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Abstract— In this paper we address the problem of
appearance-based long-term outdoor localization across sea-
sons. This is a difficult task due to the changing appearance of
visual landmarks across seasons and time of day. Our approach
operates based on the premise that combining visual landmarks
observed at different times of the year into a single metric
map will yield better localization results than a map created
from a single sequence alone. We integrate stereo imagery
collected at two different times of the year into a unified 3D
map, and use this as the basis for localization. A landmark
visibility prediction framework is utilized to efficiently retrieve
a small subset of landmarks and their feature descriptors from
a database of millions of landmarks. The proposed approach
is experimentally validated on a challenging sequence collected
a year earlier.

I. INTRODUCTION

Vision-based localization systems have received much
attention in the past few years. Localization using vision
alone is an attractive prospect considering its very low cost
compared to other sensor modalities. GPS is useful in many
applications, but it is well known that GPS performance
is degraded in urban settings due to buildings obstructing
the sky. We are particularly interested in the scenario of
localizing a moving vehicle, where a coarse localization
estimate is available as a prior, either from GPS or from
a localization estimate in the immediate past.

While quite a number of visual localization systems have
been demonstrated, few have been shown to work robustly in
the face of changing scene appearance caused by differences
in lighting, seasonal variation, foliage changes, weather,
etc. Representing each place as a different experience in
a topologically connected map appears to be a particularly
promising approach [1], but this sort of technique makes
exact localization difficult as the query images are localized
in several distinct visual odometry tracks.

In this paper we show that localization across long periods
of time (and seasons) within a unified metric map is a
feasible approach. We take the view that by combining data
from several stereo image sequences into a single map it
sufficiently spans the space of possible appearances to enable
localization for a wide range of scenarios. This approach
clearly presents a number of significant challenges. First, the
sequences to be combined into the map must be registered
very accurately to ensure the resulting map is geometrically
consistent. Since the map contains millions of landmarks,
the second challenge is how to decide which landmarks to
choose when attempting to localize a query frame.

To the best of our knowledge, this is the first work which
explicitly joins data from two sequences into a single metric
map as shown in Fig. 1, which is then used for localization.

Fig. 1: Color point cloud representing the landmark database
of the Georgia Tech campus.

In contrast, previous work which made use of data from
different times was topological in nature. The contributions
of this paper are:

• Vision-only localization in a large-scale metric map
created from data collected during different times.

• Landmark visibility prediction in the context of real-
time vehicle localization.

The remainder of this paper is organized as follows. We
first discuss related work in section II, followed by a detailed
discussion of the 3D map building and localization in section
III. Section IV has the results.

II. RELATED WORK

In recent years, many vision-based localization algorithms
have been proposed. The work most relevant in terms of
its application is that of Churchill et. al. [1]. Visual odom-
etry trajectories, termed experiences, are stored each time
the vehicle visits a new place and is unable to relocalize
itself within already existing experiences. The system keeps
collecting new experiences until they become fully adequate
for localization. One disadvantage of this work is that these
experiences are only topologically linked, and exact metric
pose recovery presents a challenge.

Another interesting approach is that of Lategahn et al.,
who used a pre-computed 3D map, comprising 3D landmarks
and their descriptors, to localize a stereo camera without GPS
[2]. Given the previous known pose, all landmarks observed
by the nearest camera pose used to build the map are used for
descriptor matching. Lategahn et al. took a similar approach
in [3], with the notable differences being that a monocular



camera is used during localization, and the resulting pose is
refined in a filter together with IMU measurements.

Milford and Wyeth [4] introduced SeqSLAM. Rather
than matching local features between images, sequences of
images are compared to establish a loop closure. Image simi-
larity is established using sum of absolute differences. Conse-
quently, no lighting/season invariant descriptors are needed.
The method works on sequences with drastically different
appearance. The method makes assumptions about relatively
constant velocity and direction of travel. A related approach
is that of Maddern et al. [5], in a system called CAT-SLAM.
Sequential appearance based SLAM is enhanced with metric
pose filtering to improve the performance.

Valgren et al. [6] also explored an appearance-based
approach across scenes with stark appearance changes, using
SIFT/SURF descriptor matching, and tuning the parameters
for optimal results.

Deciding which map features to match against is a major
challenge, and this is especially true in the case of Structure
from Motion (SfM), where unordered datasets with mostly
unknown location priors are the norm. Li et al. [7] addressed
this difficulty by matching 3D points to image features, rather
than the more conventional 2D to 3D matching. Points with
higher degree are prioritized. This was further improved upon
with bi-directional matching in [8]. A similar approach is
taken by Sattler et al. [9], where 2D-3D matching is sped
up by indexing all image features into a vocabulary tree
that was constructed using the 3D model, and the size of
each word cluster is used as a proxy for estimated matching
speed. Feature matching is prioritized according to cluster
sizes. In [10] this approach is further refined with an active
correspondence search in both directions.

Another interesting line of attack is reasoning about de-
scriptor occurrence. One such approach is taken in [11],
[12] where robust localization is achieved by computing
landmark observation likelihoods based on the number of
times a landmark was observed across training runs.

It is standard practice to employ a RANSAC [13] frame-
work to achieve robust matching in the presence of outliers.
When inlier ratios become very low RANSAC can take many
iterations to find a good model. Chum et al. introduced
PROSAC [14] , which progressively increases the sample
size. This approach assumes that matches can be prioritized,
and in the usual case the descriptor distance is suitable. In
[15], [16] feature weighting is integrated into the geometric
verification procedure (as opposed to post-processing step).

A different approach to solving the data association prob-
lem is taken in [17]. The authors proposed a framework for
predicting the visibility of landmarks in the scene. Given a
new query image with a pose prior, the landmarks which
were previously observed by nearby cameras are probabilis-
tically weighted according to a distance metric which is
learned in an offline step. The distance metric takes into
account camera rotation and translation. This makes it easy
to ignore landmarks which were observed by a camera facing
in the opposite direction, even though they are very close to
the query camera prior. In this paper we are also interested

in localizing a query image given a pose prior, and we adopt
this same visibility approach for efficiently retrieving likely
visible landmarks from our map.

III. MAP BUILDING

In this section we describe how we build a map (3D
landmark database) which is used for localization. The main
steps consist of applying stereo visual odometry to an image
sequence, loop closing within and between data sequences,
and large scale bundle adjustment. Each of these will be
discussed in detail, but first some notation: We define X

s as
the set of camera poses {xs

i} for data sequence s. Ls is the
set of landmarks {lsj} observed in sequence s. ✓s=̂{Xs

, L

s}
is the set of all variables, which together with a camera-
landmark visibility table makes up the map M .

A. Stereo Visual Odometry
We run a conventional stereo visual odometry (VO) al-

gorithm to recover the camera trajectory. For each rectified
stereo image pair, SIFT features are extracted and matched
across the pair. Matches are only retained if they are mutually
optimal according to the ratio test [18], and fall within tight
threshold of the epipolar line, which is a horizontal scan-line
for rectified images. Points with zero disparity are discarded,
and 3D points (X,Y, Z)T are then triangulated. Features are
then matched temporally to form a set of putative matches,
and a three point algorithm [19] is employed in a RANSAC
[13] framework to recover the relative pose.

Features which are successfully tracked for at least two
consecutive frames, called feature tracklets, are recorded
along with their feature descriptors. As these feature tracklets
are geometrically consistent across at least two frames they
will be accepted for inclusion in the map. The resulting
camera trajectory, together with the accepted landmarks will
be optimized later as described in the following sections.

B. Closing the Loop
Loop closures are needed to correct for drift in the VO

trajectory, as well as to precisely align multiple passes along
the same street. Appearance based loop closure detection
as in [20] is a popular approach. However, since the data
used to build the map has synchronized GPS, we use this
to find loop closure candidates. We are not concerned about
real-time performance while constructing the map. In a brute
force fashion, we find the nearest neighbor camera poses and
attempt feature matching and geometric verification as in
Sec. III-A. Loop closure landmark observations are recorded
to be incorporated into the map (Sec. III-C).

Loop closure detection is also performed between data se-
quences to provide constraints to align datasets with respect
to each other.

C. Map Optimization
Bundle adjustment, or smoothing and mapping (SAM), has

been applied to create highly accurate, city-scale reconstruc-
tions from large photo-collections[21], [22]. We apply this
technique to optimize several data sequences together into a
geometrically consistent map.
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Fig. 2: Factor graph comprising two camera poses, three
landmarks, and a GPS prior on camera pose x1.

The optimization problem at hand is easily represented by
a factor graph. A factor graph is a bipartite graph comprising
two types of nodes: state variables and factors. Here, the
unknown camera poses X = {xi| i 2 1...M} and landmarks
L = {lj | j 2 1...N} make up the set of state variables. The
landmark measurements Z = {zk| k 2 1...K} as observed
by the cameras correspond to factors. An example of a factor
graph is shown in Fig. 2.

We minimize the non-linear cost function
KX

k=1

khk(xik , ljk)� zkk2⌃k
(1)

in a least-squares sense, where hk(⇧) is the measurement
function of landmark lj from camera xi, and the notation
k.k2⌃ represents the squared Mahalanobis distance with co-
variance ⌃. We assume that we have normally distributed
Gaussian measurement noise.

For more details on the SAM optimization process, we
refer the interested reader to [23].

D. Localization

Given a set of measurements Zi and the map M , we
are interested in efficiently recovering the most likely pose
⇥: P (⇥|Zi,M). In the case of vehicle localization we
also assume that we have a pose prior that comes from
the previous pose estimate or GPS. In light of M having
many millions of landmarks, it is important to only retrieve
landmarks which are likely to be visible in the current stereo
frame. We use the visibility prediction framework introduced
in [17] to achieve this. The key idea here is that stereo frames
which were taken at camera poses X which were nearby the
current pose, and also facing in roughly the same direction,
are likely to have observed a similar set of landmarks Lv .

The landmark visibility distance metric used in this paper
combines Euclidean distance and rotation between the query
pose and map poses X . To find the set Lv we compute
the distance between the query pose and all poses X , and
then collect all of the landmarks observed by the n nearest
poses. One important advantage of this approach is that map
landmarks observed from a map-building sequence Xs where
the vehicle was traveling in the opposite direction along
the same road will not be considered visible, which is in
accordance with the limits of rotation invariance of the SIFT
descriptor.

Date Frames VO Fr. Resolution Length Label
Sep 11, 2012 25462 20372 1380⇥ 480 10.5km F
Apr 2, 2013 23090 14053 1384⇥ 680 11.38km K
Aug 1, 2013 21690 15219 1384⇥ 680 13.21km L

TABLE I: Three datasets that were used for the experiments.

Fig. 3: GPS-INS trajectory superimposed on Google Earth
imagery. Severe GPS drift due to multi-path issues can be
observed to the east of the stadium.

Given Lv , the standard approach is followed to compute
a pose estimate: Detect features in the current stereo pair,
match and verify with RANSAC.

In practice, some steps can be taken to further speed up the
algorithm described above. Computing the visibility distance
metric with respect to all poses X can be costly for large
M. Instead, we make use of a quad-tree to pre-prune the set
of poses, and only compute the visibility for poses that fall
within a bounding box of the query pose.

IV. EXPERIMENTAL RESULTS

To validate our approach we have built a map using two
data sequences collected on our campus. One sequence was
collected in April, and the other in August of 2013, called
sequences K and L. Sequence F is not included in the map,
and is used for localization testing only. A listing of all
the data sequences used in this paper is shown in table I.
Images were collected using two Point Grey Flea 3 GigE
cameras, along with a third color camera for visualization
purposes. The cameras were triggered through hardware
synchronization at 10Hz.

GPS-INS data was collected using a 3DM-GX3-45 GPS-
Aided Inertial Navigation System at up to 100Hz. This data
was interpolated and synchronized to camera timestamps.
The GPS-INS solution occasionally drifts quite noticeably,
particularly when driving next to large buildings which
hinder a clear view of the sky in all directions. An example
is shown in Fig. 3. Visual Odometry is run on each of the
sequences, and feature tracklets, as well as their associated
descriptors, are saved for the loop closure step.

A. Closing the Loop
As described in Sec. III-B, loop closure detection is

performed within each sequence, as well as between the



Fig. 4: Successful registration and pose recovery on challeng-
ing imagery between frames from sequences K (top) and L
(bottom). There are notable differences in lighting, foliage,
as well as vehicular occlusions. Putative matches are shown
in blue, and accepted inlier matches are shown in green.
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Fig. 5: Loop closure results for sequence L. a: Inlier ratios
b) Accepted loop closures exceeding the inlier threshold and
minimum inlier count are shown in red.

two sequences making up the 3D map. Fig. 4 shows a
successful loop closure. The goal is to detect as many
loop closures as possible as this promises the most accurate
map registration possible. Missed loop closures lead to poor
map alignment, while false loop closures present difficulties
during optimization. Through empirical experimentation we
find that a RANSAC inlier ratio of 0.5, and a minimum
inlier count of 10 yield satisfactory results. Fig. 5 shows
loop closure results for sequence L.

Fig. 6 shows the loop closure result between sequences K
and L. As expected, there are no loop closures where the two
trajectories do not overlap, but loop closures are also missed
in some places, likely due to vastly different appearance, or
due to the RANSAC inlier ratio not meeting the required
threshold.

B. Map Optimization

Each sequence is optimized individually before all data
are combined into a single map. Camera poses X

s are
initialized from GPS, and landmarks L

s are initialized from
stereo triangulation. We additionally add weak GPS priors to
camera poses so the map remains in true alignment with the
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Fig. 6: Loop closures between sequences K & L. Poses where
loop closure is possible are shown in blue, and where loop
closure was successful is shown in green.
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Fig. 7: Sequence L. a) Per-camera RMS errors before opti-
mization b) RMS errors after optimization

streets. The Huber cost function is used to achieve robustness
against possible outliers. RMS projection errors per camera,
before and after optimization, are shown in Fig. 7.

Finally, the two optimized sequences are combined, and
landmarks which were observed in both sequences are rep-
resented as a single landmark. The final optimized camera
trajectories are shown in Fig. 8.

To fully appreciate the structure of the 3D map, Fig. 9
shows a top-down view of all contained landmarks, with
landmarks observed in sequences K and L shown in blue
and green, respectively. Fig. 1 shows the color point cloud.
The complete map, inclusive of feature descriptors has a size
of approximately 1.4GB on disk.

C. Localization

We have conducted localization experiments for each of
the three sequences, shown in Fig. 10. It is expected that
sequences K & L will perform very well, as these contributed
to the map. Sequence F, however, is a lot more challenging,
since this sequence was taken in the previous year, and scene
appearance was drastically different in many places across
campus.

Fig. 11 shows a visualization of the smallest visibility
distance for each query pose. The smaller the distance,
the more likely the camera is to have observed the same



(a) Sequence F (b) Sequence K (c) Sequence L

Fig. 10: Localization results with KL map. Estimated poses are shown blue, GPS-INS priors are shown in green.

Fig. 8: Optimized camera trajectories after full bundle ad-
justment of over 12 million factors and over 2.2 million
variables.

Fig. 9: Point cloud of tracked landmarks. Points shown in
blue and red are from sequences K and L, respectively.
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Fig. 11: Camera visibility scores (Mahalanobis distance) per
GPS query pose for sequence F with respect to the full
database. Lower (blue) is better. Streets which were not
covered by the database, or which were traveled in the
opposite direction have a large distance (red).

landmarks. For example, note that to the east there is a street
block which was not covered in the map, and therefore has
a very large visibility distance (deep red).

We have conducted the same experiments using only
sequence K as the basis for the landmark map, and these
results are shown in Fig. 12. As expected, the results for
sequence K are virtually unchanged, and sequence L has gaps
in localization where its trajectory does not overlap with K.
Sequence F is relatively similar to the previous result, with
the notable difference that localization was somewhat worse
in areas where the two sequences K & L had poor loop
closures. In other words, these were areas where there might
exist alignment problems in the map. This underscores the
need for very good registration when combining data from
multiple sequences into a single metric map, and this is to
be addressed in future work. Table II shows the localization
performance of the three sequences with respect to a map
constructed from sequence K alone vs. a map constructed
from K+L.

The visual odometry component of our system runs faster



(a) Sequence F (b) Sequence K (c) Sequence L

Fig. 12: Localization results with K map. Estimated poses are shown blue, GPS-INS priors are shown in green.

Map F K L Total
K 5335 22969 10540 38844

K+L 4417 22819 21245 48481

TABLE II: Number of successfully localized frames of
sequences F, K, L against maps created from sequence K
alone, and from sequences K and L.

than real-time (10Hz). The performance of the localization
module varies greatly, depending on the number of land-
marks returned from the map, and depending on the inlier
ratio. In the successful case it takes about 5-10ms, depending
on the sequence (localizing K or L against the map is
faster than F). When localization fails it can take up to
hundreds of ms, dependent on RANSAC termination thresh-
olds. However, these results were obtained with unoptimized
code, and localization of individual image frames is easily
parallelizable.

CONCLUSION

In this paper we presented a robust localization system
based on a unified metric landmark map created from two
stereo sequences collected at different times of the year.
Efficient vision-based localization was performed by relying
on a visibility prediction framework to retrieve a subset of
landmarks which are used for descriptor matching. Experi-
ments on real data showed the effectiveness of the approach.
In future work we plan to incorporate more datasets into the
map, and extending the visibility prediction framework to
handle seasonal appearance explicitly.
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