NQ
P

(
F (P )

)
= NQ

P

(
F (P ) ∩NP ′·M

)
⊆ NQ

P (F (P )) ∩NQ′

P ′(NP ′·M)

⊆ F (Q) ∩ (NQ′·M) = F (Q).

Thus, upon replacing F by F (without changing F1), we can assume that F (P ) =
NP ·M for all P ≤ T .

By Proposition 1.3, lim←−
i(F ) = 0 for all i > 0. Hence lim←−

n−1(F/F1) 6= 0, since
lim←−

n(F1) 6= 0 by assumption. For each subgroup Q ≤ T , let FQ be the functor on
OS(G) defined by

FQ(P ) =

{
F (P ) if P ∩ T is G-conjugate to Q

0 otherwise.

There is an obvious filtration of F/F1 whose quotients are all isomorphic to FQ for
various 1 6= Q ≤ T . Hence there is some Q ≤ T such that

lim←−
n−1

OS(G)

(FQ) 6= 0. (1)

Since we can replace Q by any other subgroup of S in its G-conjugacy class, we can
assume that NS(Q) ∈ Sylp(NG(Q)).
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If n = 1, then (1) implies that FQ(S) 6= 0. Hence S ∩ T = Q, so Q = T , and
0 6= FT (S) ⊆ FT (T ) = NT ·M . In particular, NZ(T )·M 6= 0.

Now assume n > 1. Set G′ = NG(Q)/Q, S ′ = NS(Q)/Q ∈ Sylp(G
′), and T ′ =

NT (Q)/Q. Then T ′ is strongly closed in S ′ with respect to G′: no element of NT (Q) is
NG(Q)-conjugate to any element ofNS(Q)rNT (Q) since no element of T is G-conjugate
to any element of SrT . Define functors

F ′, F ′1 : OS′(G′) −−−−−−→ Ab

by setting

F ′(P/Q) = F (P ) and F ′1(P/Q) = FQ(P ).

Thus F ′1(P/Q) = F ′(P/Q) whenever P ∩T = Q, equivalently whenever (P/Q)∩T ′ = 1;
and F ′1(P/Q) = 0 otherwise.

Consider the set

T0 = {P ≤ S |P ∩ T = Q}.
If FQ(P ) 6= 0 (and P ≤ S), then P ∩ T is G-conjugate to Q, P is G-conjugate to some
P ′ such that Q ≤ P ′ ≤ NS(Q) (since NS(Q) ∈ Sylp(NG(Q))), P ′ ∩ T is G-conjugate
to P ∩ T since T is strongly closed, and thus P ′ ∩ T = Q and P ′ ∈ T0. By a similar
argument, if P ∈ T0 and Q C xPx−1, then (yx)P (yx)−1 ≤ NS(Q) for some y ∈ NG(Q),
(yx)P (yx)−1 ∩ T = Q, and so x ∈ NG(Q). This shows that T0 is contained in the set
T defined in Lemma 1.2, and thus that each subgroup of G for which FQ(P ) 6= 0 is
G-conjugate to a subgroup in T . Hence by Lemma 1.2,

lim←−
∗

OS′(G′)
(F ′1) ∼= lim←−

∗

OS(G)

(FQ).

In particular, lim←−
n−1(F ′1) 6= 0 by (1). All of the conditions of the proposition are

satisfied (with G, S, T , F , andM replaced by G′, S ′, T ′, F ′, andM ′ def
= F (Q) = NQ·M).

So by the induction hypothesis, if we set Z ′/Q = Z(T ′), then

NZ′·M = NZ(T ′)·
(
NQ·M

)
= NZ(T ′)·M ′ 6= 0,

and hence NZ(T )·M 6= 0 since Z(T ) ≤ Z ′.

2. Higher limits over orbit categories of fusion systems

We first briefly recall some definitions. We refer to [BLO2, §1] or [Pu] for more
details.

A fusion system over a finite p-group S is a category F whose objects are the
subgroups of S, and whose morphisms satisfy the following conditions:

• HomS(P,Q) ⊆ MorF (P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S; and

• each morphism in F is the composite of an F -isomorphism followed by an inclusion.

To emphasize that the morphisms in F are all homomorphisms of groups, we write
HomF (P,Q) = MorF(P,Q) for the morphism sets. Two subgroups of F are called
F-conjugate if they are isomorphic in F . A subgroup P ≤ S is called fully centralized



EQUIVALENCES OF CLASSIFYING SPACES COMPLETED AT ODD PRIMES 9

in F (fully normalized in F) if |CS(P )| ≥ |CS(P ′)| (|NS(P )| ≥ |NS(P ′)|) for all P ′ in
the F -conjugacy class of P . The fusion system F is saturated if

(I) for each fully normalized subgroup P ≤ S, P is fully centralized and AutS(P ) ∈
Sylp(AutF(P )); and

(II) for each ϕ ∈ HomF(P, S) whose image is fully centralized in F , if we set

Nϕ = {x ∈ NS(P ) |ϕcxϕ−1 ∈ AutS(ϕ(P ))},
then ϕ extends to a morphism ϕ ∈ HomF(Nϕ, S).

If G is a finite group and S ∈ Sylp(G), then we let FS(G) denote the category whose
objects are the subgroups of S, and where

MorFS(G)(P,Q) = HomG(P,Q) ∼= NG(P,Q)/CG(P ).

It is not hard to see [BLO2, Proposition 1.3] that FS(G) is a saturated fusion system
over S, and that a subgroup P ≤ S is fully centralized (fully normalized) if and only
if CS(P ) ∈ Sylp(CG(P )) (NS(P ) ∈ Sylp(NG(P ))).

By analogy with the orbit category of a finite group, when F is a saturated fusion
system over a p-group S, we let O(F) (the orbit category of F) be the category with
the same objects, and with morphism sets

MorO(F)(P,Q) = RepF(P,Q)
def
= Inn(Q)\HomF(P,Q).

If F = FS(G) for some finite group G, then O(F) is a quotient category of OS(G) (the
full subcategory of Op(G) whose objects are the subgroups of S), but its morphism
sets are much smaller in general. More precisely, if P and Q are two p-subgroups of G,
then

MorOp(G)(P,Q) ∼= Q\NG(P,Q),

while
MorO(Fp(G))(P,Q) ∼= Q\NG(P,Q)/CG(P ).

Thus, there is a natural projection functor Op(G)
Φ−−→ O(Fp(G)) which is the identity

on objects and a surjection on all morphism sets, but these maps of morphism sets are
very far in general from being bijections. However, the next lemma shows that if one
restricts to p-centric subgroups of G, then p-local functors over these two categories
have the same higher limits.

If F is a saturated fusion system over S, then a subgroup P ≤ S is F-centric if
CS(P ′) = Z(P ′) for all P ′ F -conjugate to P . If F = FS(G), then a subgroup is F -
centric if and only if it is p-centric in G (see [BLO1, Lemma A.5]). Let F c ⊆ F and
O(F c) ⊆ O(F) be the full subcategories whose objects are the F -centric subgroups of
S. Similarly, for any finite group G, and any S ∈ Sylp(G), we let Ocp(G) ⊆ Op(G) and
OcS(G) ⊆ OS(G) be the full subcategories whose objects are the p-centric subgroups of
G, and those contained in S, respectively.

Lemma 2.1. Fix a prime p and a finite group G. Let

F : O(F cp(G))op −−−−−−→ Z(p)-mod

be any functor, and let
Φ: Ocp(G) −−−−−−→ O(F c

p(G))
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be the projection functor. Define

F̂ : Op(G)op −−−−−−→ Z(p)-mod

by setting F̂ |Ocp(G) = F ◦ Φ, and F̂ (P ) = 0 if P is not p-centric in G. Then

lim←−
∗

O(Fcp(G))

(F ) ∼= lim←−
∗

Ocp(G)

(F ◦ Φ) ∼= lim←−
∗

Op(G)

(F̂ ). (1)

Proof. For any pair of p-centric subgroups P,Q ≤ G, write CG(P ) = Z(P ) × C ′G(P )
where C ′G(P ) has order prime to p. For any x ∈ NG(P,Q) and a ∈ Z(P ), xa =
(xax−1)x ∈ Qx, since xax−1 ∈ Q by definition of the transporter. Thus

MorO(Fcp(G))(P,Q) = Q\NG(P,Q)/CG(P )

∼= Q\NG(P,Q)/C ′G(P ) ∼= MorOcp(G)(P,Q)/C ′G(P ).

Since C ′G(P ) has order prime to p, the first isomorphism in (1) now follows as an
immediate consequence of [BLO1, Lemma 1.3]. The second isomorphism holds since

F̂ vanishes on all p-subgroups which are not p-centric, and since every p-subgroup of
G which contains a p-centric subgroup is also p-centric.

For any saturated fusion system F over a finite p-group S, let

ZF : O(F c)op −−−−−−→ Ab

denote the functor ZF(P ) = Z(P ) for all F -centric subgroups P ≤ S. If ϕ ∈
HomF (P,Q), then ZF(ϕ) is the composite

Z(Q) ≤ Z(ϕ(P ))
ϕ−1

−−−−−−→ Z(P ).

If F = FS(G) for some finite group G with Sylow p-subgroup S, then ZG|OS(G) is the
composite of ZF with the projection between orbit categories. So Lemma 2.1 implies
as a special case that

lim←−
∗

Op(G)

(ZG) ∼= lim←−
∗

O(Fc)
(ZF).

What we would like to prove is the following conjecture, of which Theorem A is just
the special case where F = FS(G) and p is odd.

Conjecture 2.2. Fix a prime p, and let F be a saturated fusion system over a p-group
S. Then

lim←−
i

O(Fc)
(ZF) = 0

if p is odd and i ≥ 1, or if p = 2 and i ≥ 2.

Conjecture 2.2 would imply that each saturated fusion system over a p-group S has
a unique associated “linking system”, in the sense of [BLO2, §1], and hence a unique
associated classifying space (see [BLO2, Proposition 3.1]). The vanishing of lim←−

1(ZF )
would also imply (when p is odd) a description of the group of homotopy classes of
self equivalences of the classifying space, similar to the description of Out(BG∧p ) in
Theorem C.

Throughout this section and the next, we will be developping tools for computing
higher limits of functors on centric orbit categories of saturated fusion systems; in
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particular, those with connections to Conjecture 2.2. Only in the last section do we
again return to the special case of fusion systems of finite groups, and finish the proof
of Theorem A.

If F is any saturated fusion system over a p-group S, and Q ≤ S is fully normalized
in F , then NF(Q) is defined to be the fusion system over NS(Q) whose morphisms are
defined by the formula

HomNF (Q)(P, P
′) =

{
α|P

∣∣α ∈ HomF (PQ, P ′Q), α(P ) ≤ P ′, α(Q) = Q
}
.

By [BLO2, Proposition A.6], this is a saturated fusion system over NS(Q). We also let
O≥Q(NF(Q)) denote the full subcategory of the orbit category of NF(Q) whose objects
are the subgroups which contain Q.

Lemma 2.3. Fix a saturated fusion system F over a p-group S, and a fully normalized
F-centric subgroup Q ≤ S. Consider the functor

Ψ = ΨFQ : O≥Q(NF (Q)) −−−−−−→ OOutS(Q)(OutF(Q))

defined by setting

Ψ(P ) = OutP (Q) and Ψ
(
P

α−−−→ P ′
)

= [α|Q].

Then Ψ is an isomorphism of categories. Hence there is a functor

Φ = ΦFQ : Op(OutF(Q)) −−−−−−→ O(F c),

unique up to natural isomorphism, whose restriction to OOutS(Q)(OutF(Q)) is equal to
Φ−1.

Proof. Write Γ = OutF (Q) and S ′ = OutS(Q) for short. Since Q is fully normalized in
F , S ′ is a Sylow p-subgroup of Γ (condition (I) in the definition of a saturated fusion
system), and so the inclusion OS′(Γ) ⊆ Op(Γ) is an equivalence of categories.

Now, S ′ ∼= NS(Q)/Q since Q is F -centric in S. So Ψ defines a bijection between
objects of O≥Q(NF(Q)) and objects of OS′(Γ), sending P to OutP (Q) ∼= P/Q.

Fix subgroups P, P ′ ≤ NS(Q) containing Q, and consider the function

ΨP,P ′ : RepNF (Q)(P, P
′) = MorO(NF (Q))(P, P

′) −−−−−−→ MorOp(Γ)(OutP (Q),OutP ′(Q))

which sends the class [α], for α ∈ HomNF (Q)(P, P
′), to the class of [α|Q] ∈ OutF(Q) = Γ.

For any such α, the following square commutes

P
α → P ′

P

cg↓
α → P ′

cα(g)↓

for all g ∈ P , so α lies in the transporter NΓ(OutP (Q),OutP ′(Q)), and the map ΨP,P ′

is well defined. If β ∈ AutF(Q) is such that conjugation by [β] ∈ Γ = OutF(Q)
sends OutP (Q) into OutP ′(Q), then βcgβ

−1 ∈ AutP ′(Q) for all g ∈ P , so β extends to
some α ∈ HomF(P, P ′) by condition (II) in the definition of a saturated fusion system,
and ΨP,P ′ sends [α] to [β]. Thus ΨP,P ′ is onto. If α1, α2 ∈ HomNF (Q)(P, P

′) are such
that ΨP,P ′([α1]) = ΨP,P ′([α2]) in Op(Γ), then α1|Q = cg ◦ α2|Q for some g ∈ Q, hence
α1 = cg ◦ α2 ◦ cz for some z ∈ Z(Q) by [BLO2, Proposition A.8], and so [α1] = [α2] in
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RepF (P, P ′). Thus, ΨP,P ′ is a bijection for each pair of objects P, P ′, and this finishes
the proof that Ψ is an isomorphism of categories.

The last statement now follows by letting Φ be the composite of a retraction of
Op(Γ) onto OS′(Γ), followed by Ψ−1, followed by the inclusion of O≥Q(NF (Q)) into
O(F c).

The next proposition describes how higher limits over O(F c) can be reduced in
certain cases to higher limits over the orbit category of OutF(Q) for some subgroup Q.
Note its similarity with Lemma 1.2, in both the statement and the proof.

By analogy with the usual definition for subgroups of finite groups, for any saturated
fusion system F over a p-group S, a subgroup P ≤ S is called weakly F-closed (or
weakly F -closed in S) if P is not F -conjugate to any other subgroup of S.

Proposition 2.4. Fix a saturated fusion system F over a p-group S and a fully nor-
malized F-centric subgroup Q ≤ S, and let

Φ = ΦFQ : Op(OutF(Q)) −−−−−−→ O(F c)

be the functor of Lemma 2.3. Let T be the set of all subgroups P ≤ S such that

Q C P , and Q C α(P ) for α ∈ HomF(P, S) implies α(Q) = Q. (∗)

Then for any functor F : O(F c)op −−−→ Z(p)-mod which vanishes except on subgroups
F-conjugate to elements of T , the induced homomorphism

lim←−
∗

O(Fc)
(F )

Φ∗−−−−−−−→ lim←−
∗

Op(OutF (Q))

(F ◦ Φ) (1)

is an isomorphism. In particular, if Q is weakly F-closed in S, then (1) holds for any
functor F which vanishes except on subgroups which contain Q.

Proof. Composition with Φ is natural in F and preserves short exact sequences of
functors. If F ′ ⊆ F is a pair of functors from O(F c) to Z(p)-mod, and the lemma holds
for F ′ and for F/F ′, then it also holds for F by the 5-lemma. Hence it suffices to prove
that (1) is an isomorphism when F vanishes except on the F -conjugacy class of one
subgroup P ∈ T .

Fix P ∈ T , and set P = OutP (Q) ≤ OutF(Q). By condition (∗), Q C P (so P ∼=
P/Q), and F ◦Φ vanishes except on the Op(OutF(Q))-isomorphism class of OutP (Q) ∼=
P/Q. Also, by (∗) again,

OutF(P ) ∼= OutNF (Q)(P ),

and

OutNF (Q)(P ) = AutOp(NF (Q))(P ) ∼= AutOp(OutF (Q))(P ) = NOutF (Q)(P )/P

by Lemma 2.3. Let

Ψ = Φ
OutF (Q)
OutP (Q) : Op(OutF(P )) −−−−−−→ Op(OutF(Q))
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be the functor Ψ(R/P ) = R/Q for p-subgroups R ≤ NG(P ) ≤ NG(Q) containing P .
Then the following square commutes

lim←−
∗

O(F)

(F )
Φ∗ → lim←−

∗

Op(OutF (Q))

(F ◦ Φ)

Λ∗(OutF(P );F (P ))

(Φ◦Ψ)∗ ∼=
↓ ∼=→ Λ∗(NOutF (Q)(P )/P ;F (P )) ,

Ψ∗ ∼=
↓

and the vertical maps are isomorphisms by [BLO2, Proposition 3.2] (and its proof) and
Proposition 1.1(a). It follows that Φ∗ is an isomorphism.

The last statement follows since if Q is weakly F -closed in S, then T = {P ≤ S |P ≥
Q}: every subgroup which contains Q satisfies (∗).

The following lemma describes how quotient fusion systems are obtained by dividing
out by weakly F -closed subgroups.

Lemma 2.5. Let F be a saturated fusion system over a p-group S, and let Q C S be
a weakly F-closed subgroup. Let F/Q be the fusion system over S/Q defined by setting

HomF/Q(P/Q, P ′/Q) = {ϕ/Q |ϕ ∈ HomF(P, P ′)}
for all P, P ′ ≤ S which contain Q. Then F/Q is saturated. Also, for any P/Q ≤ S/Q,
P/Q is fully normalized in F/Q if and only if P is fully normalized in F , while P is
fully centralized in F whenever P/Q is fully centralized in F/Q.

Proof. For each P ≤ S which contains Q, set

KP = Ker[AutF(P ) −−� AutF/Q(P/Q)].

and
K0
P = Ker[AutS(P ) −−� AutS/Q(P/Q)].

Then

|CS/Q(P/Q)| = |CS(P )|·|K0
P |
/
|Q| and |NS/Q(P/Q)| = |NS(P )|

/
|Q|. (1)

By the second formula, P/Q is fully normalized in F/Q if and only if P is fully
normalized in F .

Assume P/Q is fully normalized in F/Q. Then P is fully normalized in F , so by
condition (I) in the definition of a saturated fusion system applied to F , P is fully
centralized in F and AutS(P ) ∈ Sylp(AutF(P )). This last condition implies that

K0
P ∈ Sylp(KP ) and AutS/Q(P/Q) ∈ Sylp(AutF/Q(P/Q)).

Thus |CS(P )| and |K0
P | both take the largest possible values among subgroups in the

F -conjugacy class of P , and hence P/Q is fully centralized by (1). This finishes the
proof that condition (I) holds for F/Q. It also shows that if P/Q is fully centralized
in F/Q, then |CS(P )| and |K0

P | must both take the largest possible values among
subgroups in the F -conjugacy class of P , and in particular P is fully centralized in F .

To prove condition (II), fix a morphism ϕ/Q ∈ HomF/Q(P/Q, S/Q) such that
ϕ(P )/Q is fully centralized in F/Q, and set

Ñϕ = {g ∈ NS(P ) |ϕcgϕ−1 ∈ Kϕ(P )·AutS(ϕ(P ))}.
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Then

Ñϕ/Q = Nϕ/Q
def
=
{
gQ ∈ NS(P )/Q

∣∣ (ϕcgϕ−1)/Q ∈ AutS/Q(ϕ(P )/Q)
}
,

and we must show that ϕ/Q extends to Ñϕ/Q. Set P ′ = ϕ(P ) for short; P ′ is fully
centralized in F since P ′/Q is fully centralized in F/Q. Since

ϕ·AutÑϕ(P )·ϕ−1 ≤ KP ′·AutS(P ′),

where KP ′ C AutF(P ′), AutS(P ′) ∈ Sylp(AutF(P ′)), and the left hand side is a p-
group, there is ψ ∈ KP ′ such that

(ψϕ)·AutÑϕ(P )·(ψϕ)−1 ≤ AutS(P ′).

So by condition (II) for the saturated fusion system F , ψϕ extends to a homomorphism

ϕ ∈ HomF(Ñϕ, S), and ϕ/Q is an extension of ϕ/Q to Nϕ/Q.

3. Reduction to simple fusion systems

In this section, we establish a sufficient condition for proving the acyclicity of ZF : a
criterion which in the case F = FS(G) will depend only on the simple components in
the decomposition series of the finite group G.

Recall that for any p-group P and any n ≥ 1, Ωn(P ) denotes the subgroup of P
generated by pn-torsion elements.

If H and K are two subgroups of a group G (usually normal subgroups) and n ≥
1, then we write [H,K;n] for the n-fold iterated commutator: [H,K; 1] = [H,K],
[H,K; 2] = [[H,K], K], and [H,K;n+1] = [[H,K;n], K].

Definition 3.1. For any p-group S, X(S) denotes the largest subgroup of S for which
there is a sequence

1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = X(S) ≤ S

of subgroups, all normal in S, such that

[Ω1(CS(Qi−1)), Qi; p−1] = 1 (1)

for each i = 1, . . . , n.

It is easy to see that there always is such a largest subgroup. If

1 = Q0 ≤ Q1 ≤ · · · ≤ Qn and 1 = Q′0 ≤ Q′1 ≤ · · · ≤ Q′m

are two sequences of normal subgroups of S which satisfy condition (1) in Definition
3.1, then the sequence

1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = Qn·Q′0 ≤ Qn·Q′1 ≤ · · · ≤ Qn·Q′n
also satisfies the same condition.

When p = 2, X(S) = CS(Ω1(S)) for any finite 2-group S. In particular, X(S) = Z(S)
if S is generated by elements of order 2. So these subgroups are not very interesting
in that case.

We first note some elementary properties of these subgroups X(S):
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Lemma 3.2. If p is odd and S is a p-group, then X(S) ≥ A for every normal abelian
subgroup A C S. In particular, X(S) is centric in S.

Proof. If A C S is abelian, then [S,A; p−1] ≤ [[S,A], A] = 1, and so A ≤ X(S) by
definition.

Now let A be maximal among the normal abelian subgroups of S. If CS(A) � A,
then A·CS(A)/A is a nontrivial normal subgroup of S/A, and hence contains an element
xA ∈ Z(S/A) of order p. But then 〈A, x〉 is a larger normal abelian subgroup of S,
which is a contradiction. Thus A is centric in S, and in particular X(S) ≥ A is centric
in S.

The following lemma is useful when proving that certain subgroups of S are contained
in X(S).

Lemma 3.3. Fix an odd prime p and a p-group S. Let Q C S be any normal subgroup
such that

[Ω1(Z(X(S))), Q; p−1] = 1. (1)

Then X(S) ≥ Q.

Proof. Set X = X(S) for short. By definition, there is a sequence

1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = X

of subgroups normal in S, such that [Ω1(CS(Qi−1)), Qi; p−1] = 1 for each i. If Q C S
is normal and satisfies condition (1), then since Z(X) = CS(X) by Lemma 3.2, we can
set Qn+1 = Q·Qn, and Q ≤ Qn+1 ≤ X by definition.

The purpose of these subgroups X(S) is to provide a tool for applying Proposition
1.4, when trying to show that the functors ZF are acyclic. These are most useful when
applied to a filtration of these functors, described as follows.

For any saturated fusion system F over a p-group S, a subgroup P ≤ S is strongly
F-closed in S if no element of P is F -conjugate to any element of SrP . If T ≤ S is
strongly F -closed subgroup in S, let

ZTF : O(F c)op −−−−−−→ Z(p)-mod

be the subfunctor of ZF defined by setting ZTF (P ) = Z(P ) ∩ T .

When F is a saturated fusion system over a p-group S, and T C S is a strongly F -
closed subgroup, then a fully F -normalized subgroup P ≤ T will be called F|T -radical
if

Op(OutF(P )) ∩ OutT (P ) = 1.

Lemma 3.4. Fix an odd prime p, a saturated fusion system F over a p-group S, and
a pair T0 C T C S of subgroups strongly F-closed in S. Write X(T/T0) = X/T0 for
short. For any fully F-normalized subgroup Q ≤ T , define

ZQ : O(F c)op −−−−−−→ Z(p)-mod
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by setting, for F-centric P ≤ S,

ZQ(P ) =

{(
ZTF
/
ZT0
F
)
(P ) ∼= Z(P )∩T

Z(P )∩T0
if P ∩ T is F -conjugate to Q

0 otherwise.

Assume that Q � X, or that Q is not centric in T , or that Q is not F|T -radical. Then
lim←−
∗

O(Fc)
(ZQ) = 0.

Proof. Since Q is fully F -normalized, for any Q′ ≤ S which is F -conjugate to Q, there
is some ϕ ∈ HomF(NS(Q′), NS(Q)) such that ϕ(Q′) = Q [BLO2, Proposition A.2(c)].
Hence each subgroup P ′ ≤ S for which ZQ(P ′) 6= 0 is F -conjugate to a subgroup P
such that P ∩ T = Q.

Assume first Q � T0. Then for each F -centric subgroup P such that P ∩ T = Q,
NPT0(P )/P 6= 1 and acts trivially on ZQ(P ), and so Λ∗(OutF(P );ZQ(P )) = 0 by
Proposition 1.1(b). Thus lim←−

∗(ZQ) = 0 in this case.

If Q is not centric in T , then for each F -centric subgroup P such that P ∩ T = Q,
NP ·CT (Q)(P )/P 6= 1 and acts trivially on ZQ(P ), and so Λ∗(OutF(P );ZQ(P )) = 0 by
Proposition 1.1(b). Again, lim←−

∗(ZQ) = 0 in this case.

Now assume Q is centric in T , but not F|T -radical. Set

Q̂ = {x ∈ NT (Q) | cx ∈ Op(OutF (Q))};

Q̂/Q 6= 1 by assumption. Let P ≤ S be a F -centric subgroup such that P ∩ T = Q.
Each element of AutF(P ) leaves Q invariant (since T C S), so we have a restriction
map

ρ : AutF(P ) −−−−−−→ AutF(Q)× Aut(P/Q),

and Ker(ρ) is a p-group by [Go, Corollary 5.3.3]. Hence ρ−1(Op(AutF(Q)) × 1) is a

normal p-subgroup of AutF(P ). Also, P normalizes Q̂, since it normalizes Q, so

1 6= Q0/Q
def
= (Q̂/Q)P

since Q̂/Q 6= 1, and Q0 ≤ NS(P ) since [Q0, P ] ≤ Q by definition. For any x ∈ Q0rQ ⊆
N(P )rP , cx ∈ ρ−1(Op(AutF(Q))× 1), its class in OutF(P ) is nontrivial since P is F -
centric and x /∈ P , and hence Op(OutF(P )) 6= 1. Thus Λ∗(OutF (P );ZQ(P )) = 0 by
Proposition 1.1(b). Since this holds for all F -centric P with P ∩ T = Q, lim←−

∗(ZQ) = 0
in this case.

It remains to consider the case where Q ≥ T0, Q is centric in T , and Q � X. This
will be done in three steps. In the first two steps, we show that lim←−

∗(ZX) is isomorphic
to the higher limits of a certain functor over an orbit category of a group. Only in Step
3 do we apply the assumption that Q � X.

Step 1: In this case, we set

Q̂ = Q·CS(Q).

Then Q̂ is F -centric, and Q̂ ∩ T = Q does not contain X. Also, Q̂ is fully normalized

in F , since if Q′ is F -conjugate to Q̂ and fully normalized in F , then there is some
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α ∈ HomF(NS(Q̂), NS(Q′)) with α(Q̂) = Q′ (see [BLO2, Proposition A.2(c)]). Hence
α(Q) = Q′ ∩ T C NS(Q′), and

|NS(Q̂)| = |NS(Q)| ≥ |NS(α(Q))| ≥ |NS(Q′)|
since Q is fully normalized.

Let ẐQ be the quotient functor of ZQ where

ẐQ(P ) =

{
ZQ(P ) if P contains a subgroup F -conjugate to Q̂

0 otherwise.

If ẐQ(P ) 6= ZQ(P ) (i.e., if ẐQ(P ) = 0 and ZQ(P ) 6= 0), then up to conjugacy, P is

F -centric and P ∩ T = Q, but P � Q̂. Then NPQ̂(P )/P is a nontrivial p-subgroup

of OutF(P ) which acts trivially on ZQ(P ), so Λ∗(OutF(P );ZQ(P )) = 0 in this case.
Thus

lim←−
∗

O(Fc)
(ẐQ) ∼= lim←−

∗

O(Fc)
(ZQ). (1)

Step 2: Set

Γ = OutF(Q̂), S ′ = OutS(Q̂) ∈ Sylp(Γ), and T ′ = OutT (Q̂)

for short. Using the isomorphism

O≥Q̂(NF(Q̂))
Ψ−−−−−−−→∼=

OS′(Γ)

of Lemma 2.3, we see that T ′ = Ψ(TQ̂) is strongly closed in S ′ = Ψ(S) with respect

to Γ, since no element of T Q̂ can be NF(Q)-conjugate to any element of SrT Q̂.

By definition, each subgroup on which ẐQ is nonvanishing is F -conjugate to some

P ≥ Q̂ such that P∩T = Q. In particular, Q C P since T C S, and so Q̂ = Q·CS(Q) C
P . If P ′ is any subgroup F -conjugate to P which contains Q̂, and α ∈ IsoF(P, P ′) is
any isomorphism, then

α(Q) = α(P ∩ T ) = P ′ ∩ T ≥ Q̂ ∩ T = Q,

and this is an equality since |α(Q)| = |Q|. Hence α(Q̂) = Q̂. Hypothesis (∗) of
Proposition 2.4 is thus satisfied, and hence

lim←−
∗

OS′(Γ)

(ẐQ ◦Ψ−1) ∼= lim←−
∗

O(Fc)
(ẐQ). (2)

Set

M1 = Z(Q) = Z(Q̂) ∩ T and M0 = Z(Q) ∩ T0 = Z(Q̂) ∩ T0;

and set M = M1/M0. We regard these as Z(p)[Γ]-modules. Let

F : OS′(Γ)op −−−−−−→ Z(p)-mod

be the functor F (P ) = M1
P/M0

P for all P ≤ S ′. This is clearly a subfunctor of H0M
which satisfies the relative norm condition (∗) in Propositions 1.3 and 1.4. Also, for
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P ′ = OutP (Q̂) ≤ S ′ (i.e., Q̂ C P and P ′ ∼= P/Q̂),

(ẐQ ◦ Ψ−1)(P ′) = ẐQ(P ) =

{
Z(P )∩T
Z(P )∩T0

∼= F (P ′) if P ∩ T = Q

0 otherwise;

and P ∩ T = Q if and only if P ∩ T Q̂ = Q̂, if and only if P ′ ∩ T ′ = 1. Hence by
Proposition 1.4, together with (1) and (2),

NZ(T ′)·Ω1(M) = 0 implies lim←−
∗

O(Fc)
(ZQ) ∼= lim←−

∗

OS′(Γ)

(ẐQ ◦ Φ) = 0. (3)

(More precisely, Proposition 1.4 only tells us that ZQ is acyclic. But Q � T since it

does not contain X, so ZQ(S) = 0, and this implies lim←−
0(ZQ) = 0.)

Step 3: By definition of X(T/T0), there are subgroups

1 = Q0/T0 ≤ Q1/T0 ≤ · · · ≤ Qn/T0 = X(T/T0),

all normal in T/T0, such that

[Ω1(CT/T0
(Qi−1/T0)), Qi/T0; p−1] = 1 (4)

for all i = 1, . . . , n. Let i ≤ n (i ≥ 1) be the smallest integer such that Q � Qi. Then
QQi 	 Q, so NQQi(Q)/Q is nontrivial, and is normal in NT (Q)/Q since Qi C T . Hence
the fixed subgroup

(
NQQi(Q)/Q

)NT (Q)/Q
= {xQ | x ∈ NQQi(Q), [x,NT (Q)] ≤ Q}

is also nontrivial. Fix some x ∈ NQQi(Q)rQ such that x ∈ Qi and [x,NT (Q)] ≤ Q. In
particular,

xQ ∈ Z(NT (Q)/Q). (5)

Since Q ≥ Qi−1 by assumption,

[Ω1(M), x; p−1] ≤ [Ω1(Z(Q/T0)), x; p−1] ≤ [Ω1(CT/T0
(Qi−1/T0)), Qi; p−1] = 1, (6)

where the last equality holds by (4).

Now regard M additively as a Z(p)[Γ]-module. Then (6) translates to the statement
that

N〈x〉·Ω1(M) = (1− x)p−1·Ω1(M) = 0.

Also, x ∈ Z(OutT (Q)) by (5), so x ∈ Z(T ′) by (3). Hence NZ(T ′)·Ω1(M) = 0, so
lim←−
∗(ZQ) = 0 by (3), and this finishes the proof.

Using Proposition 2.4 and Lemma 3.4 (with T0 = 1 and T = S), it is not hard to
show that for any saturated fusion system F over a p-group S, ZF is acyclic if X(S)
contains a subgroup which is both centric and weakly F -closed in S. Since we are
unable to prove directly that this holds for all F , we instead filter ZF via a maximal
series of strongly F -closed subgroups of S, and use the following more general result.

Proposition 3.5. Fix a saturated fusion system F over a p-group S, and let T0 C
T C S be a pair of subgroups strongly F-closed in S. Assume there is a subgroup
X/T0 ≤ X(T/T0) which is centric in T/T0 and weakly F/T0-closed. Then the quotient
functor ZTF/ZT0

F is acyclic.
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More generally, let XF(T/T0) be the intersection of all subgroups Q/T0 ≤ T/T0

containing X(T/T0) such that Q is fully F-normalized and F|T -radical. Assume there
is a subgroup X/T0 ≤ XF(T/T0) which is centric in T/T0 and weakly F/T0-closed.
Then the quotient functor ZTF/ZT0

F is acyclic.

Proof. Write Z = ZTF/ZT0
F for short. Assume X/T0 ≤ XF(T/T0) is centric in T/T0 and

weakly F/T0-closed. In particular, X is weakly F -closed. Let ZX be the functor on
O(F c) defined by setting, for all P ≤ S,

ZX(P ) =

{
Z(P ) if P � X
0 otherwise.

(Note that since X is weakly F -closed, if P � X, then the same holds for all subgroups
in its F -conjugacy class.) We regard ZX as a subfunctor of Z. Define ZQ as in Lemma

3.4; then lim←−
∗(ZQ) = 0 for all fully F -normalized Q ≤ T such that Q/T0 � X(T/T0),

or such that Q is not F|T -radical. In particular, this applies to all Q � X. Thus via
the obvious filtration of ZX, we get that lim←−

∗(ZX) = 0, and hence that

lim←−
∗

O(Fc)
(Z/ZX) ∼= lim←−

∗

O(Fc)
(Z) . (1)

Set X∗ = X·CS(X). Then X∗ is F -centric; and X∗ ∩ T = X since X is centric in T
(since X/T0 is centric in T/T0). If X ≤ P ≤ S and P � X∗, and P is F -centric, then
NX∗P (P )/P ∼= OutX∗(P ) is a nontrivial p-subgroup of OutF(P ) which acts trivially on
(Z(P ) ∩ T )/(Z(P ) ∩ T0), and so

Λ∗(OutF(P );Z(P )) = 0

for such P . Hence if we let F denote the functor

F (P ) =

{
Z(P ) = Z(P )∩T

Z(P )∩T0
if P ′ ≥ X∗ for some P ′ F -conjugate to P

0 otherwise;

then

lim←−
∗

O(Fc)
(F ) ∼= lim←−

∗

O(Fc)
(Z/ZX). (2)

Set

M1 = Z(X∗) ∩ T = Z(X) and M0 = Z(X∗) ∩ T0.

Since X is weakly F -closed, X∗
def
= X·CS(X) is both centric in S and weakly F -closed.

So by Proposition 2.4, there is a functor

F : Op(OutF(X∗)) −−−−−−→ Ab,

where

F (P/X∗) =
Z(P ) ∩ T
Z(P ) ∩ T0

∼= M1
P/M0

P

for all

P/X∗ ∼= OutP (X∗) ≤ OutS(X∗) ∈ Sylp(OutF(X∗));
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and such that

lim←−
∗

Op(OutF (X∗))

(F ) ∼= lim←−
∗

O(F∗)
(F ). (3)

Finally, lim←−
i(F ) = 0 for i > 0 by Proposition 1.3 (F ∼= H0M1/H

0M0). Together with
(1), (2), and (3), this finishes the proof of the proposition.

It now remains to determine, for each saturated fusion system F over a p-group S (p
odd), whether there always exists a sequence of strongly F -closed subgroups for which
Proposition 3.5 applies to each successive pair. For convenience, we define a subgroup
Q ≤ S to be universally weakly closed in S if for every saturated fusion system F over
a p-group S ′ ≥ S such that S is strongly F -closed, Q is weakly F -closed in S ′.

Lemma 3.6. Fix an odd prime p and a p-group S. Then a subgroup Q ≤ S is uni-
versally weakly closed if for all P ≤ S containing Q, Q is a characteristic subgroup of
P .

Proof. Assume that Q ≤ S is not universally weakly closed. Then there exist a sat-
urated fusion system F over a p-group S ′ ≥ S such that S is strongly F -closed, and
such that Q is not weakly F -closed in S ′. By Alperin’s fusion theorem for saturated
fusion systems [BLO2, Theorem A.10], there is a subgroup P ′ ≤ S ′ containing Q, and
an automorphism α ∈ AutF(P ′) such that α(Q) 6= Q. Set P = T ∩P ′. Then α(P ) = P
since T is strongly F -closed, and hence α induces an automorphism of P ≤ S which
does not send Q to itself. Thus Q is not a characteristic subgroup of P .

The next lemma gives some simple conditions on the p-group for being able to
apply Proposition 3.5. For any p-group S, let J(S) denote Thompson’s subgroup: the
subgroup generated by all elementary abelian subgroups of S of maximal rank.

Proposition 3.7. Fix an odd prime p, and a p-group S which satisfies any of the
following conditions.

(a) X(S) ≥ J(S).

(b) S contains a unique elementary abelian p-subgroup E of maximal rank.

(c) S/X(S) is abelian.

Then there is a subgroup P ≤ X(S) which is centric and universally weakly closed in
S.

Proof. Write X = X(S) for short.

(a) Assume X ≥ J(S). Clearly, J(S) is universally weakly closed in S; however, it
need not be centric. So instead, consider the subgroup Q = J(S)·CS(J(S)) ≤ S. This
is clearly normal and centric in S, and is characteristic in any subgroup of S which
contains it since J(S) is. Thus Q is universally weakly closed in S by Lemma 3.6.

It remains to check that Q ≤ X. Since J(S) ≤ X, every elementary abelian subgroup
of S of maximal rank commutes with Z(X), and thus contains Ω1(Z(X)) since otherwise
it would not be maximal. Thus Ω1(Z(X)) ≤ Z(J(S)), so

[Ω1(Z(X)), Q] ≤ [Z(J(S)), J(S)·CS(J(S))] = 1.
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Hence Q ≤ X by Lemma 3.3.

(b) If E ≤ S is the unique elementary abelian subgroup of maximal rank, then J(S) =
E, and E ≤ X by Lemma 3.2. The result thus follows from (a).

(c) Assume that S/X is abelian, and that X is not universally weakly closed in S. By
Lemma 3.6, there is a subgroup P ≤ S containing X, and an automorphism α ∈ Aut(P )
such that α(X) 6= X. We claim that this is impossible.

Assume first that α(Z(X)) � X, and fix an element g ∈ α(Z(X))rX. Then
[Ω1(Z(X)), g] ≤ α(X), since α(X) C P , and hence

[[Ω1(Z(X)), g], g] ≤ [α(X), g] = 1

since g ∈ Z(α(X)). Set Q = 〈g,X〉; then [Ω1(Z(X)), Q; 2] = 1, and Q C S since S/X is
abelian. Then Q ∈ X by Lemma 3.3, and this contradicts the original assumption on
g.

Now assume that α(Z(X)) ≤ X, and thus that Z(X) ≤ α−1(X) (and α−1(X) 6= X).
Fix a chain of subgroups

1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = X,

all normal in S (hence in P ), which satisfy condition (1) in Definition 3.1. Let i ≤ n
be such that Qi � α(X) but Qi−1 ≤ α(X). Then

α−1
(
Ω1(CP (Qi−1))

)
= Ω1(CP (α−1Qi−1)) ≥ Ω1(CP (X)) = Ω1(Z(X)),

and hence

[Ω1(Z(X)), α−1Qi; p−1] ≤ α−1
(
[Ω1(CP (Qi−1)), Qi; p−1]

)
= 1

by the assumption on the Qi. Hence by Lemma 3.3 again, 〈X, Qi〉 ≤ X, which contra-
dicts the original assumption on Qi.

We note the following immediate corollary to Propositions 3.7(a) and 3.5.

Corollary 3.8. Let F be a saturated fusion system over a p-group S, and let 1 = T0 ≤
T1 ≤ · · · ≤ Tk = S be any sequence of subgroups which are all strongly F-closed in S.
Assume, for all 1 ≤ i ≤ k, that X(Ti/Ti−1) ≥ J(Ti/Ti−1). Then lim←−

i(ZF ) = 0 for all
i > 0.

Corollary 3.8 motivates the following

Conjecture 3.9. For any odd prime p and any p-group P , X(P ) ≥ J(P ).

By Corollary 3.8 (together with Lemma 2.5), in order to prove that ZF is acyclic
for all saturated fusion systems F , it suffices to prove Conjecture 3.9 for all p-groups
P which can occur as minimal strongly closed subgroups in saturated fusion systems.
However, it seems to be very difficult to prove or find a counterexample to this conjec-
ture, even in this restricted form. This also indicates that it will be very difficult to
find an example of a saturated fusion system F for which ZF is not acyclic, if there
are any.

We finish this section with one other elementary result about the groups X(S), a
result which will be useful in the next section.
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Proposition 3.10. Fix an odd prime p and a p-group S. Then either rk(Z(X(S))) ≥
p, or X(S) = S. In particular, X(S) = S if rk(S) ≤ p− 1.

Proof. Set X = X(S) for short. Assume rk(Z(X)) ≤ p−1, and set E
def
= Ω1(Z(X)) C S.

For each i ≥ 0, either

[E, S; i+1] = [[E, S; i], S] � [E, S; i],

or [E, S; i] = 1. Since |E| ∼= (Cp)
k for k ≤ p− 1, this shows that [E, S; p−1] = 1, and

hence that X(S) = S by Lemma 3.3.

4. The acyclicity of ZG at odd primes

We are now ready to show, for any finite group G and any odd prime p, that all higher
limits of ZG vanish when p is odd. This will be based on the following proposition,
which gives for any finite group G a sufficient condition for the acyclicity of ZG in
terms of its simple composition factors. When G is a finite group and S ∈ Sylp(G), set

XG(S) =
⋂{

P ≤ S
∣∣P ≥ X(S), Op(OutG(P )) = 1, NS(P ) ∈ Sylp(NG(P ))

}
:

the intersection of all subgroups of S which contain X(S), and are fully normalized and
Fp(G)-radical.

Proposition 4.1. For any prime p and any finite group G, ZG is acyclic if for each
nonabelian simple group L which occurs in the decomposition series for G, and any
S ∈ Sylp(L), there is a subgroup Q ≤ XL(S) which is centric and weakly Aut(L)-closed
in S. In particular, ZG is acyclic for each finite solvable group G.

Proof. Fix a sequence of normal subgroups

1 = K0 � K1 � · · · � Kn = G

such that each subquotient Ki+1/Ki is a minimal normal subgroup of G/Ki. We show

that ZKi+1

G /ZKiG is acyclic for each i. Choose S ∈ Sylp(G), and set Si = S ∩ Ki ∈
Sylp(Ki) and F = FS(G).

Assume that Q = Q̃/Si ≤ Si+1/Si is centric in Si+1/Si and that Q̃ is fully F -

normalized (i.e., NS(Q̃) ∈ Sylp(NG(Q̃))). If Q̃ is F|Si+1
-radical, then

1 = Op(OutG(Q̃)) ∩OutKi+1
(Q̃) = Op(OutKi+1

(Q̃))
proj−−−−� Op(OutKi+1/Ki(Q)),

and hence Q is a radical p-subgroup of Ki+1/Ki. This proves that

XF(Si+1/Si) ≤ XKi+1/Ki(Si+1/Si).

So by Proposition 3.5 (and Lemma 2.1), to prove that ZKi+1

G /ZKiG is acyclic, it suffices
to show

XKi+1/Ki(Si+1/Si) contains a subgroup Q which is centric and weakly G/Ki-
closed in Si+1/Si.

(1)

To simplify notation, we replace G by G/Ki (so Ki = 1), and set K = Ki+1 and
P = Si+1 ∈ Sylp(K). Thus, K is a minimal normal subgroup of G, and we must find
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Q ≤ XK(P ) which is centric and weakly G-closed in P . This is clear if K has order
prime to p (i.e., Q = P = 1).

Since K is a minimal normal subgroup, it is a product of finite simple groups isomor-
phic to each other (cf. [Go, Theorem 2.1.5]). If K is an elementary abelian p-group,
then X(K) = K, and is centric and weakly closed in K. So assume K ∼= Ln where L
is simple and nonabelian and n ≥ 1. We can choose this identification in a way such
that P = (P ′)n for some fixed P ′ ∈ Sylp(L). Then X(P ) = X(P ′)n (see Definition 3.1),
and XK(P ) = XL(P ′)n since each radical p-subgroup of K splits as a product of n rad-
ical p-subgroups of L [JMO, Proposition 1.6(ii)]. By assumption, there is a subgroup

Q′ ≤ XL(P ′) which is centric and weakly Aut(L)-closed in P ′. Then Q
def
= (Q′)n is

centric in P , and Q ≤ XK(P ). It remains to show that Q is weakly Aut(K)-closed in
P , and hence weakly G-closed in P .

Assume otherwise: assume there is α ∈ Aut(Ln) such that Q 6= α(Q) ≤ P . The n
factors L are the unique minimal normal subgroups of Ln, so each automorphism of Ln

permutes these factors, and hence Aut(Ln) ∼= Aut(L) o Σn. Thus α = σ ◦ (α1, . . . , αn)
for some αi ∈ Aut(L) and some σ ∈ Σn (regarded as an automorphism of Ln); and
Q′ 6= αi(Q

′) ≤ P ′ for some i. Which contradicts the assumption that Q′ is weakly
Aut(L)-closed in P ′.

We now prove that all finite nonabelian simple groups L satisfy the condition in
Proposition 4.1: for any odd prime p

∣∣|L| and any S ∈ Sylp(L), there is a subgroup
Q ≤ XL(S) (or Q ≤ X(S)) which is centric and weakly Aut(L)-closed in S. We first
consider some cases where this can be shown using Proposition 3.7(b).

Proposition 4.2. Assume p is odd, and let L be a simple group which is either an
alternating group, or a group of Lie type in characteristic different from p. Then for
S ∈ Sylp(L), J(S) ≤ X(S), and hence there is a subgroup Q ≤ X(S) which is centric
and weakly Aut(L)-closed in S.

Proof. If L ∼= An, then S contains a unique elementary abelian p-subgroup E of max-
imal rank, generated by a product of [n/p] disjoint p-cycles (cf. [GL, 10-5]). Hence
J(S) = E ≤ X(S) by Lemma 3.2, and the result follows from Proposition 3.7(a) or
(b).

Now assume that L is a simple group of Lie type in characteristic 6=p. If rkp(L) ≤ 2,
then X(S) = S by Proposition 3.10. So assume rkp(L) > 2. Then by [GL, 10-2(1)], each
Sylow p-subgroup of L contains a unique elementary abelian p-subgroup of maximal
rank; and the result follows from Lemma 3.2 and Proposition 3.7(a,b) again. (Note
that all of the exceptional cases listed in [GL] — the simple groups A2(q), 2A2(q), G2(q),
3D4(q), and 2F4(q) when p = 3 — have 3-rank at most 2 by [GL, 10-2(2)] and Tables
10:1 and 10:2.)

We next consider simple groups of Lie type in characteristic p. We first summarize
the structures in these groups which will be needed, referring to [Ca] as a general
reference.

Assume first that L is a Chevalley group: L = G(q), where G is one of the groups An,
Bn, etc., defined over the finite field Fq (q = pa). For example, An(q) ∼= PSLn+1(Fq).
Let Φ ⊆ V denote the root system of G, where V is a real vector space. Let Φ+ be the
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set of positive roots; thus Φ = {±r | r ∈ Φ+}. Let I denote the set of primitive roots,
an R-basis of V.

To each root r ∈ Φ corresponds a root subgroup Xr
∼= Fq in L = G(q). Then

U
def
=
∏

r∈Φ+
Xr is a Sylow p-subgroup of L. Also, B

def
= NL(U) = UoH (the Borel

subgroup), where H is the subgroup of diagonal elements (and has order prime to p).
Set N = NL(H); then W ∼= N/H is the Weyl group of G (and of the root system Φ).

For example, when L = An(q) = PSLn+1(q), then we can take

V = {x ∈ Rn+1 |
∑

xi = 0}, Φ = {ei − ej | i 6= j}

(where {e1, . . . , en+1} is the standard basis of Rn+1),

Φ+ = {ei − ej | i < j}, and I = {ei − ei+1}.
Then Xei−ej is the subgroup of matrices which have 1’s along the diagonal and are
zero elsewhere except at entry (i, j), U is the group of upper triangular matrices with
1’s along the diagonal, and B is the group of all upper triangular matrices. Diagonal
elements are represented by diagonal matrices, N is the image of the subgroup of
monomial matrices, and W ∼= Σn+1.

We next fix the notation for the twisted groups tG(q). Let τ ∈ Aut(V,Φ,Φ+) be an
automorphism of the root system of G of order t. Set σ = τ̂ ◦ϕ̂ ∈ Aut(G(q ′)), where τ̂ is
induced by τ and ϕ̂ is induced by ϕ ∈ Aut(Fq′) of order t. (In most cases, q′ = qt, and
so Fq is the fixed subfield of the automorphism ϕ.) In all cases, τ ∈ Aut(Φ+) can be
seen as an automorphism of the Dynkin diagram (and t = 2, 3). Also, σ(Xr) = Xτ(r) for
each r ∈ Φ, and thus σ leaves invariant the subgroups U , H, and N . The twisted group
L = tG(q) is defined to be the commutator subgroup of G(q ′)σ, or alternatively as the
subgroup of G(q′) generated by Uσ and the analogous subgroup for the root groups of
negative roots. Its Borel subgroup is defined to be B = NL(Uσ) = Uσo(Hσ ∩ L).

Proposition 4.3. Assume p is odd, let L be a simple group of Lie type in characteristic
p, and fix S ∈ Sylp(L). Then XL(S) is weakly Aut(L)-closed in S.

Proof. Write L = tG(q), where q = pa (possibly t = 1). We use the above notation. In
particular, Φ+ denotes the set of positive roots, and U ∈ Sylp(L) is the product of the
root subgroups Xr for r ∈ Φ+.

For each τ -invariant subset J ⊆ I, consider the subgroups

UJ =
∏

r∈Φ+r〈J〉
Xr,

In particular, U∅ = U , and UI = 1. We claim that the following statement holds:

The subgroups Uσ
J , for τ -invariant subsets J ⊆ I, are the only subgroups of

S = Uσ which are radical p-subgroups of L; and they are all weakly L-closed
in Uσ.

(1)

By a theorem of Borel and Tits (see the corollary in [BW]), every radical p-subgroup
of L is conjugate to one of the subgroups Uσ

J , and by [Gr, Lemma 4.2], if Uσ
J is L-

conjugate to Uσ
J ′ for J, J ′ ≤ I then J = J ′. But since we need to know that each
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radical p-subgroup of L contained in S is actually equal to one of the U σ
J , we modify

Grodal’s proof to show this.

Assume that P ≤ S = Uσ is L-conjugate to Uσ
J . We show that P = Uσ

J ; this
proves that Uσ

J is weakly L-closed in S, and hence (using [BW]) proves (1). Since
L ≤ Uσ·Nσ·Uσ [Ca, Proposition 8.2.2], and since UJ C U , we have P = ux(Uσ

J )x−1u−1

for some u ∈ Uσ and x ∈ Nσ, and P = Uσ
J if and only if x(Uσ

J )x−1 = Uσ
J . So we can

assume u = 1 and P = x(Uσ
J )x−1. Now, x permutes the root subgroups via the action

of w = xH ∈ W τ on Φ, and so w(Φ+r〈J〉) ⊆ Φ+. Write ∆ = Φ+r〈J〉 for short; this is
closed in the sense that any r ∈ Φ which is a positive linear combination of elements of
∆ also lies in ∆. So w(∆) has the same property. This implies that all primitive roots
for the system w(±〈J〉)∩Φ+ are primitive roots in Φ+, and thus that w(∆) = Φ+r〈J ′〉
for some J ′ ⊆ I. After replacing w by its product with some element in the Weyl group
of ±〈J ′〉, we can assume that it sends positive roots to positive roots, and hence must
be the identity. So J ′ = J , and P = Uσ

J .

Thus, by (1), if Q ≤ S is a radical p-subgroup of L, then Q = Uσ
J for some J . Hence

XL(S) is the intersection of the subgroups Uσ
J which contain X(S). Also, UJ ∩ UJ ′ =

UJ∪J ′ , since each element of U has a unique decomposition as product of elements of the
root groups taken in an appropriate order [Ca, Theorem 5.3.3(ii)]. So any intersection
of subgroups Uσ

J is again of the same form, and thus XL(S) = Uσ
J for some τ -invariant

subset J ⊆ I. Hence XL(S) is weakly L-closed in S by (1) again.

Each automorphism of L is congruent mod Inn(L) to some α ∈ Aut(L) which sends
S to itself, and α permutes the radical p-subgroups of L contained in S and sends X(L)
to itself. Thus each coset in Out(L) contains an automorphism which sends XL(S) to
itself, and XL(S) is weakly Aut(L)-closed in S since it is weakly L-closed.

In fact, when L is simple of Lie type in characteristic p (and p is odd, as usual), then
for S ∈ Sylp(L), X(S) = S except when p = 3 and and L ∼= Cn(q) ∼= PSp2n(q) (n ≥ 2)
or L ∼= 2An(q) ∼= PSUn+1(q2) (n ≥ 3).

We are now ready to consider the sporadic groups.

Proposition 4.4. Assume p is odd, let L be a sporadic simple group, and fix S ∈
Sylp(L). Then there is a subgroup Q ≤ X(S) which is centric and weakly Aut(L)-
closed in S.

Proof. If p ≥ 5, then rkp(L) < p by [GLS, §5.6], and so X(S) = S by Proposition 3.10.
So assume p = 3. We consider several different cases.

(a) If L is one of the groups M11, M12, M22, M23, M24, J1, J2, J4, HS, He, or Ru, then
rk3(L) ≤ 2 by [GL, p.123], and so X(S) = S by Proposition 3.10.

(b) Assume L is one of the groups J3, Co3, Co2, McL, Suz, Ly, O’N, or F5. In all
of these cases, S contains a normal elementary abelian 3-subgroup E of index ≤ 9,
X(S) ≥ E by Lemma 3.2, so S/X(S) is abelian, and X(S) is weakly Aut(L)-closed by
Proposition 3.7(c). More precisely, there are the following inclusions of index prime to
3:



26 BOB OLIVER

L J3 Co3 Co2 McL Suz Ly O’N F5

E C3
3 C5

3 C4
3 C4

3 C5
3 C5

3 C4
3 C4

3

NL(E)/E C2
3oC8 2×M11 M10 M10 M11 2×M11 order 320 order 1152

See [GL, §5] for references. (In fact, in all of the above cases, E is the unique elementary
abelian subgroup of S of maximal rank.)

(c) Assume L ∼= Co1. By [Cu, p.424], S is contained in a semidirect product C6
3o2M12,

and the elementary abelian subgroup C6
3 is generated by all elements of order 3 in S

which lie in the conjugacy class (3A). Thus S contains a unique elementary abelian
3-subgroup E of maximal rank, and hence CS(E) ≤ X(S) is centric and weakly Aut(L)-
closed in S by Proposition 3.7(b).

(e) Assume L = F3. By [Ho] or [Pa] (see also [As, 14.2]), there are subgroups

D ≤ K ≤M ≤ S,

all normal in S, such that K ∼= C5
3 is abelian, CS(K) = K, and [M,K] = D =

Z(M) ∼= (C3)2. (Also, M/K ∼= C4
3 and NL(D)/M ∼= GL2(3).) Thus M ≤ X(S), so

rk(Z(X(S))) ≤ rk(Z(M)) = 2, and hence X(S) = S by Proposition 3.10.

In the remaining cases, for a p-group R, we use the notation Zn(R) C R: Z1(R) =
Z(R), and Zn(R)/Zn−1(R) = Z(R/Zn−1(R)). The group R is of class n if R = Zn(R) 	
Zn−1(R). Also, following the notation of [As], we say that a subgroup H ≤ L is of
type H ′/mt/mt−1/ · · ·/m1 if upon setting R = Op(H), then H/R ∼= H ′, Z(R) ∼= Cm1

p ,
and Zi(R)/Zi−1(R) ∼= Cmi

p for all i. (We restrict, for simplicity, to the case where
Zi(R)/Zi−1(R) is elementary abelian for all i.)

(d) Assume L ∼= Fi22. Then L contains a subgroup L0
∼= Ω7(3) with index prime

to 3 (cf. [As, p.26]). Regard L0 as acting on V = F7
3, let W ⊆ V be a maximal

isotropic subspace (dim(W ) = 3), and let H ≤ L0 be the subgroup of elements which
leave W invariant. Then [L0:H] is prime to 3, and hence we can assume that S ≤ H.

One easily checks that H is of type SL3(3)/3/3, where R
def
= O3(H) is the subgroup

of elements whose restriction to W (and to V/W⊥) is the identity, and Z(R) is the
subgroup of elements whose restriction to W⊥ and to V/W are the identity. Also,
Z(R) = [R,R], and H/R ∼= SL3(3) acts on Z(R) as the group of 3× 3 antisymmetric
matrices. From this, one quickly sees that R ≤ X(S). If we set S0/R = Z(S/R) ∼= C3,
then [[Z(R), S0], S0] = 1, so S0 ≤ X(S). Hence rk(Z(X(S))) ≤ rk(Z(S0) = 2, so
X(S) = S by Proposition 3.10. (Alternatively, one can show that S contains a unique
elementary abelian subgroup of maximal rank 5, and then apply Proposition 3.7(b).)

(f) Assume L = Fi23 or F2. By [As, p. 33], there is an inclusion Fi23 ≤ F2 with index
prime to 3, so these groups have isomorphic Sylow 3-subgroups. By [As, p. 27 & 208–
209], there is a subgroup H ≤ Fi23 of index prime to 3 and of type SL3(3)/3/3/1/3.

We can thus assume R
def
= O3(H) ≤ S ≤ H. Also, Z2(R) ∼= C4

3 , Z3(R) = CH(Z2(R)) ∼=
Q×C3 where Z(Q) = [Q,Q] = Z(R) and Q/Z(Q) ∼= Z3(R)/Z2(R) ∼= C3

3 , and R/Z3(R)
acts on Z2(R) as the group of all automorphisms which are the identity on Z(R) and
on Z2(R)/Z(R). Since [[Z3(R), Z3(R)], Z3(R)] = 1 and [[Z2(R), R], R] = 1, we see that
R ≤ X(S); and hence X(S) = S by the same argument as was used for L ∼= Fi22.



EQUIVALENCES OF CLASSIFYING SPACES COMPLETED AT ODD PRIMES 27

(g) Assume L = Fi′24. By [As, pp. 29 & 210–211], there is a subgroup H ≤ Fi′24 of index

prime to 3 and of type (A5×SL2(3))/8/4/2, and we can assume R
def
= O3(H) ≤ S ≤ H.

Also, R/Z2(R) acts on Z2(R) ∼= C8
3 as the group of all automorphisms which are the

identity on Z(R) and on Z2(R)/Z(R); and the actions of SL2(3) ≤ H/R on Z(R)
and of A5 ≤ H/R on Z2(R)/Z(R) ∼= C4

3 are faithful. Thus Z2(R) is centric in H and
[[Z2(R), R], R] = 1. It follows that R ≤ X(S), and hence (since rk(Z(R)) = 2) that
X(S) = S by Proposition 3.10.

(h) Assume L = F1. By [As, pp. 35 & 211–212], there is a subgroup H ≤ F1 of index

prime to 3 of type (GL2(3) ×M11)/10/5/2. We can thus assume that R
def
= O3(H) ≤

S ≤ H. Also, R/Z2(R) acts on Z2(R) ∼= C7
3 as the group of automorphisms which

are the identity on Z(R) and on Z2(R)/Z(R), and the actions of GL2(3) ≤ H/R on
Z(R) and of M11 ≤ H/R on Z2(R)/Z(R) are faithful. Thus Z2(R) is centric in H and
[[Z2(R), R], R] = 1. It follows that R ≤ X(S), and hence by Proposition 3.10 (since
rk(Z(R)) = 2) that X(S) = S.

We are now ready to prove Theorem A.

Theorem 4.5. For any odd prime p and any finite group G, ZG is acyclic.

Proof. Let L be a finite simple group, and fix S ∈ Sylp(L). If L is an alternating group,
or of Lie type in characteristic 6= p, then by Proposition 4.2, there is a subgroup Q ≤
X(S) which is centric and weakly Aut(L)-closed in S. If L is of Lie type in characteristic
p, then XL(S) itself is centric and weakly Aut(L)-closed in S by Proposition 4.3. If L
is a sporadic group, then there is a subgroup Q ≤ X(S) which is centric and weakly
Aut(L)-closed in S by Proposition 4.4. The theorem now follows from Proposition 4.1,
together with the classification theorem for finite simple groups.
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