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GORENSTEIN HOMOLOGICAL DIMENSIONS AND AUSLANDER

CATEGORIES

MOHAMMAD ALI ESMKHANI AND MASSOUD TOUSI

Abstract. In this paper, we study Gorenstein injective, projective, and flat modules over a local

Noetherian ring (R, m). We correspond to a dualizing complex D of R̂, the classes A′(R) and

B′(R) of R-modules. For an R-module M , we show that M ∈ A′(R) if and only if Gorenstein

projective dimension of M is finite and if and only if Gorenstein flat dimension of M is finite.

In dual situation by using the class B′(R), we provide a characterization for modules of finite

Gorenstein injective dimension.

1. Introduction

Throughout this paper, R will denote a commutative ring with nonzero identity and R̂ will

denote the completion of a local ring (R,m). When discussing the completion of a local ring

(R,m), we will mean the m-adic completion.

Auslander and Bridger [3] introduced the G-dimension, G− dimRM , for every finitely gener-

ated R-module M (see also [2]). They proved the inequality G− dimRM ≤ pdRM , with equality

G− dimRM = pdRM when pdRM is finite. The G-dimension has strong parallels to the pro-

jective dimension. For instance, over a local Noetherian ring (R,m), the following conditions are

equivalent:

(i) R is Gorenstein.

(ii) G− dimRR/m <∞.

(iii) All finitely generated R-modules have finite G-dimension.

This characterization of Gorenstein rings is parallel to Auslander-Buchsbaum-Serre characteriza-

tion of regular rings. G-dimension also differs from projective dimension in that it is defined only

for finitely generated modules. Enochs and Jenda defined in [9] Gorenstein projective modules (i.e.

modules of G-dimension 0) whether the modules are finitely generated or not. Also, they defined

a homological dimension, namely the Gorenstein projective dimension, GpdR(−), for arbitrary

(non-finitely generated) modules. It is known that for finitely generated modules, the Gorenstein

projective dimension agrees with the G-dimension. Along the same lines, Gorenstein flat and

Gorenstein injective modules were introduced in [9,10].

Let R be a Cohen-Macaulay local ring admitting a dualizing module D. Foxby [12] defined

the class G0(R) to be those R-modules M such that TorRi (D,M) = ExtiR(D,D ⊗RM) = 0 for all

i ≥ 1 and such that the natural map M −→ HomR(D,D ⊗RM) is an isomorphism, and I0(R) to
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2 ESMKHANI AND TOUSI

be those R-modules N such that ExtiR(D,N) = TorRi (D,HomR(D,N)) = 0 for all i ≥ 1 and such

that the natural map D ⊗R HomR(D,N) −→ N is an isomorphism. In [11] Enochs, Jenda and

Xu characterize Gorenstein injective, projective and flat dimensions in terms of G0(R) and I0(R).

The main aim of this paper is to extend these characterizations for Gorenstein injective, projective

and flat dimensions to arbitrary local Noetherian rings.

Let R be a Noetherian ring with dualizing complex D. The Auslander categoriesA(R) and B(R)

with respect to D are defined in [4, 3.1]. In [5], it is shown that the modules in A(R) are precisely

those of finite Gorenstein projective dimension (Gorenstein flat dimension), see [5, Theorem 4.1],

and the modules in B(R) are those of finite Gorenstein injective dimension, see [5, Theorem 4.4].

This may be viewed as an extension of the results of [11]. Note that, by [4, Proposition 3.4], if R

is a Cohen-Macaulay local ring with a dualizing module, then an R-module M is in A(R) if and

only if M ∈ G0(R) (resp. an R-module M is in B(R) if and only if M ∈ I0(R)).

Let R be a local Noetherian ring probably without dualizing complex, and let D denote the

dualizing complex of R̂. We define A′(R) to be those R-modules M such that R̂ ⊗R M ∈ A(R̂)

and B′(R) to be those R-modules N such that HomR(R̂,N) ∈ B(R̂). In sections 2, 3, and 4, we

characterize Gorenstein injective, projective, and flat modules in terms of the classes A′(R) and

B′(R). To be more precise, we show the following results.

Theorem 1.1. Let R be a local Noetherian ring and M an R-module.

(i) (See Theorem 2.5) M is Gorenstein flat if and only if M belongs to A′(R) and TorRi (L,C) = 0

for all injective R-modules L and all i > 0.

(ii) (See Theorem 3.2) M is Gorenstein projective if and only if M belongs to A′(R) and

ExtiR(M,P ) = 0 for all projective R-modules P and all i > 0.

(iii) (See Theorem 4.8) M is Gorenstein injective if and only if M belongs to B′(R), M is cotorsion

and ExtiR(E,M) = 0 for all injective R-modules E and all i > 0.

Even more generally, by using the classes A′(R) and B′(R), we characterize modules of finite

Gorenstein injective, projective and flat dimensions. Namely, we prove the following two results.

Theorem 1.2. (See Theorem 3.4) Let R be a local Noetherian ring and M an R-module. Then

the following conditions are equivalent:

(i) GfdRM <∞.

(ii) GpdRM <∞.

(iii) M ∈ A′(R).

Theorem 1.3. (See Theorem 4.10) Let (R,m) be a local Noetherian ring of dimension d and

ExtiR(R̂,M) = 0 for all i > 0. Then Gorenstein injective dimension of M is finite if and only if

M belongs to B′(R). In particular, if M ∈ B′(R) then GidR(M) ≤ d.

Setup and notation If M is any R-module, we use pdRM , fdRM and idRM to denote the

usual projective, flat and injective dimension of M , respectively. Furthermore, we write GpdRM ,

GfdRM and GidRM for the Gorenstein projective, Gorenstein flat and Gorenstein injective di-

mension of M , respectively. Let X be any class of R-modules and let M be an R-module. An



GORENSTEIN HOMOLOGICAL DIMENSIONS AND AUSLANDER CATEGORIES 3

X -precover of M is an R-homomorphism ϕ : X −→M , where X ∈ X and such that the sequence,

HomR(X ′, X)
HomR(X′,ϕ)

−→ HomR(X ′,M) −→ 0

is exact for everyX ′ ∈ X . If, moreover, fϕ = ϕ for f ∈ HomR(X,M) implies f is an automorphism

of M , then ϕ is called an X -cover of M . Also, an X -preenvelope and X -envelope of M are defined

“dually”. By P (R), F (R) and I(R) we denote the classes of all projective, flat and injective

R-modules, respectively. Furthermore, we let P (R), F (R) and I(R) denote the classes of all

R-modules with finite projective, flat and injective dimension, respectively.

We may use the following facts without comment. If R is Noetherian of finite Krull dimension,

then P (R) = F (R) (see [16, Theorem 4.2.8 ]). Also, if R is Noetherian then for any M ∈ P (R),

we have pdR(M) ≤ dimR (see [15, p. 84]).

2. Gorensein flat dimension

Let R be a local Noetherian ring an let D denote the dualizing complex of R̂. Let A(R̂) denote

the full subcategory of Db(R̂), consisting of those complexes X for which D ⊗L

R̂
X ∈ Db(R̂) and

the canonical morphism

γX : X −→ RHomR̂(D,D ⊗L

R̂
X),

is an isomorphism. Db(R̂) denote the full subcategory of D(R̂) (the derived category of R̂-modules)

consisting of complexes X with Hn(X) = 0 for | n |>> 0, see [4].

Now, we define A′(R) to be the class of all R-modules M such that R̂⊗RM ∈ A(R̂).

Lemma 2.1. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence of modules over a local

Noetherian ring R. Then if any two of M ′,M,M ′′ are in A′(R), so is the third.

Proof. The exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0 yields, the exact sequence

0 −→ R̂ ⊗R M ′ −→ R̂ ⊗R M −→ R̂ ⊗R M
′′ −→ 0. Now, the conclusion follows by using [5,

Theorem 4.1] and [13, Theorem 2.24]. �

Proposition 2.2. Let R be a local Noetherian ring and let M be an R-module. If GfdRM < ∞,

then M ∈ A′(R).

Proof. By [13, Proposition 3.10], we have GfdR̂(R̂ ⊗R M) < ∞. Using [5, Theorem 4.1], we

conclude that R̂⊗RM belongs to A(R̂). So, the assertion follows by the definition. �

In the proof of the following lemma we use the method of the proof of [11, Lemma 3.1].

Lemma 2.3. Suppose K is cotorsion of finite flat dimension and suppose M is an R-module. If

TorRi (E,M) = 0 for all i > 0 and all injective R-modules E, then ExtiR(M,K) = 0 for all i > 0.

Proof. We prove by induction on fdRK. First, let K be flat and cotorsion. Then K is a

summand of a module of the form HomR(E,E′) where E and E′ are injective ([8, Lemma 2.3]).
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It is enough to show that ExtiR(M,HomR(E,E′)) = 0 for all i > 0. We have

ExtiR(M,HomR(E,E′)) ∼= HomR(TorRi (M,E), E′)

for all i ≥ 0. Thus ExtiR(M,K) = 0 for all i > 0. Now, let K be cotorsion and of finite flat

dimension. Let F0 −→ K be a flat cover of K with kernel L. Then L is cotorsion, see [8, Lemma

2.2]. Also, we have the exact sequence

ExtiR(M,F0) −→ ExtiR(M,K) −→ Exti+1
R (M,L).

Since K and L are cotorsion, then so is F0. Hence, by inductive hypothesis ExtiR(M,K) = 0 for

all i > 0. �

Lemma 2.4. Let R be a Noetherian ring and M an R-module.

(i) If R be a local ring and M ∈ A′(R), then there exists a monomorphism M −→ L with fdR L <

∞.

(ii) Assume ψ : M −→ L is a monomorphism such that fdR L < ∞ and that TorRi (N,M) = 0 for

all injective R-modules N and all i > 0. Then M possesses a monic F (R)-preenvelope M −→ F ,

in which F is flat.

(iii) Let R be a local. Assume ϕ : M −→ L is a monomorphism such that pdR L < ∞ and that

ExtiR(M,N) = 0 for all projective R-modules N and all i > 0. Then there exists a monic P (R)-

preenvelope M −→ P , in which P is projective.

Proof. (i) Since M belongs to A′(R), GfdR̂(M ⊗R R̂) is finite by the definition and [5,

Theorem 4.1]. Therefore, by [5, lemma 2.19], we have an exact sequence of R̂-modules and R̂-

homomorphisms 0 −→ M ⊗R R̂ −→ L, where flat dimension of L is finite as an R̂-module. So,

we obtain an exact sequence 0 −→ M −→ L of R-modules and R-homomorphism, where flat

dimension of L is finite as an R-module. Not that every flat R̂-module is also flat as an R-module.

(ii) Using [7, Proposition 5.1], there exists a flat preenvelope f : M −→ F . We show that f is

F (R)-preenvelope. To this end, let ψ′ : M −→ L′ be an R-homomorphism such that fdR L
′ < ∞

and let 0 −→ K −→ F ′ π
−→ L′ −→ 0 be an exact sequence such that π : F ′ −→ L′ is a flat cover.

Then K is of finite flat dimension and also by [8, lemma 2.2], it is cotorsion. Lemma 2.3 implies

that ExtiR(M,K) = 0 for all i > 0. So, we have the exact sequence

0 −→ HomR(M,K) −→ HomR(M,F ′) −→ HomR(M,L′) −→ Ext1R(M,K) = 0.

Therefore, there exists an R-homomorphism h : M −→ F ′ such that πh = ψ′. Since f : M −→ F

is flat preenvelope, there exists an R-homomorphism g : F −→ F ′ such that h = gf . Hence, there

exists the R-homomorphism πg : F −→ L′ such that πgf = ψ′. Thus f is F (R)-preenvelope.

Consequently, f is monic, because ψ is monic.

(iii) Using [11, Proposition 1.1], there exists f : M −→ L′ which is a P (R)-preenvelope. Since

ϕ : M −→ L is monic, it turns out that f : M −→ L′ is also monic. Now, let 0 −→ K −→ P
π

−→

L′ −→ 0 be an exact sequence such that P is projective R-module. It is easy to see that K ∈ P (R).

On the other hand, by hypothesis and induction on projective dimension, ExtiR(M,Q) = 0 for all
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i > 0 and for all Q ∈ P (R). Therefore, ExtiR(M,K) = 0 for all i > 0. Hence f : M −→ L′ has a

lifting M −→ P which is monic and still an P (R)-preenvelope. �

Theorem 2.5. Let (R,m) be a local Noetherian ring and C an R-module. Then the following

conditions are equivalent:

(i) C is Gorenstein flat.

(ii) C belongs to A′(R) and TorRi (L,C) = 0 for all injective R-modules L and all i > 0.

Proof. (i) ⇒ (ii) By Proposition 2.2, C belongs to A′(R). Also, [13, Theorem 3.6], implies the

last assertion in (ii).

(ii) ⇒ (i) By [13, Theorem 3.6], it is enough to show that C admits a right flat resolution

X = 0 −→ C −→ F 0 −→ F 1 −→ F 2 −→ . . .

such that HomR(X, Y ) is exact for all flat R-modules Y (i.e. C admits a co-proper right flat

resolution). Lemma 2.4 (i) implies that there exists an exact sequence 0 −→ C −→ L of R-

modules and R-homomorphisms such that fdR L < ∞. Using Lemma 2.4 (ii), there exists a

monomorphism f : C −→ K which is a flat preenvelope. We obtain the short exact sequence

0 −→ C
f

−→ K −→ B −→ 0 and so for every flat R-module F ′ we have the short exact sequence

0 −→ HomR(B,F ′) −→ HomR(K,F ′) −→ HomR(C,F ′) −→ 0.

Let E be an injective R-module. Since HomR(E,ER(R/m)) is a flat R-module, we conclude that

0 −→ C ⊗R E −→ K ⊗R E −→ B ⊗R E −→ 0

is an exact sequence. So, TorRi (E,B) = 0 for all i > 0 and all injective R-modules E, because K is

a flat R-module. Also, by Lemma 2.1 and Proposition 2.2, we obtain B ∈ A′(R). Then proceeding

in this manner, we get the desired co-proper right flat resolution of C. �

Corollary 2.6. Let (R,m) be a local Noetherian ring of dimension d and let M ∈ A′(R). Then

GfdR(M) = GfdR̂(R̂⊗RM). In particular, if M ∈ A′(R) then GfdRM ≤ dimR.

Proof. By [13, Proposition 3.10], GfdR̂(R̂ ⊗R M) ≤ GfdR(M). We show that GfdR(M) ≤

GfdR̂(R̂⊗RM) and so [13, Theorem 3.24] completes the proof. As M belongs to A′(R), we get that

R̂⊗RM belongs to A(R̂). So, by [5, Theorem 4.1] GfdR̂(R̂⊗RM) is finite. Set GfdR̂(R̂⊗RM) = t

and let

0 −→ C −→ Pt−1 −→ . . . −→ P1 −→ P0 −→M −→ 0,

be an exact sequence of R-modules and R-homomorphisms such that P ,i s are projective. We obtain

the exact sequence

0 −→ R̂⊗R C −→ R̂⊗R Pt−1 −→ . . . −→ R̂⊗R P1 −→ R̂⊗R P0 −→ R̂⊗RM −→ 0.

By [13, Theorems 3.14], R̂ ⊗R C is a Gorenstein flat R̂-module. Also, Lemma 2.1 and the above

exact sequence, imply that C belongs to A′(R). In view of Theorem 2.5, it is enough to show

that TorRi (C,E) = 0 for all injective R-modules E and all i > 0. Let E be an injective R-module

and let HomR(−, ER(R/m)) denote by (−)∨. From the natural monomorphism E −→ (E∨)∨, we
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conclude that E is a direct summand of (E∨)∨. So, it is enough to show that TorRi ((E∨)∨, C) = 0

for all i > 0. By the next result, idR̂ (E∨)∨ is finite. It therefore follows from [13, Theorem 3.14]

that TorR̂i (C ⊗R R̂, (E
∨)∨) = 0 for all i > 0. Suppose F• −→ C is a flat resolution of C. For every

i > 0, we have

TorRi (C, (E∨)∨) ∼= Hi(F• ⊗R (E∨)∨)

∼= Hi((F• ⊗R R̂) ⊗R̂ (E∨)∨)

∼= TorR̂i (C ⊗R R̂, (E
∨)∨)

The last isomorphism comes from the fact that F• ⊗R R̂ is a flat resolution of C ⊗R R̂, considered

as an R̂-module. Thus, TorRi (C, (E∨)∨) = 0 for all i > 0. �

Lemma 2.7. Let (R,m) be a local Noetherian ring and let K be an R-module such that idR(K)

is finite. Let HomR(−, ER(R/m)) denote by (−)∨. The R-module (K∨)
∨

considered with the

R̂-module structure coming from ER(R/m), that is, (r̂f)(x) = r̂(f(x)), for all r̂ ∈ R̂, f ∈

HomR(K∨, ER(R/m)) and x ∈ K∨. Then idR̂ (K∨)
∨

is finite.

Proof. We deduce that fdR(K∨) is finite. It is easy to see that fdR̂(K∨ ⊗R R̂) is finite. By the

adjoint isomorphism, we have the following isomorphism

HomR̂(K∨ ⊗R R̂, ER(R/m)) ∼= HomR(K∨, ER(R/m)),

as an R̂-modules. This ends the proof, because the injective dimension of HomR̂(K∨ ⊗R

R̂, ER(R/m)) is finite as an R̂-module. �

3. Gorensein projective dimension

In this section, we show that Gorenstein projective dimension of an R-module is finite if and

only if its Gorenstein flat dimension is finite.

Proposition 3.1. Let R be a Noetherian ring with finite Krull dimension and C be an R-module.

Then GfdR(C) ≤ GpdR(C).

Proof. See [13, Remark 3.3 and Proposition 3.4]. �

Theorem 3.2. Let R be a local Noetherian ring and M an R-module. Then the following condi-

tions are equivalent:

(i) M is Gorenstein projective.

(ii) M ∈ A′(R) and ExtiR(M,P ) = 0 for all projective R-modules P and all i > 0.

Proof. Assume that M is Gorenstein projective. Then M belongs to A′(R), by Proposition 2.2

and Proposition 3.1. Also, [13, Proposition 2.3], implies that ExtiR(M,P ) = 0 for all projective

R-modules P and all i > 0.

Now, we show that (ii) ⇒ (i). By [13, Proposition 2.3], it is enough to show that M admits a

right projective resolution

X = 0 −→M −→ P 0 −→ P 1 −→ P 2 −→ . . .
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such that HomR(X, Y ) is exact for every projective R-module Y (i.e. M admits a co-proper

right projective resolution). Using parts (i) and (iii) of Lemma 2.4, there exists a monomorphism

ψ : M −→ Q which is a projective preenvelope. We consider the exact sequence

0 −→M
ψ

−→ Q −→ B −→ 0.

Let P be a projective R-module. Applying the functor HomR(−, P ) to the above exact sequence.

Since ψ : M −→ Q is a projective preenvelope, ExtiR(B,P ) = 0 for all i > 0. Also, B ∈ A′(R)

by Lemma 2.1 and Proposition 2.2. Then proceeding in this manner, we get the desired co-proper

right projective resolution for M and so we obtain the result. �

Theorem 3.3. Let R be a local Noetherian ring of dimension d and M be an R-module. Then

GpdRM ≤ dimR+ GfdRM.

Proof. We can assume that GfdRM is finite. We prove the inequality by induction on GfdRM .

First, let M be a Gorenstein flat R-module. Let F be a flat R-module. Consider the minimal pure

injective resolution

0 −→ F −→ PE0(F ) −→ PE1(F ) −→ . . .

(see [16, pages 39 and 92]). Note that, by [16, Lemma 3.1.6], PEn(F ) is flat for all n ≥ 0 and

also, by [16, Corollary 4.2.7], PEn(F ) = 0 for all n > d. Since, every pure injective module is

cotorsion, by [13, Proposition 3.22], ExtjR(M,PEi(F )) = 0 for all i ≥ 0 and all j ≥ 1. Therefore,

Extd+iR (M,F ) ∼= ExtiR(M,PEd(F )) for all i ≥ 1, and so Extd+iR (M,F ) = 0 for all i ≥ 1. Next, let

0 −→ C −→ Pd−1 −→ . . . −→ P0 −→M −→ 0

be an exact sequence such that P ,i s are projective. We have Extd+iR (M,F ) ∼= ExtiR(C,F ) for all

i ≥ 1, and so ExtiR(C,F ) = 0 for all i ≥ 1. On the other hand, using Lemma 2.1 and Proposition

2.2, we conclude that C belongs to A′(R). Therefore, by Theorem 3.2, C is Gorenstein projective,

and hence GpdRM ≤ dimR.

Now, let GfdRM = t > 0 and let 0 −→ K −→ P −→ M −→ 0 be an exact sequence such that

P is projective. By [13, Proposition 3.12], GfdRK = t− 1. Now, the induction hypothesis implies

that

GpdRK ≤ dimR+ t− 1.

Therefore, GpdRM ≤ dimR+ t− 1 + 1 = dimR+ t = dimR+ GfdRM . �

Now, we are ready to deduce the main result of this section by using Propositions 2.2 and 3.1,

Corollary 2.6 and Theorem 3.3.

Theorem 3.4. Let R be a local Noetherian ring and M an R-module. Then the following condi-

tions are equivalent:

(i) GfdRM <∞.

(ii) GpdRM <∞.

(iii) M ∈ A′(R).
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4. Gorenstein injective dimension

Let R be a local Noetherian ring an let D denote the dualizing complex of R̂. Let B(R̂) denote

the full subcategory of Db(R̂), consisting of those complexes X for which RHomR̂(D, X) ∈ Db(R̂)

and the canonical morphism

τX : D ⊗L

R̂
RHomR̂(D, X) −→ X,

is an isomorphism, see [4, 3.1].

Now, we define B′(R) to be the class of all R-modules M such that HomR(R̂,M) ∈ B(R̂).

In the Theorem 4.8, we want to characterize Gorenstein injective modules in terms of the class

B′(R). To prove Theorem 4.8, we need the following results.

Definition 4.1. (See [6, Definition 5.1]) For every R-module M , we show the small restricted

injective dimension by EdRM and define

EdRM = sup{i ∈ N0 | ∃L ∈ F (R) | ExtiR(L,M) 6= 0}.

Theorem 4.2. (Dimension inequality) Let R be a Noetherian ring of finite Krull dimension.

For every R-module M , we have the following inequality:

EdRM ≤ GidRM ≤ idRM.

Proof. Every injective module is Gorenstein injective, and so GidRM ≤ idRM . We can

assume that GidRM is finite. We show that EdRM ≤ GidRM by induction on GidRM = n.

First assume that n = 0. It is enough to show that for every R-module L with pdR L = l and

i > 0, ExtiR(L,M) = 0. Since M is Gorenstein injective, we have an exact sequence

0 −→ H −→ El−1 −→ . . . −→ E2 −→ E1 −→ E0 −→M −→ 0

such that Ei is injective module for all 0 ≤ i ≤ l − 1. For any i > 0, we have

ExtiR(L,M) ∼= Exti+lR (L,H).

For i > 0, since i+ l > pdR L, we get ExtiR(L,M) = 0. This means that EdRM ≤ 0, and so that

the result holds. Now, let n > 0. Using the Gorenstein injective version of [13, Proposition 2.18],

there exists exact sequence 0 −→ M −→ T −→ K −→ 0 such that T is injective R-module and

GidRK = n − 1. By induction, we have EdRK ≤ GidRK = n − 1, and so ExtjR(L,K) = 0 for

all L ∈ F (R) and all j > n − 1. For each i > n and each L ∈ F (R), we have the following exact

sequence

0 = Exti−1
R (L,K) −→ ExtiR(L,M) −→ ExtiR(L, T ) = 0.

So EdRM ≤ n = GidRM . This ends the proof. �

By Theorem 4.2, every Gorenstein injective R-module over a Noetherian ring of finite Krull

dimension is strongly cotorsion (see [16, Definition 5.4.1]). The following example shows that

there exists an R-module with finite Gorenstein injective dimension over a regular local ring which

is not cotorsion.
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Example 4.3. Let R be a regular local ring of Krull dimension one which is not complete. By

[1, Lemma 3.3], HomR(R̂, R) = 0. So, R̂ is not a projective R-module. Therefore, pdR(R̂) = 1

and consequently there exists an R-module M such that Ext1R(R̂,M) 6= 0. On the other hand,

idRM ≤ 1. So, M is an R-module with finite Gorenstien injective dimension which is not cotorsion.

Proposition 4.4. Let R be a local Noetherian ring and M an R-module.

(i) If M is a Gorenstein injective R-module, then HomR(R̂,M) is Gorenstein injective as an R̂-

module.

(ii) If M is a Gorenstein injective R-module, then M ∈ B′(R).

Proof. (i) Let

X = . . . −→ E2 −→ E1 −→ E0
ρ0

−→ G0 −→ G1 −→ . . .

be an exact sequence of injective R-modules such that HomR(I,X) is exact for every injective

R-modules I with ker ρ0 = M . If

0 −→ G′′ −→ E −→ G′ −→ 0

is an exact sequence such that G′, G′′ are Gorenstein injective and E is injective, then Theorem

4.2 yields the short exact sequence,

0 −→ HomR(R̂, G′′) −→ HomR(R̂, E) −→ HomR(R̂, G′) −→ 0.

Hence, we obtain the exact sequence

Y = . . . −→ HomR(R̂, E1) −→ HomR(R̂, E0)
HomR(R̂,ρ0)

−→ HomR(R̂, G0) −→ . . .

of R̂-modules and R̂-homomorphisms in which ker(HomR(R̂, ρ0)) ∼= HomR(R̂,M). On the other

hand, if E is an injective R-module, we can conclude that HomR(R̂, E) is injective as an R̂-module,

because HomR̂(−,HomR(R̂, E)) ∼= HomR(−⊗R̂ R̂, E). It is enough to show that HomR̂(E′,Y) is

exact, for all injective R̂-modules E′. This follows from the following isomorphisms of complexes

HomR̂(E′,Y) ∼= HomR̂(E′,HomR(R̂,X)) ∼= HomR(E′,X)

and the fact that every injective R̂-module is also injective as an R-module.

(ii) Let M be Gorenstein injective. By (i), HomR(R̂,M) is Gorenstein injective R̂-module.

Hence, by [5, Theorem 4.4], HomR(R̂,M) ∈ B(R̂), and so M ∈ B′(R), by the definition. �

Proposition 4.5. An R-module M is Gorenstein injective if and only if ExtiR(E,M) = 0 for all

injective R-modules E and for all i > 0 and there exists an exact sequence

X = . . . −→ E2 −→ E1 −→ E0 −→M −→ 0

of R-modules and R-homomorphisms with Ei is injective R-module for all i ≥ 0, such that

HomR(E,X) is exact for all injective R-modules E (i.e. M admits a proper left injective res-

olution).

Proof. It is the dual version of [13, Proposition 2.3] and we leave the proof to the reader. �
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Lemma 4.6. (i) Let R be a local Noetherian ring and M a cotorsion R-module such that M

belongs to B′(R). Then there exists an epimorphism L −→M with idR(L) <∞.

(ii) Let R be a Noetherian ring and ϕ : L −→ M an R-epimorphism with idR(L) < ∞ and

ExtiR(N,M) = 0 for all injective R-modules N and all i > 0. Then there exists an epic I(R)-

precover E −→ M , in which E is injective.

Proof. (i) Since M belongs to B′(R), then HomR(R̂,M)) belongs to B(R̂). So, HomR(R̂,M))

has finite Gorenstein injective dimension as an R̂-module by [5, Theorem 4.4]. By [5, Lemma 2.18],

There are an R̂-module L and an R̂-epimorphism L −→ HomR(R̂,M) such that injective dimension

of L as an R̂-module is finite. Since every injective R̂-module is injective as an R-module, injective

dimension of L as an R-module is finite. Consider the following exact sequence

0 −→ R −→ R̂ −→ R̂/R −→ 0,

that yields the following exact sequence

HomR(R̂,M)) −→ HomR(R,M)) −→ Ext1R(R̂/R,M).

On the other hand, since R̂/R is a flat R-module and M is a cotorsionR-module, Ext1R(R̂/R,M) =

0. So, the natural R-homomorphism HomR(R̂,M) −→M is epic. The result follows.

(ii) By [16, Theorem 2.4.3], there exists an I(R)-precover f : E −→ M . We claim that f is an

I(R)-precover. Let ϕ′ : L′ −→ M be an R-homomorphism such that idR(L′) < ∞. Consider an

exact sequence

0 −→ L′ g
−→ E′ −→ K −→ 0

such that E′ is an injective R-module. It is clear that injective dimension of K is finite. By

induction on injective dimension, we can deduce from assumption that Ext1R(K,M) is zero. We

obtain the following exact sequence

0 −→ HomR(K,M) −→ HomR(E′,M) −→ HomR(L′,M) −→ Ext1R(K,M) = 0.

Hence, we conclude that there exists an R-homomorphism ψ : E′ −→ M such that ϕ′ = ψg. On

the other hand, since f is an I(R)-precover, there exists an R-homomorphism h : E′ −→ E such

that ψ = fh. Hence, there exists an R-homomorphism hg : L′ −→ E such that f(hg) = ϕ′. It

therefore follows that f is an I(R)-precover. Consequently f is epic, because ϕ is epic. �

Lemma 4.7. Let (R,m) be a local Noetherian ring, M a cotorsion R-module, and K a cotorsion

R̂-module. Then

(i) ExtiR(F,M) = 0 for all flat R-modules F and all i > 0.

(ii) K is cotorsion as an R-module.

(iii) For all j > 0, ExtjR(E,M) = 0 for all injective R-modules E if and only if Extj
R̂
(I,HomR(R̂,M)) =

0 for all injective R̂-modules I.

Proof. (i) See the proof of [16, Proposition 3.1.2].

(ii) Suppose F is a flat R-module and P• −→ F a projective resolution of F . For all i > 0, we



GORENSTEIN HOMOLOGICAL DIMENSIONS AND AUSLANDER CATEGORIES 11

have

ExtiR(F,K) ∼= Hi(HomR(P•,K))

∼= Hi(HomR̂(P• ⊗R R̂,K))

∼= Exti
R̂
(F ⊗R R̂,K).

The last isomorphism comes from the fact that K is a cotorsion R̂-module and F ⊗R R̂ is flat as

an R̂-module for all flat R-modules F . This ends the proof of (ii).

(iii) Suppose L is an R̂-module and F• −→ L is a free resolution of L, considered as an R̂-module.

For every j > 0, we have

Extj
R̂
(L,HomR(R̂,M)) ∼= Hj(HomR̂(F•,HomR(R̂,M))

∼= Hj(HomR(F• ⊗R̂ R̂,M))

∼= Hi(HomR(F•,M))

∼= ExtjR(L,M)

The last isomorphism follows from the fact that M is cotorsion and every flat R̂-module is flat as

an R-module.

⇒) We know that every injective R̂-module is injective as an R-module. So, the result follows

from the above isomorphism.

⇐) By assumption, it is easy to see that

Exti
R̂
(N,HomR(R̂,M)) = 0,

for all R̂-modules N of finite injective dimension and all i > 0. Let E be an injective R-module

and let HomR(−, ER(R/m)) denote by (−)∨. From the natural monomorphism E −→ (E∨)∨, we

conclude that E is a direct summand of (E∨)∨. So, it is enough to show that ExtiR((E∨)∨,M) = 0

for all i > 0. Since, by Lemma 2.7, idR̂((E∨)∨) <∞, the result follows from the above isomorphism.

�

Theorem 4.8. Let R be a local Noetherian ring and M an R-module. Then the following condi-

tions are equivalent:

(i) M is Gorenstein injective.

(ii) M is cotorsion and HomR(R̂,M) is Gorenstein injective as an R̂-module.

(iii) M ∈ B′(R), M is cotorsion and ExtiR(E,M) = 0 for all injective R-modules E and all i > 0.

Proof. (i) ⇒ (ii) This follows from Theorem 4.2 and Proposition 4.4.

(ii) ⇒ (iii) By [5, Theorem 4.4], HomR(R̂,M) belongs to B(R̂), and so M belongs to B′(R).

Also, Proposition 4.5 implies that

Exti
R̂
((I,HomR(R̂,M)) = 0

for all injective R̂-modules I and all i > 0. The result follows from Lemma 4.7 (iii).
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(iii) ⇒ (i) In view of Proposition 4.5, it is enough to show that M admits a proper left injective

resolution. It follows from Lemma 4.6 (i) and (ii) that there exists an exact sequence

0 −→ B −→ E
f

−→M −→ 0

such that f is an I(R)-precover and E an injective R-module. It is enough to show that B satisfies

the given assumptions on M .

Let I be an injective R-module. It is easy to deduce from the above exact sequence that

ExtiR(I, B) = 0 for all i ≥ 2. Also, we have the following exact sequence

HomR(I, E) −→ HomR(I,M) −→ Ext1R(I, B) −→ Ext1R(I, E) = 0.

On the other hand, HomR(I, f) is epimorphism. So Ext1R(I, B) = 0.

Now, we prove that B is a cotorsion R-module. In view of assumption and Lemma 4.7, we

conclude that

Exti
R̂
(I,HomR(R̂,M)) = 0

for all injective R̂-modules I and all i > 0. On the other hand, M ∈ B′(R) implies that

HomR(R̂,M) ∈ B(R̂). Therefore, by [5, Lemma 4.7], HomR(R̂,M) is Gorenstein injective as

an R̂-module. Hence, we have an exact sequence

0 −→ K −→ E′ −→ HomR(R̂,M) −→ 0,

of R̂-modules and R̂-homomorphism such that E′ is an injective and K is a Gorenstein injective

R̂-module. By Theorem 4.2, K is a cotorsion R̂-module. Lemma 4.7 implies that K is cotorsion

as an R-module. Now, let ϕ : HomR(R̂,M) −→ M be the natural R-homomorphism. Consider

the following diagram

0 −→ K −→E′ −→ HomR(R̂,M) −→ 0




y

ϕ

0 −→ B −→ E
f

−→ M −→ 0.

Since E′ is an injective R-module and f : E −→ M is an I(R)-precover, there exists an R-

homomorphism ψ : E′ −→ E such that the following diagram is commutative.

0 −→ K −→E′ −→ HomR(R̂,M) −→ 0




y

ψ





y

ϕ

0 −→ B −→ E
f

−→ M −→ 0.

It is easy to see that there exists an R-homomorphism θ : K −→ B such that the following diagram

is commutative.

0 −→ K −→E′ −→ HomR(R̂,M) −→ 0




y

θ





y

ψ





y

ϕ

0 −→ B −→ E
f

−→ M −→ 0
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Suppose F is a flat R-module. Then we obtain the following commutative diagram

HomR(F,HomR(R̂,M))
β

−→ Ext1R(F,K) −→ 0




y

HomR(F,ϕ)





y

θ1 (∗)

HomR(F,M)
δ

−→ Ext1R(F,B) −→ 0.

The natural exact sequence

0 −→ R −→ R̂ −→ R̂/R −→ 0,

yields the exact sequence

0 −→ HomR(R̂/R,M) −→ HomR(R̂,M)
ϕ

−→M −→ 0,

because M is a cotorsion R-module and R̂/R is a flat R-module. Thus, we obtain the following

exact sequence

0 −→ HomR(F,HomR(R̂/R,M)) −→ HomR(F,HomR(R̂,M))
HomR(F,ϕ)

−→ HomR(F,M) −→

−→ Ext1R(F,HomR(R̂/R,M)).

Since M is a cotorsion and R̂/R is a flat R-module,

Ext1R(F,HomR(R̂/R,M)) ∼= Ext1R(F ⊗R R̂/R,M)).

On the other hand, F ⊗R R̂/R is a flat R-module, so Ext1R(F ⊗R R̂/R,M)) is zero R-module.

Therefore HomR(F, ϕ) is an epimorphism. By (*), θ1β is epic and so θ1 is epic. Thus, since K is

a cotorsion R-module, Ext1R(F,B) is the zero module. This means that B is cotorsion.

Now, we apply the functor HomR(R̂,−) on the following exact sequence

0 −→ B −→ E −→M −→ 0,

and obtain the exact sequence

0 −→ HomR(R̂, B) −→ HomR(R̂, E) −→ HomR(R̂,M) −→ 0.

It is easy to see that HomR(R̂, E) is an injective R̂-module. Since HomR(R̂,M) is Gorenstein

injective as an R̂-module, by [13, theorem 2.25], HomR(R̂, B) has finite Gorenstein injective

dimension. So, it follows from [5, Theorem 4.4] that B ∈ B′(R). This ends the proof. �

The following example shows that the dual version of Theorem 3.4 is not true.

Example 4.9. Let R be a non-complete local Noetherian domain which is not Gorenstein. By

[14, Theorem 2.1], GidR(R) = ∞. On the other hand, by [1, Lemma 3.3], HomR(R̂, R) = 0. So R

has infinite Gorenstein injective dimension as an R-module but R ∈ B′(R).

Theorem 4.10. Let (R,m) be a local Noetherian ring of dimension d and ExtiR(R̂,M) = 0 for all

i > 0. Then the Gorenstein injective dimension of M is finite if and only if M belongs to B′(R).

In particular, if M ∈ B′(R) then GidR(M) ≤ d.
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Proof. ⇒) Let GidRM = t and

0 −→M −→ G0 −→ G1 −→ G2 −→ . . . −→ Gt −→ 0

be an exact sequence such that Gi is Gorenstein injective for all 0 ≤ i ≤ t. Using hypothesis, we

obtain the following exact sequence

0 −→ HomR(R̂,M) −→ HomR(R̂, G0) −→ . . . −→ HomR(R̂, Gt) −→ 0.

By Proposition 4.4 (i), GidR̂(HomR(R̂,M)) is finite as an R̂-module and so by [5, Theorem 4.4],

HomR(R̂,M) belongs to B(R̂). The assertion follows from the definition.

⇐) Since M belongs to B′(R), HomR(R̂,M) belongs to B(R̂). Now, by using [5, Theo-

rem 4.4], the Gorenstein injective dimension of HomR(R̂,M) is finite as an R̂-module. By [13,

Theorem 2.29], GidR̂(HomR(R̂,M)) ≤ FID(R), where FID(R) = sup{ idR(M)|M is an R −

module of finite injective dimension}. It is known that idR(N) = fdR(HomR(N,ER(R/m))),

for all R-modules N . So, we have GidR̂(HomR(R̂,M)) ≤ d.

Consider the following exact sequence

0 −→M −→ E0 −→ E1 −→ . . . −→ Ed−1 −→ L −→ 0,

of R-modules and R-homomorphisms such that Ei is injective R-module for all 0 ≤ i ≤ d− 1. We

have the following exact sequence,

0 −→ HomR(R̂,M) −→ . . . −→ HomR(R̂, Ed−1) −→ HomR(R̂, L) −→ 0.

So, by [13, Theorem 2.22], HomR(R̂, L) is a Gorenstein injective R̂-module. On the other hand,

for any flat R-module F and any i > 0, we have

ExtiR(F,L) ∼= Exti+dR (F,M).

Therefore, ExtiR(F,L) is zero for all i > 0, because the projective dimension of F is less than

d + 1. So, L is cotorsion. It therefore follows from Theorem 4.8 that L is a Gorenstein injective

R-module. Thus, GidR(M) ≤ d. �
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