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AbstractIn this talk we will consider various classes de�ned by small depth polynomialsize circuits which contain threshold gates and parity gates. We will describe variousinclusions between many classes de�ned in this way and also classes whose de�nitionsrely upon spectral properties of Boolean functions.1. IntroductionThe main goal of the computational complexity theory is to be able toclassify computational problems accordingly to their inherent complexity.At the �rst stage the problems are combined into large collections calledcomplexity classes, each class consisting of problems which can be e�-ciently solved by an algorithm from a certain family. This allows one tounify many heterogeneous questions into only a few major problems aboutpossible inclusions of one complexity class into another. Unfortunately,we are not even nearly close to solving the most important problems ofthis kind like the P vs. NP question or the NC vs. P question.This talk will be devoted to a fragment of the complexity hierarchy(lying well below the class NC1) where the existing machinery does allowus to answer questions on possible inclusions between complexity classesand in fact the result known at the moment give more or less completepicture of the �ne structure within that fragment.More precisely, we will be mostly interested in small depth circuitswhich contain threshold gates. There are two reasons for studying them.�This paper was prepared while the author was visiting Department of Mathematics at MIT partiallysupported by the Sloan foundation.



The �rst reason is that threshold circuits are very closely connectedto neural nets which is one of the most active areas in computer science.The basic element of a neural net is close to a threshold gate.Another reason is that the complexity classes de�ned by small depththreshold circuits contain many interesting Boolean functions and areclosely related to other complexity classes de�ned both in terms of smalldepth circuits and the spectral behavior of the function in question.The paper is organized as follows. In Section 2 we introduce the nec-essary notation. Section 3 is devoted to (linear) threshold circuits ofbounded depth. In Section 4 we consider complexity classes de�ned bothin terms of the spectral representation and also in terms of polynomialthresholds. In Section 5 we merge together the two hierarchies of com-plexity classes considered in previous sections. The concluding section6 contains some applications of the general theory to computing veryconcrete Boolean functions.2. NotationWe will consider Boolean functions but for notational simplicity we willbe working over f�1; 1g rather than f0; 1g where we let �1 correspondto 1 and 1 to 0. Thus variables will take the values f�1; 1g and a typicalfunction will be from f�1; 1gn to f�1; 1g. In this notation the parity ofa set of variables will be equal to their product and thus we will speakof a monomial rather than of the parity of a set of variables. If we havea vector x of variables (indexed like xi or xij) then a monomial will bewritten in the form x� where � is a 0; 1-vector of the same type.A threshold gate with n inputs is determined by n integer weights(w1; w2; : : : ; wn) and a threshold T . On an input x = (x1; : : : ; xn) 2f�1; 1gn it takes the value sign(x1w1 + � � � + xnwn + T ) (we will alwaysassume w.l.o.g. that the linear form x1w1+ � � �+xnwn+T never evaluatesto 0). The parameter Pni=1 jwij + jT j is called the total weight of thecorresponding threshold gate.Circuits considered in this paper will be mostly assembled from thresh-old gates and gates which compute monomials (= parity gates in thef0; 1g-terminology). We de�ne the size of a circuit to be the number ofgates.



3. Linear Threshold CircuitsIn this section we will consider (linear) threshold circuits that is circuitsconsisting entirely of threshold gates. Let LTd denote the class of func-tions computable by polynomial size depth d threshold circuits. Notethat it is not quite clear a priori that functions computable even by,say, a single threshold gate have polynomial size circuits (of an arbitrarydepth). The following well-known result (see e.g. [?]) takes care of this.Theorem 3.1. For each threshold gate with n inputs there exists athreshold gate which computes the same function and has the total weightat most exp(O(n logn)).A model which is more natural from the \polynomial" point of viewis to have the restriction that absolute values of all (integer!) weights arebounded by a polynomial in the length of the input. We will refer to thisrestriction as the small weights restriction and let dLT d denote the class ofBoolean functions computable by polynomial size depth d small weightsthreshold circuits. It can be easily seen that dLT d-circuits can be furthersimpli�ed to consist of MAJORITY gates and of negations which appearon input variables only.Now we review lower bounds known for linear threshold circuits.It is easy to see that LT1 does not contain all Boolean functions in nvariables for any n � 2. In fact, even such a simple function in just twovariables as x1x2 is outside of LT1.An example of a function in LT1 n dLT 1 was �rst presented in [MK61]:Theorem 3.2 (Myhill, Kautz). Any linear threshold gate computingthe LT1-functionsign0@q+1Xi=1 2i�1xi + qXj=1 �2q � 2j�1� yj � 2q1Amust have a coe�cient which is at least as large as 2q.In fact, Myhill and Kautz gave also an example for which the betterbound 
 (2n=n) holds but the proof of this latter result is much harder.The separation between dLT 1 and LT1 also follows from more generalTheorem 5.4 below.In depth 2 the �rst lower bounds were proven in the seminal paper[HMP+87]. Namely, they established the following.



Theorem 3.3 (Hajnal, Maass, Pudl�ak, Szegedy, Tur�an). Anydepth 2 small weights threshold circuit computing the function INNERPRODUCT MOD 2 (which is de�ned as IP2n(x1; : : : ; xn; y1; : : : ; yn) *)(x1 ^ y1)� � � �� (xn ^ yn) in f0; 1g�notation) must have size exp(
(n)).Krause [Kra91] and Krause, Waack [KW91] slightly generalized and ex-tended this result.Note that IP2n 2 dLT 3. Hence Theorem 3.3 gives the separationdLT 2 6= dLT 3 (which, given Theorems 5.1 and 3.7, can be also deducedfrom Theorem 5.3 below).No superpolynomial lower bounds are known for dLT 3-circuits oreven for LT2-circuits. Maass, Schnitger and Sontag [MSS91] proved an
 � log lognlog log logn� bound on the size of depth 2 threshold circuits computingan explicitly given Boolean function. The following result was proved in[GHR92]:Theorem 3.4 (Goldmann, H�astad, Razborov). Any depth2 threshold circuit computing INNER PRODUCT MOD 2 has size atleast 
(n= logn).In fact, this is a direct consequence of Theorem 3.3 and the techniqueused for proving Theorem 3.7 below.It seems that the only lower bound known for depth three comes from[HG90]. The generalized inner product mod 2, GIP2n;s is the Booleanfunction in ns variables de�ned (in f0; 1g-notation) as follows:GIP2n;s(xij)*) nMi=1 ŝj=1xij:In particular, IP2n � GIP2n;2.Theorem 3.5 (H�astad, Goldmann). Any depth 3 small weightsthreshold circuit which computes GIP2n;s and has fan-in at most (s� 1)at the bottom level, must have size exp �
 � ns4s��.This result gives an exponential lower bound but only for circuits withfan-in at most � logn at the bottom level. It would be extremely interest-ing to strengthen Theorem 3.5 because of the following simulation discov-ered in [Yao90]. Let ACC be the class of functions computable by poly-nomial size bounded depth circuits over f:;^;_;MODm1; : : : ;MODmkg



wherem1; : : : ;mk are �xed integers andMODm(x1; : : : ; xn) = 1 i� Pni=1 xiis divisible by m.Theorem 3.6 (Yao). If fn 2 ACC then fn is also computable by depth3 small weights threshold circuits of size exp �(logn)O(1)� and with fan-inat most (logn)O(1) at the bottom level.So far superpolynomial lower bounds for ACC-circuits are known onlyfor the bases f:;^;_;MODqg where q is a power of a prime (Razborov[Raz87], Smolensky [Smo87], Barrington [Bar86]).Let's now see how e�ciently general threshold circuits can be simu-lated by threshold circuits with small weights. The results of Chandra,Stockmeyer, Vishkin [CSV84] and Pippenger [Pip87] imply that the func-tion ITERATED ADDITION (that is addition of n n-bit numbers) iscomputable by constant depth polynomial size small weights circuits. Adirect consequence of this is that LT1 � dLT d for some constant d whichwas estimated as d = 13 in [SB91]. A better construction (based in facton the spectral technique to be discussed in the next section) was given bySiu and Bruck [SB91]. Namely, they showed that the ITERATED ADDI-TION is in dLT 3 which implies LT1 � dLT 3 and, moreover, LTd � dLT 2d+1for any d which in general may depend upon the number of variables.For �xed d this was further improved in [GHR92]:Theorem 3.7 (Goldmann, H�astad, Razborov). LTd � dLT d+1 forany �xed d > 0.This implies that the classes de�ned by general threshold circuits andby small weights threshold circuits form the following alternating hierar-chy: dLT 1 � LT1 � dLT 2 � LT2 � dLT 3 � : : : (1)Let me recall that the inclusion dLT 1 � LT1 is proper by Theorem 3.2(or by Theorem 5.4), whereas LT1 and dLT 2 are trivially separated by thePARITY function. The inclusion dLT 2 � LT2 was shown to be properby Goldmann, H�astad and Razborov [GHR92] (it is a consequence ofTheorem 5.3 below). The question whether LT2 is di�erent from higherlevels of the hierarchy (1) (or whether it contains NP ) is open.



4. Spectral Representation and Polynomial Thresh-oldsAny Boolean function f : f�1; 1gn �! f�1; 1g can be uniquely repre-sented as a multilinear polynomial over reals:f(x1; : : : ; xn) = X�2f0;1gn a�(f)x�: (2)This representation is called the spectral representation of f and its coef-�cients fa�(f) j � 2 f0; 1gng are spectral coe�cients of f . We de�neL1(f)*) X�2f0;1gn ja�(f)jand L1(f)*) max�2f0;1gn ja�(f)j:Similarly we might de�ne the Euclidean norm L2(f) but it turns out thatL2(f) equals 1 for any f . In fact, it implies thatL1(f) � 1 � L1(f); L1(f) � L1(f) � 1: (3)In general, the spectral approach is a very useful tool in the study ofBoolean functions (see e.g. [KKN88, LMN89, BOH90, KM91]). But inthis survey we are exclusively interested in its applications to thresholdcircuits.Along these lines Bruck and Smolensky [BS92] explicitly de�ned theclass PL1 which consists of all functions fn with L1(f) � nO(1) and theclass PL1 *) nfn ��� L1(f)�1 � nO(1)o. Note that by (3), PL1 � PL1.The classes which provide a strong link between threshold circuitsand spectral properties of Boolean functions were de�ned by Bruck in[Bru90]. Namely, the class PT1 consists of all functions fn which allow arepresentation of the formfn(x1; : : : ; xn) = sign0@X�2Aw�x�1A (4)where A � f0; 1gn, jAj � nO(1). Note that in the f0; 1g-notation PT1equals the class of all functions computable by polynomial size depth 2circuits with a (general) threshold gate at the top and parity gates at



the bottom. On the other hand, the de�nition of PT1 bears the obvioussimilarity with (2).The class dPT 1 is de�ned in the same way, only now we additionallyrequire the weights w� in (4) to be small ([Bru90]).Bruck [Bru90] showed a general lower bound for PT1-circuits which inour notation basically amounts to the following:Theorem 4.1 (Bruck). PT1 � PL1:Bruck and Smolensky [BS92] established the dual result:Theorem 4.2 (Bruck, Smolensky). PL1 � dPT 1.So we have the hierarchyPL1 � dPT 1 � PT1 � PL1: (5)The inclusion PL1 � dPT 1 was shown to be proper in [BS92]:Theorem 4.3 (Bruck, Smolensky). The functionEXACTn(x1; : : : ; xn) = 1*) nXi=1xi = n=2is in dPT 1 n PL1:dPT 1 � PT1 was shown to be proper by Goldmann, H�astad and Raz-borov [GHR92] (see more general Theorem 5.4 below). The inclusionPT1 � PL1 is proper just because the class PL1 contains almost allfunctions; an explicit function separating those two classes was presentedin [BS92].5. The Fine StructureIn this section we combine the two hierarchies (1) and (5) into one pow-erful picture.It is clear that dLT 1 � dPT 1 and LT1 � PT1. Less obvious inclusionswere established in [Bru90]:Theorem 5.1 (Bruck). dPT 1 � dLT 2 and PT 1 � LT 2:At the moment we have the following picture.
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It turns out that this picture reects all possible inclusions betweenthe eight classes shown there. Let's review the reasons.The following result was proved in [Bru90]:Theorem 5.2 (Bruck). The Complete Quadratic Function CQn whichin the f0; 1g-notation is given by CQn(x1; : : : ; xn)*) L1�i<j�n(xi^xj), isin dLT 2 n PL1.The next three easy separations were noticed by Goldmann, H�astadand Razborov in [GHR92].1. Although we do not know any explicit superlinear lower bounds forLT2-circuits, we still can claim that PL1 6� LT2 just because PL1contains almost all functions.2. If we consider MAJn instead of EXACTn in Theorem 4.3, then itcan be improved to give dLT 1 6� PL1:3. The PARITY function is in PL1 n LT1:The two separations which are still needed to claim that our pictureis complete, are LT1 6� dPT 1 and PT1 6� dLT 2: In other words, we needlower bounds analogous to those given by Theorem 3.3 but for simplerfunctions. Such bounds were proven in [GHR92].Let pn(x; y)*) sign0@1 + 2 n�1Xi=0 2n�1Xj=0 2iyj(xi;2j + xi;2j+1)1A



and Un(x)*) sign0@1 + 2 n�1Xi=0 4n�1Xj=0 2ixi;j1A :Obviously, pn(x; y) and Un(x) are in PT1 and LT1 respectively.Theorem 5.3 (Goldmann, H�astad, Razborov). Any depth 2 smallweights threshold circuit computing pn(x; y) must have size exp(
(n)):Hence PT1 6� dLT 2:Theorem 5.4 (Goldmann, H�astad, Razborov). For any represen-tation Un(x) = sign0@X�2Aw�x�1Aof Un(x) in the form (4) we have P�2A jw�j � exp(
(n)): Hence LT1 6�dPT 1:As we noted before, Theorems 5.3 and 5.4 generalize and strengthen manyof previous results.A few words should be said about the method of proof of Theorems 3.3,5.3, 5.4. Assume that fn(x1; : : : ; xn; y1; : : : ; yn) is a Boolean functions withits variables divided into two groups, x-variables and y-variables. Denoteby C1=2��(g; 1 ! 2) the probabilistic one-way communication complexityof g with error 1=2� � i.e. with advantage � ([Yao79]). We consider themodel in which the probability of being correct is at least 1=2 + � forevery pair of inputs, the random string is shared by both parties andthe complexity is measured as the number of bits sent in the worst case(not the average). Let C(g; 1 ! 2) be the corresponding deterministicmeasure.The following lemma which was implicit in [HMP+87] is the key stoneto proving Theorems 3.3, 5.3, 5.4:Lemma 5.5. Let w; d � 0 and fn(x1; : : : ; xn; y1; : : : ; yn) be computed bya depth 2 threshold circuit with a threshold gate of the total weight w atthe top and arbitrary gates g satisfying C(g; 1 ! 2) � d at the bottom.Then C1=2�1=(2w)(fn; 1! 2) � d:In fact, the paper [HMP+87] dealt with the two-way communication com-plexity and also Krause [Kra91] and Krause, Waack [KW91] used similararguments. It is not clear however whether the proof of Theorems 5.3,5.4 can be carried over in the context of two-way complexity.



6. Applications to Concrete FunctionsIn this concluding section we will see that inclusions summarized in ourmain picture have been extremely useful for designing threshold circuitsfor very concrete Boolean functions.We will be interested in such important functions as the ADDITION,MULTIPLICATION, DIVISION, COMPARISON (of two n-bit num-bers), POWERING (computing xn where x is an n-bit number), ITER-ATED ADDITION, ITERATED MULTIPLICATION, MAXIMUM andSORTING (of n n-bit numbers). In fact, some of these functions allowa naive implementation by constant depth polynomial size small weightscircuits and the remaining functions can be implemented so using thereductions of Chandra, Stockmeyer and Vishkin [CSV84] and the resultsof Beame, Cook and Hoover [BCH86] and of Pippenger [Pip87]. This wasobserved in [HMP+87] (see also [SB91]). However the depth of resultingcircuits is far from optimal. We already noted in Section 3 that the cir-cuits for the ITERATED ADDITION obtained in this way have depth13; the MULTIPLICATION seems to require depth 10. We will presentbelow more recent results many of which are based on the general theoryfrom previous sections. They lead to much better (and in many casestight) upper bounds in terms of depth.Siu and Bruck [SB91] showed that the ADDITION and COMPAR-ISON of two n-bit numbers are both in PL1 and hence are doable indLT 2. A constructive version of Siu and Bruck's result was presented byAlon and Bruck [AB91]. Quite recently Siu and Roychowdhury [SR92]have used Theorem 3.7 to show that even the ITERATED ADDITIONis in dLT 2. All these results are optimal in depth since none of the threefunctions is in dLT 1 (this is obvious for the ADDITION and ITERATEDADDITION; for the case of the COMPARISON see [SB91]).Siu and Bruck [SB91] also showed that the MULTIPLICATION (of twon-bit numbers) is in dLT 4 (this was later rediscovered in [HHK91] with abetter bound on the circuit size). Siu and Roychowdhury [SR92] showedthat in fact the MULTIPLICATION is doable in depth 3. This latterresult is depth-optimal since [HMP+87] proved before that the MULTI-PLICATION is not in dLT 2.DIVISION and POWERING were shown to be in dLT 4 by Siu, Bruck,Kailath and Hofmeister [SBKH91] and in dLT 3 by Siu and Roychowdhury



[SR92]. To the best of my knowledge, it is open whether they are in dLT 2or not.ITERATED MULTIPLICATION was shown to be in dLT 5 by Siu,Bruck, Kailath and Hofmeister [SBKH91] and in dLT 4 by Siu and Roy-chowdhury [SR92]. It is open whether it is doable in depth 3 or not.Siu and Bruck [SB91] also considered the MAXIMUM and SORT-ING of n n-bit numbers and, using their method, placed them into dLT 3and dLT 4 respectively. Siu, Bruck, Kailath and Hofmeister [SBKH91] im-proved on the second result showing that in fact the SORTING is also indLT 3. Whether these functions can be done in depth 2 seems to be open.We summarize in the following table our knowledge on the depth-optimal constructions for the functions we've been discussing in this sec-tion.Function upper bound lower boundADDITION 2 [SB91] 2ITERATED ADDITION 2 [SR92] 2MULTIPLICATION 3 [SR92] 3 [HMP+87]ITERATED MULTIPLICATION 4 [SR92] 3 [HMP+87]DIVISION 3 [SR92] 2POWERING 3 [SR92] 2COMPARISON 2 [SB91] 2 [SB91]MAXIMUM 3 [SB91] 2SORTING 3 [SBKH91] 27. AcknowledgementI am highly indebted to Jehoshua Bruck and Michael Goldmann for valu-able remarks promptly made on an earlier version of this paper.References[AB91] N. Alon and J. Bruck. Explicit constructions of depth-2 ma-jority circuits for comparison and addition. Technical ReportRJ 8300 (75661), IBM Research Division, August 1991.
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