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Adaptive Learning in Tracking Control Based
on the Dual Critic Network Design
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Abstract—1In this paper, we present a new adaptive dynamic
programming approach by integrating a reference network that
provides an internal goal representation to help the systems
learning and optimization. Specifically, we build the reference
network on top of the critic network to form a dual critic network
design that contains the detailed internal goal representation to
help approximate the value function. This internal goal signal,
working as the reinforcement signal for the critic network in
our design, is adaptively generated by the reference network
and can also be adjusted automatically. In this way, we provide
an alternative choice rather than crafting the reinforcement
signal manually from prior knowledge. In this paper, we adopt
the online action-dependent heuristic dynamic programming
(ADHDP) design and provide the detailed design of the dual
critic network structure. Detailed Lyapunov stability analysis for
our proposed approach is presented to support the proposed
structure from a theoretical point of view. Furthermore, we
also develop a virtual reality platform to demonstrate the real-
time simulation of our approach under different disturbance
situations. The overall adaptive learning performance has been
tested on two tracking control benchmarks with a tracking
filter. For comparative studies, we also present the tracking
performance with the typical ADHDP, and the simulation results
justify the improved performance with our approach.

Index Terms— Adaptive critic design (ACD), adaptive dynamic
programming (ADP), internal goal, lyapunov stability analysis,
online learning, reinforcement learning, tracking control, virtual
reality.

I. INTRODUCTION

EVELOPING brain-like intelligence has become a

cutting-edge research topic in the computational intel-
ligence field. While the latest research on adaptive dynamic
programming (ADP)/adaptive critic design (ACD) [1]-[6] has
shown great success on machine intelligence and applications,
there are still many grand challenges in reaching truly brain-
like intelligence. One of the most important questions is how to
design a general system that can learn and optimize adaptively
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and efficiently like the human brain to achieve the final goal
over time [7], [8]. In this paper, we propose a novel structure
based on heuristic dynamic programming (HDP) to tackle this
problem.

In recent years, extensive efforts have been dedicated to
developing machine intelligence, and ADP is one of the
most critical approaches to (hopefully) bring such a level
of intelligence closer to reality [8]-[10]. Generally speaking,
ADP can be categorized into three typical structures [11], [12].

1) HDP, which was proposed to provide a control action
sequence with the action network and use the critic net-
work to approximate the value function. For instance, in
online HDP version such as [13], the critic network was
designed to critique the generated action by propagating
a temporal difference (TD) between two consecutive
estimates of the value function.

2) Dual heuristic dynamic programming (DHDP), the key
point of which is to employ the critic network to
approximate the derivatives of the value function with
respect to the state vectors.

3) Globalized dual heuristic dynamic programming
(GDHP), which takes advantage of both HDP and DHP
by employing the critic network to approximate both
the value function and its derivatives with respect to
the state vectors.

Moreover, various versions have been developed based on
these typical structures, such as the action-dependent (AD)
version [13]-[15] by taking the control action as one of
the inputs for the critic network, and the model-dependent
version [16], [17] by taking the estimates of the model network
as part of the inputs for the critic network.

Currently, many implementations of these ADP designs
have been tested on both mathematical benchmarks and engi-
neering applications, such as the infinite-time optimal tracking
control with greedy HDP algorithm in [18]-[20], the HDP
controller for nonlinear discrete time tracking problem in
[21]-[25], and the engine torque and exhaust air—fuel ratio
tracking control based on AD HDP in [26]. In [27]-[29], the
looper system control in the iron industry was improved with
the Levenberg—Marquardt (LM) algorithm instead of back-
propagation as the weights updating rules in neural networks,
and in [16] and [30]-[33] the turbogenerator/power system
control was improved with HDP and DHP controllers, and
many others [34]—-[39].

Although there are many successful applications with ADP
approaches, many of them use either a binary reinforcement
signal (“0” and “—1”) or some specific discrete reinforcement
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signals (“0,” “—0.4,” and “—17) [13], [21], [22]. Some others
crafted the reinforcement signal manually with past experience
or prior knowledge. For instance, in [11], the square of the
difference between the reference signal and the actual output
of the system is set as the reinforcement signal. In [40],
the reinforcement signal is defined with different weights for
various components, with some of the error components even
having nonlinear coefficients. Therefore, an intuitive question
is: can the reinforcement signal be assigned without any
(or minimum) prior knowledge or human intervention and be
adjusted adaptively when the operation environment changes?
In this paper, we propose a novel ADP structure with dual
critic networks that provide the internal goal representation
adaptively according to the system’s behaviors to tackle this
question. Specifically, we introduce one reference network
to be on top of the typical ADP design, through which we
maintain the advantage of a model-free AD structure [13].
In this way, we build one reference network on top of the
critic network to work as an integrated dual critic network
structure, where the reference network provides the critic
network with an internal reinforcement signal. Unlike the
binary reinforcement signal from the external environment,
this internal signal is continuous and bounded. It not only
works as one of the input vectors of the critic network but
also contributes to the parameter tuning for the critic network.
Moreover, it can be adjusted adaptively and automatically by
the reference network according the system states and the
control action. As this internal signal is not crafted manually
or with any prior knowledge, we believe that our proposed
dual critic network design can provide useful suggestions
about how to adaptively and automatically assign a proper
reinforcement signal for the general system to achieve the final
goal over time adaptively. We would like to note that, although
there are many successful applications on tracking control with
adaptive/fuzzy controllers [41]-[43], many such approaches
require an accurate system model to be able to achieve
the control or tracking performance. However, in real-world
complex problems, it is not uncommon that such an accurate
system model is very difficult, or even impossible sometimes,
to obtain due to the complexity of the system. Therefore, we
consider our proposed dual critic model-free ADP approach
to be particularly useful for such complex systems.
Motivated by our previous work [7], [44], we extend our
idea to the tracking control problems with several major new
contributions. First, we integrate a tracking filter in this paper
to handle the tracking problem rather than the balancing
problem. Second, we develop the Lyapunov stability analysis
to provide the theoretical support of our method, which is
important to understand the convergence of this method. Third,
we develop a virtual reality (VR) platform to demonstrate
the performance of our method, with active interaction of
the external environment. Finally, we conduct many more
experiments, including two types of noises/disturbances, for
the system to demonstrate its performance. We would like to
note that the terminology of “reference network” we use in
this paper is similar to the “goal network” and “goal generator
network” we discussed in several of our recent papers [15],
[45], and [25]. The underlying principle of both the reference
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Fig. 1. Architecture design of the proposed HDP approach with a tracking
filter.
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Fig. 2. Description of the dual critic network.

network and the goal network/goal generator network is the
same, i.e., to provide a detailed internal goal representation to
facilitate learning, optimization, and control.

The rest of this paper is organized as follows. Section II
provides the architecture description of the dual critic
network and the tracking filter design. Section III presents
the implementation of the dual critic network HDP design
with a tracking filter, together with its associated learning
algorithms. Detailed experiment setup and simulation results
are given in Sections IV and V, respectively. For both cases,
we provide comparative studies between our approach and
the typical HDP approach under the same settings. Detailed
Lyapunov stability analysis is presented in Section VI. Finally,
Section VII concludes this work with some discussions on
future research directions. The detailed pseudo-code for the
implementation of our method is given in the Appendix.

II. HDP WITH A DUAL CRITIC NETWORK FOR
NONLINEAR TRACKING CONTROL

The schematic diagram of our proposed idea is presented
in Fig. 1. The action network is kept the same as in [13],
[21]. For the critic network, we integrate with one reference
network, and therefore there are two networks in the critic
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network block as presented in Fig. 2. The tracking filter is
added here to show the performance on the tracking control
problem. In the rest of this section, we will introduce the dual
critic network block and the tracking filter.

A. Dual Critic Network in ADP Design

The motivation of this dual critic network design is twofold:
one is to provide an internal goal representation for the critic
network; the other is to help approximate the cost-to-go in
detail since the internal reinforcement signal works as one of
the input vectors for the critic network.

From the system-level view in Fig. 1, we can see that the
parameters in the dual critic network block can not only be
tuned by an external signal but also be adjusted by itself.
Specifically, the reference network in the top of the block is
tuned by the error function with the external reward signal,
while the critic network at the bottom of the block is tuned
by the error function with the internal reinforcement signal.
As presented in Fig. 2, the reference network observes a reg-
ular reward signal r (k) (usually a binary value) from external
environment and provides the critic network with a detailed
internal reinforcement signal s(k) (usually a continuous value)
by justifying the system state vectors X (k) and control action
u(k). In order to approximate the value function J (k) well,
the critic network keeps the same inputs as the reference
network in addition to the internal signal s(k). Moreover, s (k)
also contributes to the error function of the critic network,
as the dash line shown inside the block. Since the s(k) can
be automatically adjusted according to the state vectors X (k)
and the control action u(k), we regard it as an adaptive
reinforcement signal. In summary, the key idea of our dual
critic design is to use the reference network to automatically
and adaptively generate the internal goal signal, rather than
hand-crafted in the traditional ADP approaches, to guide the
decision-making process for the optimal action at any time
instance to accomplish the final goal. This reference network
can also actively interact with the critic network and action
network, either directly (for critic network) or indirectly (for
action network), to support the action selection in a principled
way. We will further present the detailed learning architecture
and algorithm for such a dual structure design in Section III-B.

B. Tracking Filter

In order to demonstrate the improvement of our proposed
dual-critic controller, we would like to test it on nonlinear
tracking control problem with a tracking filter, as presented in
Fig. 1. The inner structure of the tracking filter is presented
in Fig. 3, which was originally from [46] and later developed
in [21] and [22]. To be clear, we introduce the design of the
tracking filter as follows.

The nonlinear system function is defined in a general
form as

xtk+1) = f(x(k)) +u(k) +dk) (1)

where f(x(k)) is the nonlinear system function, x(k) =
[x1(k) x2(k) x3(k) --- xp(k)], and x;(k) € N is the state
value for the ith dimension at time instance k. u(k) is

915

[
X(k).xg(k+1)

Fig. 3. Description of the tracking filter.

the control action, and d(k) is the disturbance bounded in
[—d, d ], where d,, is a constant value.

The nonlinear system function f(x(k)) is assumed to be
unknown in the simulation and can be approximated by the
action network here. The approximation value is denoted as
f (x(k)), which works as one of the inputs of the filter.
Moreover, the inputs of the filter also include the current
state vector X (k) and the desired trajectory value x,(k) and
x4(k + 1), as presented in Fig. 3. The error e(k) is defined as
the difference between the current state value and the desired
value as follows:

e(k) = x(k) — xq(k) 2
and the filtered tracking error e(k) is defined as
e(k) = e(k) + Aien—1(k) + - + An—1€1(k) 3)

where e,_1(k),...,e1(k) are the past error values, which
means that e, _; (k) = e, (k—i),i =0,1,...,n—1,n € N. For
brevity, we define A = [A,—1, An—2, ..., 41], where 4; € 0.
Therefore, (3) can be rewritten as

e(k) = [A Ile(k). 4)
Again, we can rewrite (3) for time instance k + 1 as

ek+1) =etk+1)+ Areg—1(k+1)+---
+An—1e1(k + 1). (&)
Substituting (1) into (5), we get
ek+1)= f(xk) —xqgtk + 1)+ Arep—g(k+ 1)+ - --
FAn—1e1(k + 1) + uk) + d k)
= f(x(k) —xatk +1) + diep(k) + -
+in—1e2(k) + u(k) + d (k). (6)

Similar to [21] and [22], we define that the control sequence

u(k) = xq(k + 1) — f(x(k)) + koe(k) — Aren(k) —

o — An—1e2(k). (7
Substituting (7) into (6), we get
ek +1) = Kye(k) — f(x(k) +d(k) (8)
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where f (x(k)) is the nonlinear system function approximation
error given by

fak) = fxk) — fxk) )

and K, is the gain value. Assuming that f(x(k)) is bounded,
the system will be stable if 0 < Kymax < 1, where Kymax 1S
the maximum eigenvalue of K, [22].

III. IMPLEMENTATION OF HDP WITH DUAL CRITIC
NETWORK FOR NONLINEAR TRACKING CONTROL

In this section, we provide detailed procedures on how to
implement our proposed dual critic network HDP approach
with a tracking filter. We also define the external reinforcement
signal and the internal reinforcement signal here. A brief
pseudocode (Algorithm 1) is provided in this section to
clearly demonstrate the implementation of the dual critic
network. Moreover, a detailed algorithm-level implementation
(Algorithm 2) is presented in the Appendix to show the
implementation of our proposed approach. Multilayer
perceptron (MLP) neural network has been one of the most
popular techniques to approximate the nonlinear function in
the ADP community [11], [27], [12]. Therefore, we follow
this trend and adopt MLP in our ADP design as well.

A. External and Internal Reinforcement Signal

As mentioned previously, there are two types of reinforce-
ment signal in our proposed approach. One is the external
reinforcement signal, which comes from the environment, and
the other is internal reinforcement signal, which comes from
the reference network and works as an internal goal that guides
the system’s behavior specifically. We will discuss these two
signals in detail in the following.

External reinforcement signal (k) is defined according to
the current filtered tracking error e(k) as

r(k) = [rl(k) rak) ..., rm(k)] e N" (10)

with

0, ifllei®) <c ,
r,-(k)_[_L iF el > ¢ i=1,2,3,...,m (11)
where ||-|| represents the Euclidean vector 2-norm and c is the
constant threshold for the filtered tracking error. The binary
value O represents a good tracking performance while —1
means a poor one.

The internal reinforcement signal s(k) is the output of the
reference network bounded in [—1, 1] and can be adaptively
adjusted as the system states change. At the feed-forward
stage, the internal signal works as one of the inputs for the
critic network. At the feed-backward stage, the parameters
in the critic network are tuned by the error function with
s (k). Therefore, the internal reinforcement signal s(k) closely
connects the reference network and the critic network as a
whole block.

Reference
Network

Update S(k)

Fig. 4. Learning schematic in dual critic network.

B. Learning and Optimization of Dual Critic Network

Compared to the typical HDP design in [13], the learning
and optimization of the critic network here is associated
with the reference network as presented in Fig. 4. At the
forward stage, the reference network obtains the inputs of the
state vector X (k) and the control action u(k) and provides
an internal reinforcement signal s(k) for the critic network.
Then the critic network updates the cost-to-go signal J (k). At
the backward stage, the reference network will first be tuned
by the error function (15) with r(k) and the updated cost-to-
go signal J (k). After this is done, the reference network will
provide the updated internal reinforcement signal s(k) for the
critic network, which will then be adjusted with the error func-
tion (12). The learning process will repeat until the terminal
conditions are satisfied. The pseudocode in Algorithm 1 shows
exactly this learning procedure.

The error function of the critic network is defined as
follows:

eelk) = al ()~ (k= 1) 5@ Eb) = 3e2K)
(12)

where
J(k) = oV (k) - p(0P (k) - xc (k)

and wél)(k) and wgz)(k) refer to the weights of the input
to the hidden layer and the hidden to the output layer in
critic network, respectively. x.(k) is the input vector of the
critic network and it contains the state vector X (k), the
control action u(k), and the internal signal s(k). ¢ stands for
the sigmoid function that refines the output into the range
of [—1, 1]. s(k) is defined as

13)

s(k) = ¢(w§“(k> - p (0 (k) -xr(k))) (14)
where a)gl)(k) and wﬁz) (k) refer the weights of the input to the
hidden layer and the hidden to the output layer in reference
network, respectively. x, (k) is the input vector of the reference
network and it contains the state vector X (k) and the control
action u(k).

The error function of the reference network is defined as

er(k) = ad (k) — [Tk — 1) = r(®)];  Er(k) = %e%(k).
(15)
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Algorithm 1 Outline of Implementation of Dual Critic
Network HDP

/ *s < RefNet (x,u,w,), internal goal representation with
the reference network;

RefNet: the reference network;

w,.: weights of the RefNet;

s: internal goal signal;

J <« CritNet(x,u,s,w.), total
approximated by the critic network;
CritNet: the critic network;

w,: weights of the CritNet;

J:total cost-to-go signal, the output of the critic network; */

cost-to-go  signal

1) while —T'erminalContion do

2) Initiate x, W,, W¢;

3) repeat

4) Obtain the updated action u and apply to the system;
5) Obtain the updated state X and immediate external

6) Update the error function F,. based on (15);

7) Employ backpropagation rules (20)-(23) to minimize
FE,. till the TerminalContionl;

8) Update the error function E. based on (12);

9) Employ backpropagation rules (27)-(30) to minimize
FE, till the T'erminalContion2;

10)  until CurrentState ¢ threshold

11) end while

(n+1) inputs.
(n+2) inputs

(b)

Fig. 5. (a) Neural network structure of the reference network. (b) Neural
network structure of the critic network.

Given that the state vector X (k) has n elements and the
control action u(k) is a single control unit, the inputs for
the reference network and the critic network will be (n + 1)
and (n + 2), as presented in Fig. 5(a) and (b), respectively.
The chain backpropagation rule is employed for the neural
networks to learn and adapt their weights.

1) Reference Network: The reference network is intro-
duced here to provide an internal goal representation for the
critic network. The internal goal s(k) is defined as

1 - exp_l(k)
Nip
k) = > wP0)yik) (17)

i=1

917

1 —exp=a®
yi(k) = m, i=1,..., Ny (18)
n+1
» N (19)

) = wl Oxk), i=1,...
j=1

where z; is the input of the ith hidden node and y; is the
corresponding output of this hidden node after the sigmoid
function, / is the input to the output node, N, is the number
of hidden neurons in the reference network, and x,; is the
input vector of the reference network, which has (n+ 1) input
nodes as presented in Fig. 5(a).

The procedure of backpropagation rule applied to the ref-
erence network is illustrated below.
1) Awfz): Reference network weights adjustment from the
hidden layer to the output layer

AwSiZ)(k) = 1, (k) [_M}

20
ows? (k) 0

where 7, (k) is the learning rate of the reference network at
time instance k, and

OE,(k) _ OE,(k) aJ (k) as(k) al(k)
owP k) 0k osk) al(k) pw? (k)

1
= aer(k) - 5(1 - (s(k))?) - yi (k)

Nyp

1
> (k)51 = prkpws) 0] (21)
i=1

2) A wﬁl): Reference network weight adjustment from the input
layer to the hidden layer

Aw® (k) = n.(k) —L(k)
LoJ aw'{’_’)j (k)
OE (k) OE,(k)oJ(k)ds(k) al(k) oyi(k) ozi(k)
ow () 2T (k) as(k) alk) dyi(k) 0z k) pw D (k)

= e ) 5 (1= 0 1 6) - 50 = GE))

(22)

Nrp

I
W) - ; [wg> ()5 (1= Pl (k)]
(23)

Once the internal goal s(k) is updated in reference network,
we can adapt the weight tuning in the critic network.

2) Critic Network: In the literature, the critic network
is applied to approximate the cost function, and its inputs
normally contain the state vector X (k) and the control unit
u(k). Here we add one more input with the internal goal s(k)
and hope that s (k) can provide the critic network with detailed
goal representation that contributes to the system’s decision
making. The cost-to-go signal J (k) is defined as

Nen
T = 2wl R)pik) (24)
i=1
1 —exp4i®

1 4 exp—ai®)’ 25)

pi(k) =
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Action Network

n inputs

\ 4

Tracking Filter ——

Bexlie)
(b)

Fig. 6. (a) Neural network structure of the action network. (b) Control action
generator.
n+2
1 .
qi (k) = Z wl ()x k),  i=1,...,Nen (26)

where g; and p; are the input and output of the ith hidden node
in the critic network, respectively, and x.; is input vector of
the critic network with n 4 2 nodes, as presented in Fig. 5(b).

The procedure of the backpropagation rule applied to the
critic network is provided in the following.

1) Awgz): Critic network weight adjustment from the hidden
layer to the output layer
_ OEc(k
Aw( (k) = nc(k) . 27)
ow (k)

where 7. (k) is the learning rate of the critic network at time
instance k

OE.(k)
ow? (k)

OEc(k) 0J (k)
0J (k) ow (k)

= aec(k) - pi(k). (28)

2) Awe . Critic network weight adjustment from the input
layer to the hidden layer

Awﬁ,.",(k)=nc<k)[ aﬁ)(")] (29)
’ oD )
GE(K)  0E) 01() opik) 0gi(k)

o0 (k) 0) opith) 20 ) 0D (k)

= aecl) - 0@ 1) (1~ P h). (30)

C. Interaction of the Action Network and the Tracking Filter

The control action in this paper is generated by the track-
ing filter, as shown in Fig. 6(b). The action network here
is to approximate the nonlinear system function f(x(k)),
and the approximation error f (x(k)) is added to the error
function of the action network. Note that f(x(k)) cannot be
obtained directly from (9) since f(x(k)) is assumed unknown
in this paper. The model network is commonly used in
the ADP/ACD designs for tracking control [18], [26]. Here
we apply the same technique to predict the state vector
X(k + 1) and get e(k + 1). Then, f(x(k)) can be obtained
from (8).

The error function of the action network is defined as
follows:

~ 1
ca=JU0)+fR); Eak)= k). (1)
The nonlinear system function f (x(k)) can be obtained as

follows:
1 —exp(—v(k))

fxk) = m (32)
Nan

o(k) = D" wl (k)gi(k) (33)
i=1

oy L—exp(=hi(k)) .

gik) = T——— = e A 1,....,Nan (34)

hitk) = D ) (k)xgj(k), i=1,....,Nan (35)
j=1

where h; and g; are the input and output of the ith hidden node
in the action network, and v is the input for the output node.
f is the output of the action network, and N, is the total
number of hidden nodes in the action network. And x,; is the
input vector of the action network presented in Fig. 6(a). Note
that the weights tuning of the action network should consider
the tracking filter as well.

A wﬁf): Action network weights adjustment from the hidden
layer to the output layer

(36)

AP ®) = na(k) [ 0La®) }

w; (k)

where 7,(k) is the learning rate of the action network at time
instance k. And

0E. (k) _ 0Eq(k)aJ (k) ou k) ov (k)
w? (k) 0J (k) du (k) dv (k) puw® (k)

— e () [—1 (1-72 (k))} & &)

(37)

Z”: w(2) (k) B (1 —p? (k))} wg}}H,) (k)
(38)

2) ch(,l): Action network weights adjustment from the input
layer to the hidden layer

(k)
AwgD.(k):na(k)[ 0L ] (39)
H il k)
OE, (k)  0E, (k) 8J (k) du (k) ov (k)
owl) (k) 0 (k) ou (k) ov (k) ogi (k)
ogi (k) oh; (k)
B 40
ohi (k) dwl) (k) @0
Nah

1
:E(wg) (k) wg/l,zn+|)(k)|:§ (1 — P12 (k))i|)ea (k)
AT

(41)
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TABLE I
SUMMARY OF THE PARAMETERS USED IN THE SIMULATION STUDY ONE

Para. e Na nr Ko A c *
Value 5S¢ —3 8¢—3 25¢—3 0.1 02 15¢—-3 *
Para. Ne¢ Ny Ny Tc Ta T, a
Value 40 150 50 le—4 le—5 1le—5 095

We note that, similar to [13] and [27], the normalization
of the weights will be employed during the learning and
adaptation for all the networks used here. The weights are
confined to the proper range by

w; (k) + Aw, (k)

w,(k+1)= p

{a = max(|a;j|)| Yaij € w, (k) + Aw, (k)}  (42)
we k1) = e ® +bch @

{b = max(|b;; )| ¥bij € we (k) + Aw (k)]  (43)
wo (k4 1) = e O+ AW (B)

{ ¢ = max(|c;; |)| vC,-j e wa (k) + Aw, (K)}. (44

IV. SIMULATION STUDY ONE

In this section, we present two numerical simulations based
on the same system function. The motivation is to compare the
tracking performance with our proposed approach and with the
typical approach in [21], which is originally from [13]. The
system function is defined by the general nonlinear form as

x1k+ 1) = xp(k)

xpk+1) = f(x(k)) +uk) +dk) (45)
where
4 2
Fa®) =~ (ﬁ) =IO
2

with f(x(k)) assumed to be unknown in the tracking process.
Instead, the approximation value f (x(k)) can be obtained from
the action network. And d (k) is the disturbance here.

A. Example One

The objective of Example 1 is to track the sinusoidal
signal with some harmonic signal with x;. The desired signal
function is defined as xpq = sin(wkT) cos(QwkT + 7), where
w = 0.2 rad/s and 7 = /2. We set the sample interval
T = 50 ms and the total simulation time to be 150 s. In
the literature, noise or disturbance is normally added in the
simulation to see how robustness of the proposed approach
will be, like in [22], [47], and [48]. In this paper, we adopt
a similar technique as in [22]. Disturbance d(k) = 1.5
is introduced at k = 1200, corresponding to ¢t = 60 s.
Otherwise, it is set to be 0. The input vector X is defined
as Xin(k) = [e(k — 1) e(k) xpa(k — 1) x24(k)], where
e(k) = xp(k) — x24(k). She structures of the action network,
the reference network, and the critic network are 4 — 4 — 1
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Fig. 7. Typical tracking performance with our proposed approach.

(i.e., the network has four input nodes, four hidden nodes and
one output node), 5 —4 — 1, and 6 — 4 — 1, respectively. The
parameters we used in the simulation are summarized as in
Table 1.

where

a : Discount factor.

¢ : Threshold on mean square error.

nc - Initial learning rate of the critic network.

7q - Initial learning rate of the action network.

7y : Initial learning rate of the reference network.

N, : Internal cycle of the critic network.

N, : Internal cycle of the action network.

N, : Internal cycle of the reference network.

T, : Internal training error threshold for the critic network.

T, : Internal training error threshold for the action network.

T, : Internal training error threshold for the reference
network.

We note that the learning rates will drop once the tracking
performance is “good” over time. Specifically, we will com-
pare the mean square error (MSE) as expressed in (47) with
a certain threshold ¢

1 N
MSE = — ; (x — xa)* (47)

where x is the state vector, x4 is the desired tracking signal,
and N is a preset integer.

If the MSE is less than the threshold, then the learning rate
will be divided by a certain number and the new threshold
can be calculated by dividing another number correspondingly.
This kind of evaluation will be repeated during the whole
process of the tracking control. The detailed implementation
is presented in Algorithm 2 (line 24 to 32).

For a comparative study, we have conducted the simulation
with both approaches under the same parameters and envi-
ronment settings. The weights in the neural networks used
in both approaches are randomly selected from [—1, 1]. The
starting point of the state vector is (0, 1.5), which is the same
for both approaches. The typical tracking performance with
our proposed approach and the typical HDP approach are
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Fig. 8. Typical tracking performance with HDP approach.

presented in Figs. 7 and 8, respectively. From Fig. 7, we can
see that the tracking signal (solid line) can exactly follow the
desired signal (dash line) within 1 s. In addition, the tracking
signal can also quickly go back to the right track after the
disturbance at 60 s. On the other hand, the tracking signal with
the typical HDP approach can only follow the desired signal
after 10 s. Moreover, the tracking signal needs more time (13 s)
to go back to track the desired signal after the disturbance.
From this example, we can see that our proposed approach
shows not only faster learning process than the typical HDP
approach but also better robustness against disturbance.

B. Example Two

In order to show the adaptiveness of the proposed approach,
we conducted another numerical example to track a signal that
would change from a saw signal to a square signal and finally
to a sinusoid signal. We used the same system function and
environment settings as in Section IV-A, except that d (k) was
set to be white Gaussian noise with a standard deviation of
0.005 for all k. The object is to track the desired signal with
the state vector x;. The desired tracking signal is defined as

A(l=]-%]), o<r<m
A.(l—’ —3%), To <1t < 2Ty

X2d = (48)

—A,2Ty <t <3TpordTy <t < 5Ty
A,3Ty <t <4Ty or 5Ty <t < 6T
| A -sin(wt), 6Ty <t < 7.5Tp

where r+ = kT, k is the step number, and T is the sample
time (T = 50 ms). A = 0.95 is the amplitude of the signal.
To = 40 s is taken as the time internal for which each signal
lasts (i.e., the signal will change after 7).

The difficulty of this task is that the controller needs to
learn to track the desired signal, which will change over time,
under the white Gaussian noise. Fig. 9 shows the typical
tracking performance with our proposed approach, and one
can clearly see the good transient tracking performance when
the signal changes. But for the typical HDP approach, we

tracking signal
— — — desired signal

151 B

0.5 4

amplitude
o
T
|

o I I I I I
o] 50 100 150 200 250 300
time(s)

Typical tracking performance with our proposed approach.

tracking signal

— — — desired signal
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-

0 50 100 150 200 250 300
time(s)

Fig. 10. Typical tracking performance with HDP approach.

can see in Fig. 10 that the controller takes about 50 s to
learn to follow the saw signal and also spends much time to
learn when the desired signal changes to a rectangular signal.
In addition, the controller also requires about 20 s to catch
up after the desired signal changes to sinusoid signal. This
indicates that our proposed approach shows better adaptiveness
to this tracking problem than the typical HDP approach under
noisy condition.

V. SIMULATION STUDY TWO

Instead of testing on two numerical cases, here we would
like to evaluate our proposed approach on a continuous
benchmark, i.e., the ball-and-beam tracking problem [49].
There are many versions of this benchmark, and in this paper
we adopt the model presented in Fig. 11. The system contains
a long beam that can be tilted by a servo or electric motor with
a ball rolling back and forth on top of the beam. In this system,
the driver is located at the center of the beam. The angle of
the beam to the horizontal axis is measured by an incremental
encoder, and the position of the ball can be obtained with
cameras mounted on the top of system. Our proposed approach
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Note: driver is the tooth belt driven by DC motor

Fig. 11.  Schematic diagram of the ball-and-beam system.

will learn to track the desired signal with the position of the
ball.

A. Problem Formulation

From [49], we can obtain the equations of motion from the
Lagrange equation as follows:

I 1
(m + —g) ¥ 4 (mr* + Ip)—é — mx'a? = mg(sina) (49)
r r

m(x"? + I + I,)i + @mx'x’ + bl*)é + Kl*a

1
+ (mr® + I) =% — mgx'(cosa) = ul(cos a) (50)
r

where

m = 0.0162 kg, is the mass of the ball;

r = 0.02 m, is the roll radius of the ball;

I, = 4.32 x 10~kg - m?, is the inertia moment of the ball;

b = 1 Ng/m, is the friction coefficient of the drive
mechanics;

[ = 0.48 m, is the radius of force application;

l, = 0.5 m, is the radius of the beam;

K = 0.001N/m, the stiffness of the drive mechanics;

g : 9.8 N/kg, is the gravity;

I, = 0.14025 kg'mz, is the moment of inertia of the beam;
and

u is the force of the drive mechanics.

In order to simplify the system model function, we define
that x; = x’ represents the position of the ball, x, = x’
represents the velocity the ball, x3 = a is the angle of the
beam with respect to the horizontal axis, and x4 = a is the
angular velocity of the beam. Therefore, the state vector can
be defined as X = [x; x2 x3 x4]. In this way, the system
function (49) and (50) can be transformed into the following
forms:

I . 2 1, 2 .
m+ 2 X2 + (mr- + Ib);x4 = mx1xy + mg(sinx3)
(51)
1. .
(mr? + Ib);m + [mx} + Iy + Iplia = (ul + mgx))

x cosx3 — (2mxyx) + blz)m — KI%x3. (52)
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TABLE II
SUMMARY OF THE PARAMETERS USED IN THE SIMULATION STUDY TWO

Para. e Nla nr Ko A ¢ *
Value 0.02 0.01 0.05 0.05 0.1 Se—5 *
Para. Ne¢ Ng Ny Tc Ty Ty a

Value 100 200 200 le—4 le—5 le—5 095

T T T T
tracking signal
05 — — — desired signal | |

I I I I I
0 50 100 150 200 250 300
time (s)

Fig. 12.  Typical tracking performance with our proposed approach.
To make it clearer, we rewrite (51) and (52) with the
specific value of all the parameters mentioned above into the
approximate nonlinear state-space equations as follows:

X1 =x2 (53)
Xy = 1.717 sin(x3) (54)
X3 = x4 (55)
X4 = —0.241x4 + 0.157x1 cos(x3) + 0.5cos(x3) - u. (56)

The objective is to track the sinusoid signal x4 = 0.1 sin(wt)
with the position of ball (x1), where @ = 0.1. This task
requires the controller to not only keep the balance of the
ball on the beam but also to track the desired signal using the
position of the ball (x1). That is to say, if x; is out of the bound
([—0.48, 0.48] m), or x3 exceeds the angular velocity tolerance
([0.24, 0.24] rad/s), we will reset the ball to the initial starting
point ([0 O 0 0]). Since the learning process of the neural
network is continuous, we will assume that the weights can
be carried on when the task is reset. Keen readers may also find
that this is a continuous-time benchmark rather the discrete-
time case above. Here we apply the common technique that is
extensively used in the literature [13], [27], [44] of calling the
continuous system model function with the ode45 function in
MATLAB with the step size 0.02 s. The parameters used in this
case are summarized in Table II, and 5% uniform noise is also
added to the sensor of x; to show the tracking performance
under noisy conditions.

Figs. 12 and 13 present the tracking performance with
our proposed approach and the typical HDP approach [21],
respectively. Fig. 12 clearly shows that the ball is out of
bounds at the very beginning, but can quickly track the desired
signal within one period. The oscillation of the tracking signal
(solid line) in the first period shows the learning process of the
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Fig. 13.  Typical tracking performance with HDP approach.

TABLE III
SUMMARY OF TOTAL TRACKING ERROR FOR THE SIMULATION CASES

Number Example 1  Example 2  Ball and Beam
DualCritHDP 7.454 9.292 3.761
HDP 223.9 712.8 54.49

controller with our proposed approach. In Fig. 13, we can see
that the ball is out of bounds many times before it can track
the desired signal. In other words, the controller spends the
whole first period to learn to control the ball and it learns after
about 80 s. The simulation results show that the controller with
our proposed approach has better noise tolerance than with the
typical HDP approach.

To provide a more accurate assessment of the tracking
performance, here we summarize the quantitative measure-
ments in terms of tracking error for all examples in study 1
(i.e., examples 1 and 2) and study 2 (i.e., the ball and beam
benchmark). Here we adopt the evaluation function in [18]
defined as PER = Zév eT (k)e(k), where e(k) is the tracking
error in Fig. 3 and N refers to the number of steps in the
simulation. The PER for Sections IV-A, IV-B, and V-A are
summarized in Table III.

From Table III, one can see that our proposed dual critic
HDP can achieve much lower PER (total tracking error) than
with the typical HDP approach [21]. The results also confirm
that our proposed structure with the informative and adaptive
reinforcement signal can outperform the typical HDP structure
in terms of tracking accuracy.

B. VR Demonstration of the Dual Critic Network Design

In this paper, we further apply our algorithm on VR envi-
ronment to show real-time simulation of our approach during
interaction with the external environment. VR can enable
powerful human—computer interactions, and it is interesting
to observe how the proposed algorithm works in real-time
simulation without the requirement of setting up the real
physical system. Here we would like to demonstrate the
tracking performance of our proposed approach on the ball-
and-beam benchmark [50], [51]. And we also add disturbances
to see how robust our proposed approach can perform.

Computational Intelligence and Self-Adaptive (CISA) Laboratory

University of Rhode Island

Fig. 14.

x1(m)

Time (s)

Fig. 15.  Typical tracking performance with our proposed approach in
VR/simulation platform.

The VR platform is developed as in Fig. 14, where one can
see that the ball-and-beam system is at the center of the scene
and the state vectors (x; and x3) are displayed in the upper-
left table of the figure. In order to be more realistic, we add
a disturbance option (upper center) in the simulation. That is
to say, the user can apply any disturbance between —8 to 8 N
on the ball whenever needed, and the corresponding force will
be applied to the system, as also displayed on the upper-right
table.

Real-time simulation result on the tracking problem with
our proposed approach is presented in Fig. 15, where one can
clearly see the online learning process. In other words, the
first period of signal is like a distorted sine wave, while the
signal in second period almost tracks the desired sine signal.
At about 64 s, we added a 2.1 N disturbance on the ball and
we can see that the controller spends about two periods to
learn to get back to the right track.

VI. LYAPUNOV STABILITY ANALYSIS

We now proceed to study the stability characteristics
of our proposed method. Similar to [52], we employ ¢,
for the output of the hidden neurons in the action net-
work s.t. ¢g(k) = [¢a,1(k) Pa2(k) - banN,, (k)17 and then
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lpq (k) R ¢>aT (k)4 (k). For the critic and reference networks,
we adopt similar notations s.t. ¢, and ¢, are the output
of the hidden neurons in the critic network and reference
network, respectively. The estimated weights in the networks
are denoted as @,, @&, and @,, while the expected weights
are denoted as w,, w., and w,. Therefore, the differences are
defined as @, = Wy —wy, Oc = O —w¢, and O = @, —w,. We
note that, although @,, @&, and @, are unknown parameters,
we assume they have upper bounds in this analysis because,
when they exceed the preset upper bounds, we will normalize
the weights according to (42)—(44).
Define the Lyapunov function candidate as

V=Vi+V+Vs+Vs+ Vs 57)
where

Vi = %éT(k)é(k) (58)

Vs = %rr(cb? (0 () (59)

Vs = 2tk — DIP (60)

Vi~ (@] (03,0 (61)

Vs = y: 1@ (0. ©2)

In (60), Ce(k — 1) = (@c(k —1) =) 1k —1) = & (k= 1)
¢1(k—1) and y; > 0 fori =1,2,3.

The first difference of the Lyapunov function candidate can
be written as

AV = AVi + AVo+ AV3+ AVy + AVs. (63)
For AVj, we have
etk +1) = Kye(k) — f(x(k)) + d k) (64)
where
fa) = fxk) — fxk))
F(x (k) = ol (K)pa (k) + eq(x (k)
Fx(k) = (@a(k) — wa (k)T da(k) + eq(x (k)
= &) (k)pa (k) + 4 (x (k). (65)
Therefore

AV) = yi(éT(k + ek + 1) — e’ (k)e(k))
1
_ yl—l[(Kvéu«) b Cak) + 50 (k) + )T
(Kpe(k) + Ca(k) + ea(k) + d(k)) — &" (k)e(k)]
yil[s(KU2 e + lza ) + llea (k) + d()1I*)

—le)lI*]
i(( 2
yl vmax

+[leq (k) +d(k)||2)

IA

IA

1
3) le)I1* + llca (k)12
(66)

where Kymax is the maximum eigenvalue of K.
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For AV,, we have

ek + 1) = C?)c(k) - Wca¢c(k)(aCbcT (k)¢c(k) + s(k)

&L (k = ek — 1)T (67)

and the corresponding @, (k + 1) can be expressed as

@c(k + 1) = @c(k) — neage (k) (adl k)pe(k) + s (k)
—&T (k — Dk —1))"
= (I = nea’pc(k)p! (k) e (k) — neage (k)
(ao!l gek) + stk) — &F k= etk — 1))
(68)

Then
1
AVy = n—tr(cbcT(k + Dae(k + 1) — & (k)a (k)

= ”i;r(a)j (k)AT Ado. (k) — &F (k). (k)

+Ba’ 2! (k)pe (k)BT — &I (k)AT neacpe (k)BT
—Breagl (k)Ade(k)) (69)

where A = I — n.a?pe(k)p! (k) and B = ao! $e(k) +s(k) —
&F (k= ek —1).
We note

& (AT Adoe (k) — @F (k)éve (k)
= &l (U — nea’pep? )"
x (I — nea’depX)de (k) — & (k) (k)
—nea® ()P = nea’dl (k)pegp!
X (I = nea*pepl Vv (k) (70)

where (. (k) = ~CT(k)¢C(k).
Therefore
AV (k) = —a? lcc()I1* — o (1 = nea? llge (I ) Nze (k)11
+11002 |l pe (k)1
2
ool peer + k) = & (e = Dpetie = 1)
—=2tr[a(I — nea? g ()1 ) e (k)
(ao! gek) +s(k) = &F (k = Dpelk — 1)"1.
(71)

We would like to seek the upper bound of (71) by applying
Cauchy-Schwarz inequality for the fourth term. Therefore, we
have

AVa(k) < —a? [l — a? (1 = nea® lge(R) 1% - llge ()11
+ ! gt + 50 — o & Vet~ 1|
—a*(1 = nea lge (K1)

Cek) + o po(k) + a's(k) —a™ 'O (k — 1)

xe(k — DI (72)
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From (72), we can further get
1
AVa(k) = =a® Ce (I + 5 ligetk = D

2
2 Haa)CTgbC(k) Fs() — &7 (k — Vpelk — 1)“
—a2(1 = nea llge(k)[1?)
Cell) + ol pe(k) + a7 Lsk) —a™ 'O (k — 1)

xpe(k — )12 (73)
For AV3(k), we have
1

AVa(k) = 5(||cc(k>||2 —llzetk — D). (74)

For AV4(k), we have
@alk + 1) = @a(k) — Napa (k)DL (k) Cy (k)
S (OF (k)pe (k) + Kpe(k) — ek + 1)T (75)

where C, (k) is an N, x 1 vector and its elements can be
defined as C,(k) = (1/2)(1 — p¢(k))wc,n+1(k). And then

@a(k + 1) = @4 (k) = naga ()DL (k)Cy (k)
- (@F () pe(k) + Koe(k) — ek + 1)) . (76)
With tracking error dynamics, we can rewrite (76) as
Ba(k + 1) = @a(k) = ada(K)D! (k) Calk)
(& R pe k) + Ca k) — ealk) — d(k))". (77)

Therefore, we have

1
AVy(k) =
Y

2Na

tr[@l (k + Daak + 1) — &f (k)aa (k)]

_ irr[ 207 (1) Cok)ca (k)
Y2
(BT R)BT (k) + Calh) — £a(k) — d (k)"
2
R AGH CAGIAG]

O Oge(h) + k) — k) —d(t)| } (78)

In order to further simplify the formula, we can rewrite (78)
as follows:

1
AVi(k) = E"Hl — na2()) I DI IIE |

+1D-E = &®I* = lca®IP] (79

where
D = &f (k)C,4(k) (80)
E = &l ()¢ek) + Cak) — eak) —d(k).  (81)

Applying the Cauchy—Schwarz inequality for (79), we have

1
AVa(k) < E"[F +2- D - EI? + llca ()71 (82)

where

F=—(~nall¢ga®I*) IDI*IEN?. (83)

For AVs(k), we have

@ (k4 1) = @, (k) — 1,9, (k)DL (k) Cr (k) (@ (k) pe (k)
+r(k) — &F (k — Dpe(k — 1)T (84)

where C,(k) is an Ng; x 1 vector and its elements can be
defined as C, (k) = (1/2)(1 — ¢c (k)@ nt2 (k).
Therefore

e[ (k4 Dok + 1) — & (K1, ()]

37r

= Lir] =201 W Wi (W] 150
3
+r(k) = & (k = Dk — 1)"
1) 0] 0G0 1! K1)

+r(k) — &) (k — e (k — 1>||2}.

AVs(k) =

(85)
We can also simplify (85) by rewriting it as
1
AVs(k) = —tr[H +11G - 1~ a1 =l ®I71 - (86)

where

G = (ad, (k)pe(k) + r(k) — &) (k — D (k — 1)) (87)
H=—1—n lg- I IGI* 1 (88)
I =&l (k)C,r (k). (89)

Applying the Cauchy-Schwarz inequality for (86), we
have

1
AVs(®) < —ir [H 421G 1P +1GWIF] 00

Substituting (66), (73), (74), (82), and (90) into (57),
we can get the first difference of the Lyapunov function
candidate as

AV (k) < %((Kimax - %) 1eGI* + 1Ca )N + llea (k)

+d(k>||2) — a2 e ()12 + 2l|ae? pe(k) + 5 (k)

—&! (k — Dok — DII* — a*(1 — nea? llge (0)1%)
e (k) + of ¢ (k) + o s (k)
—a1oT (k — ek — D

1 1
+5 gtk - DI+ E(Ilg“c(k)ll2 —llgek = DI

+%tr|:F +(2-ID-E|*)+ ||Ca(k)||2:|

1
+y—3tr[H+(2-||G-1||2)+||cr(k>||2}. 1)
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In order to express (91) in a clear way, we rewrite it as
3 ) 1\ _ 5
AV (k) < — | Komax — 3 ) le®)]]
71 3
+1ca 1 + llea (k) +d(k)||2)

- (a2 - %) IgeGoyl® — a2(1 — 1o’ ||¢c(k)||2)

Nee (k) + of e k) +as(k)
—a~ 'l (k = Dge(k — D|?

1
——(1 = 74 llga ) IH) I DI | EII?

V2

1
_E(l — e llgr R I NG 11> + Z2 (92)
where Z2 is defined as

1 1
7% = — a0 + — llg- (k)12
V2 73

+2 | 4ol (k) + 50) — & (= Dbtk - ”H2

1 1
+—2-ID-EI*)+—(2-1G-1]?). (93)
72 73
And the upper bound for Z? is
2 T 2 2 T 2
Z2 S - ‘wgm¢am H + - )wrm¢rm H
V2 V3
2 T 2 2, 6 7 2
+6(a2+1) - )wcmqscm ‘ + 652 + ~ )a)cmCam H
T 2 T 2 2
: ( ‘wcm‘/j)cm ‘ +2 ‘ Oy Pam H + lleam + dn || )
6 2 2
o [ohCm | (@ 4 0ol g+ 1w i?)
1 2
=6- (a2+1+— )meCQmH
V2
1 2
+—(@>+1)- )wfmcrm( )
V3
2 9 2 2
Jatuton| + 2 (146 JouCan]” ) [ntn]
2 2 6 2
+— )wfm¢r1n + 65,%, + — ’ wz;n Cam
V3 V2
6 2
- Nleam +dm||2 + E ’ermCrm H : ”rm”2
=72 (94)

where @cimn, Oam s Orms Pems Pam> Prm> Cams> Crm> Sm, and ry,
are the upper bounds of w., w4, ©r, ¢¢c, Pa, Pr, Cy, Cr, s, and
r, respectively.

Equation (94) further implies that AV (k) < 0 if the
following conditions hold:

V3

0 < Kymax < T (95)

? <a <1 (96)

neo? lge(OI> <1, nallga®I* <1, 7 eI < 1
(97)

925
and
- / 71
lle(o)l > m 1 Z | (98)
or
1
IOl > | ———= 1 Znll. 99)
Vi@ —3)

According to a standard Lyapunov extension theorem [53],
[54], this demonstrates that the auxiliary error and the error in
the weights estimates are uniformly ultimately bounded. And
this further implies that the weights estimates are bounded
correspondingly.

VII. CONCLUSION

This paper proposed a novel ADP structure that combines
one reference network with the original critic network into a
dual critic network design. The reference network provided the
critic network with an internal goal representation that helped
it to approximate the total cost-to-go signal in detail. Unlike
the discrete reward signal from the external environment, this
internal goal signal can be adjusted adaptively with regard
to the system state and the control action. Therefore, past
experience or prior knowledge is not a necessity to assign
reinforcement signal value here. The dual critic network has
a weight-turning path not only from the outside but also from
the inside. Compared with the typical HDP design under the
same simulation environment settings, our proposed dual critic
network HDP can achieve better tracking performance on
time-costing and the accumulated tracking error. In addition
to various simulation studies and a VR platform development,
we also presented detailed theoretical analysis in terms of
Lyapunov stability analysis for our method.

As a new ADP approach, there are many interesting future
research topics along this direction. For instance, in this paper
we only used one reference network in our design. We are
extending this dual design to see how it works with multiple
reference networks on top of the critic network, similar to the
hierarchical neural network structure. Some promising results
have been achieved and reported in [39] and [45]. Also, the
weight-turning rules in our design are based on the classic
chain backpropagation and we are interested to see how much
improvement can be achieved if we implemented the LM
algorithm or Kalman filter into our neural networks.

APPENDIX
PSEuUDO CODE

Algorithm 2 Algorithm-Level Implementation of Dual Critic
Network of ADP for Tracking Control

/* f(x) < ActNet (x, W, ), nonlinear function approximation
with the action network;

ActNet: the action network;

X: state vector;

w,: weights of ActNet;

f (x): nonlinear system function approximation, the output of
ActNet;

u < Filter (xd, X, f (x)), control action calculation;
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Filter: the tracking filter;

X4: the desired reference signal;

u: control action;

S < RefNet (x,u, w,), internal goal representation with the
reference network;

RefNet: the reference network;

w,: weights of the RefNet;

s: internal goal signal;

J < CritNet (x,u, s, W.), total cost-to-go signal approximated
by the critic network;

CritNet: the critic network;

w,.: weights of the CritNet;

J:total cost-to-go signal, the output of the critic network; */
/*Note: the parameters N, Ty, nr, N¢, Tz, ¢, Ng, Ty, and 4
are all defined in Table I; */

1) Initiate x(0)

2)  Uniformly randomize w,(0), w,(0), wc(0) in [—1, 1]

3)  f(x(0)) < ActNet (x(0), w,(0))

4) () <= Filier (x4, x(0), f(x(©))

5)  s(0) & RefNet (x(0), u(0), w,(0))

6) J(0) <« CritNet (x(0), u(0), s(0), w.(0))

7)  Jprev = J(0)

8) for 1 to MaxStep do;

9)  //weights are carried on through the whole learning
process;

10) CurrentState < (x(k — 1), u(k — 1)); //obtain

current state vectors from the external environment

11) Wq (k) = wq(k —1);

12) We(k) = we(k —1);

13) w (k) =w,.(k —1);

14)  f(x(k)) < ActNet (x(k), wa (k));

15) u(k) < Filter (x4, x(K), f(x(K)));

16) s(k) < RefNet (x(k), u(k), w,(k));

17) J (k) < CritNet (x(k), u(k), s(k), w.(k));

18) Obtain the tracking error e(k) via (3)

19) if ||e(k)|] < ¢ then

20) r(k) = 0; // reward

21) else

22) r(k) = —1; // punishment

23) end if //corresponding to step 19

24) if Step > 100 then

25) calculate M SE via equation (47);

26) if MSE < threshold then

27) 1y (k),nc(k),nq (k) are divided by 6, respectively
28) threshold = threshold/2; [fupdate

29) elseif MSE > 4 % threshold then

30) 1y (k) e (k) nqa(k) and threshold are reset to

the initial values, respectively;

31) end if; //corresponding to step 26

32) end if; //corresponding to step 24

33) E (k) = 3(aJ (k) = (J (k = 1) = r (k)%
34) cyc =0;

35) while (E, (k) > T,&cyc > N,) do

/I update the weights recursively;
w, (k) = w, (k) + Aw, (k) via (20) and (23);
/l update the s(k), J(k), E,(k), cyc correspondingly
s(k) < RefNet (x(k), u(k), w,(k));

36)

37)
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38) J (k) <= CritNet (x(k), u(k), s(k), w.(k));
39) E (k) = 3(ad (k) = (J (k = 1) = r (k)%
40) cyc=cyc+1;
41) end while // online learning of the reference
network
42) Ec(k) = 3(aJ (k) — (J (k= 1) = s(k)))*;
43) cyc = 0;
44) while (E (k) > T.&cyc > N.) do
45) we(k) = we(k) + Aw(k) via (27) and (30);
46) J (k) < CritNet (x(k), u(k), s(k), w.(k));
47) Ec(k) = 3(ad (k) — (J(k = 1) = s(k))*;
48) cyc=cyc+1;
49) end while // online learning of the critic network
50)  Ea(k) = 3@l (®) + f (k) — Uo):
51) cyc =0;
52) while (E, (k) > T,&cyc > N,) do
53) w, (k) = w, (k) + Aw, (k) via (36) and (41);
/I update the f(x(k)), u(k), s(k), Jk), E.(k), cyc
correspondingly
54) f(x(k)) < ActNet (x(k), wa (k));
55) u(k) < Filter (xd, x(K), f(x(k)));
56) s(k) < RefNet (x(k), u(k), w,(k));
57) J (k) <= CritNet (x(k), u(k), s(k), w(k));
58) Eq(k) = 3(aJ (k) + f(x(k) = Uo)?;
59) cyc=cyc+1;
60) end while // online learning of the action network
61) end for //corresponding to step 8.
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