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Abstract

Previous model classification efforts have led to a broad group of models from site-scale (non-spatial) gap models to continental-scale

biogeographical models due to a lack of definition of landscape models. Such classifications become inefficient to compare approaches and

techniques that are specifically associated with forest landscape modeling. This paper provides definitions of key terminologies commonly used in

forest landscape modeling to classify forest landscape models. It presents a set of qualitative criteria for model classification. These criteria

represent model definitions and key model implementation decisions, including the temporal resolution, number of spatial processes simulated,

and approaches to simulate site-level succession. Four approaches of simulating site level succession are summarized: (1) no site-level succession

(spatial processes as surrogates), (2) successional pathway, (3) vital attribute, and (4) model coupling. Computational load for the first three

approaches is calculated using the Big O Notation, a standard method. Classification criteria are organized in a hierarchical order that creates a

dichotomous tree with each end node representing a group of models with similar traits. The classified models fall into various groups ranging from

theoretical and empirical to strategic and tactical. The paper summarizes the applications of forest landscape models into three categories: (1)

spatiotemporal patterns of model objects, (2) sensitivities of model object to input parameters, and (3) scenario analyses. Finally, the paper

discusses two dilemmas related to the use of forest landscape models: result validation and circular reasoning.
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1. Introduction

Scientists and managers face limitations conducting field

experiments to assess large-scale, cumulative effects of forest

management and disturbance when the temporal dimensions are

long (e.g., 102–103 years) and the spatial extents are large (e.g.,

103–106 ha). Temporally, some management effects are abrupt

but long-lasting (101–103 years), often beyond the capacity of

field observation, whereas other management effects may go

undetected after a short period of time (<10 years). Spatially,

when a study is expanded to the order of 103–106 ha,

experimental studies become limited and additional complexities

such as environmental heterogeneity and natural disturbances

may further complicate the study. Thus, computer models

become useful tools for landscape scale experiments (Mladenoff,
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2004; Shifley et al., 2006). With modeling techniques, knowl-

edge of physiological factors and their effects on the modeled

processes and interactions within a particular system can be

explicitly represented using mathematical equations and logical

sequences. Those data can then be used in models to deduce

results, especially at broad spatial and temporal scales, that

cannot otherwise be investigated (Baker, 1993; Turner et al.,

1995; Mladenoff and Baker, 1999; Urban, 2005).

Over the last 15 years, we have seen rapid development in the

field of forest landscape modeling, fueled by both technological

and theoretical advances. Forest landscape models have

benefited greatly from technological advances, including

increased computing capacity, the development of GIS, remote

sensing, and software engineering. Ecological processes and

their interactions in forest landscape models can be represented

by well-designed computer software (He et al., 1999, 2002a).

The core of landscape ecology provides a conceptual basis for

forest landscape modeling from a theoretical perspective: the

interaction of spatial patterns and ecological processes under

various spatiotemporal scales, theories of disturbance, and

equilibrium and non-equilibrium approaches to vegetation and
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ecosystems. The general background of forest landscape model

developments has been reviewed by Sklar and Costanza (1990),

Gardner et al. (1999), Mladenoff and Baker (1999), and recently

by Mladenoff (2004).

Forest landscape models share common features, including:

simulating (1) forest vegetation response at large spatial and

temporal scales (e.g., in excess of 100,000 ha and 100 years)

and (2) the outcomes of repeated, stochastic spatial processes

(e.g., seed dispersal, fire, wind, insects, diseases, harvests,

and fuel treatments). Depending on the model’s purpose and

design limitations, they may differ in the key ecological

processes incorporated, the extent to which mechanistic details

are simulated for each process, and the type and scope of

applications.

Baker (1989) reviewed landscape models when they were to

be developed. He provided definitions of whole, distributional

(e.g., gap models and Markov chain models), and spatial

landscape models that use location and configuration. Gardner

et al. (1999) were the first to classify landscape models,

particularly landscape fire simulation models. In their study, six

broad model categories were identified: (1) theoretical, (2)

exploratory, (3) physical, (4) probabilistic, (5) shape, and (6)

statistical. The classified models in Gardner et al. (1999)

exclusively belong to the spatial landscape model, according to

Baker’s definition. Gardner et al.’s classification is qualitative

and criteria for each category were not given. However, the

classification did summarize the techniques used to study

relationships between forests and disturbances by fire, and it

provided a framework for modelers to compare among

landscape fire models and modeling techniques.

Keane et al. (2004) presented a comprehensive effort to

quantitatively classify landscape fire succession models

(LFSM), while also providing guidelines in model selection

and interpreting differences for both modelers and users. They

compared 44 models by ranking the degree of stochasticity,

complexity, and the mechanisms for algorithms used in

simulating fire ignition, fire spread, fire effects, and vegetation

succession. The effort provided a quantitative basis, as

compared to the Gardner et al. (1999) study, despite

subjectively determining the degrees of stochasticity, complex-

ity, and mechanism based on expert opinions. The classification

was done using ordination techniques in three dimensions. It is

difficult to qualitatively compare models since clear numeric

distinctions among classes are not available with such a system.

This problem is compensated by a second classification,

constructed using keywords and results published for each

model (Keane et al., 2004). The second classification is

independent of the first one. It provides additional information

that may be used to guide users and modelers in model

selection. Perry and Enright (2006) classified landscape models

into two general classes: analytical models and simulation

models. Analytical models are mathematical models, such as

regression-based models of landscape change. Simulation

models are either large scale, spatially explicit landscape

models (SELMs) or gap models. According to Baker (1989),

SELMs are spatial landscape models and gap models are

distributional landscape models. Perry and Enright (2006)
discussed SELMs according to the complexity and mechanisms

representing ecological processes, development, and applica-

tions. Unlike Keane et al. (2004), they did not use complexity

and mechanisms to further classify SELMs.

Scheller and Mladenoff (2007) used three criteria to classify

forest landscape models. They are (1) including/excluding

spatial interactions, (2) static/dynamic communities, and (3)

including/excluding ecosystem processes. Compared to the

above efforts that generally provide grouping, or one level of

classification, for landscape models, Scheller and Mladenoff’s

work led to a dichotomous classification. The classification

criteria are strongly tilted towards selections of ecological

processes at site-levels and landscape processes and key model

design criteria (e.g., scale) are not considered. This leads to

different kinds of models being classified into the same group.

For example, LANDIS-II is a member of the LANDIS model

family (Mladenoff and He, 1999; He et al., 1999). However,

based on this classification, it is separated from LANDIS and

classified into a group with FACET and FIRE-BGC. In fact,

FIRE-BGC (Keane et al., 1996a) is not a single model. It uses

FIRESUM, a gap model, and FARSITE, a mechanistic fire

behavior model (Finney, 1998) to simulate fires at stochastic

and fixed intervals. In the FIRE-BGC modeling framework,

methods used to scale FIRESUM result in the simulated

landscape not being spatially explicit. This treatment is very

different from that of LANDIS and LANDIS II. FACET is a gap

model that has improved ecological mechanisms and spatial

interaction compared to the earlier JABOWA-FORET types of

gap models. It considers interaction of directly neighboring

plots when simulating seed dispersal (Urban et al., 1999), but it

operates at much smaller extents (e.g.,�10 ha) than those (e.g.,

103–106 ha) designed for LANDIS and LANDIS II.

Except Gardner et al. (1999) who focused on spatial

landscape models, Keane et al. (2004) and Perry and Enright

(2006) included both distributional and spatial landscape

models in their classification. Scheller and Mladenoff (2007)

included models from non-spatial gap models to biogeochem-

ical models that operate at continental scales. This has made it

difficult to focus on forest landscape models. It is apparent that

the development of model classification frameworks is still

evolving and it is becoming increasingly difficult to develop a

framework that classifies all landscape models. Thus, a

classification framework under a set of clearly defined terms

for forest landscape models is needed.

It is therefore the objective of this paper is to provide a

framework of classifying and characterizing forest landscape

models. Compared to previous studies, this classification has

the following characteristics: (1) the classification criteria are

selected based on the basic definitions of forest landscape

models, and (2) the classification builds on previous studies in

selecting criteria key to model design (e.g., complexity and

mechanisms). I opted to use a set of qualitative criteria to

classify forest landscape models in different groups. Each

group is also characterized by these criteria and by doing so,

generalizations can be made for each model group. The paper

further summarizes the model applications in three general

categories: (1) spatiotemporal patterns of model objects, (2)
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sensitivities of model objects to input parameters, and (3)

scenario analyses. Finally, the paper discusses two dilemmas

facing those using forest landscape models: result validation

and circular reasoning. Forest landscape modeling is a rapidly

evolving field. This work may provide a basis for model

comparisons as well as help managers and researchers in model

selection in their respective work.

2. Definitions

To facilitate the discussion in this paper, definitions and

explanations of some key terms commonly used in forest

landscape modeling are provided, followed by a brief review of

the evolution of forest landscape models.

Model entity is the basic modeling unit. In spatial models, it

is usually in the form of pixels, plots, or polygons, pertaining to

certain spatial information. In a non-spatial model, it is in the

form of modeling classes, such as vegetation types. For

example, with the wildland fire behavior and fuel model,

BEHAVE, a non-spatial model, a model entity is one of the 13

standard fuel models (types), which can spatially relate to the

vegetation types in the study landscapes. The model object is

the target being modeled, such as wildlife species, vegetation,

fuel load, fire disturbance, wind, insect populations, diseases,

and harvest. It is often interchangeable with a modeled process,

which refers to the dynamics of the above model targets (He

et al., 1999; Barrett, 2001). A model may have more than one

model object, and each object has both general model

parameters, which set the modeling premises, and its own

set of parameters. Model parameters can be in the form of

numeric values (e.g., probability or sizes), categorical types, or

nominal classes. Model output variables are usually a different

set of parameters from the model input parameters. From a

modeling perspective, using model output parameters to check

against model input parameters and the built-in model

relationships (formulations) is a process called result verifica-

tion. If model outputs meet the expectations, the built-in model

relationships are validated. This process is also known as model

validation. Result verification and model validation are

sometimes not separated in a validation effort. Model validation

ensures that the theories and assumptions underlying the model

are correct, or at least justifiable. Model validation, however, is

not equivalent to result validation, which requires independent

data to check against the model-derived results (Rykeil, 1996).

‘‘Spatially explicit’’ suggests that spatial reference to the

coordinates of the modeling entities is required in modeling.

Spatially explicit does not necessarily require direct use of

geographic coordinates of the modeling entities. Many models

(e.g., regression models of vegetation distribution) only require

using spatial references to establish the relationships between

model objects (e.g., tree species) and variables (e.g., environ-

mental data). However, to use those relationships to make

predictions for the model entities where no previous data exists,

explicit coordinates (either geographic coordinates or relative

pixel locations) are often required (Cajo and Braak, 1987). It is

important to note that spatially explicit is not equivalent to

spatially interactive (cf. Scheller and Mladenoff, 2007) in forest
landscape models. Spatially interactive suggests that a

simulated entity is a function of neighboring, or spatially

related, entities. Non-spatial processes are processes that are

spatially independent, such as tree growth, age increment, and

longevity-caused mortality, which are usually modeled as

spatially independent processes (e.g., Botkin et al., 1972;

Shugart, 1984). Spatial processes are a set of spatially

contagious processes, such as fire spread, windthrow, seed

dispersal, insect outbreak, disease propagation, forest harvest,

and fuel treatment. These occur in spaces often larger than the

simulation plots and require a spatial context to simulate.

A general definition of forest landscape model is a model

that predicts changes in spatial characteristics (distribution,

shape, abundance, etc.) of model objects. Under this general

definition, analytical models (cf. Perry and Enright, 2006) such

as gradient-based, mathematic models that predict distributions

of tree species are forest landscape models. These mathematical

models, however, do not usually account for temporal

dynamics, and they are not simulation models. Simulation

models are models that derive the model objects of time t from

the model objects of time t � 1, thus explicitly considering

temporal dynamics. Simulation models characteristically work

in situations where model objects are affected by many

variables and interactions between the variables and objects are

complex. Thus, the way to derive model objects is through

computer simulations using defined relationships that reflect

current understanding of the model objects.

A specific definition of a forest landscape model is one that

simulates spatiotemporal characteristics of at least one

recurrent spatial process in a spatially interactive manner.

Compared to the general definition, a forest landscape model

under the specific definition has the following characteristics:

(a) it is a simulation model, (b) it simulates one or more spatial

processes repeatedly, and (c) it operates at a large spatial and

temporal extent that is adequate to simulate the spatial process.

The following discussion of forest landscape models will be

based on this specific definition.

There are two general approaches in ecological modeling:

physical approaches and empirical approaches. Physical

approaches use mathematical equations to link the physical

variables to the resulting phenomena deterministically.

Empirical approaches synthesize the modeled processes using

aggregated parameters generalized from physical parameters.

Ecological models generally fall in two seemingly exclusive

categories: deterministic models and stochastic models (Fig. 1).

Deterministic models produce the same outcomes for each run,

while stochastic models produce different outcomes for each

run. Although both types of models are exclusive, stochastic

models may often have deterministic components, and

deterministic models may sometimes have stochastic compo-

nents. In general, deterministic models are tactic and predictive,

while stochastic models are strategic (Fig. 1).

3. Evolution of forest landscape models

Spatial modeling of forest types and tree species distribution

can be traced back several decades (Press and Wilson, 1978;



Fig. 1. Ecological models generally fall in two seemingly exclusive categories:

deterministic models and stochastic models. Either category of model can use

physical or empirical approaches or a combination of both. Physical approaches

use mathematical equations to link the physical variables to the resulting

phenomena deterministically. Empirical approaches synthesize the modeled

processes using aggregated parameters generalized from physical parameters.
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van de Rijt et al., 1996). It was not until the 1970s that

computers were developed, making computer simulation

possible. Forest stand dynamics models or gap models were

the first generation computer simulation models. Gap models

were largely developed during the 1970s and 1980s, although

some modeling efforts were extended into the 1990s (e.g.,

Bugmann, 1996). Gap models use empirical relationships of

tree species establishment, growth, competition, and mortality

to model stand dynamics and are among the most effective tools

for simulating stand composition and structural change at plot

scales (Botkin et al., 1972; Shugart, 1984). The empirical

relationships can be validated from observed or measured data.

Some gap models require plot coordinates as a direct input

while others do not. In either case, the results from the modeling

entity (a plot) are often extrapolated to represent a much larger

area in the landscape within which the plots are located. Since,

theoretically, they can be applied to a set of plots that cover the

entire landscape, gap models fall within the general definition

of a forest landscape model.

During the late 1980s and 1990s, forest modeling was

characterized by the development of ecosystem process models

(Running and Gower, 1991; Rastetter et al., 1991; Aber and

Federer, 1992). Differing from gap models, ecosystem process

models do not track individual trees (but see Friend et al.,

1993). Rather, they tend to use generalized physical approaches

to model the mass and energy fluxes that control key ecological

processes. Although ecological process models can be applied

to a plot, many of these models, such as FOREST-BGC and

PnET, are designed to operate on an array of plots using satellite

imageries and GIS data sets as direct input. The simulation

results can be assembled pixel by pixel for the whole simulated

area. Thus, some ecosystem process models also fall within the

general definition of forest landscape model.

Gradient-based models or analytical models (e.g., Iverson

et al., 1999), gap models, and ecosystem process models are

spatially explicit, but they are not spatially interactive in their
simulations. They are also not equipped to simulate spatial

processes (He and Mladenoff, 1999a).

Fire is a spatial process, and fire ignition, spread, and effects

occur in a spatial context. Fire is an important component of

forest landscape modeling. Fire behavior models that simulate

fire growth using physical approaches have been a focus of

many fire studies since 1970s (Rothermel, 1972, 1983; Albini,

1976; Burgan and Rothermel, 1984; Andrews, 1986; Finney,

1998, 2001). Rothermel (1972) pioneered the physical

approaches of fire behavior modeling based on controlled,

landscape-scale experiments. Findings from those experiments

are often summarized as empirical equations (Fig. 1) that are

programmed in non-spatial models, such as BEHAVE

(Andrews, 1986; Andrews and Chase, 1989) and FVS-FFE

(Beukema et al., 1999; Crookston et al., 1999). They are used to

estimate key fire parameters, such as intensity, duration, flame

length, and spread rate. In the mid-1990s, advances in

mathematics and computing made it possible to mechan-

istically simulate wildfire growth in a spatial context. This is

represented by a physical fire growth model, FARSITE, which

integrates component models for surface fire, crown fire, fire

acceleration, spotting, and fuel moisture (Finney, 1998, 2001).

FARSITE was developed to make projections of fire growth

patterns and rates under natural and anthropogenic conditions.

Physical fire growth models typically focus on a single event

over the length of an individual fire, because a vegetation

simulator that models post-fire vegetation response is not

usually included in this these models. They are most suitable for

predicting fire growth once an ignition occurs or is

hypothesized. They are not designed to simulate the recurrence

of fire disturbance or multiple fire events over long time spans,

where stochastic approaches become important. The stochastic

approaches use probabilities in combination with random

number generators in simulating fire. They have evolved from

the pioneering work of Heinselman (1973) in dating historical

fires to derive boundaries by studying forest patch age

distribution. That research showed that as a spatial process,

fire regime (size, return interval, and intensity) can be

successfully described through study at large temporal scales

(10s–100s years) with probability distributions of fire size and

frequency. The theories of fire frequency and probability

summarized by Van Wagner (1978) and Johnson (1992) provide

the basis for many later landscape fire models.

Since the 1990s, a new realm of forest landscape models has

been developed that uses stochastic approaches to examine the

relationship between fire regimes and landscape heterogeneity,

as well as fire-affected landscape changes over time (Green,

1989; Baker et al., 1991; Turner et al., 1994; Keane et al.,

1996a; Roberts, 1996; Gardner et al., 1996; Mladenoff et al.,

1996; Urban et al., 1999; Mladenoff and He, 1999). These

models are developed to simulate the repeated patterns of the

spatial processes in a spatially interactive manner. They are

suited to examine the long-term effects of spatial processes

such as harvest, insect, disease, and wind disturbances. The new

generation of landscape models tends to use empirical

relationships to aggregate detailed dynamics in succession.

However, the current trend has shown that physical details are
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increasingly being incorporated in these stochastic models (Li

et al., 2005; Cary et al., 2006).

4. Classification and characterization of forest

landscape models

4.1. Forest landscape models vs. other forest models

The criteria at and near the root level of the dichotomous tree

reflects the specific definition of forest landscape models. The

first criterion is similar to that proposed in Scheller and

Mladenoff (2007). Models that are non-spatial and those that are

spatially explicit but are not spatially interactive are separated

from other forest landscape models (Fig. 2). This group includes

a variety of forest models that are not the focus of this study, such

as gap models, ecosystem process models, and analytical models.

Fire behavior models, including BEHAVE (Andrews, 1986;

Andrews and Chase, 1989; Andrews and Collin, 1999), fuel and

crown consumption and smoke production models (CONSUM)

(Ottmar et al., 1993), the Vegetation Dynamic Development Tool

(VDDT) (Beukema et al., 2003), a fuel characteristic classifica-

tion system (FCCS) (Ottmar et al., 2003), the fire regime

condition class (FRCC) (Hardy et al., 2001; Schmidt et al., 2002),

and FVE-FEE (Beukema et al., 1999; Reinhardt and Crookston,

2003) are also in this group.

The second criterion separates physical fire growth models

(e.g., FARSITE) from the rest of the forest landscape models

that simulate the recurrence of at least one spatial process. One
Fig. 2. A classification of forest landscape models using key characteristics. The

approaches. In general, fire temporal resolution models (groups D and E) are more

(groups B and C) that simulate site-level succession are more suitable for strategic p

site-level succession are more suitable for theoretical studies.
may argue that fire growth models can also simulate recurrent

fires. However, this is rarely true because post-fire vegetation

response is usually not included in this type of model.

The remaining criteria are general but fundamental to model

design, modeling approaches, and consequently the scope of

model applications. Regardless of diverse model objects

(individual species, vegetation types, fire, fuel, insect, disease,

or harvest), landscape modelers make conscious efforts to (1)

design landscape models that balance the integration of

ecological processes across different spatial and temporal

scales, (2) that are able to simulate large areas over long time

spans, and (3) that operate within current and foreseeable

computational capability. The most fundamental decisions they

have to make include selection of model temporal scales, the

number of spatial processes included, and the method of

simulating site-level succession.

4.2. Temporal scales and temporal resolutions

Temporal scales here refer to temporal resolutions or model

time steps, not temporal span or the number of iterations of model

simulation. Simulating the recurrence of spatial processes

implies using multiple iterations or long temporal spans for

all forest landscape models. Temporal resolution is selected as a

model classification criterion because it is usually related to the

mechanistic details of modeling. The level of mechanisms has

been considered in previous model classifications (Gardner et al.,

1999; Keane et al., 2004; Perry and Enright, 2006).
figure shows that forest landscape models have been developed using diverse

suitable to tactical and specific objectives, coarse temporal resolution models

lanning, and coarse temporal resolution models (group A) that do not simulate



H.S. He / Forest Ecology and Management 254 (2008) 484–498 489
Temporal resolutions for forest landscape models are not as

obvious as spatial resolutions, which are explicit in raster

models. The obvious temporal resolutions are those linked with

model iterations, the simulated length of a time step, which is

usually specified as a model parameter. Succession is often

simulated via age increment over each model time step (e.g., by

1, 5, or 10 years) and is synchronized with model iteration. A

landscape model can have multiple temporal resolutions, since

there is usually more than one model object (process) simulated

and each process may have its own temporal resolution. For

example, fire spread is a process operating in the order of

minutes to hours, while succession is often simulated using

longer time steps. However, within a given model iteration,

other model objects, such as fire spread, seed dispersal, and

harvest, may often have unspecified temporal resolutions that

are obviously finer than the model time step.

BFOLDS simulates vegetation change at 1-year time steps,

but once fire ignition occurs, the model simulates fire spread on

an hourly basis using the Canadian Forest Fire Behavior

Prediction System (Yemshanov and Perera, 2002). FIRE-

SCAPE operates at a daily time step that switches to hourly

whenever fire ignites (Cary, 1998). For many forest landscape

models, temporal resolutions that drive fire spread are not

specified. For example, SEM-LAND operates at 1-year time

steps that change to a much finer time step (unspecified) when

simulating fire spread using daily weather data (Li et al., 2005;

Li, 2000). LANDSUM operates at 1-year time steps for

succession dynamics. It simulates fires using predefined fire

sizes randomly drawn from the historical distribution. Thus, it

is not necessary to specify a temporal resolution for its fire

spread (Keane et al., 2002). Similarly, LANDIS 3.0 operates at

10-year time steps. It uses predefined fire sizes from historical

distribution. Fire in LANDIS 3.0 spreads from the ignited pixel

outward until the predefined fire size is met. Fire spread

interacts with fuel (amount) and vegetation, which operate in

decadal resolution. Thus, no temporal resolution for fire spread

is specified (He and Mladenoff, 1999b). LANDIS 4.0 uses

burning times to simulate fire spread based on FARSITE (Yang

et al., 2004). Burning times and their standard deviations are

derived from the historical fire data record and are in the order

of hours; thus, the temporal resolutions for fire spread is in the

order of hours or minutes. For some models, temporal

resolution is a variable. For example, HARVEST simulates

one time step per model run (Gustafson and Crow, 1994, 1996,

1999). The length of time represented by the model run is input

by the user.

Temporal resolutions are usually determined at the model

design stage. Once chosen, they may dictate the modeling

approaches for each object. Fine temporal resolutions (e.g., in

hours, days, seasons, or less than 1 year) entail choosing

physical variables and using physical approaches in model

simulations. Thus, the output parameters are mechanistically

derived. A physical simulation of fire spread, for example, may

involve using variables such as wind speed and intensity,

terrain, and weather. The outcomes of such simulations may

include fire frequency, size, and intensity. Coarse temporal

resolutions (e.g., 1 year or larger) often entail using empirical
approaches and generalized parameters in model simulation. In

models of coarse temporal scales, fine scale processes are

integrated across temporal scales not by simulating them

physically but by representing them as aggregated spatial and

temporal phenomena, such as predefined fire size or harvest

allocation.

Increasingly, however, physical approaches are used in

coarse temporal scale models and empirical approaches are

used in fine temporal scale models. For example, LANDIS 4.0

simulates vegetation dynamics in 1 or 10-year time steps.

However, a highly physical approach based on FARSITE is

used to simulate fire growth. LANDSUM is a polygon-based

model with relatively coarse spatial scales (resolutions), but it

uses fine resolution rasters to simulate fire spread with greater

physical details. On the other hand, empirical and stochastic

treatments are sometimes needed in many models of fine

temporal resolution. FIRESCAPE and BFOLDS, for example,

use hourly weather data to simulate fire ignition and fire spread.

Since instant weather data is not available, they need to be

either generated using a computer program or drawn from

historical weather data series, both involving empirical and

stochastic treatments.

4.3. Single vs. multiple spatial processes

Many forest landscape models simulate one spatial

process, typically fire (e.g., ONFIRE, Li et al., 1997,

FIRESCAPE, Cary, 1998). The HARVEST model simulates

the effects of timber harvest allocations as the only spatial

process (Gustafson and Crow, 1994). Models that simulate

multiple spatial processes include MOSAIC (Green, 1989),

one of the earliest models, followed by LANDSIM (Roberts,

1996) and the models of the LANDIS family, including FIN-

LANDIS (Pennanen and Kuuluvainen, 2002), QLAND

(Pennanen et al., 2004), LANDIS 3.0 (Mladenoff and He,

1999; He et al., 1999), LANDIS-II (Scheller et al., 2007), and

LANDIS 4.0 (He et al., 2005). LANDIS simulates fire, wind,

harvest, insect, disease, and fuel treatment as spatial

processes. It is a raster-based model, allowing multiple

spatial processes to interact at cells where they overlap.

SIMPPLLE also simulates multiple spatial processes,

including fire, insect, disease, and harvest disturbances

(Chew et al., 2004). It is a polygon-based model that uses

the current state of each neighboring polygon to adjust the

probability of insect and disease processes in the next time

step. In SIMPPLLE, fire spreads from polygon to polygon

within a time step, with fire spread influenced by vegetation,

elevation, and suppression assumptions. LANDSUM also

simulates fire, insect, disease, and processes. However, only

fire is simulated as a spatial process while insects, diseases,

and harvests are treated as non-spatial processes. FORMO-

SAIC is a model that simulates timber harvest, wind, and pig

damage (similar to deer browsing) as spatial processes (Liu,

1998). It is a raster model, but within each cell FORMOSIAC

also tracks the location of individual trees. This model is

highly customized for tropical forests and plantations in

Southeast Asia, but the design is quite unique.



Fig. 3. Computational load estimated using Big O Notation for landscape

models using no site-level succession, successional pathway, vital attribute, and

spatial gap model approaches. In general, the computation loads for spatial

application of gap models are 2–5 orders of magnitude higher than the

simplified approaches currently used in landscape models.
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4.4. Site-level succession and Big O notation

Site-level succession dynamics are vegetation dynamics at

each model entity (cell or polygon). As discussed previously,

stand dynamics models or gap models are best developed to

simulate site-level dynamics. Spatial applications of gap

models were of interest in many modeling efforts, such as

FIRESUM (Keane et al., 1989), SORTIE (Pacala et al., 1996;

Pacala and Hurtt, 1993), ZELIG (Urban and Shugart, 1992),

FACET (Urban et al., 1999), and more recently, NORTHWDS

(Bragg et al., 2004). These models have incorporated more

spatial interaction than the earlier JABOWA-FORET types of

gap models. FACET considers interaction of directly neighbor-

ing plots when simulating seed dispersal (Urban et al., 1999);

SORTIE tracks individual tree locations and simulates seed

dispersal using mean dispersal distances and seedling density

defined for each species (Ribbens et al., 1994). But even with

state-of-the-art computers, these models are limited to

simulating relatively small sections of landscapes (e.g.,

<10 ha, Pacala et al., 1996; Caspersen et al., 1999) because

the computational loads of forest landscape models follow the

Big O Notation that measures the computational loads.

If Algorithm A is to be an order of f(N), which is denoted as

O( f(N)), f(N) is called the algorithm’s growth rate function.

Because the notation uses the capital letter O to denote order, it

is called Big O Notation. If a problem of size N requires time

that is directly proportional to N, the problem is O(N), that is,

order N (Carrano, 1995), which increases exponentially with

the N2 relationship for landscape models, where N is the

number of model entities (pixels or polygons). If a landscape

model uses a gap model to simulate site-level dynamics, the

computational load is n4N2, where n is the number of species

(trees) tracked by the gap model, and n4 represents the

computational load for simulating growth, birth, mortality,

establishment, competition and others simulated in the gap

model. In general, the computation loads for spatial application

of gap models are 2–5 orders of magnitude higher than the

simplified approaches currently used in landscape models

(discussed below). In other words, if a simulation takes 5 h to

complete using a landscape model, it will take 500–5000 h to

complete using a gap model embedded in a landscape model.

Thus, to be able to simulate large areas using these models,

spatially inexplicit scaling-up is needed (e.g., Keane et al.,

1996b; Acevedo et al., 1996; Urban et al., 1999).

Most forest landscape models employ simplified approaches

in simulating site-level succession on the premise that fine

scale, site-level vegetation dynamics can be aggregated while

modeled landscape-scale objects are relatively less affected

(Rastetter et al., 1992). In forest landscape modeling, three

simplified approaches are used in processing site-level

succession dynamics: (1) using spatial process as surrogates,

(2) using succession pathway approaches, and (3) using

species’ vital attribute approaches. Each approach represents a

solution that reduces the computational load at site scales

(Fig. 3). In this study, models are classified based on no site-

level succession or simulating site-level classification. This

reasonably sorts various models into similar groups. Thus, no
attempt was made to further classify models based on

approaches used to simulate site-level succession.

4.4.1. No site-level succession—spatial processes as

surrogates

This approach does not explicitly simulate site-level

succession. Rather, variables from simulated spatial processes

are used as a surrogate for site-level succession dynamics. Time

since last fire, for example, is a variable for many models that

simulate landscape fire and fuel dynamics, is used to represent

stand age in DISPATCH (Baker et al., 1991) and ONFIRE (Li

et al., 1997) as well as the amount of fuel accumulated in

FIRESCAPE (Cary, 1998). Time since last harvest is used to

represent stand age in HARVEST (Gustafson and Crow, 1996),

while the actual site-level succession is not simulated. These

models are either highly conceptual (e.g., DISPATCH and

HARVEST) or tend to work in the systems where spatial

processes may override site-level succession dynamics. In

many boreal forest ecosystems (Li et al., 1997), western

coniferous forests in the U.S. (Romme and Despain, 1989),

chaparral shrub lands in southern California (Franklin et al.,

2005), and Eucalyptus ecosystems in Australia (Gott, 2005),

fires tend to be stand leveling, for example, and once they occur,

they can reset succession to the initial stage.

With site-level succession not simulated, the computational

loads simply follow nN2 where n = 1, since the site-level

process is reduced to traverse each model entity to update

disturbance history (e.g., time since last disturbance). Such a

process requires only one operational step (n = 1) of computer

processing. Computationally, this approach can be 5 orders of

magnitude less than using gap models (Fig. 3).
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4.4.2. Simulate site-level succession—succession pathway

approaches

The succession pathway approaches use state-and-transition

models to represent succession by linking vegetation types or

development stages to the transition time. Along pathways,

succession will ultimately reach a climax, or stable vegetation

types. Succession pathway approaches are deterministic, but

stochastic characteristics such as transition time and transition

probability can be simulated using Markov modeling (e.g.,

Gardner et al., 1999; Hargrove et al., 2000). It is possible to

incorporate a spatial process of different forms (e.g., fire with

different intensities) or multiple spatial processes (e.g., fire,

insect, disease, and harvesting) into succession pathways.

Spatial processes can interact with the pathway by advancing or

rewinding succession stages, and interactions between spatial

processes and succession pathways are predefined and

deterministic. Single pathway models are associated with

one model object (spatial process), as in EMBYR (Gardner

et al., 1996; Hargrove et al., 2000). In EMBYR, vegetation is

interpreted as fuel types and updated per iteration via a

predefined transition probability. Multiple pathway models are

associated with multiple model objects, or with one model

object with multiple forms, as in LANDSUM (Keane et al.,

2002), SIMPPLLE (Chew et al., 2004), and LADS (Wimberly

et al., 2000). In LANDSUM and LADS, fire can have multiple

forms in terms of intensity, such as stand replacement fire (high

severity) and non-lethal surface fire (low severity). Vegetation

can have multiple predefined pathways under these fire

severities. SIMPPLLE divides vegetation continua into a

suitable number of states based on the knowledge available and

the resolution needed to address management issues. It is

assumed that the likelihood and intensity of disturbance

processes can be associated with these discrete vegetation states

based on the interaction of vegetation with fuel loads, life

history characteristics, dispersal interactions, and resource

availability. Each combination of dominant species, size-class/

structure, and density by habitat type group that can represent

an existing vegetation unit is identified as a potential vegetation

state within SIMPPLLE.

The succession pathway approach is highly empirical, while

the transition time and direction can often be quantified from

extensive field work. Succession pathways can be as simple as

vegetation development stages (e.g., seedling, sapling, young

forest, and old forest) or as specific as major vegetation types of

different seral stages, such as those developed by Keane et al.

(2004) for mountain pine beetle.

The computational loads for forest landscape models that

use succession pathways follow nN + N2, where n is the number

of pathways that need to be determined. Computationally, this

approach can be 3–4 orders of magnitude less than using gap

models to simplify site-level succession (Fig. 3).

4.4.3. Simulate site-level succession—vital attribute

approaches

Vital attributes are defined as a set of autecological

characteristics necessary to predict a species’ behavior in

environments of recurrent disturbance (Nobel and Slatyer,
1980). The vital attributes generally pertain to the means of

species succession (longevity, sexual maturity, sprouting),

competition (shade tolerance), dispersal, and tolerance to

disturbance. They can be defined either for individual species or

for species’ functional groups. In vital attribute approaches,

site-level succession is a competitive process driven by species’

vital attributes, and the process is based on empirical rules

(Roberts and Betz, 1999). The species’ competitiveness is a

function of that species’ longevity, maturity, and seeding

capability. Without disturbance, more shade tolerant species

will out-compete less shade tolerant species to reach climax, a

stable state. Species’ vital attributes can also interact with

disturbances. Post-species response is a competitive process

driven by a combination of species’ longevity, maturity, seeding

capability, sprouting capability, and environmental adaptabil-

ity. Roberts (1996) first implemented the vital attribute

approach in LANDSIM, a polygon-based model. The approach

is adopted by models of the LANDIS family (Mladenoff, 2004).

Compared to succession pathway approaches, vital attributes

approaches are more mechanistic, less deterministic, and

require more computation (Fig. 3). They are more flexible in

incorporating multiple species (e.g., 30 species) than succes-

sion pathway approaches, which typically define succession

pathways for one or a few vegetation types. Another unique

feature for models that use the vital attribute approach is that

they can effectively simulate seed dispersal, a spatial process

that is important in many systems (He and Mladenoff, 1999b).

Of special note is a model developed by Perry and Enright

(2002) that both uses succession pathways and also simulates

seed dispersal.

With forest landscape models that do not simulate site-level

succession, the computational loads simply follow nmN + N2

where n is the number of species or functional types and m is the

number of vital attributes involved. Computationally, this

approach can be 3 orders of magnitude less than spatial

applications of gap models (Fig. 3).

4.4.4. Simulate site-level succession—model coupling

approaches

Bettinger et al. (2005) present a spatial modeling frame-

work (LAMPS) for forest landscape planning in Oregon’s

Coast Range, USA. LAMPS simulates timber harvesting as the

only spatial process on both private industrial and public lands.

They used ORGANON, an individual tree-based growth and

yield model or ZELIG, a gap model based on theoretical

ecological relationships to simulate the dynamics of stand age

and stand composition for site level succession. LAMPS

groups pixels of similar terrain and vegetation into basic

simulation units, which are aggregated into management units

whose sizes are appropriate for logging systems. The

management units can be further aggregated temporally for

similar treatments, such as clear cutting and thinning. A finite

number of stand conditions are simulated using ORGANON or

ZELIG independently to serve as look-up tables for LAMPS.

This model coupling approach presents a unique solution to

simulate large landscapes (e.g., 5 million pixels) with stand-

level information.



H.S. He / Forest Ecology and Management 254 (2008) 484–498492
4.5. Syntheses

Forest landscape models have been developed using diverse

approaches largely driven by the research or applications

modelers have. In the dichotomy tree, this is represented by the

fact that almost all end nodes contain a group of models. It is

apparent from this classification that landscape models that

operate at coarser temporal resolutions are largely separated in

two groups, with group A simulating one spatial process and

group B simulating multiple spatial processes (Fig. 3). Models

that simulate multiple spatial processes (group B) always

simulate site-level succession. Vegetations modeled at indivi-

dual sites serve as the media with which multiple spatial

processes interact, while some models directly simulate the

interactions of spatial processes. In LANDIS 4.0, fire, wind, and

harvest activities can affect both fine and coarse fuel loads,

which in turn affect fire intensity once an ignition occurs (He

et al., 2005). Models that simulate one spatial process (group A)

usually do not simulate site-level succession, except for those in

group C, which includes LANDSUM, RMLANDS1, and

LADS. LANDSUM requires site-level succession because it

simulates fire and other landscape processes (harvest, insects,

and disease). Group C models represent a unique approach that

combines spatial and non-spatial simulation for multiple

landscape processes. Currently, LADS only simulates fire.

Without a major modeling intake, however, additional

succession pathways can be defined to simulate the effects

of other landscape processes, a fact which demonstrates the

flexibility of succession pathway approaches.

The classification tree also illustrates that models of fine

temporal resolutions usually simulate only one spatial process

(Fig. 3). These models either simulate (e.g., BFOLDS and

EMPYR in group E) or do not simulate (e.g., FIRESCAPE,

LAMOS, and SEM-LAND in group D) site-level succession.

Models that do not simulate site-level succession (group D) use

variables of the spatial process (typically time since last fire) to

substitute for vegetation stages. Models that simulate site-level

succession can directly derive vegetation dynamics as a result

of the interaction between fire and vegetation. LANDIS 4.0

simulates multiple spatial processes. However, only fire is

currently simulated at fine temporal resolutions.

Group A includes some of the earliest landscape models,

such as DISPATCH (Baker, 1991), HARVEST (Gustafson and

Crow, 1996), and ONFIRE (Li et al., 1997). These models are

theoretical and empirical (Gardner et al., 1999). They are

designed for conceptual use and are generally not suitable for

tactical forest management issues, nor for the specific

characteristic of the single spatial process simulated. However,

the models of group A provided exploratory examples for

which later models were developed. The later models made

improvements in the following aspects: (1) including site-level

succession (e.g., groups B and C), (2) including multiple spatial

processes (group B), or/and (3) including additional mechan-

istic details (groups D, E, and F). Compared to models in group
1 http://www.umass.edu/landeco/research/rmlands/rmlands.html.
A, models in groups B and C are strategic models. In other

words, they are scenario models and suited to evaluate the

effects of alternative forest management plans or other change

scenarios. Many of them have been used to assist in the

planning of national forests (Gustafson et al., 2004; Zollner

et al., 2005; Bettinger et al., 2005; Shifley et al., 2006;

Thompson et al., 2006). Groups D and E models are designed to

address more specific needs. Compared to models in groups A–

C, they are tactical. For example, SEM-LAND was used to

investigate the response time of fire suppression (Li et al.,

2005). FIRESCAPE was used to investigate the effects of the

annual treatment level of prescribed1 fires (King et al., 2006).

No forest landscape model is entirely deterministic because

the recurrence of spatial processes involves stochasticity.

Repeated fire patterns are largely affected by climate, for

example, whereas fire ignition and fire spread are mainly

affected by the local weather conditions, fuel, terrain,

vegetation, and other factors. Forest harvesting involves policy

shifts as well as forest conditions affected by natural

disturbances, such as windthrow, fire, insects, and disease.

Both spatial processes involve a great deal of uncertainty in

simulation. However, all landscape models use both determi-

nistic and physical approaches in certain aspects of their model

simulations.

5. Applications of forest landscape models

There are numerous applications using forest landscape

models, and these applications are strongly related to model

design. Applications of forest landscape models generally fall

in the three categories: (1) spatiotemporal patterns of model

objects, (2) sensitivities of model object to input parameters,

and (3) comparisons of model simulation scenarios.

5.1. The spatiotemporal patterns of spatial processes

The direct outputs of landscape models are the spatiotem-

poral patterns of the model objects because the modeled spatial

processes are stochastic and complex, and understanding their

manifestations over space and time is necessary. Thus, the most

effective method is to simulate spatiotemporal patterns of the

model objects using built-in model relationships and para-

meters related to the model objects. Predominant studies in this

aspect involve deriving estimated fire frequency and fire cycle

from simulated fire events, (Ratz, 1995; Li, 2002) as well as

reconstructing historical and natural fire regimes (Li, 2000;

Wimberly, 2002; Keane et al., 2003; Nonaka and Spies, 2005;

Thompson et al., 2006). Gustafson and Crow (1999) simulated

rules of forest harvest over space and time and their effects on

resulting landscape patterns. Bettinger et al. (2005) simulated

harvesting policies of private industrial and public forests on

the capacity of landscape to provide a wide range of services

and products. The results from these studies are often in the

form of a spatial pattern of the model objects over long

timeframes.

The spatiotemporal patterns of the simulated model object

(often fire or harvest) are usually further inferred to derive

http://www.umass.edu/landeco/research/rmlands/rmlands.html
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vegetation dynamics using empirical relationships for models

with one model object. The inferred vegetation dynamics may

include stand age, seral stages, and level of fuels accumulation.

Therefore, the modeled results can be directly related to

ecological and management issues that forest managers

concern. Li and Barclay (2001) studied fire disturbance

patterns and their correspondent forest age structure in one

example; Boychuk and Perera (1997) modeled temporal

variability of different fire disturbance regimes and derived

forest age-classes for the boreal landscape at various spatial

scales in another.

For forest landscape models that have more than one model

object, vegetation dynamics are usually directly simulated

using one of the four approaches discussed in previous sections.

More complex results such as interactions between vegetation

and the other model objects can be derived from these models.

He and Mladenoff (1999b) examined how disturbance and

species dynamics interact across a large heterogeneous

landscape with multiple land types having different species

environments and varied fire return intervals. They were able to

reveal temporal recovery stages of individual tree species under

equilibrium and non-equilibrium conditions. Their study

showed that it may take several centuries for certain species

to recover from past human activities to approach their

landscape compositional equilibrium. Wimberly (2002) used a

spatial model of wildfire and forest succession to simulate

historical forest patterns. He identified the proportions of old-

growth forest on this historical landscape, concluding that both

small and large patches of old forest have important ecological

roles in an Oregon Coast Range ecosystem and that manage-

ment efforts should consider the implications of altering these

historical patterns. Scheller and Mladenoff (2005) estimated the

combined effects of climate change, wind and fire disturbances,

as well as species migration on a regional forest using the

LANDIS-II model. They showed that spatial processes are

important in affecting the above ground, live biomass and

species composition, as well as that migration will be

significantly reduced because of limitations with species

dispersal.

The simulated spatiotemporal patterns of model objects can

be further used to derive results such as wildlife habitat

suitability. Gustafson and Crow (1994) modeled the effects of

harvesting on landscape structure; the simulated spatial patterns

were further assessed for a generalized neotropical migrant

forest bird using a GIS model. Akcakaya et al. (2004) observed

that demographic (metapopulation) models did not incorporate

the temporal variations of spatial pattern (habitat). They linked

a landscape model to a metapopulation model and demon-

strated the use of such model coupling efforts in assessing forest

management options (Akcakaya et al., 2004). Larson et al.

(2004) demonstrated the application of a population viability

model that is linked to realistic landscape simulations using a

GIS-based habitat suitability index (HIS) model. The habitat

suitability is derived from a landscape model simulation. They

showed that combining landscape, habitat, and viability models

in a single analysis provides benefits beyond those of the

individual modeling effort.
5.2. Sensitivities and uncertainties of spatial processes to

input parameters

Methods like sensitivity analysis are commonly used to

evaluate forest landscape models. These methods attempt to

analyze model behavior by ranking the parameters according to

their contribution to the response of model objects. Sensitivity

analyses are particularly insightful, revealing the important

factors that influence model objects. Cary et al. (2006)

compared the sensitivity of simulated burned area to

environmental factors – namely, terrain (flat, undulating, and

mountainous), fuel pattern (finely and coarsely clumped),

climate (observed, warmer and wetter, and warmer and drier),

and weather (annual variability) – for four independently

developed landscape fire succession models. Their results

demonstrated that all four models are generally more sensitive

to variations in climate and weather than to terrain complexity

or fuel pattern. Schumacher and Bugmann (2006) investigated

the relative importance of several drivers (climate, natural

disturbance, and management) that influence forest landscape

dynamics in the Swiss Alps. They concluded that the effects of

climate change are likely to have major consequences for

mountain forests in their study area. Syphard and Franklin

(2004) studied the sensitivity of simulated disturbance (fire)

and species composition to increased pixel sizes. They found

that systematic effects of aggregation on pattern, process, and

species response suggested that modelers can detect ranges of

resolutions for which parameters hold, helping to identify

appropriate levels of spatial generalization for their research.

Uncertainty analysis assesses uncertainties in the model

output as the results of error propagation through the model

from the input data and uncertainties in the model itself.

Uncertainties embedded in model parameters are often related

to measurement, observation, and synthesis and are subjective

uncertainties. Uncertainties due to random algorithms built in

the model are stochastic uncertainties. When uncertainties are

larger for stochastic processes than subjective processes, it

suggests that input model parameters play little role in model

outcome. Xu et al. (2004, 2005) studied cell-level uncertainties

in the LANDIS model. They found that cell-level uncertainties

increased with simulation years and reached an equilibrium

state where initial data inputs had no effect on model outputs.

They also found that at landscape scales, species percent area

and their spatial pattern were not substantially affected by cell-

level uncertainties, indicating the importance of landscape

legacies.

5.3. Scenario analyses

The lack of management experience with landscape scales

and the limited feasibility of conducting landscape-scale

experiments have resulted in increasing use of scenario

modeling to analyze the effects of different management

actions on focal forests and wildlife species. Model scenarios

are created by altering input parameters to reflect changes in

climate, disturbance, fuel and harvest alternatives. The built-in

model relationships remain unchanged. Comparing results
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from different model scenarios provides relative measurements

regarding the direction and magnitude of changes within the

simulated landscape. Keane et al. (1999) simulated landscape

patterns over 250 years under four scenarios for Glacier

National Park, USA to study temporal patterns of ecosystem

processes: (1) complete fire exclusion under current climate, (2)

historical wildfire and current climate, (3) complete fire

exclusion under a future climate, and (4) future wildfire and

future climate. Their results show that fire influences landscape

pattern metrics more than climate. He et al. (2002b) studied

landscape change under forest harvesting and climate warming-

induced fire disturbance. They used two simulation scenarios:

(1) forest harvesting with current fire disturbance and (2) forest

harvesting with increased fire disturbance under warming

climates. They found that increased fire disturbance can

accelerate the decline of shade-tolerant species and accelerate

the northward migration of southern species. Also, they found

that harvesting accelerates the decline of northern hardwood

and boreal tree species. Nonaka and Spies (2005) used a

stochastic fire simulation model to simulate pre-European

settlement landscapes and quantify the historical range of

variability (HRV) of landscape structures. They examined two

alternative policy scenarios: (1) current management policies

for 100 years into the future and (2) wildfire scenarios with no

management. Their results showed that the current landscape

was outside the HRV and did not return to the HRV in the 100

years under either scenario. Extensive forest harvesting and

anthropogenic fires in the 20th century have severely altered on

the landscape that could require centuries for recovery under

wildfire scenarios. Wang et al. (2006) simulated the effects of

reforestation on landscape burned by a large catastrophic fire in

northeastern China. They included four reforestation intensities

(the percentage of the landscape receiving tree plantation) in

their modeling scenario and two spatial patterns of plantation

(dispersed vs. aggregated planting). They found that 30%

planting intensity with a dispersed planting method is most

effective for forest recovery in that region.

Scenario analysis can also be coupled with a factorial

design of simulation experiments (e.g., Sturtevant et al.,

2004; Wang et al., 2006; Cary et al., 2006; Yang et al., 2007).

Each simulation scenario represents an experiment that is

independently simulated with an adequate number of

replicates. The results of each experiment can be statistically

analyzed using the response variables in a multivariate

analysis of variance (MANOVA) to test the global null

hypothesis that the alternative scenarios do not influence the

mean value of each response variable. Pillai’s Trace statistic

can be used to test hypotheses because it is relatively

insensitive to the heterogeneity of variance assumption in

MANOVA (Zollner et al., 2005). In addition, the response

variables can be decomposed into separate ANOVAs to

examine each response variable’s sensitivity to the alternative

scenarios. Finally, the ANOVAs can be rerun so that Ryan–

Einot–Gabriel–Welsch multiple range tests can be used to

conduct multiple comparisons and examine the relative ranks

of the scenario for each response variable (e.g., Zollner et al.,

2005; Sturtevant et al., 2004).
6. Challenges of forest landscape models

There are two dilemmas facing those using forest landscape

models: result validation and circular reasoning. Results of

forest landscape models are the time series of model objects

across space. Result validation in the traditional sense involves

using independent data at a given time and space to check

against model predictions for that time and space. If the

checked results are valid, the results of continuing predictions

bear the validity. Under no circumstance can all time series data

from a forest landscape model simulation be validated in the

traditional sense. If the entire time series could be validated,

there would be no need for forest landscape models.

The dilemma regarding result validation of forest land-

scape models is that independent time series data across time

and space is not available. Each real landscape is non-

replicable and unique in nature. This difficulty renders the

traditional model validation approach inapplicable to land-

scape models. Thus, for forest landscape models, result

validations may involve the three following approaches. First,

results from different simulation scenarios are compared, as

suggested in Rykeil (1996). Such comparisons reveal the

magnitude and direction of change, which can provide a

degree of assurance regarding the correctness of the model

results. Second, simulated results can be compared with those

simulated from other independently developed models. This

approach is used less often, since it requires expertise and

efforts to understand and use other models, but findings from

this approach are often rewarding (see Cary et al., 2006; Yang

et al., 2007). Third, results can be qualitatively or semi-

quantitatively compared with those from long-term landscape

scale experiments or empirical knowledge that is based on

ecological principles. The third approach is by far the most

widely used for result validation in forest landscape modeling

(e.g., He et al., 2002c, 2005).

In forest landscape modeling there are anticipated results

and emergent results. The anticipated results are those

expected through the predefined built-in model formulations

(relationships). The emergent results are those not anticipated

and emerge through the simulations of the interactions of

complex relationships in the models. It is often difficult to

separate expected results from emergent results. A caution

against circular reasoning is the caveat often encountered in

this situation, where researchers discuss biological or

environmental forcing (causes) of their modeled results,

whereas the forcing (causes) is actually built in the model

formulation to derive such results. It should be pointed out

that most model simulations do not lead to new understanding

of the modeled processes themselves. The primary and

subsequent results simply reflect the relationships used in

building the models, which in turn reflect current under-

standing of the processes. The findings of these models are

simply the spatiotemporal variations of the spatial process

(discussed in Section 5.1), not the mechanisms that drive the

potential changes of the spatial process. Emergent results are

generally those resulted from the interactions and feedbacks

of model objects.
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Future development of forest landscape modeling is likely

to be in the following areas. (1) Model development will move

from the foci of theoretical and exploratory purposes to the

foci of strategic and tactical purposes with increasing model

realism, responding to the needs of forest management and

planning. (2) Multiple spatial and temporal resolutions will be

implemented for different processes as have been shown in

LANDIS modeling family (Scheller et al., 2007; Syphard

et al., 2007). (3) Standardized module components may

emerge as handy utilities that are ready to be plugged into

other models. Since component-based models provide non-

developers or end users with access to model components, a

component-based model can be more rigorously tested,

evaluated, and modified than before, and thus, model

development processes can be driven not solely by original

developers, but by the broader scientific community (He et al.,

2002a). (4) Synchronization of multiple ecological processes

can be made possible with multiple computer processors. This

will help deal with the limitation that ecological processes are

simulated in a sequential order as determined by the

executable program. (5) Model memorization will be

improved so that a forest landscape model not only

memorizes vegetation, disturbance, and management status

at the current and previous model iteration, but also the entire

temporal sequence. This would allow more effective studies

of legacies of forested landscapes responding to various

disturbance and management activities.

7. Conclusions

Model classification criteria in this study are as arbitrary as

in previous classification studies. For this classification, I used

temporal resolution rather than spatial resolution as a model

classification criterion. One may argue that spatial resolution

may be more important than temporal resolution. This

argument is valid since, for example, a 200 m resolution can

create much different results than a 30 m resolution in a model

application. Many forest landscape models can accept a range

of spatial resolutions. The common range is from 30 to 200 m

(e.g., Keane et al., 2002; He et al., 2005; Li et al., 2005;

Thompson et al., 2006). Spatial resolution equal to or larger

than 500 m (in some cases 1 km) is usually used in

biogeographical or biogeochemical models, which are designed

to simulate at continental scales and is not suited for landscape

processes. Spatial resolution is generally related to input data

for landscape models whereas temporal resolution is related to

model design, which is more fundamental than input data.

There is no perfect classification of forest landscape models.

The classification presented in this study is not based on

applications in which models of fire and harvest may be

classified into different groups. Rather, the classification is

based on scientific definitions of forest landscape models and

criteria key to model design. One group of models often bears

the characteristics of another group. A model classified in the

specific, tactical category can be considered theoretical

depending on applications and purposes, and vice versa. Forest

landscape modeling is a rapidly developing field. Model
classification will continue to evolve with new development and

applications.
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