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ABSTRACT

Analogical reasoning has a long history in artificial intelligence research, primarily because of its
promise for Ike acquisition unit effective use of knowledge. Defined as a representational mapping
from a known "source" domain into a novel "target" domain, analogy provides a basic mechanism
for effectively connecting a reasoner's past and present experience. Using a four-component process
model of analogical reasoning, this paper reviews sixteen computational studies of analogy. These
studies are organized chronologically within broadly defined task domains of automated deduction,
problem solving and planning, natural language comprehension, and machine learning. Drawing on
these detailed reviews, a comparative analysis of diverse contributions to basic analogy processes
identifies recurrent problems for studies of analogy and common approaches to their solution. The
paper concludes by arguing that computational studies of analogy are in a slate of adolescence:
looking to more mature research areas in artificial intelligence for robust accounts of basic reasoning
processes and drawing upon a long tradition of research in other disciplines.

1. Introduction

Over the last two decades, metaphor and analogy have grown to occupy a
central position in artificial intelligence research, for both practical and
theoretical reasons. In problem solving and learning, analogical reasoning
promises to overcome the explosive search complexity of finding solutions to
novel problems or inducing generalized knowledge from experience. In natural
language understanding, metaphor and analogy set practical goals for com-
munication interfaces and theoretical goals for understanding figurative think-
ing and expression. Analogy presents a basic and challenging epistcinological
question: when are two representational descriptions, for some purpose, alike?
Interest in these problems has produced a sizable literature of computational
approaches to analogy.
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This paper proposes an abstract process model of analogical reasoning and
uses the model to frame a comparative review of studies from the computation-
al literature. Early influential studies of analogy are examined first, followed by
more recent studies organized chronologically within traditional artificial intel-
ligence problems: automated deduction, problem solving and planning, natural
language processing, and learning. These reviews are summarized in Appen-
dices A and B. The latter half of the paper uses the results of these studies to
focus on process model components and considers how computational propos-
als for analogy solve problems within each component. The detailed reviews
and comparative analysis can be read separately. The paper concludes with an
overview of problems, proposed solutions, and a prospectus for further compu-
tational research on analogy.

The review covers sixteen different projects but is not exhaustive, instead
reflecting the author's interests and access to various literatures. One notable
omission is connectionist approaches to classification and learning (e.g., see
Rumelhart et al. [98] or Hofstadter et al. [53]), where concepts like schematic
blending offer a novel approach to analogy. An experienced reader may find
other more or less glaring omissions. Reviews of these and other significant
studies will undoubtedly appear as computational study of analogy continues.

1.1. Terminology: Materials for analogical reasoning

Polya's studies of heuristics in mathematical problem solving have been a
primary inspiration for computational studies of analogy. Central among his
heuristics is to use what one already knows:

Many of these questions and suggestions aim directly at the mobili-
zation of our formerly acquired knowledge: Have you seen it
before! Or have you seen the same problem in a slightly different
form! Do you know a related problem! (emphasis in original) [94,
p. 146]

Analogy to existing (or newly generated) problems gives a heuristic problem
solving strategy in which the result or method of the related problem can be
carried into the new problem. The analogy itself consists of a "community of
relations" in common between corresponding parts of the problems. As
described by Newell [87], these and other aspects of Polya's work provide a
rich program for research in artificial intelligence. Among other things, the
studies reviewed in this paper attempt to operationalize the concept of analogy
as heuristic inference.

Before reviewing computational studies of analogy, a common terminology
will be introduced and maintained (as possible) throughout the paper. Analogy
will be described as a mapping1 between elements of a source domain and a
target domain. Abstracting over different representational schemes, each do-

'See Herstein [49] for a concise mathematical description of mappings.
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main simply contains related knowledge or facts (e.g., about the card game of
spades). Each fact is a description (e.g., what to bid given a certain hand)
consisting of related elements (e.g., the concept of a bid). The analogy
mapping associates or maps elements and descriptions from the source domain
into the target domain. Analogy becomes useful in some context when a
reasoner is familiar with the source, and can map familiar elements or relations
from the source into unfamiliar (or unknown) elements or relations in the
target. These mapped elements are analogical inferences and receive varying
levels of support from other mapped elements, from knowledge about the
target domain, or from more elaborate confirmatory schemes.2

Treating analogy as a mapping introduces organizing terminology for parts of
analogy, its processes, and its results. Formal properties of mappings (e.g.,
special classes of mappings or inverse images) suggest properties that analogies,
as used by humans or machines, may or may not have. For example, Centner
[33, 34] argues that humans prefer "systematic" analogies that map higher-
order relations (e.g., cause or revolves-around) in a one-to-one fashion from
source to target: a theoretical assertion supported by a broad spectrum of
empirical evidence. Likewise, computational studies of analogy choose particu-
lar classes of mappings. For example, Kling [66] allows one-to-many mappings
from source to target clauses in an automatic theorem proving task, but
restricts predicate mappings to be one-to-one. Since clauses arc composed of
predicates, the predicate mapping restriction constrains the space of possible
clause mappings. For both Centner and Kling, the analogical mapping pro-
motes analogical inferences and provides a mechanism for transferring relevant
information from source to target. What gets transferred is quite varied in the
reviewed studies, ranging from selective constraints on target inferences to
justified plans for complete target solutions.

Source, target, mapping, analogical inference, and confirmatory support are
the basic materials of analogy. Computational studies of analogy must
adequately represent these materials, specify processes for accessing, man-
ipulating, and creating these representations, and then integrate these repre-
sentations and processes into existing computational accounts of reasoning and
learning. Recognizing analogous sources, elaborating and extending analogical
mappings, evaluating the support of analogical inferences, and consolidating
confirmed inferences are the basic process components of computational
research on analogy.

1.2. Contributions from other disciplines

Artificial intelligence has been on the scene for three decades, and researchers
have been publishing studies on analogy for the past two decades. However,

!IIesse [50] gives an accessible and revealing philosophical treatment of analogical inference in
scientific discovery and argumentation.
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research traditions in other disciplines are longer-lived and more prolific.
Psychology, linguistics, philosophy and related disciplines provide a diversity of
views on figurative thought, its development, use, and significance in human
affairs. A detailed review of these literatures here is simply impossible,3

although references are included wherever appropriate in the following sec-
tions.

These literatures support a number of general conclusions about metaphor
and analogy which may be useful for computational approaches. Four issues
are particularly important: the prevalence of analogy in human reasoning,
likely representational structures supporting analogy, corresponding process
models of analogy, and the role of analogy in learning. By most accounts,
metaphor and analogy are ubiquitous within our cognitive experience. How-
ever, estimates of their importance vary widely: from analogy as misleading
ornamentation [80] to an indispensable epistemological bridge for acquiring
new concepts [91]. Second, these disciplines have shifted towards representa-
tions which make explicit the "higher-level" structure of similarity between the
source and target of an analogy [89]. Thus "schematic" or "structured"
knowledge representations are often preferred. Third, process models of
analogical reasoning generally make a distinction between access to an analog-
ical source and its use [35, 38, 88]. These may be governed by considerably
different constraints, leading to a growing appreciation for the necessity of
studying analogy within a context of use (e.g., analogical problem solving) and
in a manner which is sensitive to characteristics of the reasoner (e.g. expertise).
Fourth, although "learning by analogy" is generally accepted within the
artificial intelligence community, other disciplines do not differentiate it as
explicitly from more general forms of learning. For example, some psychologi-
cal studies of problem solving treat analogy as a reasoning or problem-
modeling mechanism, where learning can facilitate spontaneous access to an
analogy (e.g., schema induction in Gick and Holyoak [39]).

While these literatures do not provide clear-cut answers to the underlying
structures or processes of analogical reasoning, they do provide conceptual
frameworks which pose interesting questions and propose partial answers.
Computational research should consider these frameworks in detail, building
upon and contributing to an increasingly coherent theoretical and empirical
treatment of analogy and metaphor. We have much to gain from this rich
tradition of research, and much to contribute as well.

1.3. A descriptive framework for computational studies of analogy

Computational studies of analogy and metaphor are difficult to understand as
an integrated whole. Areas of commonality are difficult to extract both because

'The interested leader is referred to a number of more extensive reviews or collections from
these literatures [10, 46, 56, 60, 71, 88-90].
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of the recency of work in artificial intelligence and the variety of task domains
in which computational approaches have been attempted. There are few
comprehensive reviews of computational studies of analogy [63, 79], a problem
which this paper addresses. Before considering the body of computational
approaches to analogy, however, a simple process framework for analogical
reasoning will be presented, drawing from conceptual frameworks advanced in
other literatures mentioned above. This framework gives abstract process
components that a relatively complete picture of analogical reasoning, compu-
tational or otherwise, would include:

(1) recognition of a candidate analogous source, given a target description,
(2) elaboration of an analogical mapping between source and target domains,

possibly including a set of analogical inferences,
(3) evaluation of the mapping and inferences in some context of use,

including justification, repair, or extension of the mapping,
(4) and consolidation of the outcome of the analogy so that its results can be

usefully reinstated in other contexts.

These components provide a conceptual organization for comparing compu-
tational approaches to analogy. To make detailed comparisons of individual
studies possible, concrete descriptions of representation, system inputs, and
system outputs are included, along with examples of implemented or proposed
processing wherever possible. More evaluative criteria include the complete-
ness of process specification (across components described above), specificity of
these descriptions at an implementational level, plausibility of described per-
formance (cither as a result of implementation or optimism), and the generality
or extensibility of a model to wider or different domains. As always, critique
comes easier than creative solutions to clearly stated and important problems.
Critical comments are presented in the hope of identifying these problems,
existing solutions, and general contributions of computational studies of an-
alogy.

2. Early Computational Paradigms for Analogical Reasoning

Ringle [96] describes early work in artificial intelligence as attempts to get
machines to do something (anything) intelligent as an existence proof for
computational intelligence. To some extent, the studies discussed in this
section represent such an effort. However, these studies also play an ancestral
role that shapes approaches to analogical reasoning in subsequent studies.
Evans' [28] system for solving proportional analogies focuses on elaborating an
analogical mapping between source and target descriptions. Becker's [9] model
of analogical processes in induction embeds analogical comparison in a more
general problem solving framework, and addresses each of the process compo-
nents mentioned earlier.
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2.1. Evans [28]: Solution of geometric analogies

Evans' ANALOGY system solves geometric analogy problems like the one
shown in Fig. 1. A problem consists of eight figures, each composed of one or
more objects. The task is to:

Find the rule by which figure A has been changed to make figure B.
Apply the rule to figure C. Select the resulting figure from figures 1
to 5 [20, p. 272]

These problems are written more compactly as A:B::C:{choices 1, 2, 3, 4, or
5} where the A:B pair and relations between their objects serve as a given
source. A correct C:choice pair wi th corresponding relations serves as the
target. These problems have a long history in psychological studies of intellig-
ence, where solution processes are hypothesized to be central components of
reasoning ability. While Evans compares his model with gross human perfor-
mance (e.g., the number of problems correctly answered), others study this
task from a more rigorous empirical perspective (e.g., see Grudin [44], Hunt
[57], Rumelhart and Abrahamson [97], and Sternberg [104]).

As input, ANALOGY takes primitive prepositional descriptions of figures and
decomposes each into constituent objects, a process that Evans describes at
length. The resulting representation includes objects and binary relations over
those objects within each figure. The relations INSIDE, ABOVE, and LEFT
provide a vocabulary for typical geometric analogies. Given this higher-level
description, ANALOGY solves problems in four steps:

Step 1. Generate rules that express how figure A can be altered to give figure Β.
Step 2. Generate rules that express how figure C can be altered to give each

of the choice figures.

Ο

Fig. 1. A geometric analogy problem solved by ANALOGY (Evans [28, p. 330]).
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Step 3. Compare each A:B rule with each O.choice rule. For each admissible
comparison, find more general candidate rules that cover both of the original
rules.

Step 4. Select a single candidate rule that takes C into a choice but still
preserves the most information about the A:B rule.

As output, the system returns a single best choice if one can be found.
Rules are generated by considering a restricted class of object-level map-

pings between two figures. An object in one figure maps to an object in
another figure only if both are the same geometric type (i.e., they have the
same shape). Differences in objects' size or orientation are accommodated by
selecting from a set of Euclidean transformations including scale change,
rotation, and horizontal or vertical reflection. In Fig. 1, the large circle of A
could be mapped to either the large or small circle in B. The latter mapping
requires a scale reduction for the large circle in A. If objects in one figure fail
to map with any object in the other figure, they are either deleted or added, as
in a rule taking C into choice 2. The small square in C maps with nothing in
choice 2 and must be deleted, while one of the small circles in choice 2 maps
with nothing in C and must be added. Deleting or adding an object which can
be mapped is forbidden, resulting in maximal object correspondence. For
example, an A:B rule which deletes all objects in A and then adds all objects
in Β is not considered.

A rule has three components: a set of objects which are deleted, a set which
are added, and a set which are mapped from one figure to another. Mapped
objects also record Euclidean transformations. The sense of the analogy (e.g.,
moving the big circle "down" in A:B of Fig. 1) is carried by the binary
relations between objects within each figure. Given an object-level correspond-
ence, these relations are simply associated with their respective objects and
deleted, added, or mapped by a rule. For example, one rule taking A into Β
maps large circles, small circles, and small squares without Euclidean trans-
formations. Since all objects in each figure are mapped, none are deleted or
added. The rule specifies that relations describing objects in figure A be
replaced by relations describing objects in figure B:

iNSiDE(small circle, large circle) ABOVE(small circle, large circle)

ABOVE(small circle, small square) Φ ADOVE(small circle, small square)

ABOVE(large circle, small square) lNSlDE(small square, large circle)

Thus, mapped objects serve as a substitution list when the rule produces a new
relational description. If unmapped objects are deleted or added, any relation
they participate in is also deleted or added. The result is a rule that can be
applied to one figure to yield another. Objects can be mapped and transformed
in different ways, so multiple rules can be generated for a pair of figures.

There are also many ways of comparing two rules, leading to a sizable space
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of candidate answers. Rule comparisons are admissible only if they have the
same number of object mappings, object additions, and object deletions. Each
admissible comparison is used to generate all pairings of elements from within
these rule components, regardless of object type. This yields a pool of
candidates whose size is roughly exponential in the size of the largest rule
component. Returning to Fig. 1, each admissible comparison yields six candi-
dates since there must be three mapped objects, no additions, and no
deletions. Each candidate is generalized by dropping A:B relations or trans-
formations which are not found in the Qchoice rule. ANALOGY ranks candi-
dates by using a similarity metric which rewards candidate length (discrimin-
ability) and prefers simple over complex Euclidean transformations. The
system chooses the candidate with highest rank, in effect having found a target
relationship for a single Qchoice that best preserves source relationships from
A:B.

For Fig. 1, the system selects answer three. The chosen candidate has no
additions, deletions, or transformations of mapped objects. During rule com-
parison, object mappings in A:B are paired with mappings in C:choice as
follows:

-large circles::large triangles,
-small squares: :small circles,
-small circles::small squares.

Given this correspondence, the relations which move the large circle (triangle)
enclosure from above to below are common to both rules and retained.
According to Evans, this problem is the most difficult for his system, generat-
ing 36 candidates for evaluation. On a set of problems drawn from American
Council on Education examinations, ANALOGY scores at a level roughly
comparable to median performance in a population of high school students.

In overview, Evans concentrates on elaborating an analogy between two
representations drawn from the same problem domain. Elaboration maps
elements at two levels: direct object mapping during rule generation, and
object role mapping during rule comparison. Requiring mapped objects to be
the same type (e.g., both are squares) constrains elaboration but still allows for
differences in size and orientation. The second level is constrained by requiring
that mapped objects play a similar role (i.e., deletions, additions, or mappings)
in source and target rules, without any type restriction. During elaboration of
an analogical mapping between figure pairs, relations between objects arc
included but only used when generalizing and ranking candidates. Making
object-level comparisons alone, ANALOGY cannot find solutions to problems
requiring transformations of relations as well as objects. For example, if an
ABOVE relation in A:B should correspond to a LEFT relation in the preferred
Qchoice, the system would drop these relations during generalization and
might not be able to discriminate correctly among ranked candidates. Evans
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describes an extension to ANALOGY that uses a fixed set of relation substitu-
tions (e.g., substitute LEFT for ABOVE) to generate variations of A:B rules
when a "best" object-level candidate cannot be found. This only allows the
system to find solutions covered by the set of relation substitutions. Some
aspects of ANALOGY incorporate specific knowledge of geometry, although
mechanisms which find rules to alter figures, generalize those rules, and choose
among candidates are independent of domain-specific knowledge. These mech-
anisms could apply to other problem domains given an adequately descriptive
set of objects and relational predicates.

Evans briefly discusses issues of recognition, evaluation, and consolidation
by proposing a combination of ANALOGY mechanisms with a general problem
solving system (Newell et al. [86]). The system would use analogical com-
parison to select applicable rules for a target problem and include two learning
mechanisms: "packaging" instantiations of successfully applied rules for later
use and constructing "least common generalizations" over multiple uses of the
same rule.' In each case, the performance capacity of the problem solver could
improve as analogical comparisons extend its repertoire of methods.

2.2. Becker [8, 9]: Analogical processes in induction

Becker describes JCM, a model of analogical reasoning and schema induction.
Functional components of the model are described with examples from two
task domains: interpretation of observations in a world of animate characters
[8] and planning action sequences for a simple robotic arm [9]. JCM is proposed
as a cognitive model of basic sensorimotor processes needed for learning to
recognize common objects or navigate in a familiar environment. Analogy
serves two purposes: to use existing knowledge when interpreting novel
situations, and to organize related information prior to inductive learning.

The basic representational unit in JCM is the schema, composed of nodes,
kernels, and events. Nodes represent atomic concepts in the world (e.g.,
"fireman" as a class of objects); kernels represent relational predicates over
nodes (e.g., (member Wilfred fireman)); and events represent a conjunction
of predicates which make an assertion about the world:

{(wears Wilfred AA)
(member A A suspenders)
(property A A red)
(time @ Thursday)}

The symbol, @, in the last kernel refers to the enclosing event. Events are
combined to form schemata.

4Each suggestion appears in later sluciies of machine learning. For example, see Anderson [5] for
a discussion of [>rc>ce<luralization and Winston |i()7] for an early treatment of learning from
examples.
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A schema is a rule-like structure with antecedent and consequent events.
When interpreted, the left side (antecedent) gives a procedure for achieving
the right side (consequence). Each schema includes a numeric estimate of
confidence that records its relative frequency of successful use. When confi-
dence drops below threshold, a schema is expunged from memory. Inside a
schema, the criteriality of nodes within kernels and kernels w i t h i n events arc
represented by integer weights—e.g., {(member4 W i l f r e d " fireman4):4}. A
higher weight means higher salience for the node (or kernel) within its
enclosing kernel (or event). Changing criteriality values as a result of ex-
perience allows a continuous form of generalization by turning constants into
variables (node criteriality goes to zero) or dropping conditions (kernel
criteriality goes to zero).

Becker defines analogy as a one-to-one mapping between kernels of two
events, requiring consistent node-node pairings. Thus, analogy is an invcr t ib lc
relation which ranges from minimal to identical correspondence between
events. An analogy allows for unmapped source or target kernels, differences
in kernel ordering within events, and non-identical nodes within mapped
kernels. A heuristic measure of mapping q u a l i t y between two events accumu-
lates over corresponding kernels and nodes in proportion to their cri terial i ty
values. To maximize mapping qual i ty, highly criteria! kernels or nodes in the
source should map to target components of the same type. Low cr i ter ia l i ty
source components can map with nothing (i.e., an unmapped kernel) or
anything (i.e., dissimilar types) without seriously affecting mapping q u a l i t y .

Becker uses the symmetric analogy relation to propose a prediction paradigm
(see Table 1) in which a target observation, Event\, is mapped into the left side
of a source schema, Event,. The schema's right side, Event ̂  is then inverse-
mapped into a target prediction, (Evenl^). Alternately, a desired target event
(or goal) could be mapped into the right side of a source schema. Inverse-
mapping the left side of the source generates a set of target events (subgoals)
necessary for achieving the desired event. In either case, an existing schema is
the source for the analogy, the novel event is the target, and a predicted event
(analogical inference) results from elaborating the mapping between source
and target. Forward and backward chaining schema application allow JCM to
interpret world events or plan simple action sequences.

Given a target event in short-term memory (STM), recognition of a source
schema occurs in two phases. Choosing a target kernel as a retrieval cue (e.g.,

Table 1
A prediction paradigm for analogical schema application
(adapted from Becker [9, p. 420]

Target events: Event', (Eveni'2)

A"'

Source schema: [Even/, Φ Event 2]
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(wears Cyrus BB)), JCM first collects all schemata stored in long-term memory
(LTM) that have a kernel with an identical predicate symbol (e.g., wears).
Mapped kernels in source schemata must also be in an appropriate position
(e.g., in the left side of a schema when the system is forward chaining).
Schemata in LTM arc stored with an associative organization so that each
generic node is directly linked to all schemata which include an instance of that
node in some kernel. A large set of candidate source schemata may be
retrieved in this first phase of recognition. In the second phase, candidate
sources are ranked by a heuristic evaluation of analogical mapping (as de-
scribed above), confidence in the source, and estimated cost of applying the
source.

A "best" source schema is selected and unmapped kernels in its left side (if
any) are pursued to further justify the analogy, ordered by their crilcriality in
the schema. J u s t i f y i n g kernels may already be in STM or may require further
search in LTM for schemata that can produce them. When a schema's le f t side
kernels arc satisfied by target kernels in STM, the kernels in the schema's right
side are inverse-mapped to produce a set of target predictions. STM is moni-
tored for arrival of target instances which corroborate predicted kernels,
signaling that the source schema has been successfully applied. Results of
schema application provide evidence for schema refinement, including changes
in confidence, cost estimate, and kernel or node criteriality.

Given a successfully applied schema and the analogical mapping between
source and target, JCM forms a generalization by adjusting criteriality weights
on nodes and kernels. For example, assume that the observation of Wilfred
shown earlier is encoded as the left side of a schema in which descriptive
kernels (e.g., (wears Wi l f red A A ) ) predict class membership (i.e., (member
Wilfred fireman)). Now assume the system observes Cyrus wearing red
suspenders in the city of Peoria:

{(wears Cyrus BB)
(member BB suspenders)
(property BB red)
(location @ Peoria)}

This target event can be interpreted by analogy to the existing LTM schema
describing Wilfred. After successfully predicting that Cyrus is a fireman, source
and target events and the mapping between them can be used to create a more
general schema as follows:

{(wears4 Cyrus2 BB2):4
(member4 BB2 suspendcrs4):3
(property4 BB2 red"):3
(location4 @4 Peoria4):!
(t ime 4 @4 Thursday4):!} φ {(member4 Cyrus2 fireman4):4}
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Low node criterialities for Cyrus and the suspenders token (BB) allow treating
these nodes as variables in future uses of the schema. Low kernel criterialities
for location and time eventually allow generalization by dropping these condi-
tions. Essentially the generalized schema slates: "if a man wears red suspend-
ers, then he is likely to be a fireman." Becker cautions that schemata formed in
this manner can be meaningless or over-general. Through repeated failure,
confidence in a meaningless schema drops below the threshold for retention in
LTM. Confidence in an over-general schema converges on a value lower than 1
but above the retention threshold. Becker briefly describes a differentiation
mechanism which detects this condition and adds discriminating conditions to
the left side of the over-general schema.

Becker's work covers aspects of all four process components mentioned in
the beginning of this survey. Given a new event to be interpreted, source
schemata are recognized by search in an associatively structured LTM. Candi-
date source schemata are preferred if they have high confidence, low estimated
cost, and a high scoring analogy mapping over their criterial components.
Unmapped source kernels are inverse-mapped to give analogical inferences
which are sought as further justification for the analogy. When these are
confirmed, the schema fires and generates target predictions. Predictions may
be verified in the external environment, leading to source schema refinement
by adjusting criteriality and confidence weights. Target interpretations and
refined source schemata are consolidated into LTM for later use and refine-
ment. Although JCM is a relatively complete model of analogy and seeks to
integrate analogy within a basic reasoning architecture, many of its components
have never been implemented (see [9] for a final description).

3. Analogical Reasoning in Automated Deduction

This section presents three approaches to automated deduction. Kling [65, 66]
proposes a mechanism for constraining irrelevant inferences when using a
uniform theorem proving approach; Munyer [85J exploits a conceptual parallel-
ism between analogy and unification to reuse portions of known proofs; and
Greiner [41-43] introduces a series of heuristic constraints for finding abstrac-
tion-based useful analogical inferences.

3.1. Kiing [65, 66]: Restricting starting clauses for automated deduction

Kling describes ZORBA-I, an implemented system that assists an automated
proof of a target theorem by elaborating an analogy with a source proof
supplied by the user. The system uses the supplied theorem and clauses in its
proof (either axioms or proved theorems) to select a near-optimal set of
starting clauses to be used in a proof of the target theorem. As shown in Fig. 2,
the source theorem, P, includes a known set of clauses, D,, used in its proof.
For a new target theorem, PA, which is analogous to the source, ZORBA-I
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Fig. 2. ZORBA-I restricts starting clauses for a target proof (adapted from Kling [66, p. 149]).

identifies a set of clauses, DA, for proving the target theorem. These are a
strict subset from the database of all available clauses, D. This strategy greatly
reduces the number of irrevelant inferences that an automated theorem prover
would generate while attempting a proof of PA from the total database.
ZORBA-I is tested on pairs of theorems in abstract algebra like the following:

The intersection of two abelian groups is an abelian group.
The intersection of two commutative rings is a commutative ring.

Inputs to ZORBA-I include target and source theorems, clauses used in a
proof of the source theorem, and semantic templates for each predicate in the
domain representation. A semantic template specifies the type of a predicate
and each of its arguments. For example, the semantic template for group\a\ * ]
specifies that the predicate is a structure, its first argument is a set, and its
second argument is an operator. Descriptive properties also augment individual
clauses by recording the role of each predicate within the clause (e.g., positive
or negated occurrence). Finally, Kling provides a database of 239 clauses as an
axiomatization of abstract algebra. ZORBA-I attempts to select a subset of these
clauses for use in proving the target theorem. The target theorem and selected
clauses arc then presented to a resolution-based theorem prover, QA3 [40].

Kling focuses entirely on elaborating an analogy between source and target
theorems, leaving recognition to the user of ZORBA-I, evaluation as an exercise
for OA3, and consolidation for future work. A target set of clauses is selected
by incrementally extending an analogical mapping over variables, predicates,
and clauses. ZORBA-I first finds a mapping between predicates and variables in
each theorem, restricted so that mapped predicates (e.g. group—> ring) and
their arguments have the same type. The system then attempts to extend the
mapping so that clauses used in the source proof map to target clauses selected
from the database. Incremental elaboration of the mapping stops when every
clause in the source proof has one or more corresponding target clauses.

ZORBA-I incrementally elaborates an analogical mapping by searching in a
space of candidate extensions. A state in this space is a partial analogical
mapping that takes some source clauses into corresponding target clauses. An
extension is a successor state which maps an additional source clause. Given a
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partial analogy map, an extension operator finds a mapping extension in four
steps:

Step 1. Select a source, clause with some variables and predicates in the
current mapping.

Step 2. Generate a target "image" of the clause using the current mapping.
Step 3. Select a database clause whose description matches the image

description.
Step 4. Extend the current mapping to cover this new clause.

By starting with a type-restricted mapping between source and target theorems
before considering clauses used in the source proof, ZORBA-I reduces an
exponential space of candidate analogical mappings by several orders of
magnitude. Choosing extensions where source and target clauses have maximal
overlap, the system performs a best-first heuristic search through the space of
candidate analogical mappings. Although not guaranteed to find a target proof,
this approach is effective in practice.

ZORBA-l does not construct analogies at the level of a proof plan, although
Kling [66] finds this approach "attractively elegant" (p. 148). Instead, Kling
uses analogy to modify the problem solving environment by selecting a
restricted set of starting clauses for a completely separate proof procedure. He
argues that this avoids problems with diagnosing and repairing plan failures
and notes that planning-oriented problem solvers were not available when
ZORBA-i was conceived. Thus Kling's approach to reasoning by analogy is
considerably different than Becker's [9] prediction paradigm. As noted by
Miller [79], Kling's use of analogy is,

Rather as though, possessing a recipe for lamb casserole, and
wishing to cook a beef stew, we noted that we were likely to need
beef, onions, potatoes, carrots, stock, salt, an oven, a knife, a dish
and a work-surface, and then threw away the recipe book without
reading the method of preparation. [79, p. 33]

Paradigmatic reservations aside, when ZORBA-I is applied to pairs of nontrivial
problems in algebraic group theory, the results are encouraging. The system
selects starting clause sets only slightly larger than optimal. Without restricting
the starting database of clauses, these proofs would exhaust computational
resources before termination.

3.2. Munyer [85]: Analogy by implicit and explicit planning

Munyer describes two methods for using analogies to assist automated deduc-
tion: implicit and explicit planning. In each case, an analogy mechanism is
grafted onto a search-based problem solving framework for making deductive
inferences, and its performance is compared with weaker methods. Munyer's
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task is to prove two mathematical expressions equivalent, for example:

η ¥->ίϊ t 2 / ι ι \ r> " "*" ' ι r>Ϋ , _ nR - (/; + 1)κ + R

An implicit planning method finds a sequence of operators (e.g., a change of
variable) that transform one expression into the other. While searching for a
solution to the target problem, this method uses an analogical mapping with
the proof of a similar problem to heuristically evaluate candidate expressions
and operators in the target solution. For the problem shown above, the implicit
p lanning method examines all known derivations and selects

" 1 p"4 'y R' =
•̂

1 - /?1 — Κ

as an analogical source. Candidate steps in the target problem space are
compared wi th their counterparts in this source derivation. At each step in the
target derivation, the target candidate that most closely resembles an analog-
ous step in the source derivation is selected.

The implicit planning method does not use the source derivation directly as a
plan, but instead uses the analogy as a heuristic evaluation function to guide an
otherwise uninformed search for a target solution. In the example shown
above, a 23-step solution sequence is found using a database of axioms with an
approximate branching factor of 10. Weak methods alone (e.g., breadth-first
search) would make search to this depth infeasible, but implicit planning
reduces the branching factor and brings solutions within range. Although
alternative heuristic search methods might give a more challenging comparison,
Munyer reports that an implementation of the implicit planning method finds
solutions to several problems like the example shown above.

Using analogy as a search heuristic, the implicit planning method does not
use sequence information contained in source derivations. Most important, the
method cannot use intermediate steps in the source derivation to "chunk" the
search for a target solution sequence. If k intermediate steps were available at
little cost, a search to depth d could be reduced to k searches of depth dlk.
Although an exhaustive search with branching factor /; and depth d considers
roughly b' states, effective selection and use of k intermediate steps would
consider only kb('"k) states, g iving an exponential improvement with respect to
the depth of search. Using a source derivation as a plan outline in this way
contrasts with both the implicit planning method and Kling's use of analogy to
select a set of starting axioms. These strategics restrict the search branching
factor and at best result in a polynomial reduction in search effort.

Ocorgeff |37] discusses both approaches under tlie common theme of discovering strategies in
heuristic search.
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Munyer's explicit planning method directly uses selected source derivations
as plan outlines. Although not implemented, this method proposes several
interesting mechanisms for anahs&ical problem solving and learning. The
central idea is to replace the unification algorithm in a traditional deductive
problem solver with an analogical mapping algorithm, and then to treat source
derivations as macro-operators when searching for a target solution sequence.
Single-step deductive inferences in the target problem space compete with
retrieved source derivations in a bidirectional, best-first search paradigm.
Candidate search steps, whether target inferences or suggested by analogy, are
ordered by their degree of match with a current target problem state. Search
terminates when a logically valid target derivation is found.

Given a formula that is a current state in the target problem space,
analogous source formulas are recognized by collecting and then filtering a set
of candidates indexed in an associative database. Each source formula is
indexed by instances of functional containment for nonvariable symbols within
the formula. For example, the formula/(a, b) would have indices (/, a) and
(/, b). Inference links between formulas are also stored, allowing an entire
source derivation to be retrieved through any of its constituent formulas. Using
functional containment pairs in the target formula as retrieval cues, source
formulas with a high percentage of identical pairs are returned as candidates.
Overlap in functional containment estimates the quality of an analogical
mapping between source and target formulas, bypassing source candidates with
relatively little promise. A mapping is then calculated between the target
formula and each candidate formula, and candidates that overlap poorly with
the target are pruned. Recognition finds a source derivation by examining the
derivations rooted at each candidate. A candidate source derivation must
contain an operator sequence which terminates in a source formula that
consistently maps to a known goal formula in the target search space. By
insisting that consistent analogy mappings exist at both ends of the source
derivation, Munyer further restricts the number of analogical sources consi-
dered.

Munyer finds analogical mappings by extending first-order unification to
allow associations between unlike constants or predicates, many-to-one bind-
ings, commutative or associative reordering of arguments within predicates,
and erasure of terms.6 For example, extended unification would map f ( a , g(b))
to h(g(c), a) by associating/-*/!, a—>a, g—>g, and b-+c. This correspond-
ence includes unlike predicates and a commutative reordering of arguments.
Elaboration of the mapping between source and target formulas proceeds
bottom-up, starting with all possible local maps between like symbols or
variables. Each local map is reinforced by the highest-valued maps that it

'Siekmann [102] surveys approaches to a general unification theory that covers these and further
extensions to first order unification.
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directly dominates (i.e., maps involving its argument symbols), and local maps
which reinforce nothing are deleted. In effect, local maps compete to reinforce
their parent maps and many consistent but poorly aligned analogies are
discarded. Taking the surviving local maps, associations between unmapped
symbols with mapped parents are added, and the algorithm returns a single
best mapping. A "degree of certainty" (DOC) for the mapping is calculated by
finding the percentage of symbols in source and target formulas that corre-
spond. The DOC value ranges from unity if the formulas are first-order unifiable
to lesser values when extended associations (mentioned above) are present.

Evaluation of a selected source derivation insures that successive operators
produce formulas with consistent analogical mappings to target states. Accord-
ing to Munyer, this condition rarely holds. Instead, mappings often change
during plan application, leading to a "skewed" plan. Skewed plans are repaired
by inserting plan correction steps to bypass a troublesome operator and to
preserve a consistent mapping between source and target derivations. Correc-
tions are found by suspending the plan and using blind search to generate
target successor states which are added to the search frontier. The plan is
"corrected" when a new target state allows the source plan to be resumed. Just
as the original target problem could invoke analogical derivations, so too can
plan repairs be effected by analogy. Thus, the explicit planning method is
recursively organized around finding and using analogical derivations, but can
fall back on single-step, deductive problem solving as necessary.

Consolidation creates a least common generalization over mapped source
and target formulas and then assembles successive formulas into a generalized
derivation. A formula generalization algorithm introduces variables for map-
ped but differing symbols and also accommodates merged, permuted, or
unmapped symbols. In the latter cases, Munyer augments the generalization
with attributes that allow the mapping algorithm to correctly interpret a
generalized formula. A derivation generalization algorithm assembles contigu-
ous generalized formulas by storing inference links between them. Generalized
formulas and derivations are integrated into the source database, along with
the instantiated target derivation. These may influence future problem solving
performance when recognized and applied by the explicit planning method.
The utility of each stored component is recorded as a ratio of successful to
attempted uses, allowing deletion of stored components with a poor perfor-
mance record. Munyer argues that this provides a plausible model for acquiring
problem solving expertise.

In summary, Munyer makes an ambitious proposal for incorporating analog-
ical planning and problem solving within a traditional deductive paradigm. His
model is similar to Evans' suggestion for adding analogical comparison to a
search-based problem solver, but is presented in more detail. Recognition of
source derivations is supported by an associative database, using functional
containment as an indexing scheme. Elaboration of the analogical mapping is a
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bottom-up, competitive process with output ranging from first-order unification
(if possible) to less certain associations between target and source formulas.
Analogies between source and target derivations are evaluated by the con-
sistency and DOC of mapped plan steps. Skewed plans can be repaired by
resorting to weak methods. Successful target derivations, as well as their
generalization with supporting source derivations, are consolidated within the
associative database for future problem solving. Although the proposed mech-
anisms are interesting, an implementation of the explicit planning method
could encounter difficulties. Using functional containment to restrict an ini t ia l
set of candidate source formulas, Munyer would map each into the target
formula, and prune this set of candidates only after f inding that a subsequent
formula in the source derivation could not be consistently mapped to a target
goal state. There could be an enormous amount of effort expended before
resorting to a weak, search-based approach. Without empirical demonstration
or stronger analytic arguments, Munyer's proposal might trade the cost of
weak, search-based methods off against an even more diff icult problem.

3.3. Greiner [41-43]: Abstraction-based useful analogical inference

Greiner argues that unconstrained analogical inference, defined as conjecturing
facts about a target domain from the existence of similar facts in a source
domain, is intractable. Too many legal conjectures are available, even when
given a hint that a target concept is like a source concept. As a solution,
Greiner offers a set of heuristics for constraining the space of generated
conjectures. Primary among these heuristics is a preference for exist ing abstrac-
tions that give "'coherent' clusters of facts . . . which encode solution methods
to past problems." [41, p. 1]. Greiner presents empirical results with NLAG, an
implementation that proposes answers to problems in analogically paired
domains of electricity and hydraulics.

Within a deductive problem solving framework, Greiner defines an abstrac-
tion-based useful analogical inference operator as:

Th, A~B Κτ φ(<Ί,...Α,...αΗ)

where Unknown: Th^<p( a{,. . . , A,. . . , an)
Consistent: Th^~\φ( α,, . . . , Α, . . . , β,,)
Common: Th\=ip(7bi,. . . , Β,. . . ,lbn)
Useful: Th + φ(α{,... , / i , . . . «,,)M>T

Abstraction: Th|=AbstForm(<p)

Given axioms in a theory (Th) for target and source domains, a target problem
statement (PT), and a hint that the target concept is like the source concept
(A~ B), Greiner's analogy operator (|~) yields a conjecture (analogical infer-
ence) about the target concept: φ(αι,. . . , A, . . . , an). "Concepts" are sym-
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bols in the theory (e.g., FlowRate in a fluid system), while "conjectures" are
propositions containing these symbols. The system conjectures a target in-
stantiation of an existing abstraction.

Application of the analogy operator is constrained so that:

(1) The target conjecture cannot be inferred from the starting theory—i.e., it
is Unknown. Thus analogy is a plausible but nondeductive inference strategy.

(2) The target conjecture is Consistent with the starting theory—i.e., the
negation of the target conjecture cannot be logically inferred from the theory.

(3) The conjecture must be Common to both concepts, requiring that its
source instantiation, < p ( f r , , . . . , B,. . . , bn), is already known or can be infer-
red from the starting theory.

(4) When added to the starting theory, the target conjecture is Useful—i.e.,
it allows a deductive solution to the target problem, FT.

(5) The conjecture is "tagged" as an Abstraction in the starting theory. Only
relations which occur a priori in abstractions are considered when pursuing an
analogy.

NLAG (see Fig. 3) solves hydraulics problems like: in a fluid system where a
total flowrate is diverted through two parallel pipes, find the flowrate through
one of the pipes, given information about the total flowrate and characteristics
of the two pipes. The unknown flowrate (target solution) is found by analogy
to familiar relations about electrical circuits (source domain). As input, NLAG
receives a hint that the concept of Current in electricity is like the concept of
FlowRate in hydraulics. The system is also given the target problem to solve
and a starting theory (ThCF) which includes extensive information about

Analogical Hint
("Current »-» FlowRale")

Problem Statement
("Fmdll.e8owr.tc")

Fig. 3. Overall structure of tlie NLAG system (adapted from Greiner [41, p. 109]).
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electrical circuits and few facts about fluid systems. The theory includes a set of
domain-independent abstractions that organize general clusters of related facts.
For the flowrate problem, four different linear systems abstractions are in-
cluded in the starting theory. The following abstraction eventually enables a
solution to the flowrate problem:

Abstraction(RKK)
RKK(t, c, r, 1) « Kirchoffl(<) & Kirchoff2(r) & Ohms(/, c, r, I),

Facts in the starting theory define each term in the abstraction (e.g.,
Kirchoffl). While RKK(<, c, r, /) is domain-independent, the starting theory
supports a source instantiation, RKK(Current, VoltageDrop, Resistance, Re-
sistors). In addition, the starting theory contains instantiations for some of the
abstraction's predicates within the target domain (e.g., Kirchoffl(FIowRate)).
Finally, the NLAG user screens useful and consistent target conjectures before
accepting a solution. As output, the system gives a general abstraction, its
instantiation in the target domain (i.e., RKK(FlowRale, PressureDrop,
PipeCharacter, Pipes)), and any conjectures necessary to support the target
instantiation.

NLAG uses an iterative generate and test control structure: the generator
finds a common abstraction for source and target, and a test process de-
termines whether the abstraction is useful for solving the target problem and
acceptable to a user of the system. Finding a common abstraction requires
three steps:

Step 1. Find-Kernel. The source concept is lexically substituted into the
target problem, and a backward chaining search process finds rules in the
starting theory that contribute to proving the source problem statement. The
result is a set of atomic "kernel facts" necessary for deducing the source
problem statement.

Step 2. Instantiate-Source. Using forward chaining breadth-first search from
the kernel facts, deduce a source instance of an abstraction which includes the
concept (e.g., RKK(Currcnt, VoltageDrop, Resistance, Resistors)). This ab-
straction satisfies the common criterion described above and requires least
effort for instantiation vis-a-vis competing abstractions.

Step 3. Instantiate-Target. Find a target instance of the abstraction in which
the target concept replaces the source concept, and the remaining variables are
consistently bound to target concepts from the starting theory. This requires
"residual" conjectures which, when added to the starting theory, support a
proof of the target problem.

The first and second steps solve the source problem by finding an applicable
abstraction. The third step proposes a target solution which re-uses that
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abstraction. Residual supporting conjectures for the proposed target solution
which cannot be deduced (e.g., Kirchoff2(PressureDrop)) may simply be
asserted.

Target instantiations of abstractions are generated, as above, until a pro-
posed solution can be verified:

Step 4. Useful! Add the target conjectures to the starting theory and attempt
to solve the target problem. Proceed if the proof is successful; otherwise
choose another abstraction or instantiation.

Step 5. Consistent'? Verify the consistency of each conjecture in a useful
abstraction by attempting to prove its negation from the starting theory. Each
consistency test includes all other target conjectures in the theory. Proceed if
all conjectures are consistent; otherwise consider another abstraction.

Step 6. Correct! Ask the user to approve each new conjecture. If any
conjecture is rejected, choose a different abstraction.

Consistent and useful target instantiations are evaluated by the user because
they can give wrong answers (e.g., RKK(FlowRate, PressureDrop, CrossSec-
tion, Pipes). Accepting residual conjectures without deductive certainty, NLAG
could not detect these errors unassisted.

A variety of heuristics prune and order the candidate abstractions and
instantiations which NLAG generates: consider only abstractions, prefer ab-
stractions which closely match a source solution, consider only source instantia-
tions which bind variables to concepts from a common domain (e.g., hy-
draulics), prefer instantiations which require fewest supporting conjectures,
prefer more general abstractions, and prefer instantiations which bind variables
to familiar domain concepts. These heuristic constraints implement the intui-
tion that coherent clusters of facts with demonstrated usefulness are preferred
a priori when pursuing a posteriori useful analogies.

To test his model, Greincr contrasts the performance of different versions of
the NLAG system, using the number of deductions required to find a target
solution as a dependent measure. Adding heuristic constraints on the analogy
generator creates successively stronger versions of the system. At one extreme,
deducing a target solution with no analogy mechanism exceeds memory limits
before terminating. Successive additions of heuristics for selecting abstractions
and pruning their instantiations give increasingly efficient performance. For
example, when the starting theory contains many highly specific abstractions,
adding a heuristic to prefer a maximally general abstraction results in a 15-fold
reduction in the number of necessary deductions. Other results are less
clear-cut. For example, removing explicit abstraction labels from the starting
theory causes only minor degradation. Hence, the starting theory relations are
sufficient as sources of analogies, without segregating them as explicit abstrac-
tions. Greiner interprets this result positively, characterizing Ihese relations as
"pre-defined relations — which the ancient scholars, and others, have defined
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and named earlier" [41, p. 161]. He does not discuss situations in which the
starting theory is missing these relations, contains a very large number of them,
or contains an assortment of plausible but competing relations.

Greiner's work addresses each process component considered in this survey.
A given point of correspondence (the hint) between target and source domains
ini t iates recognition of a source analog. Lexical substitution generates a source
problem, that problem is solved, and kernel facts in the solution are used to
identify candidate abstractions. Elaboration instantiates a candidate in the
target domain, using the analogical hint as an ini t ial map. Unlike Kling [66] or
Munyer [85], however, Greiner further elaborates the analogy by searching for
a consistent target instantiation without reference to the source domain or
solution. Evaluation is a proof process that verifies a consistent and useful
instantiation of the abstraction within the target domain. User acceptance
screens any conjectures asserted without deductive certainty within the existing
theory. Consolidation adds new and possibly nondeductive instantiations of
known abstractions to the starting theory. Additions to the theory could
influence later problem solving, although Greiner does not explore this possibi-
lity. In overview, the contents of the starting theory exert a powerful influence
on analogical reasoning. Based on abstractions or reified relations, a model-
driven focus is given to processes of recognition, elaboration and evaluation.

4. Analogical Reasoning in Problem Solving and Planning

Projects reviewed in this section focus primarily on problem solving and
planning: analogical reasoning uses solution plans for familiar problems to help
solve novel problems. Four approaches are discussed in detail. Brown [11] uses
an incrementally extended reduction analogy to transfer problem solving
expertise between domains; McDermott [74, 75] transfers and repairs specific
problem solving methods to solve new problems in a reactive environment;
Carbonell [18, 20] transforms solution paths or re-plays derivational histories in
a reconstructive problem solver; and Simpson [69, 103] uses successful or failed
problem solving cases to plan a solution for a new problem. Each study also
examines learning by analogy.

4.1. Brown [11]: Use of analogy to achieve new expertise

Brown explores a sense of analogy as reduction, where a hard problem in one
domain is reduced to a familiar and more easily solved problem in another
domain. Reduction analogies, in Brown's view, contrast with analogies that use
a shared abstraction or refer to a familiar domain during exploration of a novel
domain. He describes an unimplemcnted model in which reduction analogies
transfer problem solving expertise across domains.

Expertise, what makes some problems easier in Brown's view, consists of a
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domain description written as axioms in first-order logic, problem solving plans
that determine predicates or functions in the description, and LISP programs
that carry out portions of plans. Since an analogy between domains may be
inexact, justifications for the sufficiency of plans with respect to descriptions
help to evaluate transferred knowledge. There are mult iple levels of repre-
sentation for domain knowledge, and analogical reasoning consists of "lifting"
material at each level from a source domain of existing expertise into a target
domain about which little is known. Brown describes his model in several task
domains, but gives primary attention to transfer from plane to solid geometry.

Brown presents a three stage analogy process: map, solve, and lift. In brief,
these stages map a target problem into a source problem, find a source
solution, and then inverse-map the solution and its justification back into the
target domain for evaluation. The problem solving context gives a source
domain, and the mapping process generates a particular source problem.
Hence, Brown's model focuses primarily on elaboration, evaluation, and
consolidation.

The analogical reasoncr starts with extensive source domain knowledge
(e.g., axiomatic descriptions, plans, code, and justifications for plane geome-
try), is given limited target domain knowledge (e.g., several axioms for solid
geometry), and then receives a carefully selected sequence of target problems
(theorems to prove). Each problem requires an incremental extension of the
analogical mapping between domains. Plans, justifications, and code are
transferred as needed over the extended mapping, and the reasoner becomes
increasingly capable of solving target domain problems. As output, t j ie system
not only solves the presented problems but also acquires an effective repre-
sentation of expertise for the target domain.

Brown abstractly describes process components of his proposal and relies on
an extended series of examples to demonstrate techniques for mapping,
solving, and l i f t ing problems. We examine what he calls a "trivial" example of
reduction from solid to plane geometry. The target problem in solid geometry
is: Show that the intersection of distinct lines containing a point, C, is that point
C.

(for-all (K L C) (implies (and (In L K) (pt C)
(in-ln K C) (in-ln L C))
(equal C (intersect K L))))

The in i t i a l representation of line intersection in the source domain of plane
geometry is relatively complete and, most important for this problem, includes
an axiom for l ine intersection, a plan for f inding the intersection of two lines,
code for implementing this plan, and a justification that the execution of the
plan would find the intersection of these lines (see Table 2). Brown develops
these representation schemes in some detail, but most important for his model
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Table 2
Axiom, plan, and justification for line intersection in plane geometry (adapted from Brown [llj)

(determines (intersect A B) ; function form
((In A) (In B) (distinct A B)) ; argument restrictions
((in-ln A (intersect A B)) ; restrictions on returned value
(in-ln B (intersect A B))))

(to-lind find-intersect (intersect LI L2)
(bind P) ; find an object, P. such that

:FI1 (condition (In LI)) ; the following conditions hold
:FI2 (condition (In L2))
:FI3 (condition (distinct LI L2)
:FI4 (pattern LI In (* ?P *)) ; and Ρ is in both lines
:FI5 (pattern L2 In (* Ρ *))

(return P))

(plan-justification flnd-inlcrsect
(LI (In LI) %condition FI1) ; refers to plan step label
(L2 (In L2) %ccmdition FI2)
(L3 (distinct LI L2) %condition FI3)
(L4 (in-ln LI P) RC1 FI4) ; a representation claim
(L5 ( in-ln L2 P) RC1 FI5)
(L6 (in-ln LI (intersect LI L2)) P-DEF1 LI L2 L3)
(L7 (in-ln L2 (intersect LI L2)) P-DEFI LI L2 L3)
(L8 (equal P (intersect LI L2)) P-THM22 LI L2 L3 L4 L5 L6 L7))

of reduction analogies is that plan justification entries organize a set of
axiomatic supports for the correctness of plan steps. For example, just i f icat ion
entry L4 asserts that object P is in line LI if representation claim, RC1, is true.
This supports plan step :FI4 which finds a point in line LI. We return to plan
step justi f ications in a moment.

Since the i n i t i a l representation of solid geometry contains no method for
determining l ine intersections, Brown's problem solver is unable to evaluate
the intersection function in (equal C (intersect Κ L)) when attempting to solve
the target problem. This impasse invokes reduction analogy processes. First,
the map process finds an ini t ia l mapping between the target solids problem and
the source domain of plane geometry as follows:

1ιτ-»1η ,
pti->pt,
in-ln >-H> in-ln ,
intersect»-»intersect.

From the i n i t i a l mapping, the reasoner generates a related problem in the
source domain.

To initiate or extend an analogical mapping, selected elements from the
target domain are placed in correspondence with elements in the source
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domain description. Target elements are selected by summarizing the target
problem statement and a set of closely related facts. The summary includes
type information carried by "semantic templates" for predicates and functions
in the domain description, much as in Kling [66]. The analogy mapping is
found in two stages:

(1) Find an identical mapping between types in the target summarization and
types in the source domain description. These initial mappings must preserve
the compatibi l i ty of source domain predicates and their arguments.

(2) Extend the mapping using a depth-first search to include other elements
(e.g., objects and predicates) of the target summarization and source de-
scription.

The search first considers source elements with most restrictive types (i.e.,
fewest members in the class) and backtracks over mappings which arc inconsis-
tent with the source domain description. Constraints on elaboration come
entirely from source domain knowledge, which is consistent with Brown's focus
on transferring domain expertise. The final mapping is applied to the target
summarization to generate an analogous source problem.

If existing source plans and code can be applied, the source problem is
solved directly. When a source solution cannot be found, extended or alterna-
tive mappings arc sought and used to transfer more information about the
target problem. Once a source solution is found, Brown inverts the analogy
mapping to l i f t the solution (instantiated plans and code) into the target
domain. The lifted solution is only a candidate, however, since the analogy
may st i l l be incomplete or incorrect. To verify the candidate solution, Brown
also inverse-maps the source justification showing that plan steps (and atten-
dant code) satisfy a goal statement in the domain description. The resulting
target just i f icat ion is a tentative explanation of why the candidate solution
should be correct. If components of the mapped justi f ication are true of the
target domain description, then lifted plans and code succeed, and the problem
solver acquires new expertise. If the target justification contains unprovable or
extraneous components ("bugs"), these must be "patched" to salvage the
candidate solution. An unprovable justification may be replaced by some other
deductive inference in the target domain, while an extraneous justification
component and its plan step can be ignored. In either case, patching bugs
usual ly extends the exist ing analogy mapping, and patches must be propagated
through candidate plans and code. Finally, if the target just i f icat ion is shown to
be false in the target domain description, Brown returns for another analogy.

In the intersection example, existing axioms and plans of plane geometry
solve the source problem directly. The find-intersection plan generates a source
solution which satisfies (equal C (intersect Κ L)) in the problem statement and
permits the reasoner to l i f t the definition, plan, and justification for finding line
intersections into the domain of solid geometry. Axiomatic components of plan



64 R.P. HALL

justification steps (i.e., P-DEF1, P-THM22, and RCI) are lifted into the target
domain by inverse-mapping. P-DEF1 is the axiom defining line intersection,
P-THM22 is an axiom which determines a distinct line from two points, and RCI
is a "representation claim" which asserts that a point in the LISP representation
of a line (i.e., an element in a list) must also be "in" that line at the axiomatic
level. If each target justification holds, then the plan for finding line intersec-
tion will produce a valid result in solid geometry. Brown confirms the target
analog of P-THM22 with a single-step deductive process, leaving target analogs
of I'-DEFl and RCI for more complex proof mechanisms. All three justification
components are confirmed without bugs, giving an answer to the target
problem and an extension to the analogy mapping:

S-THM22 >-> P-THM22

s-find-intersect ·-» find-intersect
S-DEF1-»P-DEF1

S-RC! ·-» RCI

The reasoner acquires a definition and justified method for determining line
intersection in solid geometry as a result of a successful reduction analogy.

In summary, Brown's work is interesting in several respects. First, generat-
ing source problems by a reduction analogy simplifies the problem of recogniz-
ing analogies. Using an ongoing tutorial context and extensive source exper-
tise, Brown need not maintain a store of prior solutions to provide an
analogical source. Instead, the reasoner is a source domain expert and can
generate source solutions as needed.7 Second, although Brown's mapping
process adds little to the notion of incremental extension demonstrated by
Kling [66], it does provide a rationale for relying heavily on source domain
constraints (i.e., type compatibility) when pruning inconsistent mappings.
Third, he gives a complex description of transferring knowledge at several
levels of representation (descriptions, plans, and code), including the evalua-
tion of analogical inferences by confirming their justifications. These act as
proofs for the sufficiency of plan steps with respect to goal descriptions, and
can be repaired (patched) under some circumstances. Finally, Brown describes
a common context for analogical learning: a tutorial dialogue in which a
carefully chosen sequence of examples can be solved by reduction analogies to
a given source domain. Problem solving methods arc incrementally transferred
between domains as the analogical learner climbs a scaffold of successively
more difficult problems.

'Although Munyer's source expert uses reduction analogies, the general problem of finding and
using "auxiliary problems" and connecting them up is examined in detail by Newell [87j.
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4.2. McDermott [74, 75]: Learning to use analogies

McDermott describes ANA, an implemented production system that uses
analogies when solving problems in a simulated environment. Analogical
reasoning "assimilates" new problems to a given set of methods, while a simple
rote learning mechanism "accommodates" problem solving results to improve
performance. Assimilation covers recognition, elaboration, and evaluation of
analogies, while accommodation corresponds to consolidation. The problem
solving framework is a traditional production system, where a recognize/act
cycle applies productions whose condition elements match working memory
(WM) elements. Special purpose productions support each analogy process by
manipulating a mapping between WM elements from the target problem
statement and selected elements of an "almost adequate" source method. This
mapping allows type discrepancies for corresponding objects or actions in
target and source. The success or failure of an applied method is recorded by
bui lding productions which bypass analogy when the target problem is seen
again.

ANA performs in a simulated paint shop environment where a set of
recognizable objects can be found, moved, and sprayed with paint or water
(see Fig. 4). Inputs include object locations, six methods for accomplishing
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Fig. 4. ANA's ini t ia l paint shop (McDermotl [75], p. 570).

The concepts of assimilation and accommodation have a rich history in developmental
psychology. See Indurkhya [59] for a discussion of these concepts from a computational per-
spective.
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specific goals (e.g., productions which paint a table fit L32 red), and supporting
knowledge sources encoded as production rules. These rules define object and
action type hierarchies, recognize analogies between problems and methods,
manage element mappings for analogies, patch recoverable errors in method
application, and record problem solving experience. When ANA'S knowledge
sources are insufficient, the user is asked to diagnose and correct errors in
method application. As output, the system solves tasks by analogy and acquires
productions for solving these tasks more quickly on a second presentation.

Asked to perform a task (e.g., wash the safe in L12) for which no existing
method directly applies, ANA attempts to recognize an analogy with one of
these methods. McDermott uses two mechanisms for "making contact" be-
tween the new task and an analogous method. First, he indexes each method
with a "method description production" that will fire whenever similar types of
actions or objects occur in a target task. Second, he adds a cue extraction
process which re-expresses actions and objects in the target problem statement
by generalizing or specializing them with respect to known type hierarchies.
These manipulations insure that method indices are eventually triggered. For
example, a method for painting a table in L32 red can be recognized as a source
method for washing a safe in L12 by generalizing and then specializing the
target action (i.e., wash I spray I paint) and the target object (i.e., safe/thing/
table).

When a method index fires, it asserts "possible" elements which map into
corresponding target problem elements. The target elements are given in the
problem statement, detected by scanning the paint shop environment, or
"stipulated" as expected elements. Thus, every element asserted by the
method description production maps into a target element, either known or
expected to exist. In the washing by analogy to painting example above, the
initial analogical mapping includes:

paint >-» wash ,
table >^> safe ,

red i-> clean-surface .

These will be extended if the source method is selected for application.
During problem solving, ANA records method failures by building produc-

tions which restrict the offending method's preconditions. These productions
fire whenever the same action is attempted under circumstances that would
again lead to failure. As a result, the system is able to anticipate possible
failures before selecting and applying an analogical source. Two kinds of
problems may be anticipated: mutable violations (e.g., the position of an
object in a stack prevents carrying it) and more serious immutable violations
(e.g., the weight of an object is too great to carry it). Candidates with the least
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serious precondition violations are selected, and can be further discriminated
by preferring more specialized methods, methods with a high proportion of
identity mappings to the target, and methods which alter the target problem
least during cue extraction. Finally, ANA selects the single most promising
source method.

Application of the selected method first copies "possible" source elements
and marks these copies as "given" in WM. Marked copies enable some of the
source method's productions, and ANA builds result-monitoring productions to
watch for violations of their expected results. Finally, the enabled productions
are applied. Each source action is mapped into a target action and executed in
the environment. As method productions are applied, ANA must do two things:
map resulting target elements into preconditions of source method productions
and extend the mapping to consistently cover subgoals. A mapping production
detects when elements added to WM satisfy "stipulated" target elements,
confirming that the method is behaving as expected. When a subgoal is
generated (e.g., moving an object in order to wash it), a different set of
productions extends the mapping to consistently cover additional methods
selected for achieving subgoals. These productions watch for identical objects
shared by two methods and check with the user whenever new objects are
added to the mapping.

ANA encounters diff icul t ies when a method is either under or over-specified.
An under-specified method is detected when an action fails in the paint shop
environment or when a result-monitoring production fires. In the first case, the
environment deposits an clement in WM that identifies the failed action and a
troublesome attribute. In the second case, ANA asks the user for assistance in
diagnosing and repairing the error. Detecting a mutable error (e.g., trying to
carry an object that is underneath others in a stack), the system builds a
production to anticipate this error during later applications and generates a
subgoal to repair the violated condition (e.g., clear the top of the desired
object). Detecting an immutable error (e.g., trying to carry a heavy safe), the
system builds two productions: one to restrict the failed method by checking
for a proper attribute value, and another to recommend an alternative method
when the troublesome value is found (e.g., using a cart to move the safe). An
over-specified method is detected when a goal element is satisfied by an
unexpected value (e.g., an object is painted an appropriate color but ends up in
an unexpected location). In these cases, ANA checks the unexpected value with
the user. The solution is successful if the violation is unimportant, but the
solution attempt continues if the violation is unacceptable.

ANA consolidates successful methods by building a production which fires
whenever that goal context recurs. This production encodes the mapping from
method to problem, and is added to the store of productions when the source
method succeeds. Since subgoals can be embedded in a successful method, the
system has some capacity for assembling subgoals and their expected results
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into the conditions of an acquired production. Although not described in
detail, this gives a limited form of chunking9 where acquired productions can
span several operations. It is not clear whether acquired chunks can be
composed during subsequent learning. The ANA implementation solves paint
shop tasks by analogy and achieves a three to six-fold speedup when solving
these tasks a second time.

In summary, ANA demonstrates mechanisms for each idealized component of
analogical reasoning. An analogy between the target problem and a source
method is recognized by manipulating target cues until a method index
(description production) is satisfied. McDcrmott cautions that as the knowl-
edge base of method instantiations grows, recognition on the basis of object
and action types might not discriminate between competing methods. An
analogical mapping associates WM elements from the target problem and
retrieved source. These associations allow the underlying production system
architecture to tentatively accept "stipulated" target values, which are
evaluated during method application. A selected method minimizes anticipated
failures, and is evaluated by comparing prior expectations with feedback from
a reactive environment (including the user). Error recovery strategies repair
faul ty solution approaches, when possible, and record productions which can
avoid similar errors on later applications of the same method. Finally, success-
ful applications of existing methods are consolidated as context-specific produc-
tions which support a solution without analogy. McDermott points out that
ANA is an archetypical "hacker," building productions for everything from
successful method application to restrictions on single preconditions. This
simple learning mechanism proves effective on a small sample of tasks in a
constrained experimental environment.

4.3. CarboncII [18, 20]: Reconstructive problem solving

Carboneil embeds analogical reasoning within a traditional problem solving
framework that uses "weak methods" to search for solution paths or applies
general plans to reduce the task into easier subproblems. Two distinct analog-
ical methods are proposed. The first uses a second-order problem space to
transform a source solution path into a target solution path, while the second
reconstructs an entire problem solving attempt from a prior source solution.
Both methods extend the traditional problem solving framework and provide a
variety of opportunities for learning.

The transformational analogy method [18] transforms a solution path from a
previous problem (the source) into a solution path for the target problem. A
traditional means-ends-analysis (MEA) problem solver is extended into an
"analogy transform problem space" (T-space, see Fig. 5). T-space is a second-
order problem space in which states encapsulate a sequence of operator

'See Laird et al. [70] for a discussion of chunking in a general problem solving architeclure.
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Fig. 5. Analogy as search in a transformation space (Carboncll [18, p. 143]).

invocations in the original space. Each T-space operator (T-operator) modifies
a sequence to give a new solution sequence. The central idea is that analogical
problem solving can occur in T-space just as routine problem solving occurs in
the tradit ional problem space. Enabling conditions for T-operators are satis-
fied, T-operator application gives a new sequence, and a resulting sequence
eventually satisfies the target goal specification.

The ARIES system is an ini t ia l implementation of the transformational
method. Inputs include a first-order problem space (state representation and
operators), a similarity metric used to rank candidate mappings between target
and source problems, a second-order problem space including T-operators, and
a collection of previous problem solving cases. The similarity metric is sensitive
to the comparability of ini t ia l states, goal states, and path constraints (e.g.,
cost), as well as the overall applicability of a candidate source. T-operators are
procedures for inserting, deleting, or reordering operators in an existing
sequence, concatenating new subsequences of operators, or merging multiple
operator sequences. The implementation contains a subset of T-operators
organized in a difference table (see Newell and Simon [86]) by the sequence
differences they reduce. Memory for prior solutions (sources) can be dynami-
cally organized around MOP-like structures [99] that discriminate among previ-
ous solutions on the basis of similarities in problem states, goals, constraints,
and operators.1" Generalized plans are learned for solving classes of problems
related by having a common transformational source; successes and failures in
problem solving arc used to refine the similari ty metric as well as difference
table entries for original and T-space operators; and new T-space operators can
be discovered by using conceptual clustering [31, 78] methods over problem
solving instances where T-space MEA fails.

'"See Kolodner [67, 68| for a detailed implementation using MOP .structures, Simpson [103] as
discussed later in this section, and Dyer [26] as discussed in Section 5 on natural language
processing.
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Given a target problem described in the original state space ( in i t i a l state,
goal state, and constraints), ARIES selects a source solution with similar state
descriptions and constraints. For example, the system proves that the product
of two odd numbers is tin odd number by analogy to a source proof that the
product of two even numbers is an even number. The sequence of steps in the
source proof is an initial state in T-space, and a sequence which proves the
target theorem is a goal state. The analogy is elaborated in T-spacc by a
means-ends search for a sequence of transformations that yield a target
solution sequence. For example, in the odd product proof several additional
algebraic operations must be spliced into the source solution sequence.

To summarize Carbonell's transformational method, a second-order problem
space (T-space) is integrated with a traditional problem solving framework
(MEA), and a variety of possible learning opportunities are discussed. Recogni-
tion occurs on the basis of a partial mapping between the target problem
statement and source episodes indexed in a hierarchically organized memory.
The most promising source solution is incrementally transformed into a
sequence of operators that gives a correct target solution. Beyond learning
generalized solution sequences, the method allows the possibility of tuning
various components of the analogy framework. Carbonell reports that an initial
ARIES implementation was "effective when tested in various domains, includ-
ing algebra problems and route-planning tasks" [20, p. 376], but was unable to
take advantage of more abstract planning information that might be stored
with a solution sequence (e.g., the reasons for problem solving decisions or
failures).

The derivational analogy method [19, 20] extends the transformational
approach to include complete derivational traces for previously solved prob-
lems (see Fig. 6). The derivation includes subgoals, alternative operator
choices at each step along with reasons for decisions among them, beginning
and terminal nodes for unsuccessful paths with reasons for fai lure, inter-
dependencies between successive decisions, pointers to peripheral knowledge
structures used during problem solving, and reasons and/or assumptions
supporting successful or unsuccessful problem solving attempts. Carbonell
argues that this information is necessary to successfully transform a source
solution into a solution for a novel problem. Particularly in complex domains
like design (e.g., coding quicksort in LISP, having previously coded quicksort in
PASCAL), useful analogical transfer must occur at an abstract level and include
a reconstruction of decisions made when solving the source problem.

Given a target problem, reconstructing a solution from a source derivation is
somewhat complex. As with the transformational method, derivational analogy
is cast against a background of weaker problem solving methods. If direct plan
instantiation is not possible, the system uses weak methods (e.g., MEA) to
search for a solution in the target problem space. When init ial search-based
problem solving steps resemble the in i t ia l segments of a derivational trace in
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Fig. 6. Derivational truce for a solved problem (Carbonell [20, p. 380]).

dynamic memory, the system retrieves and attempts to reconstruct the deriva-
tional trace as follows:

Step 1. For each step in the trace, check its justification in the target problem
description. If the justif ication holds, the step is applied directly.

Step 2. If the source just i f icat ion is violated but an alternative target
just i f icat ion is found, the step is applied and a record of th is change to the
retrieved derivation is stored for later learning.

Step 3. If attempts to j u s t i f y a derivation step f a i l :
(a) attempt to jus t i fy alternative steps stored at this level in the derivation,
(b) post the unsatisfied justi f ication as a subgoal for further problem solving,
(c) try fa i led derivation paths if the reasons for those failures do not hold

in the target problem,
(d) give up the current analogical derivation in favor of another source

derivation or return to weak methods.

Minor deviations from derivational traces are not suff icient to abandon the
derivation, since subsequent derivational decisions and steps may be indepen-
dent and s t i l l apply to the target problem. A "perseverance threshold"
interrupts fruitless derivational efforts. Carbonell argues that despite the
apparent complexity of the derivational trace, the processes sketched above
can be implemented ef f ic ient ly because space requirements arc proportional to
trace depth rather than to the number of nodes visited while solving the source.
In addition, few dependency l inks point outside the local structure of the
derivational trace.
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Opportunities for learning are again varied. First, problem solving ex-
perience results in a richer database of case derivations. Second, stripped-down
solution traces for successful and unsuccessful problem solving efforts can be
passed to a general-purpose induction engine" to form generalized plans, a
process similar to the primary learning mechanism described in the transforma-
tional method. Third, individual decision points in derivational reconstruction
can be used as positive and negative instances for learning. Justifications for
these decision points can focus the learning process on functionally relevant
aspects of the derivational trace, resulting in domain-specific search heuristics.
Finally, a decomposition process can extract frequently occurring subgoal
subsequences out of derivational traces. Subgoal justifications are examined to
find their context of occurrence (e.g., the instantiated goals they satisfy), and a
rule is formed which proposes the subgoal sequence whenever that goal context
recurs. Since justifications refer to necessary preconditions among a variety of
contextual details, rules formed by decomposition provide more general plan
components.

The derivational method augments transformational analogy in two respects.
First, the materials of an analogical source are extended considerably. Justifica-
tion linkages guide the reconstruction process by allowing the analogy mechan-
ism to evaluate not only the actual solution path (i.e., a series of operators),
but also a record of why particular steps were taken and succeeded or failed.
This provides an advantage over the relatively less informed method of
difference-driven transformations. These justifications also provide explanatory
focus to a variety of learning mechanisms. Second, the derivational approach
integrates recognition of analogies directly into an ongoing problem solving
context. Initial problem solving activities may trigger retrieval and reconstruc-
tion of a source derivation, or the problem solver may continue with a weaker,
search-based approach. In summary, Carbonell's description of reconstructive
problem solving charts an ambitious program for computational studies of
analogy, opening up a variety of challenging research problems.

4.4. Simpson [69, 103]: Case-based dispute mediation

Simpson describes MEDIATOR, a system that suggests resolutions to physical^
economic, or political disputes by using analogies to past cases. Analogous
cases are used to classify a target dispute, derive plans for its resolution,
predict plan consequences, and recover from planning failures. This approach
combines aspects of Kolodner's [67, 68] model of maintaining a long-term
episodic memory with mechanisms for analogical problem solving. Given a
memory of prior dispute cases, the system is tested on novel disputes. For
example, MEDIATOR suggests a plan for resolving the Sinai dispute between

"See Michalski'[76], Milchell [82], or Quinliin (95) for domain-independent induction mech-
anisms.



COMPUTATIONAL APPROACHES TO ANALOGY 73

Israel and Egypt by analogy to source cases of land dispute in the Korean War,
children quarreling over possession of an orange, and land dispute over the
Panama Canal.

A target problem is solved by classifying it in a taxonomy of problem types,
constructing a solution plan, confirming plan predictions, and remediating plan
failures if necessary (see Fig. 7). Planning fai lures are resolved by a recursive
application of the problem solver.12 Classification, planning and recovery are
attempted by analogy to prior cases, but can be achieved by default reasoning
(e.g., assembling and instantiating general plan fragments) if necessary. The
system learns by updating its episodic memory for successful and failed solution
attempts.

The basic unit in MEDIATOR'S case memory is the generalized episode, which
can either be a specific dispute case or a summary of multiple cases. The
episode is a frame structure containing slots for normative features, a set of
indices to more specific episodes, and a pointer to a specific precedent case.
Episodes in long-term memory are organized as a discrimination network
around indices which test specific feature values. These restrictive tests allow
"locked" [67] traversal of the network when attempting to classify a new
episode. MEDIATOR starts with an episodic memory for several dispute resolu-
tions rooted by a hierarchy of generic episode types. These include problem
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Fig. 7. Retrieved cases assist dispute mediation planning (adapted from Simpson [103, p. 17]).

l2See Hammond [47] for an approach that uses failures and their explanations for memory
organization and retrieval.
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classes (e.g., physical or economic disputes) and their mediation tactics (e.g.,
divide the disputed object equally), as well as failure types (e.g., goal
misunderstanding) and their remediation tactics (e.g., infer an alternative
goal). Taxonomic hierarchies for disputed objects and disputants are also given
as input. These provide the system with a "blueprint" to bias case comparison
and memory update. As output, the system recommends dispute resolutions
and updates its episodic memory for successes or failures.

An analogous case is recognized by traversing episodic memory with target
components as retrieval cues. In the Sinai dispute, for example, MEDIATOR
recalls the Korea dispute because both involve land and use military force to
achieve disputants' goals. Starting with the most general component structures
in episodic memory, target cues (e.g., Israel, Egypt, and the Sinai) are
compared with index tests to guide traversal to an episodic structure that
contains a specific case (e.g., the Korea dispute). Colliding with this episodic
structure, the system is spontaneously "reminded" of the source case.
MEDIATOR uses multiple target components to retrieve a set of candidate case
remindings. These are ranked according to how well they preserve a "relative
invariance hierarchy" [16, 17] between target and source. Candidates that
violate target goal descriptions (e.g., concordant versus competitive) are
eliminated, and remaining candidates are ranked by the taxonomic similarity of
argument style (e.g., persuasive versus adversarial), disputed object, and
disputant. The top-ranking source case is selected and, depending upon the
current stage in problem solving, can be used to classify the target problem,
suggest a dispute resolution plan, classify the target failure, or suggest a
recovery.

Elaboration of the analogy between a retrieved case and the target problem
is distributed across a traversal path in episodic memory. Successful index tests
during traversal establish points of correspondence and successively constrain
calculation of the analogical mapping. Arriving at an analogous case in
memory (a reminding), the system aligns information recorded in the source
norms with its current representation of the target problem. Episode slots
(e.g., the disputants in each case) map identically, and ambiguities in mapping
slot values are resolved by peripheral constraints in the source frame (e.g., that
the older of two disputants divides a disputed object). Depending on the
problem solving context, elaboration with the source case can map problem
classification, plan steps, failure classification, or remediation steps.

MEDIATOR evaluates information provided by an analogous case at two
levels. First, frame components which will be directly transferred are tested for
consistency with the target problem description. For example, the "divide
equally" plan suggested by analogy to the Korea case has several preconditions
(e.g., the disputed object is spliltable) which are verified in the Sinai dispute
before the plan is transferred. Analogical inference of dispute classification,
plan consequences, or failure recovery tactics are evaluated in a similar
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fashion. If this level of evaluation fails, the system falls back on default
reasoning. Second, predicted consequences of a transferred plan are evaluated
by soliciting results from the user. If user feedback differs from plan expecta-
tions, MEDIATOR marks the attempted plan as a failure, collects explanatory
remarks from the user (e.g., Israel and Egypt have unexpected goals), and
recurses with a new problem of resolving the planning failure. Since prior
failures, their classification, and resolution are also stored in episodic memory,
the system can resolve the current failure by analogy to past cases.

Just as remindings occur when traversing episodic memory, the traversal
process also identifies locations in the memory structure where MEDIATOR can
consolidate problem solving successes and failures. Since reminding is the
result of two specific cases colliding in memory, update can be accomplished by
making local changes to the contexts and indices of surrounding episodic
structures. Simpson describes five conditions under which memory update
occurs, each depending on the taxonomic relation of target and source when
traversal terminates:

(1) If the source is more specific than the target, insert the target case as a
parent.

(2) If the source is more general than the target, install the target case as a
specialization.

(3) If source and target are instances of the same concept, generalize
non-identical slot values, insert a generalized episode in place of the source,
and install target and source as specializations.

(4) If the source and target are siblings in a taxonomic hierarchy, find their
"most specific common parent," insert the parent with generalized norms, and
install each sibling as a specialization of the parent.

(5) If source and target are unrelated in any taxonomy, then report an
update failure.

Simpson uses taxonomic hierarchies over objects, goals, and actions to find
generalized descriptors for the general episode's norms, and uses source/target
differences as specializing indices. Since MEDIATOR resolves problem solving
failures in much the same fashion as routine problem solving efforts, these can
be consolidated into the episodic memory as well. Simpson reports that the
system is capable of managing nine dispute cases in its episodic long-term
memory before exceeding machine limitations. Although adding cases extends
the problem solving capacity of MEDIATOR, there is no explicit evaluation of
whether the system's performance improves in accuracy or efficiency.

In summary, Simpson explores each process component of analogy. Recog-
nition and consolidation occur while traversing a dynamic memory for problem
solving episodes. Promising source cases are selected to the extent that they
follow an invariance hierarchy for analogical transfer. An analogical mapping
between target and source cases is elaborated incrementally across a retrieval



76 R.P. HALL

path, so that much of the mapping appears to be established before any specific
source case is selected. Having found a source case, a frame-level mapping is
constrained by enforcing identical slot alignment. Information stored in the
norms of a source case is evaluated for consistency with the target problem
before transfer, and serious violations cause the system to fall back on default
problem solving inferences. When failure of transferred material is signaled by
external feedback, the system recursively applies itself to the failure as a
subproblem. When problems are solved (or failures resolved), consolidation
processes install, insert, or generalize memory episodes at appropriate memory
locations. As a result, MEDIATOR acquires specific, analogically derived solu-
tions to target problems as well as generalized episodic structures.

5. Metaphor and Analogy in Natural Language Processing

Given the bulk of related research in linguistics, philosophy and psychology, it
is not surprising that attention has been given to metaphor and analogy in
computational studies of language understanding. In this section, three studies
are reviewed: Winston [108] describes a system that comprehends similes in an
instructional context; Hobbs [51, 52] extends a model of selective infcrencing
to resolve metaphorical expressions during routine discourse analysis; and
Dyer [26, 27] describes systems that use analogies to previous cases of planning
failure to understand narrative text. Each study presents specific mechanisms
for analogical comparison and inference, but each also uses the surrounding
context to constrain these mechanisms.

5.1. Winston [108]: Concept learning by creatifying transfer frames

Winston focuses on learning through "absorb(ing) simile-like instruction" [108,
p. 151]. Although he examines a highly constrained form of learning, the
approach is equally interesting as a computational model of making appropri-
ate inferences when presented with simile-like statements (e.g., Robbie is like
a fox). In overview, Winston's model constructs "transfer frames" that allow
the projection of properties (slot/value pairs) from a source frame (e.g., fox)
into a less well-understood target frame (e.g., Robbie). Central to this transfer
process are constraints provided by the salience of information in the source
frame and its conceptual siblings, the prototypicality of information in the
target frame and its siblings, and the instructional context given by a tutor. A
simple frame language describes objects and their properties in microworlds of
blocks and animals.

Winston describes an implementation with four stages of processing:

Step 1. Hypothesize which of many source properties should transfer to the
target, based on their salience in the source frame.

Step 2. Filter candidate "transfer frames" to prefer properties which are
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consistent with prototypic knowledge of the target or the ongoing instructional
context (i.e., properties involved in recent similes).

Step 3. Justify a selected transfer frame by finding supporting similarities
between source and target (e.g., properties supporting the purpose of objects)
or by appealing to a tutor.

Step 4. Conjecture further transferred material through the learner's "curiosi-
ty" or encouragement from the tutor.

Hypothesizing and filtering transfer frames correspond to elaboration, justifica-
tion of these frames to evaluation, and conjecturing further transfer to some
aspects of recognition and consolidation. A collection of strategies is described
for each stage.

To hypothesize transferable properties, Winston first considers existing
transfer frames constructed earlier when reasoning from the same source
object. An existing transfer frame can be used again if the justification (stored
as distinguished properties in another frame) for its previous transfer is true of
the current target frame (i.e., similar distinguished properties exist). When
unable to identify existing transfer and justification frames, the system selects
salient source properties (slots and/or values). Salient source properties have
extreme values, are globally important (i.e., a property is marked as important
in an absolute sense), are atypical in comparison with properties stored with
conceptual siblings of the source frame, or have atypical values in comparison
with those siblings. If existing transfer frames or salient properties cannot be
identified, all properties of the source are considered. Candidate properties for
transfer are grouped by property category (e.g., size, weight, height, width and
depth are all instances of the size-property category) and considered indepen-
dently by the filtering process.

Filtering strategies use prototypical aspects of the target frame to select
which properties are transferred (e.g., which transfer frame to select). Pro-
totypical information is statistically determined for a class of related frames
(e.g., a typical cylinder has a color slot which takes on varied values in over
65% of cylinder instances) and stored in "typical-instance frames." Transfer
frames arc preferred if they promote slot/value pairs that occur in typical-
instance frames which are conceptually related to the current target frame.
When prototypical expectations are not available, transfer frames which pro-
mote properties contained by any conceptual siblings of the existing target
frame are preferred. Finally, in the absence of any knowledge of what is typical
of the target frame, transfer frames which continue the instructional context
(i.e., the type of properties recently transferred on the basis of instruction) are
preferred.

Justification strategies are somewhat less ambitious. The learner either asks
the tutor about the appropriateness of a candidate transfer frame or checks for
violations of known restrictions on transfer frame slots. As a third strategy, the
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learner consults a record of shared properties which were important in previous
cases of successful transfer. For example, the tutor might present the simile,
"CUBE-I is like TABLE." The property of "purpose" being a platform for eating
or writing is transferred from table to cube, and the tutor suggests creating a
"justification frame" which records common characteristics of the cube and
table that enable the transferred purpose. In this case, the properties medium
size and flat, level top justify the purpose of being a platform for eating or
writing. Later tutor-initiated transfer involving TABLE can use this justification
frame to confirm that a new target object's properties support the transfer of
information regarding purpose.

Winston briefly describes strategies for making independent conjectures. The
tutor sometimes directs the system to extend recently acquired information in
some target frame. Three mechanisms are proposed for this exploration. Since
the system records frames for slot types (e.g., TOP-FLATNESS) and notes
extreme values encountered while absorbing instructor-generated similes (e.g.,
VERY-HIGH for flatness when TABLE is used as a source), recurring extreme
values can trigger system-generated similes (e.g., a new object with VERY-HIGH
TOP-FLATNESS is like a TABLE). Alternately, when adding a new slot/value pair
to a current target frame, the system can look for a conceptual sibling that has
a similar property, and then generate a new simile with that sibling. Finally,
the learner can inherit properties for a target frame when a typical-instance
frame is available.

In summary, Winston explores each process component of analogical reason-
ing. Similes between objects are presented by a tutor or recognized when the
system detects extreme or shared values for two objects. These objects are
conjectured as the source and target of a new simile. The properties of
hypothesized transfer frames are elaborated by preferring existing transfer
frames, salient properties of the source, properties that are consistent with
prototypical knowledge of the target, or properties that continue the instruc-
tional context. Transferred properties are evaluated by checking for violations
of known target properties, finding support from existing just if ication frames,
or asking the tutor. Similes are consolidated by recording successfully trans-
ferred properties and then building transfer, justification, and typical-instance
frames which can be used in subsequent learning. As a study of metaphor
comprehension, Winston's model explicitly uses salient characteristics of the
source domain and prototypical qualities of the target domain. These strategies
parallel psychological studies of metaphor comprehension as a feature com-
parison process (e.g., see Malgady and Johnson [73]).

5.2. Hobbs [51, 52]: Metaphor as selective inferencing

Hobbs argues that textual metaphors like "Mary is graceful, but John is an
elephant" can be understood by selective inferencing during routine discourse
analysis. Assuming the hearer knows that elephants are large, have t runks,
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have excellent memories, are thick-skinned, and are clumsy, the problem of
metaphor comprehension is to select an appropriate inference about John from
among the many possible inferences. Metaphorical inference is appropriate
when it recovers the intended meaning of the speaker. Hobbs describes a
natural language understanding system, D I A N A , that selects appropriate
metaphorical inferences while resolving traditional discourse problems like
recognizing coherent relations among text concepts, f inding specific interpreta-
tions of predicates, or determining implicit relations between compound nouns.
As input, the system takes predicate calculus formulas generated by a syntactic
analysis of text. A knowledge base of axioms describing commonsense and
l inguis t ic knowledge is also given, including detailed schematic representations
of source domains. As output, the system delivers a coherent representation of
the target text with appropriate metaphorical inferences.

DIANA interprets metaphors like the one shown above, but Hobbs [52]
devotes his attention to a more complicated metaphorical complaint by a
democratic member of the Congress about President Gerald Ford's vetoes of
congressional bills:

We insist on serving up these veto pitches that come over the plate
the size of a pumpkin. [52, p. 126]

Although the system does not interpret this example, Hobbs develops its
representation and processing in detail. As a source for the metaphor, Hobbs
gives a description of baseball using universally quantified variables and a
notation for "conditions" which identify instances of predicates:

pitcher'(c.x, χ ) ,
ball'(cy, y ) ,
batter'(cz, ζ),
p ' H c h ' ( p , x , y,z),
miss'(«i, z, y),
hit '(/i,z, y),
or'(omh, in, /?,) ,
then'(//z, p, omh) .'·

Variables x, y, and ζ are a pitcher, ball, and batter, respectively. The
condition, /;, in the pitch' predicate represents an instance of a pitcher pitching
a ball to a batter. Conditions in and Λ represent disjoint possibilities (i.e., the
batter missing or h i t t i n g the ball) after the pitch occurs. These axioms, sharing
predicates and variables, gives a baseball schema that must be recognized as
the source of the metaphor, instantiated by a mapping into the target (i.e.,
congressional bills and vetoes), and then used to generate appropriate
metaphorical inferences.

The appearance of predicates in the target input triggers recognition of the
source schema (e.g., the word "pitch" invokes knowledge of baseball). A
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mapping from the congressional domain to the baseball domain is incremental-
ly elaborated as discourse problems are resolved. For example, since the target
sentence is uttered by a Congressman, the pronoun "we" resolves with the
concept of Congress, allowing the role of pitcher in the "pitch" action to be
mapped to Congress. Interpretation of the compound nominal "veto pitch"
requires finding a coherent relational constraint over the contained concepts.
Assuming a hearer knows that Congress must "send" a bill to the President for
signature or veto, Hobbs argues that the system should detect the parallelism
between pitching a ball to a batter and sending a bill to the President. This
extends the mapping by associating pitching/sending, bal l /bi l l , and batter/
President. The compound nominal is resolved by considering how the batter's
actions (i.e., to miss or hit the ball) can be mapped into the President's choices
(i.e., to sign or veto the bill). According to Hobbs, the remainder of the target
utterance (". . . that come over the plate the size of a pumpkin") must be
resolved so that the President/batter would find the bill /ball easy to veto/hit .
He does not discuss how "easy to hit" is recognized or transferred.

Evaluation of the metaphor's interpretation, beyond achieving contextual
coherence and satisfying pragmatic constraints, is not discussed. However,
Hobbs argues that the hearer should be able to suppress irrelevant or inap-
propriate inferences (e.g., that a bill is a thing or is a spherical object with
stitching) but remain open to the powerful role which more neutral inferences,
neither contextually intended nor inappropriate, can play in augmenting
knowledge of the target domain. For example, knowledge that baseball is an
adversarial game can be metaphorically extended to interactions between
Congress and the President. Having interpreted and possibly extended a
speaker's metaphor, the hearer consolidates metaphorically inferred knowl-
edge in several stages, described by Hobbs as the "life story" of metaphor as a
linguistic phenomena. Originally, the metaphor must be explicitly interpreted,
mapping source and target concepts with considerable effort. Later, the
familiar metaphor is comprehended quickly since appropriate inferences are
expected. The metaphor becomes "tired" when earlier metaphorical inferences
are directly available as concepts in the target domain, allowing comprehension
without explicit metaphorical inference. Finally, inferences are so well integ-
rated into the target domain that the metaphor is no longer recognized (i.e., it
becomes "dead" [12]).

Hobb's account of metaphor comprehension is clear but open to several
computational problems. Recognizing source axioms solely on the basis of
concepts appearing in the input (e.g., "pitch") might not constrain candidate
interpretations, particularly if the hearer's knowledge of the source domain is
extensive. The recognition mechanism must choose among multiple senses
available for a single term (e.g., a sales pitch or a tar-like substance) and filter
inappropriate sources activated by nonsalient concepts (e.g., "serving up" a
"pumpkin" over a "plate" as a holiday meal). Once an appropriate source
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domain is recognized, context or discourse constraints must suppress a variety
of extraneous metaphorical inferences. For example, inferences from the
baseball domain involving ticket sales, umpires, or hotdogs are not dis-
tinguished from the more appropriate inference involving adversarial games.
Contextual relevance, the most likely evaluative filter, is not detailed. Finally,
Ilobbs sketches the consolidation of novel metaphors without describing how a
knowledge base of axioms could be updated so that metaphors eventually
become frozen.

5.3. Dyer [26, 27]: Adages and understanding planning failures

Dyer describes an implemented system, BORRIS [26], and its successor, MORRIS
[27], as cognitive models of in-depth understanding of short but intricate
narrative stories. Since these stories often involve expectation failures when
characters use faulty plans, Dyer introduces "thematic abstraction units"
(TADS) to organize narratives involving similar planning failures. He hypoth-
esizes that this memory organization accounts for a class of cross-contextual
"remindings" in which people spontaneously remember an adage summarizing
a planning fai lure in the target narrative (e.g., being caught "red-handed" or
remarking tha t "every cloud has a silver lining"), lie also describes experi-
ments in which human subjects are given narratives designed to reflect a
particular TAU, and are later able to generate superficially dissimilar stories
which reflect the same planning fai lure. When these stones are sorted by a
second group of subjects, categories preserve abstract planning similarities
despite wide variations in story content. Although Dyer's primary intent is not
to study metaphor, storage and retrieval of narratives based on abstract
planning information gives a plausible account for some forms of metaphorical
reasoning. Sharing plan information between a target narrative and a previous-
ly encountered story is largely consistent with Centner's mapping of structural
relations [34] or Carbonell's invariant transfer of semantic categories [16, 17].
For example, August and Dyer [6] describe preliminary work on understanding
analogies in editorial arguments. Analogies are recognized using textual clues
(e.g., "is similar to") or similarity of textually contiguous conceptual struc-
tures. Causal structures for target and source are mapped and guide inferences
during a question answering task.

Dyer's focus on memory organization and retrieval of analogous narratives
implements one approach to Schank's description of remindings within a
dynamical ly organized memory [99]. Schank proposes "thematic organization
packets" (TOPS) which organize memory around domain-independent goal
interactions. For example, a memory for choosing a compromise restaurant
when two parties prefer different foods might be associated with a "competing
goal; compromise solution" TOP. Later, while scheduling an appointment with
someone who can only meet at an inconvenient lime, one might be reminded
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of the restaurant compromise. Dyer's TAUs organize memory around less
abstract planning difficulties. In an anecdotal example, Dyer [27] describes
watching a friend grow increasingly upset about the possibility that automobile
repairs had not been completed. Dyer told the friend to "quit bleeding before
he'd even been cut" and was spontaneously reminded of a story in which a
distressed and apprehensive motorist seeks help at a farmhouse along the
roadside. Before even explaining his situation, the motorist angrily refuses help
from the startled farmer. According to Dyer, both events are instances of a
"TAU-EMOT-ANTICII'ATE" where anticipation of a negative situation disrupts
effective planning.

Generalizing from the task of understanding complex narratives, Dyer's
work can be described as analogical reasoning between experienced events.
Given a memory organized around planning failures, recognition uses planning
mistakes in a target narrative as indices into an appropriate TAD. The TAU is a
generalized index for memories involving similar planning errors. Planning
information stored with the TAU and the specific memories it organizes can be
mapped into the target narrative to generate a coherent interpretation of the
text and to make predictions about what might happen next. Differences
between a retrieved source and the target narrative prompt a reorganization of
existing memory structures so that the target can be discriminated during
subsequent retrieval. Similar forms of recognition and consolidation in long-
term episodic memory are discussed by Lebowitz [72], Kolodner [67, 68], and
Simpson [103] (as reviewed in Section 4.4).

6. Analogical Reasoning in Machine Learning

Many of the reviewed studies include some form of learning, but concentrate
on other tasks for which analogies may be useful or necessary. For example,
Carbonell's methods for transformational and derivational analogy [18, 20]
include learning, but they also provide an exemplary view of analogical
reasoning as a problem solving process. In this section, four studies of learning
by analogy are discussed. Winston [109, 110, 114] describes mechanisms for
learning principles from precedents and exercises; Burstein [13-15] presents a
cognitive model of integrating multiple analogies drawn from different levels of
abstraction while learning simple concepts in a programming language; Pirolli
et al. [92, 93] describe a cognitive model of learning to write recursive LISP
programs; and Kedar-Cabelli [61, 62] uses purpose-directed analogies to focus
attention during a concept learning task.

6.1. Winston [109, 110, 114]: Learning and reasoning from analogous cases

Winston describes an implemented model of analogical reasoning in which
constraints from a source situation (a precedent) are transferred into a target
situation (an exercise). Shared constraints support inferences about the target,
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and if these inferences are confirmed, the model forms rules which generalize
over source and target situations. The implementation has been applied in
several domains, including short narratives, medical cases, and physical sys-
tems (e.g., electrical circuits). For example, Winston [110] starts with plot
summaries of Shakespearean plays, gives partial information about a target
case and asks the system to answer questions about the target (e.g., show that a
man is weak). A source plot summary is recognized (e.g., Macbeth) and used
by analogy to infer an answer to the target question. The system delivers this
solution, induces a general rule over target and source cases, and then stores
the rule for later use.

Source cases arc represented as object-oriented (rather than event-oriented)
prepositional networks, augmented with supplementary constraint descriptions
(e.g., causality). Figure 8 shows network representation for the source (prece-
dent), target (exercise), and rule described in the preceding example. The
target problem (? MAN-i EVIL) can be answered by importing relations from
the source. In this case, causal relations enabled by MAN-1 being weak and
being married to a greedy spouse support the analogical inference that MAN-l is
also evil. Inputs include structured natural language descriptions of situations
which the system translates into the network representation, target questions
about relations among objects, answers to system-generated questions concern-
ing values or relations in the situation, and instructions to consider alternative
source cases or to form rules. Outputs include justified answers to questions
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Fig. 8. A precedent, exercise and resulting rule (Winston [110, p. 331]).
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posed by a tutor, augmented network representations for target situations, and
general rules.

A process of "classification-exploiting hypothesizing" [109] recognizes ana-
logous source situations. This is essentially a bottom-up retrieval scheme that
exploits exhaustive indexing of candidate sources through a hierarchy of object
types. "Votes" for a source are collected by traversing a-kind-of (AKO) l inks
originating at instance nodes in the target representation. Each node in the
type hierarchy has an APPEARS-IN slot that records the situations in which that
node and its descendants participate. Each type node visited during this AKO
traversal casts votes for sources appearing in its APPEARS-IN slot. A vote counts
by inverse proportion to the number of candidate sources in the slot but in
direct proportion to the salience of the target concept. After a complete ΛΚΟ
traversal, the source situation with the highest number of votes is retrieved.

Although pathways in the AKO traversal implicitly contain mapping informa-
tion about the target, Winston uses a separate process for elaboration. With an
exhaustive search through the space of possible network mappings, he reports
[109] that his system is confined to problems of 100 or fewer possible pairings.
Instead, he carefully chooses init ial points of correspondence, preferring a
priori important relations (e.g., cause) that can be compatibly al igned. Thus
the space of all possible mappings between source and target is expanded using
a heuristic search for plausible mappings (see also [113]). Winston [109] scores
each of these with a summative metric that rewards s imilarity in the corre-
spondence of object properties, relations among objects, and constraint rela-
tions. A variety of s imilar i ty metrics are empirically tested with plot sum-
maries, and results suggest that scoring only constraint relations known to be
important can be as effective as more exhaustive scoring schemes.

After finding a best analogical mapping between target and source, the
system proceeds to answer a question (i.e., an unknown but desired relation)
about the target:

Step 1. If the relation is available in the target, simply use it to answer the
question.

Step 2. If the relation is missing in the target but caused by other relations in
the source, try to establish these causal antecedents in the target situation. This
generates additional questions as subgoals to be answered by direct inference
or another analogy.

Step 3. If the relation is missing in the target and has no known cause in the
source, look for another analogous source.

Winston [110] extends this strategy to allow abductive analogical inference: a
desired relation in the target may be inferred if its known consequences, as
suggested by analogy with the source, are true. Thus the desired relation is
"covered" by its consequences. When the system reaches an impasse at Step 3
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(e.g., no analogous source can be found), the tutor can directly confirm or
disconfirm desired relations.

In general, questions about unknown target relations can be answered by
analogically inferring complex causal chains imported from one or more source
situations. In the network representation, these causal chains are expressed as
AND trees, with the desired relation at the root and sufficient facts at the
leaves. Target and source AND trees are passed to an inductive process that
extracts common implicational structure from the trees. The result is also an
AND tree where leaves make up the rule conditions, and the root node is the
action or consequence. Generalizations are obtained by dropping intermediate
nodes in the implicational network [110, 114]. Just as with a source case, a rule
can be used by analogy to promote inferences in another problem solving task.
The rule learned in the (? MAN-i EVIL) problem can be expressed as follows:

Rule RULE-l
if [MAN-4 HAS-OUALITY WEAK]

[MAN-4 MARRY WOMAN-2]
[WOMAN-2 HAS-QUALITY GREEDY]

then [MAN-4 HAS-OUALITY EVIL]
case MACBETH

The source of this rule, MACBETH, is retained so that a case comparison is
possible if the rule fails during use in another context. New rules can be
learned from an analogy between situations as well as when applying an old
rule in a new situation.

In his example, marriage between MAN-4 and WOMAN-2 enables the wife to
influence her husband. However, if a new case suggests that the wife cannot
influence her husband (e.g., they are estranged), then RULE-l would apply
inappropriately. Winston [111, 114] resolves the problem of over-general
learned rules by including "unless" conditions which block the rule when
exceptional conditions are known. Augmented rules take the form:

if [preconditions . . . ] then [conclusion] unless [exceptions . . . ].

Exceptions are simply the negations of relations between the leaves (condi-
tions) and root (conclusion) in the AND trees from which rules are synthesized.
Thus, exceptions are restricted to relations of known causal relevance. When
an augmented rule is considered for use, a limited amount of effort is put into
showing that no unless conditions hold. If an exception holds, the rule is
blocked because its supporting causal structure is violated. Rules which trigger
exception conditions are called "censors," have the same form as other
augmented rules, and can be learned accordingly. To facilitate later retrieval,
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rules are indexed through the classes of actors, relations, and objects found in
their consequences. In this order (i.e., actors before relations), indices are
stored in multi-level association lists residing in frame structures that describe
each class. Given a new target question, components of the question are used
as retrieval cues to index into sets of candidate rules. These candidates must
fur ther match the target situation before being used to find an answer.

Winston's model of reasoning and learning by analogy covers each of the
process components used in this survey. Candidate sources are recognized
through a bottom-up voting mechanism which uses exhaust ive type indexing.
Although Winston does not set out to recognize novel analogies across
domains, it is interesting to consider whether his recognition scheme could
"scale up" to this task. For example, a psychodynamic analogy between
current in electrical circuits (another of Winston's test domains) and depression
in Hamlet's psychological state might not be easily recognized, since the only
common ancestor of current and depression might be THING in the ΛΚ.Ο
hierarchy. Analogical mappings are elaborated by a heuristic search process
that prefers a priori important relations in source and target situations. A static
scoring function ranks the resulting mappings, and a best candidate is selected.
Analogical inferences are treated as target subgoals and can be confirmed by
direct inference, further analogies, abductive inference, or quest ioning the
tutor. Rules with exception conditions are constructed and stored under indices
reflecting actors, relations, and objects. Acquired rules both summarize ana-
logous cases and provide a mechanism for fa l l ing back on source cases when a
rule fails. Winston does not describe this recovery mechanism in detail.

6.2. Burstcin [13-15]: Learning assignment statements in BASIC

Programming concepts of variable and assignment are often taught by analogy
to more familiar domains like placing physical objects in boxes. Burstein [14]
presents a computational model of using didactic analogies to learn about
simple assignment statements in BASIC. The model is based on verbal tutorial
protocols from students learning to program and is intended as a plausible
psychological account of learning. An implemented system, CARL, engages a
tutor (Burstein) in a tutorial dialogue about BASIC assignment statements.
Knowledge of source and target concepts is represented by interconnected
networks of frame structures, organized in a fashion s imilar to Schank's [99]
description of dynamic memory. Central in Burstein's model is a "top-down"
analogical mapping of causal abstractions from a well understood source
domain into a poorly understood target domain. This is contrasted with other's
approaches (e.g., Evans [28] and Winston [109]) which attempt to find an
object-level mapping that supports consistent relational structure. Burstein
argues that these mapping strategies cannot be sufficient when l i t t le is known
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of the target domain or when irrelevant constraint relations (e.g., cause in
Winston's MACBETH) are commonplace.

The tutor gives CARL a didactic analogy, an example of the target concept to
be learned, and a target problem:

The computer remembers a number by putting it in a variable.
A variable is like a box.
To put the number 5 in the variable named X, type "X= 5."
Mow do you get the computer to remember the number 9? [14, p.
356]

With support from the tutor, the system incrementally maps causal abstractions
for source domain actions (e.g., preconditions and results of putting an object
in a box) into the target domain of BASIC assignment statements. As output,
CARL answers the tutor's questions and learns how to interpret and use
common assignment statements.

Burstein proposes several constraints on a top-down analogy mapping
process. First, he uses the tutorial context to recognize a particular relational
structure from the source domain. The target problem statement (" . . . get the
computer to remember the number 9"), coupled with the explicit analogical
hint ("A variable is like a box"), allows CARL to recognize a useful causal
abstraction for boxes: a human actor puts a physical object in a box. Second,
Burstein maps relations in this abstraction before considering object-level
correspondence. Target and source objects arc mapped only when they play
similar relational roles. He points out that the relational correspondence need
not remain at a literal level. For example, since numbers are usually not
physical objects which can be placed within boxes, a new sense of the "INSIDE"
relation must be found. CARL finds the new relation (e.g., INSIDE-VAR) by
selecting an ancestor or sibling in a relation type hierarchy. This differs from
others' accounts of relational invariance [16, 34] by allowing non-identical
relational mappings. Third, Burstein discards source relations which have no
known support in the target domain. For example, a precondition for putting
an object in a box is that the object be smaller than the box. Since CARL knows
of no comparable scale for fi t t ing numbers in variables, this precondition is
dropped during transfer.

In protocols collected while tutoring novice BASIC programmers, Burstein
finds that multiple analogies are regularly used to acquire programming
concepts. The following analogies often occur when learning how to use the
assignment operator: a variable is like a box, a computer "remembers"
numbers after an assignment statement, and assignment is like mathematical
equality. The CARL system models these findings by using multiple analogies to
incrementally extend and repair knowledge in the target domain. For example,
while the box analogy may be acceptable for simple assignment statements with
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a single assigned ent i ty, more complex a r i t h m e t i c assignments l ike "X =
Β + 1" reveal errors in a student's conception of assignment. A common
misinterpretation places "B + 1" inside the variable, X. A study by Bayeman
and Mayer [7] of novice BASIC programmers reports s imilar errors. Burstein
argues that this misconception can be overcome by combining algebraic
knowledge (i.e., equality of value and algebraic operations l i k e addit ion) with
the physical sense of placing objects (a value in this case) wi th in containers (a
variable). In addition, subjects appear to incorporate a third analogy, that of a
computer as a "human information processor" capable of interpreting alge-
braic expressions and carrying out storage commands. As the tutor presents a
variety of analogies, the learner incrementa l ly acquires an effective con-
ceptualization of the assignment operator.

In summary, CARL provides a model of learning by using mult ip le, overlap-
ping analogies to bui ld a causal representation of a target domain. Given a
didactic analogy and an example of its use, the system recognizes a specific
relational abstraction for use in the analogy process. A top-down relational
mapping mechanism considers object-level mappings only as needed. If map-
ped relations violate target domain restrictions, CARL considers non-identical
relational matches by choosing ancestors or siblings in a relation type hierar-
chy. Analogical inferences without support in the target domain are discarded.
The tutor presents a series of problems that force CARL to incremental ly
extend existing analogies. Feedback from the tutor is used to evaluate each
extended analogy, and the system uses alternative analogical sources to repair
an inappropriate causal understanding of the target. Eventual ly, CARL consoli-
dates these mul t ip le analogies into an integrated causal model of assignment
statements that includes: semantic representations, parsing rules, expected
effects, and the abil i ty to use assignment in simple program plans.

6.3. Pirelli et al. [92, 93]: Learning recursion by analogy to worked examples

Pirolli describes learning by structural analogy where a novice uses previously
worked examples when learning to write recursive programs. Verbal protocol
studies of novice and expert programming behavior are modeled by construct-
ing simulations in the GRAPES production system architecture [3]. Productions
are organized around AND/OR goal trees that reflect task decomposition and
focus the system on achieving one goal at a t ime. Two learning mechanisms,
composition and proceduralization [5], restrict analogy to a particular role in
acquiring programming expertise. Novices attempt analogies to worked exam-
ples when their existing solution procedures (productions) fai l . If successful,
the analogy allows the novice to learn a new procedure or to extend the
applicability of an existing procedure. As the learner's repertoire of problem
solving procedures expands, the need for analogy to examples decreases.
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Eventually, the learner exhibits expert-level performance of a practiced skill
without using structural analogies.

For example, Pirolli and Anderson [93J present a GRAPES simulation of a
protocol in which a novice college student studies a textbook example of a set
intersection function and uses the example as the source of an analogy when
asked to write a set difference function. Inputs to the novice simulation include
a detailed representation of the source function, a specification for the target
function, relevant set theory facts, and any idiosyncratic relations which the
subject mentions in the verbal protocol. The target specification includes an
example function call and correct result, (SETDIFF (ABC) ( /?CD)) = (/l),
and the simulation is given the goal to code SETDIFF. The simulation generates
a function for set difference and records productions which bypass analogy if
the target problem or a s imilar problem is encountered again. Table 3 shows
the set intersection example and the set difference function produced by the
novice simulation.

In the verbal protocol, the novice programmer spontaneously considers the
definition of INTERSECTION 1 as the source of an analogy and begins elaborating
a mapping between that code and the target specification. Since recognition of
analogies in subject's protocols appears to be impasse-driven, the simulation
recognizes an analogy when no existing productions allow progress towards a
solution. This capacity is encoded by the following production:

IF the goal is to write a function
and there is a previous example

THEN set as subgoals
(1) to compare the example to the function
(2) to map the example's solution onto the current problem

Pirolli does not describe mechanisms which recognize analogous examples, but

Table 3
A LISP definition of set intersection given in a worked example and a definition of set difference
found by structural analogy (adapted from Pirolli [93])

(DEFUN INTERSECTION I (SET1 SET2)
(COND ((NULL SETI) ())

((NULL SET2) ())
((MEMSET (CAR SETI) SET2)
(CONS (CAR SETI) (INTEKSECTIONl (CDR SETI) SET2)))

(T (INTERSECTION! (CDR SETI) SET2))))

(DEFUN SETDIFF (SETI SET2)
(COND ((NULL SETI) NIL)

((NULL SET2) SETI)
((MEMBER (CAR SETI) SET2)
(SETDIFF (CDR SETI) SET2))

(T (CONS (CAR SETI) (SETDIFF (CDR SETI) SET2)))))



90 R.P. HALL

Anderson [2] presents supporting details for this class of production system
architectures. Anderson's framework dis t inguishes between two long-term
memories: procedural and declarative. Procedural memory contains produc-
tions for carrying out some task (e.g., wr i t ing LISP functions), while declarative
memory contains an associative network of factual knowledge and example
problem specifications (e.g., an abstract description of INTERSECTION ι and its
function definition). Retrieval of source examples from declarative memory
occurs by spreading activation through declarative memory elements, each
having a trace strength which filters activation. Facts enter working memory by
reaching a high state of activation. In the production shown above, the
condition that "there is a previous example" could simply detect a working
memory clement retrieved by spreading activation from the target problem
statement.

If an in i t ia l comparison of problem features (e.g., argument types) shows
sufficient similarity, structure mapping productions elaborate a mapping from
the source solution to the target problem. Pirol l i shows three of these
productions:

IF the goal is to map an example structure onto the current
problem and that structure has known components

THEN map those components from the example to the current so-
lution

IF the goal is to map a conditional clause
THEN map the conditional of that clause

and set as subgoals
(1) to determine the action in the current case given the

mapped condition
(2) to code the new condition-action clause

IF the goal is to code a relation
' and a code template exists for the relation

THEN map the code template

The first production posts subgoals to map each component of the source code
into the target definition; the second provides a subgoal decomposition for
mapping conditional clauses; and the third allows retrieval and use of knowl-
edge about LISP (e.g. CDR-ing through the elements of a list). The domain-
specific content of the second and third mapping productions minor statements
made during the novice's protocol and suggest that mapping productions can
be learned during problem solving. Although Piroll i does not describe a
general-purpose mapping fac i l i ty , Anderson [2, pp. 209-214] shows more
detailed productions for elaborating target material by using a retrieved
declarative schema (source).
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Evaluation is a goal-directed activity invoked by subgoals contained in the
actions of mapping productions. A variety of knowledge sources are used to
evaluate the mapping from source to target, including background knowledge
about LISP functions and set theory. For example, the second condition of
INTERSECTION I asserts that a call with an empty second argument should
return the empty set. Using the second mapping production (above), the
simulation transfers the condition element and then posts a subgoal to evaluate
the proposed action in the current (target) problem specification. Mapping the
empty set result into the SETD1FF specification, the simulation detects a
violation, apparently by consulting background knowledge about set theory.
When the second argument is an empty set, SETDIFF should return its first
argument as the correct set difference. This correction is made by replacing the
condition's action wi th the variable name of the first argument, SETl. Mapping
and evaluation alternate until each component of the source definition has a
corresponding component in the target definition. Although Pirolli does not
explicitly show how background knowledge (e.g., an encoding of facts about
sets) and the target specification can be combined to generate difficult map-
pings, he summarizes the protocol evidence by arguing that analogy mapping
" . . . was never a mindless symbol-for-symbol mapping." [93, p. 258]

After successfully completing the component level mapping, the simulation
writes an effective target function and consolidates the results of analogical
problem solving into partially generalized productions. A proccduralization
learning mechanism directly compiles facts which were originally retrieved
from declarative memory into production conditions, while a composition
mechanism combines two productions which were fired in sequence to yield a
single production. Generalizations are obtained by deleting unnecessary condi-
tions and retaining intermediate variables in a series of composed production
instantiations or turning unlike constants from target and source into
variables.13 These learning mechanisms allow the GRAPES novice to acquire the
following productions:

IF the goal is to code a relation on two sets SETl and SET2
and the relation is recursive

THEN code a conditional
and set as subgoals to
(1) refine and code a clause to deal with the case when SETl is

NIL
(2) refine and code a clause to deal with the case when SET2 is

NIL
(3) refine and code a clause to deal with the case when the first

element of SETl is a member of SET2

"Anderson [5] makes the broader argument that all generalization arises through compilation of
deliberate analogical comparisons.
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(4) refine and code a clause to deal with the else case

IF the goal is to code a relation causing a function to repeat on
the rest of a list and this occurs in the context of writing a
function that codes the relation on the list

THEN insert a recursive call of a function with the argument the CDR
of the list

The first production directly encodes aspects of the analogical mapping of
conditional clauses between INTERSECTION! and SETDIFF. The second produc-
tion compiles a successful mapping and repair of the third condition of
INTERSECTIONI into a rule which encodes a typical sense of CDR-recursion.
While neither production gives a completely accurate account of recursive
function definitions, they do provide coverage for a class of functions which the
simulation could solve directly without resorting to further analogies. For
example, the simulation codes a SUBSET function as its next task without
resorting to analogy, but later reaches an impasse when attempting to code a
POWERSET function.

In summary, Pirolli builds on a sizable body of work in adaptive production
system architectures to present a model of learning by analogy. Novice learners
recognize analogies to prior examples when they reach a problem solving
impasse. Access to prior examples is not completely described, but an initial
comparison and similarity threshold mechanism allow a simulation to select a
single appropriate source problem. An analogical mapping between source
example and target problem specification is elaborated by structure mapping
productions which may (with experience) reflect task-specific information.
Pirolli does not discuss the complexity of this mapping process. Source
elements transferred across the analogy mapping are evaluated against the
target specification, using background material encoded as productions or
declarative facts. These knowledge sources may allow the simulation to repair
inappropriately transferred material, although detailed mechanisms for repair
are not discussed. Knowledge compilation operators consolidate successful
analogies by directly encoding mapped elements and repairs as productions.
During later attempts of the same or similar problems, these productions are
applied directly. Pirolli argues that structural analogy to worked examples is
important for early learning in a task domain, is quite sensitive to the qual i ty of
source material in a worked example, and decreases in prevalence as the
learner becomes more skilled in the domain.

6.4. Kedar-Cabelli [61, 62]: Purpose-directed analogical reasoning

Kedar-Cabelli argues that existing approaches to analogical reasoning provide
insufficient constraints on which aspects of the source should be extended to
the target. As noted by others in the psychological and computational litera-
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tares (e.g., Ilolyoak [55] or Greiner [41]), contextually-relevant analogical
inferences may be a small subset of all possible inferences. Many studies of
analogical reasoning represent only relevant causal structure in advance of
making analogical inferences or give explicit hints about which source struc-
tures to consider for elaboration. Kedar-Cabelli proposes a model of analogical
reasoning which uses explicit knowledge of the purpose for which an analogy is
being constructed to constrain the process of elaboration. In addition, the
model uses techniques for explanation-based learning [64, 83].

In overview, Kedar-Cabelli describes a method for learning concepts about
common objects (e.g., a cup or a vehicle) by using an analogy between two
concept instances: a given target instance and a retrieved source instance. For
example, Kcdur-Cabclli [62] uses a problem in which the concept of a HOT-CUP
used for drinking hot liquids needs to be refined after finding a new target
instance, a styrofoam cup. Using a ceramic cup as the source, what gets
transferred through the analogy is an explanatory structure which justifies using
the ceramic cup to drink hot liquids. In an earlier paper [61], Kedar-Cabelli
describes acquisition of legal concepts by re-using justifications in a similar
fashion. Purpose-directed analogy requires several important pieces of infor-
mation as input. First, the concept being refined is known: it is sufficient for
instances seen thus far, but must be refined to cover the target instance.
Second, the concept's purpose is given. In the example case, the purpose of a
HOT-CUP is to enable drinking hot liquids. Third, a domain theory is given with
axioms for explaining how physical attributes of objects relate to their function-
al roles. In the example, an object's handle enables grasping. As final input,
structural attributes of the target instance are given.

Learning concepts by purpose-directed analogy proceeds in five stages:

Step 1. Retrieve a typical source instance of the goal concept. As a simplifica-
tion, the source is given.

Step 2. Explain why the source instance is considered a member of the goal
concept for the given purpose. A derivation of the explanation requires several
steps:

(a) Find a plan that achieves the stated purpose. For drinking hot liquids, a
plan might be: to put the liquid in the container, to keep the liquid in the
container and hot long enough to drink it , to grasp the container, to pick
it up, and to drink the liquid.

(b) Extract object preconditions from the plan (e.g., that the container object
can be grasped). These arc functional requirements which objects must
satisfy if the plan from Step 2(a) is to be used.

(c) Construct a network of "explanatory" inferences which show how struc-
tural characteristics of the source object enable functional requirements
of the plan (sec Fig. 9). This network is deduced from domain theory
axioms—e.g., having a handle and being constructed of ceramic material
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Purpose:

Fig. 9. Explanatory inferences satisfy plan preconditions (adapted from Kedar-Cabelli [62, ρ
154]).

provides an insulated grasping area which an agent can use to grasp the
cup. An adequate explanation enables the plan provided in Step 2(a)
above.

Step 3. Map the explanation found in Step 2 into the target.
Step 4. Justify the explanatory inferences of Step 2(c) for attributes of the

target instance. Justification starts with structural attributes of the target, and
may require f inding alternative attributes or even plan steps which are effective
for satisfying, the stated purpose for the target object. For example, the
styrofoam cup is graspable because it is conical, rather than having a handle.

Step 5. Learn or refine the goal concept. This can be accomplished by
recording justifications for source and target objects, or by inducing a charac-
terization over both objects treated as positive instances.

The resulting HOT-CUP concept specifies that an object "can have an open
concavity, can be made of nonporous, insulating material, can be stable,
lightweight, and can be graspable." [62, p. 154]. This is a sufficient characteri-
zation of HOT-CUPs formed by finding a common network of explanatory
inferences within each of the instance explanations. Note that the "graspable"
attribute is a functional rather than structural term, which results from the
absence of a handle in the target instance (styrofoam cup).

Kedar-Cabelli's model primarily focuses on processes of elaboration and
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consolidation. Rather than considering any plausible analogical mapping be-
tween source and target, attention is given only to information which provides
an explanation for why the source instance satisfies the learning purpose. In the
HOT-CUP example, only structural features which are salient for using the
ceramic cup to drink hot liquids are considered when elaborating and evaluat-
ing the analogy. Analogical inferences about where the cup was purchased or
whether the cup was given as a gift are never considered. However, in order to
use purpose-relevant features of the source, the retrieval and plan finding
processes (Steps 1 and 2(a) above) must first provide a source instance and
plan. Consolidation provides the surrounding reasoning context in this model:
analogies are used to refine existing concepts with respect to a stated purpose.
A concept description is refined by finding a common inference network
between explanations for source and target instances. The model is less clear
on how learned concepts are stored or subsequently used.

Purpose-directed analogy treats recognition and evaluation less fully. Recog-
nition of the source instance is given, while recognition of an appropriate plan
through which the source object can be used to achieve the given purpose
(e.g., drinking hot liquids) is not described. The importance of this latter step
is crucial since minor planning variations can lead to different explanatory
structures. Evaluation of an explanatory network mapped from source to target
depends strongly upon the given domain theory. Axioms of the domain theory
must be a priori sufficient not only for deducing a source explanation but also
for justifying that explanation when mapped into the target. Justification is an
evaluative process which, as described, must either deduce an appropriate
target explanation (as mapped or newly created) or find alternative plan steps.
Thus, the results of analogical inference could also be inferred from the
existing domain theory. At a pragmatic level, the utility of analogy for learning
becomes an empirical question. Learning efficiency or concept quality might be
compared with other learning techniques. At a theoretical level, there is an
issue of whether learning occurs since every inference (analogical or otherwise)
is derivable from existing knowledge (e.g., compare with Greiner's [41]
"unknown" restriction).

7. Analogical Reasoning in Review

The studies reviewed in preceding sections each make contributions to a
computational account of analogical reasoning. In this section, these contribu-
tions are examined within each component of the abstract process model used
as a guide for detailed reviews. These include:

(1) recognition of an analogous source,
(2) elaboration of an analogical mapping between source and target,
(3) evaluation of the elaborated analogy,
(4) consolidation of information generated while using an analogy.
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From a computational perspective, each process presents a number of prob-
lems. Comparisons drawn in this section examine the range of solutions offered
by computational studies and identi fy common approaches to basic problems in
analogical reasoning. Appendices A and Β summarize detailed reviews within
each process component and provide a reference for comparative sections.

7.1. Recognition of a candidate analogy

Given an unfami l iar situation (the target), how does a reasoner connect this
new situation with one or more fami l iar s i tuations (sources) contained in a
store of previous experience? From a computational perspective, search is
implicated and an organization is usua l ly imposed on the store of previous
experience to help constrain search for a candidate source. From a cognitive
perspective, a reasoner attends to f a m i l i a r aspects of the target and uses these
aspects to retrieve appropriate experiences from memory. By allowing partial
similarity between target and candidate sources, a central problem of recogni-
tion is to impose constraints on the retrieval process but sti l l allow recognition
of analogically related sources. For example, strict organizational criteria that
suppress tenuously related candidates might not allow recognition of relatively
abstract inter-domain analogies. In the following comparison, computational
approaches to recognition are organized around increasingly elaborate organi-
zational constraints.

The most effective but least ambitious solution to constraining recognition is
to give the reasoner a source analog. Some studies do this as a s implifying
assumption (e.g., Evans [28], Kling [66], or Pirolli and Anderson [93]), whi le
others give a hint about the source and rely on supporting mechanisms to
complete recognition. For example, Kedar-Cabelli [62] gives the learning
purpose, the to-be-learned concept, and a target instance. The system then
selects a prototypical source instance and a plan for using that instance to
achieve the given purpose. Using a similar approach, Greiner [41] gives an
initial mapping (a hint) between source and target concepts, and then finds a
source instantiation and an abstraction for solving it. Both approaches use the
relation of an abstraction (or plan) to a source instance during later stages of
analogical reasoning. Brown's [11] reduction analogies, Winston's [108] simile-
based instruction, and Burstein's [15] integration of mult iple analogical models
each place analogy in a tutorial context. In all three cases, the reasoner uses a
hint and the ongoing tutoring context to recognize salient aspects of the source.
For example, Burstein gives the analogy (e.g., a variable is like a box) and
examples of its use, and CARL retrieves a source abstraction (e.g., a causal
model of containment) to extend the analogy.

Without giving the analogy directly, other source candidates compete for
attention and require an organization that restricts their number. This organi-
zation is generally an indexing scheme that enforces selective retrieval. The
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reviewed studies use three general approaches: nonselective indexing, task-
specific indexing, and task-independent indexing. In each, the question is what
to choose as indices into the store of candidate sources. Choosing an indexing
scheme makes an explicit commitment to the kinds of analogies that can be
recognized.

Nonselective indexing schemes approximate an associative memory for
candidate sources. For example, Becker [9] indexes candidate schemata
through generic concept nodes, while Munyer [85] indexes formulas around
instances of functional containment. Each approach promises extensive search
in a memory with relatively primitive organization. In practice, each applies
additional constraints to the search process: Becker insists that mapped kernels
occur in an appropriate position in the schema, and Munyer requires consistent
formula mappings at either end of a candidate derivation. In both cases,
recognition returns a set of candidate source analogs, and one (or several) are
selected during elaboration and evaluation. For example, Munyer suggests an
agenda control mechanism prioritized by the "degree of certainty" for compet-
ing analogical views.

Task-specific indexing schemes select distinguished elements of the repre-
sentation and make an a priori commitment that these elements predict future
contexts of use for the source. Winston's [109] "classification-exploiting hy-
pothesizing" resembles this scheme, although he mentions using relational
indexing in the bottom-up voting mechanism. His later work [110] indexes
acquires rules by the types of actors, acts, and objects found in their right-hand
sides. Extracting type cues from the target problem, Winston retrieves sources
which make predictions about those types. McDermott [74] uses a similar
strategy when indexing source method productions by types of objects and
actions. As with nonselective approaches, both studies include further con-
straints on recognition. Winston [109] weights his voting scheme in negative
proportion to source concept prevalence and in positive proportion to the
contextual salience of the target concept. McDermott, on the other hand,
generates taxonomic variants of the target cue to make contact with method
indices. In each case, differential focus on target elements refines cue extrac-
tion, allowing the reasoner to influence the recognition process by manipulat-
ing elements of the target description. Although task-specific indexing and cue
extraction prove effective for the problems solved in these studies (e.g.,
painting or washing tables), these methods may not extend across more
heterogeneous tasks and may not recognize more abstract analogical similarity
between target and source domains.

Task-independent indexing schemes select more abstract representational
elements for indices that organize memory. Carbonell's [16, 17] "invariance
hierarchy" over semantic categories is an example of this approach. Examining
metaphors and analogies in different domains, Carbonell ranks semantic
categories by decreasing order of invariant transfer. The resulting hierarchy
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specifies that goals, plans, and causal structure are usually preserved in an
analogical mapping. Carbonell argues that this invariant hierarchy is important
for recognizing analogies since memory can be organized around (i.e., indices
are based on) precisely the knowledge structures that are likely to transfer
without variation when reasoning by analogy. Thus, recognition proceeds by
extracting goals, plans, or causal structure from the target and using these as
indices into a memory for candidate sources. For example, Carbonell [18]
organizes a memory for solution sequences in ARIES around state descriptions
(initial and goal states) and constraints, and then uses a similarity metric based
on the same information to select among recognized candidates. Dyer also [261
uses this indexing scheme to organize memory around instances of planning
failures (TAUs). Planning difficulties in a target narrative serve as retrieval cues
for recognizing adages and analogous narrative episodes. Likewise, Simpson
[103] recognizes analogous cases by comparing a target description with
generalized episodes in a memory organized hierarchically around problem
types and planning information. Traversing indices in episodic memory struc-
tures guides the recognition process through increasingly specific comparisons
ending with retrieval of candidate cases. By indexing and retrieving over
task-independent semantic categories, these approaches can support recogni-
tion and retrieval of genuinely novel metaphors or analogies.

Of these three indexing schemes, the task-independent approach might be
preferred since it anticipates retrieval of useful source candidates and clearly
allows recognition of analogies where target and source content are markedly
different (e.g., choosing a restaurant and scheduling a meeting, as discussed in
the section on Dyer's work). Also, as argued by Schank [99], Dyer [26], and
Kolodner [67, 68], these approaches appear consistent with human studies of
episodic memory organization and retrieval. On the other hand, task-indepen-
dent indexing schemes could make overly strong a priori commitments to the
utility of source situations, preventing access in some useful but unexpected
contexts. This is especially true when the target is completely novel, since the
reasoncr may -not be able to extract cues required for recognition of a useful
analogy from a memory organized around abstract semantic categories. Evi-
dence from studies of human analogical access [35] suggests that recognizing an
analogical source may depend on different principles than those that determine
elaboration and evaluation. At present, it seems likely that analogical retrieval
depends on interactions between several factors: what the reasoner attends to
in the target situation, what is available in the store of source experiences, and
the degree to which the reasoning context during recognition matches the
encoding context for a stored source. These tradeoffs are open research
questions for computational studies. As psychological models of memory
organization and retrieval become more explicit, computational approaches to
recognition may benefit; the converse may also be true.
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7.2. Elaboration of an analogical mapping

Among the four processing components of analogical reasoning reviewed in
this paper, elaboration receives the largest share of attention. As with recogni-
tion of a candidate source, elaboration addresses a general problem: finding an
analogical mapping between elements of target and source domains. The
mapping shapes and, in some cases is shaped by, the specific kinds of
information that can be transferred between domains. For example, when
McDermutt [75] tentatively identifies a method for achieving a current goal
(e.g., using a method for painting to wash an object), the mapping between
these situations (washing and painting) depends on the mutability of antece-
dent conditions for painting against the conditions of washing. Thus, elabora-
tion and evaluation processes are often intertwined. Elaboration incrementally
extends a mapping between target and source domains that supports transfer of
analogical inferences, and the effectiveness of these extensions are subject to
evaluation. As possible, however, evaluation will be discussed separately in a
later section.

Elaboration of a mapping between domains must start somewhere. For
example, Winston [113] begins by mapping compatible relations and then
scores the fit of the surrounding structures according to their relative import-
ance. In contrast, Dyer [26] starts with abstract relational information about
planning failures and conducts a top-down elaboration of the mapping between
narrative episodes. In each case, elaboration starts with a partial mapping
uncovered during recognition. This initial mapping is established when an
effective larget retrieval cue contacts elements in a candidate source.

7.2.1. Constraints on analogical mapping

Constraints on an analogical mapping can either be independent of interaction
between source and target domains or come about by an evaluative comparison
of these domains. Comparative constraints are considered later under the
evaluation of an analogical mapping. In this section, approaches to defining
and using independent constraints are compared as alternative preferences for
what to preserve in the analogical mapping. The general problem of elabora-
tion is to restrict the enormous space of possible mappings between source and
target to a smaller space of plausible or useful mappings.

One obvious constraint is to use an existing analogy mapping or a consistent
extension of an existing mapping. Winston's [108] preference for existing
transfer frames is an example of the former, while Brown's [11] extension of a
reduction analogy is an example of the latter. Extensions are consistent when
existing associations are not violated and added associations obey any
a priori restrictions on the kinds of mapping allowed (e.g., predicates are
mapped one-to-one in Kling's ZORBA-I [66]). To re-use or extend a mapping,
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it must be found in the first place. This leads to independent mapping
constraints.

In the reviewed studies, independent constraints can be organized into three
classes: preserve the relational structure of the source description, preserve
semantic categories determined a priori, and preserve material relevant within
a surrounding reasoning context. Each constraint class introduces preferences
that restrict the elaboration of an analogical mapping.

The first class of preferences considers representations of the source and
target, asking what aspects of those representations should be preserved. The
most general approach, as evident in many studies, is to preserve the relational
structure of the source representation. For example, Brown [11] maps predi-
cates from source to target domains only if those predicates have the same type
and their arguments have a type-compatible mapping. With similar effect,
Munyer [85] uses a bottom-up approach in which local maps between argu-
ments compete to reinforce predicate mappings higher in the representational
network. In both cases, the relational structure of a source representation is
preserved in the analogy mapping if a corresponding structure can be found in
the target representation. This approach is also found in algorithms for
computing inductive summaries over instances (e.g., Hayes-Roth [48]) and has
been studied systematically by Falkenhainer [29, 30]u as a computational
realization of Centner's structure-mapping theory [34].

The second class of preferences focuses on semantic categories of source and
target knowledge, asking what semantic structures are commonly preserved in
analogies and metaphors. These preferences range from task-specific restric-
tions to preserving more general informational categories in the analogical
mapping. Evans' [28] restriction of a one-to-one mapping of rule components
and Pirolli and Anderson's [93] compilation of mapping rules are examples of
task-specific semantic preferences. Winston's promotion of salient source prop-
erties when comprehending similes [108] or his preference for salient relations
(e.g., cause or enablement relations) in importance-dominated matching [109]
are intermediate along this continuum. Carbonell's invariance hierarchy [16,
17] and Simpson's use of that hierarchy to organize memory and direct
elaboration [103] are examples of the most general preference for semantic
categories. Whereas the first class of mapping preferences preserve relational
structure in source and target descriptions, this class promotes semantic
categories deemed important for the analogy a priori. Relational structure and
important semantic categories may overlap, and we return to this issue in a
moment.

The third class of preferences focuses on the contextual relevance of mapped
material, asking which relational or semantic structures to preserve within the

"Their structure-mapping algorithm also rewards candidate mappings whicli support analogical
inferences.
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current reasoning context. Since an arbitrarily large collection of facts might be
known of the source or target, some mechanism must focus on those facts
which are important at the moment. Contextual relevance is a broad concept,
and takes different forms in the studies reviewed here. For example, Burstein
[15] uses a tutorial context to select among alternative relational abstractions in
the source domain. Also arguing for contextual constraints, Keclar-Cabelli [62]
uses a to-be-learned concept and its stated purpose (e.g., drinking hot liquids)
to focus elaboration on explanatory inferences used with a source instance of
the concept. Perhaps the strongest adherent to contextual relevance, Hobbs
[51] argues that resolving discourse problems in context finds a coherent
metaphorical interpretation.

In isolation, these three preference classes for elaborating an analogical
mapping may seem incompatible. For example, relying solely on a preference
for preserving semantic categories, a reasoner might attempt to map isolated
and potentially irrelevant source goals, plans, or causal relations. These could
be suppressed by a mapping strategy that preferred maximally coherent (or
"systematic" [34]) relational structures. In contrast, relying solely on a prefer-
ence for relational structure, a reasoner might fail to map attribute-level
information that is critical for achieving some goal. These and other arguments
are levelled in detail by Holyoak [55] and Gentner [36] and are relevant for
computational research.

From an integrative viewpoint, constraints provided by all three preference
classes contribute to processes of analogical reasoning. When recognition and
evaluation are considered as pre- and post-processes to elaboration, many of
the more strident contrasts bctsvecn these approaches fall away. For example,
contextual constraints on recognition help to restrict the relational structures
available for mapping, while evaluation processes give a posteriori force to a
preference for semantic categories. Since these categories tend to be repre-
sented as higher-order relational structures, the more parsimonious preference
for preserving relational structure within elaboration may be a tenable ap-
proach, provided that contextual and semantic constraints surround the map-
ping process.

7.2.2. Varieties of analogical inference

Comparing different approaches to analogy, elaboration of a mapping between
target and source domains is clearly a process of varying complexity. In some
studies, finding a mapping between target and source descriptions directly
achieves the purpose of the analogy. For example, Evans' [28] ANALOGY
system generates a set of generalized rule candidates, choosing the one that
best preserves a one-to-one, type-consistent mapping between source figures.
Similar descriptions apply to most psychological studies of proportional analog-
ies (e.g., [104]) and comparison-based theories of metaphor comprehension
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(e.g., [73]). In contrast, other studies describe elaboration as an active,
incremental process. For example, Carbonell [18, 20] starts with a partial
mapping over problem specifications (e.g., states and constraints) and then
enters a complicated search space of plan transformations or replayed deriva-
tional steps to find a solution for the target problem. The repairs described by
McDermott [75] and Burstein [15] or the justification for a new case described
by Kedar-Cabelli [62] suggest similar complexity when elaborating an effective
analogy.

Simple, relatively homogeneous correspondence as an end in itself supports
a limited view of analogy: analogical comparisons finds a mapping which
renders two superficially dissimilar situations vir tually identical. In this view,
the real work of analogy is in elaborating a consistent mapping, and analogical
inference is either missing or given a limited role. In contrast, more complex
views of elaboration see analogy as an open-ended, experimental process. An
elaborated mapping supports analogical inferences from a well-understood
source domain into a less familiar target domain. These inferences are hypoth-
eses that must be verified in the target domain, giving rise to an experimental
interplay between elaboration and evaluation.

7.3. Evaluation of the analogy

As in elaboration, selecting and using constraints provides the central story line
for evaluation. Assuming that elaboration incrementally proposes extensions to
a mapping between source and target domains, evaluation examines the
plausibility of these extensions in the target domain. From a cognitive perspec-
tive, Centner's [34] description of the soundness of an analogical mapping and
Holyoak's [54] distinction between structure-preserving and structure-violating
differences address the same evaluative concerns. Map extensions between
known elements of source and target domains are largely covered by con-
straints discussed in the previous section. However, map extensions that
propose unknown target elements (i.e., analogical inferences) are verified by
evaluative processes discussed here. In addition, global evaluative feedback is
needed to determine whether resources used for analogical reasoning might
better be devoted to alternative problem solving techniques. For example,
Carbonell [20] describes a perseverance threshold that detects a fruitless
analogy and directs the problem solver to fall back on alternative techniques
(e.g., weak search methods). Munyer [85] argues for similar global evaluation
by estimating the degree of certainty in the current analogical mapping. In
contrast, Simpson [103] recursively invokes case-based reasoning to remediate
global failures in analogical problem solving.

As described in the previous section, constraints when target and source are
considered independently are distinct from constraints that arise through
domain "interaction." Source and target domains interact when the analogical
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mapping is used to transfer inferences and supporting material from source to
target. In evaluation processes, interactive constraints are of central import-
ance. As with other analogy processes, there are diverse proposals for identify-
ing and using interactive constraints. This diversity focuses on two problems:
how to confirm inferences extended from source to target and how to repair
inappropriate extensions. Obviously, these problems are not easily separable as
exclusive concerns of evaluation. Instead, elaboration and evaluation are
interdependent processes that both operate on an analogical mapping. In a
figurative sense, this mapping provides a bridge between source and target
domains [91]. Confirmation of information transferred over this bridge and
repair of its structure in the face of an incomplete or inappropriate mapping
are managed by elaborative and evaluative processes working together. What
results should be relevant within the reasoning context.

7.3.1. Confirming analogical inferences

In the reviewed studies, two approaches are used to evaluate analogical
inferences extended from the source to the target domain. Inferences are
tested for validly or usefulness in the target domain, or the reasoner attempts
to establish a justification for inferences about the target domain which mirrors
their justification in the source domain. These approaches are identical in their
attempt to validly instantiate knowledge extended across domains, but re-using
a justification provides added constraints on what to consider as supporting
source information.

The plausibility of analogical inferences can be confirmed by consulting
prototypical expectations of the target domain or verifying the usefulness of
inferences in some ongoing reasoning process. In either case, evaluation tests
predictions about the target domain. As an example of confirmation using
target expectations, Winston [108J "filters" inferred target properties by check-
ing that they fill slots or have values found in a "typical" target instance. In
Winston's later work [110], abductive reasoning verifies an analogical inference
when its consequences are known in the target domain or provided by a tutor.
In both cases, existing knowledge of the target is used to confirm predictions
from the source domain.

More ambitious evaluative strategies weigh the problem solving utility of
analogical inferences. For example, Carbonell's [18] transformational analogy
mechanism uses a similari ty metric to select T-operators which incrementally
transform a source solution sequence into a target solution sequence. Features
used in this metric (e.g., comparisons of states or path constraints) encode
knowledge of desirable or undesirable solution forms in the target domain. In a
more general deductive framework, Greiner's [41] NLAG must prove that an
analogical conjecture is useful for solving the target problem. As an alternative
to task-specific knowledge of the target domain, Burstein [15] uses critical
interactions between CARL and a tutor to collect feedback on analogy-driven
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solutions that includes corrections for wrong answers. In each approach, the
success of an analogical inference in reaching a target solution is used to
evaluate the analogy.

Taken in isolation, a fact or action suggested by an analogical inference may
be plausible, but the reasons supporting that fact in the source domain may not
be plausible when evaluated in the target domain. A common solution is to
map source justifications for analogical inferences into the target domain and
then to establish their validity. A justification gives a representational descrip-
tion of the "reasons" which support an inference or action in some domain.
Becker [9] gives an early example of this approach by collecting facts which
justify a "motivated" analogical mapping. The motivation is to apply a schema
in his prediction paradigm, and justifying facts are unmapped source kernels in
either side of the schema (e.g., antecedent kernels in a forward application).
Somewhat more direct, Winston's [108] justification frames explicitly capture
those aspects of a target description which must be present for a known
analogy (i.e., a transfer frame) to be useful. For example, a justification frame
for an analogy between a table and a cube to be used for a common purpose
(e.g., to eat or write) might record that both target and source objects must be
of medium size, have a flat top, and be level. Using functional justifications is
extended by Winston et al. [112] and used to good purpose by Kedar-Cabelli
[62]. In purpose-directed analogy, an explanatory justification generated in the
source domain (e.g., the structural reasons why a ceramic cup can be used to
drink hot liquids) both confirms and constrains analogous reasoning in the
target.

Replaying justifications is central to some computational studies of analogy.
For example, Brown [11] represents plan justifications as collections of asser-
tions which relate steps in a solution plan to facts about the task domain found
in a goal description. After generating a justified source solution, these
assertions must be confirmed when the candidate solution is "inverse-mapped"
into the target domain. If justifications cannot be confirmed, further elabora-
tion of the existing analogy or introduction of a new analogy are attempted.
Carbonell's derivational analogy method [20] also replays justifications, stored
as part of a derivational trace of decisions made when solving a source problem
(e.g., programming quicksort in PASCAL). Given an analogous target problem
(e.g., programming quicksort in LISP), the reasons for choosing among actions
in the source derivation must be confirmed or replaced by alternative reasons
for the derivational analogy to succeed."

"Replaying derivational traces (including justifications for decision points) is also a going
concern in software engineering [100, 106J, where the goal is to re-use a history of program
development. Mostow [84] describes problems with this approach from a machine learning
perspective, and Dershowitz [24] explores program modification and abstraction by analogy.
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7.3.2. Repairing a faulty analogical extension

In addition to confirming or justifying analogical inferences, many computa-
tional approaches consider how to recover when an extension of the mapping
between domains fails. The specific nature of recovery depends, of course, on
the seriousness of failure. Improperly instantiating transferred information
generally requires less extensive repair, while inappropriately transferred infor-
mation requires further reasoning or abandoning the foundering analogy.

In McDermott's ANA [75], repairing mutable precondition failures helps to
instantiate transferred planning information. ANA has trouble using an analogy
when it generates inappropriate subgoals, transfers insufficient constraints, or
transfers unnecessary constraints. Problems are detected when actions are
attempted in the paint shop environment and fail or produce unexpected
results. Repair depends on a combination of background knowledge about
what types of entities can participate in known methods and direct feedback
from the user. For example, loading a spraying machine with paint when the
goal is to wash an object is repaired by substituting water for paint. Under-
specification of transferred methods can lead to planning failures like stacking
too many objects in a constrained area. These failures are repaired by
generating additional subgoals which transform problematic but mutable as-
pects of the plan through known methods (e.g., removing an object from a
crowded area) or advice from the task master. Finally, difficulties with over-
specified plans (e.g., moving an obstructing object to a distant location when
a closer location suffices) are repaired by asking the task master which con-
straints are unnecessary. In some respects, McDermott's approach to repair is
a task-specific precursor to Carbonell's transformational analogy method [18].

A number of studies use multiple analogies to repair inappropriate analog-
ical inferences. For example, Burstein's [15] CARL integrates multiple analog-
ical models (e.g., physical containment and human memory) to repair incorrect
predictions about simple assignment statements. Among the variety of studies
using GRAPES simulations, Anderson et al. [3] also model problem solving
sessions in which the tutor presents a simplifying example to help repair
incorrectly transferred LISP code. In both cases, errors from inappropriate
analogical inferences are repaired by introducing additional analogies. These
must be integrated with the original analogy. In related psychological studies,
Clement [23] describes how expert problem solvers in physics use intermediate
"bridging analogies" to help elaborate an analogical mapping between a target
problem and a troublesome analogical source. Each approach is computation-
ally relevant and psychologically plausible, but integrating multiple analogies
may introduce other difficulties. Multiple analogies, possibly at differing levels
of abstraction, must be combined into a usable concept, avoiding what Halasz
and Moran characterize as a "baroque collection of special-purpose models"
[45, p. 34j.
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In summary, analogical inferences must be treated, at best, as tentative
hypotheses supported by a partial mapping between source and target do-
mains. Domain interactions during evaluation confirm and repair analogical
inferences extended during elaboration. Evaluation occurs at many levels:
testing analogical predictions against expectations of what is typical of the
target domain, verifying the utili ty of analogical inferences in some reasoning
context, replaying justifications for analogical inferences in the target domain,
and repairing inappropriate analogical inferences. As a result of the evaluation
process, parts of the analogical mapping may be changed or deleted, multiple
analogies may be combined to suggest new hypotheses about the target
domain, or the original analogy may be abandoned altogether in favor of an
alternate line of reasoning.

7.4. Consolidation of analogical reasoning

Recognition, elaboration and evaluation result in a mapping between target
and source domains that supports verified analogical inferences. "Learning by
analogy" considers how to consolidate these materials to improve future
reasoning performance in these or similar domains. Most studies consider
learning when analogies succeed, although learning opportunities also arise
when analogies fail.

7.4.1. Varieties of analogical learning

The simplest form of consolidation directly records information successfully
transferred from source to target domain. Of the reviewed studies that address
consolidation, most perform this simple form of learning. For example,
McDermott [75] and Pirolli and Anderson [93] record specific target produc-
tions; Hobbs [52] creates and extends a target schema; Winston [109, 110]
records successful target cases; and Greiner [41] augments the starting theory
with useful target conjectures. In each approach, learned material is strongly
context-specific with little or no generalization. When facing a new task which
is identical to an earlier success, the earlier solution is applied directly without
resorting to more costly inference mechanisms. Although this simple learning
scheme might seem limited, when coupled with powerful recognition and
elaboration processes, it could achieve incremental performance improvements
as the collection of source candidates provides wider domain coverage.

A more ambitious form of consolidation stores a successful analogical
mapping for later use under similar circumstances. This strategy stores the
process of analogical reasoning in the hope that elaboration and evaluation can
be reused or extended without further effort. For example, Winston [108]
stores transfer and justification frames. When reasoning about new similes,
recognition first attempts to reuse an acquired transfer frame if related
justification frames can be verified for the target. Using a similar approach,
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Pirolli and Anderson [93] acquire task-specific mapping productions which
supplant portions of later elaboration attempts. Other studies save the analog-
ical mapping for the duration of an instructional context. For example, Brown
[11] and Burstein [15] incrementally extend and repair a mapping as new tasks
or feedback are given by a tutor. Although this may seem a matter of technical
convenience, analogical reasoning is often an explicit component of tutorial
interactions, and computational techniques for managing analogical com-
parisons (e.g., diagnosis or direct manipulation) can provide useful instruction-
al or experimental tools.

To acquire knowledge with wider applicability, many studies form inductive
summaries over target and source materials. Becker [9], Winston [110, 114],
and Pirolli and Anderson [93] acquire generalized rules which consolidate
inferences common to target and source. Becker's learner refines schemata
through experience with a reactive environment; Winston's learner forms rules
and censors from a series of predictive tasks presented by a tutor; and Pirolli's
learner compiles analogical comparisons of declarative material into produc-
tions. Other studies use inductive mechanisms to form more complex plans or
problem solving derivations common to target and source domains. For
example, Carbonell [18, 20] consolidates successful transformational analogies
into generalized solution sequences and derivational analogies into generalized
plans and search heuristics. Similarly, Burstein [15] argues for concept forma-
tion through analogies supported at varying levels of abstraction (e.g., causal
inferences and plan steps) but includes learning from multiple analogical
sources that cover different aspects of the target problem.

While consolidation processes discussed above record materials uncovered
during successful analogical reasoning, learning opportunities also exist when
analogy fails. For example, McDermott [75] and Simpson [103] record unsuc-
cessful analogical inferences (e.g., inaccurate problem classification or inap-
propriate subgoals) and their resolution, and later recognize these materials in
similar problem solving contexts. McDermott uses failures to help select among
candidate source analogies and to divert ANA from pursuing inappropriate
subgoals, while Simpson treats failure remediation as another case-based
problem solving task. Rather than changing or updating domains, Carbonell
[18] changes recognition and evaluation mechanisms by using information
obtained during failures. When recognition fails to suggest any candidate
analogies, alternate problem solving methods may reach a solution. A post-
mortem analysis can suggest that the new solution is similar to a previously
known problem solution. In this case, Carbonell generalizes the similarity
metric so that source solutions will be recognized in the future. Likewise, if a
recognized analogy fails to produce a solution, the similarity metric is special-
ized to suppress false recognition in the future. Similar learning strategies tune
the enablement conditions of transformation operators which are not recog-
nized as applicable or fail once they are recognized.
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7.4.2. Analogy in machine learning

The reviewed studies present a variety of mechanisms for "learning by
analogy." These include recording target materials imported by analogical
inference, recording the structure of the analogy, recording generalized rules
or plans which capture common aspects of target and source domains, and
altering various constraints on analogy processes. However, taking a wider
comparative perspective we might ask how learning by analogy compares with
existing approaches to machine learning?

Overviews of machine learning usually differentiate learning strategies along
inversely related dimensions: the complexity of inferences required of the
learner versus the amount of guidance supplied by the environment [21, 25,
77]. Since the learner is knowledgeable about the source and analogically infers
target information, learning by analogy is generally thought to require a less
complex inference mechanism than learning from examples. In this view, the
analogy generates a target example, and an inductive summary over target and
source is found using techniques for learning from examples. On the other
hand, when the learner recognizes the analogical source without assistance,
learning by analogy may require less external guidance than learning from
examples [25]. In this view, recognition of an analogous source provides an
attentional function common to learning from observation or discovery. The
learner actively selects which concept is being learned, the instances used to
refine its summarization, and interpretations of those instances. The actual
inductive summary for a chosen concept (in isolation) could again be achieved
using techniques appropriate for learning from examples, although storing the
refined concept with other concepts requires a strategy for memory organiza-
tion and update.

In the reviewed studies, consolidation mechanisms do not introduce new
techniques for inducing instance summaries. Instead, analogy provides an
organizational framework for existing machine learning techniques. Recogniz-
ing analogies in a reasoning context (e.g., planning in McDermott's paint shop
[75]) overlaps with issues in observational learning; elaborating an analogical
mapping between source and target anticipates (e.g., as suggested by Munyer
[85]) inductive summarization techniques in learning from examples; evaluat-
ing analogical inferences about the target domain resembles experimental
aspects of discovery learning; and consolidation of confirmed or disconfirmed
analogical inferences uses inductive summarization and memory integration
techniques common to various machine learning strategies.

7.4.3. The role of analogy in learning

Approaches to learning by analogy mirror the techniques and difficulties of
existing machine learning strategies. However, a more general question is what
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role docs analogy play in learning? When the question is asked of machine
learners, the answer might draw on empirical or theoretical demonstration.
When the question is asked of human learners, however, the answer rests upon
demonstrations of what learners can do and explanations of those capacities. In
practice, analogy in machine and human learning are closely related when
designed artifacts reflect common analogies (e.g., iconic realizations of the
desktop metaphor [22,58]) or actively attempt to teach human learners
[4,105]. An exploration of this relationship is beyond the scope of this paper.
However, the reviewed studies provide contrasting perspectives on when
analogies are important for learning and what kind of analogies are either
accessible or useful.

Studying spontaneously recognized analogies to past examples, Pirolli and
Anderson [93] report that analogy is frequent in the early stages of learning
about a domain, is limited by students' generally poor memory for previous
examples, and is highly sensitive to the contents of the analogous source (also
see Anderson [1]). Analogical comparisons with recently encountered material
(e.g., a worked example) are quickly compiled into generalized productions,
and these productions mirror appropriate or irrelevant content in the source
material. In combination, these observations lead to a cautionary pedagogical
approach to learning by analogy: abstract models of the target competence are
directly taught (e.g., a strategic description of writing recursive functions),
while specific examples alone arc avoided (e.g., a recursive definition of
factorial).

Burstein's [15] study of using multiple analogical models in early skill
acquisition contrasts with this view in several ways. Although analogy in early
learning is frequent in both accounts, Burstein reports that novices integrate
analogical inferences from source abstractions in widely different domains. He
also assumes that the learner understands and remembers relevant information
about several analogical sources, and that the target problem and surrounding
tutorial context will focus reasoning on appropriate analogical inferences.
Finally, Burstein's work suggests a somewhat longer-lived role for analogy in
learning. Each analogy persists across an ongoing tutoring session, is extended
as neeHcd, and can be repaired when analogical predictions fail.

These viewpoints on the role of analogy in learning may not be incompat-
ible. For example, Pirolli and Anderson's suggestion for teaching abstract
models which become sources for analogical comparison may correspond to
Burstein's focus on existing domain abstractions (e.g., causal abstractions for
containment). Conversely, Burstein's extended elaboration and repair of the
analogical mapping could be modeled by repeating structural analogies with
the same source and using discrimination learning mechanisms to refine
compiled productions [5]. Whether analogy is limited to early stages of learning
is also open to debate. Kolodner et al. [69] argue that case-based reasoning is
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common to both novices and experts across task domains. In contrast, Forbus
and Gentner [32] argue that early learning about physical domains is domi-
nated by surface-level similarity. True analogies appear during later stages of
learning when the relational structure of the domain is more easily analyzed.

8. Conclusion

After reviewing computational studies of analogy by task domain and then
comparing their contributions to basic process components of analogy, we can
conclude by asking what progress has been achieved towards these ends in the
past twenty years. Reviewing Evans' thesis shortly after completion, Minsky
[81] writes:

. . . it is becoming clear that analogical reasoning itself can be an
important tool for expanding artificial intelligence. I believe it will
eventually be possible for programs, by resorting to analogical
reasoning, to apply the experience they have gained from solving
one kind of problem to the solution of quite different problems.
[81, p. 251]

Eventually, robust computational mechanisms for reasoning by analogy may
appear. Over twenty years after Evans' thesis, however, reasoning about a new
situation by effectively using a previous experience is still a difficult problem.
Computational studies of analogy have reached a sort of adolescence: explor-
ing the structure of the problem, offering partial solutions in some areas, and
identifying difficult questions in others. The research reviewed in this paper
expands our appreciation for the complexities of analogy by posing the
"problem" as a diversified set of interrelated problems, each providing its own
challenge.

8.1. Problems and solutions for analogical reasoning

Process components of recognition, elaboration, evaluation and consolidation
developed and discussed in preceding sections not only reflect the academic
topography of work done in artificial intelligence and related disciplines, but
these components also organize continuing research problems and proposed
solutions. Table 4 presents problems, proposed solutions, and citations to
exemplary studies drawn from the comparative analysis of the preceding
section.

Most work on analogical reasoning from a computational perspective addres-
ses elaboration and evaluation, and alternative approaches to these problems
can be clearly distinguished. Preferences for analogical mappings that preserve
distinguished representational classes or contextually-relevant material con-
strain elaboration, while interactive constraints on confirmation, repair, and
global monitoring of analogical inferences guide evaluation. As described in
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Table 4
Problems and solutions across process components of analogical reasoning

Recognition
Problem: Given a target and a store of sources, find a manageable but promising set of candidates.
Solutions: (1) Give the source as a simplification [66] or in a tutorial context [15].

(2) Organize the store of sources around an indexing scheme.
(a) nonselective indexing [9],
(b) task-specific indexing [HO],
(c) task-independent indexing [26].

Elaboration
Problem: Given target, source, and mapping preferences, find a mapping and analogical inferences.
Solutions: (1) Use an existing analogy map [108].

(2) Prefer analogical mappings which:
(a) preserve relational structure [85],
(b) preserve semantic categories [103],
(c) preserve contextual relevance [62].

Evaluation
Problem: Given a mapping, analogical inferences, and a reasoning context, evaluate the analogy.
Solutions: (1) Confirm analogical inferences:

(a) test predictions against target domain knowledge [108],
(b) weigh the u t i l i t y of inferences in context [41],
(c) replay a justification in the target domain [2(1].

(2) Repair faulty analogical inferences:
(a) post failures as subgoals [75],
(b) integrate multiple analogies [15].

(3) Monitor global progress:
(a) heuristic thresholding [85],
(b) treat failure as new problem [103].

Consolidation
Problem: Given a target, source, and evaluated analogical inferences, consolidate these to improve

future performance.
Solutions: (1) Record the target and outcome [75].

(2) Record the analogical mapping [108].
(3) Record an inductive summary:

(a) induce rules [114],
(b) induce plan schemata [18].

(4) Learn from failures:
(a) record the failure to anticipate it later [75].
(b) record the failure remediation [103],
(c) refine analogy mechanisms [18].

the preceding comparative analysis, these processes are strongly interdepen-
dent. In contrast, recognizing candidate analogs and consolidating information
generated during their use have received less attention. However, differing
approaches are also evident: alternative indexing schemes for organizing
candidate sources constrain recognition, while a variety of analogically derived
materials are learned during consolidation. Juxtaposed, these processes present
a basic tension: recognizing analogies anticipates plausible inductive summari-
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zation, while consolidating confirmed analogical mappings attempts to predict
future contexts of use.

Rather than solving basic problems in analogical reasoning, these approaches
offer partial solutions, proposals, or refinements of larger problems. For
example, replaying justifications for plan-level analogical inferences [10, 20, 62]
refines the problem of elaborating and evaluating inferences at one level into a
comparable problem at a lower level. For each analogy process component, the
most ambitious and possibly most promising computational approaches have
yet to be fully developed, implemented, or tested. Instead, implementations
usually demonstrate carefully crafted solutions to isolated problems. Problems
of scale and generality apply almost uniformly across the reviewed studies. This
is less a criticism than an invitation to further analytical and empirical work.

8.2. Prospectus: Analogy in a computational adolescence

One explanation for the adolescence of computational research on analogy is
that analogical processes are second-order phenomena which depend on a
detailed understanding of first-order phenomena for a comparative demonstra-
tion of progress. For example, it is difficult to adequately specify a theory of
analogical problem solving without having a robust theory of the problem
solving activities that analogy will use. Many of the reviewed studies adopt this
view, embedding analogy processes within more traditional problem solving
frameworks [18, 20, 41, 66, 74, 85, 93]. To the extent thai these first-order
frameworks provide a plausible basis for comparison, we can ask whether
analogy provides solutions to problems that could not otherwise be solved or
that could not be solved efficiently within the first order framework. Although
these kinds of comparisons are sensitive to how source and target domains are
encoded, some initial results are encouraging. For example, Greiner [41]
demonstrates that analogically reusing abstractions (or constituent relations)
outperforms conventional proof techniques and that a variety of additional
heuristic constraints on analogy further improve performance.

Another explanation is that computational approaches to analogy are simply
in the middle of a healthy adolescence: solutions to difficult problems mature
slowly. As mentioned in the introduction, studies of analogy have a long
history in other disciplines. Recognition of analogies poses challenging ques-
tions about memory organization and use, whether by machines or human
reasoners. Elaboration and evaluation of a candidate analogy must focus
attention among the myriad details of stored experience and control problem
solving resources that use this experience. From both pragmatic and theoretical
perspectives, it is important to avoid trading the costs of "weak methods"
against a comparable or greater burden of determining the applicability of
everything a reasoner knows when facing a new problem. Making this tradeoff
is the essential problem of analogy: ". . . the means by which we bring our past
to bear on our future so as to permit us to profit by our experience without
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being saddled with it" [101, p. 111]. Consolidating the results of analogical
reasoning returns to problems of memory organization and questions how we
can learn anything that is genuinely new, short of rote-memorization [91],
These are difficult but exciting problems in the study of intelligence. Although
computational approaches to analogy are relative newcomers, they offer a
fresh empirical methodology to existing perspectives and promise both
theoretical and practical contributions of their own.

Appendix Λ. Contributions of individual studies to processes of
recognition and elaboration

Study Recognition Elaboration

Evans [28] given
ANALOGY

Becker [9] associative memory of schemata indexed
JCM by generic concepts

Kling [66] given
ZORBA

Munyer [85] source formulas and derivations indexed
by functional containment

Greiner [43] given a hint, generate a source problem
NLAO and find an abstraction for solving it

Brown [11] source domain given by tutorial context

McDermott manipulate target cues to trigger
ANA [IS] method indices; anticipate method

failures

Carboncll [18] solution paths are indexed by states and
ARIES constraints; a similarity metric screens

candidate source sequences

Carboncll [2()| similar i n i t i a l reasoning triggers retrieval
of a source derivation from dynamic
memory

Simpson [103] collect source rcmindings by traversing
MEDIATOR an episodic memory for plans and

failures; select a source candidate that
preserves an invariance hierarchy

object type and rule components
restrict object and rule mappings;
relational mapping enabled by a
fixed vocabulary of substitutions

kernel predicates map identically;
node mismatch weighted by a linear
combination of salience estimates;
best candidate maximizes matcli score and
schema confidence, minimizes cost

partial mapping over theorem statements is
extended by a type-restricted best-first search

extends unification through bottom-up,
competitive reinforcement of a global
mapping; requires consistent mappings at
boundaries of the source derivation

find a target instance of the abstraction,
inferring residual conjectures as needed

incrementally extend a type-restricted
mapping; map target problem into a
source problem and solve it

map source into existing or "stipulated"
target objects; extend mapping to cover
method subgoals

map source and target sequences

map source and target derivations

mapping is distributed across index
tests; align identical norm slols
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Study Recognition Elaboration

Winston 1108) a simile is given by a tutor or
FOX conjectured by the learner

Hobbs [51] a source schema is triggered by the
DIANA appearance of target predicates

Dyer [26] target planning failures trigger
BORRIS retrieval of a source narrative
MORRIS from dynamic memory

Winston [114] recognize source by botlom-up voting
MACBETH through exhaustive type indexing;

index rules by actors, acts, and objects

Burstein [15] given source domain, a target example and
CARL reasoning context triggers retrieval of a

source abstraction from dynamic memory

Pirolli [93] selects prior example under production
control; spreading activation retrieves
declarative memory structures

Kedar- select a source instance and plan (not
Cabelli [62] described); explain why the source

instance satisfies the purpose

prefer existing transfer frames,
salient properties of the source,
properties that are prototypical
of the target class, or properties that
continue the instructional context

resolution of discourse problems
aligns source and target concepts

map narrative elements through
a common planning abstraction (TAU)

map a priori important relations
before lower level relations

top-down relational mapping includes objects
only as needed; can map non-identical
relations

mapping productions (some are learned)
align code template components

map the source explanation and plan
to the target instance

Appendix 15. Contributions of individual studies to processes of
evaluation and consolidation

Study

Evans [28]
ANALOGY

Becker [9]
JCM

Kling [66]
ZORBA

Munyer [85]

Evaluation

drop unmatched relations and prefer
candidates that preserve most
source relations (A:B)

unmapped source kernels are treated
as subgoals to be confirmed

pass target clauses to a separate
resolution theorem prover

implicit planning uses analogy as an

Consolidation

proposes rule proceduralization
and generalization

store (he target interpretation; weight
adjustments introduce variables, drop
conditions, and estimate a schema's worth

none

record the target derivation; generalize
evaluation function; explicit planning
detects skewed analogies and finds plan
repair steps; both succeed when a
logically valid derivation is found

Greincr [43] verify that inferred facts solve the
NLAG target problem, are consistent with

existing knowledge, and are acceptable
to the user

Brown [11] lift the source solution into the target
domain; confirm transferred justifications,
patching "bugs" as necessary

formulas and derivational sequences;
delete redundant or unsuccessful
derivations

add inferred facts to the domain theory

add successful descriptions, plans,
justifications, and code to the target
domain repertoire
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Study Evaluation Consolidation

McDermolt environment and user feedback confirms

Λ Ν Λ [75] method expectations or signals method

errors; repair by subgoaling on fa i lure
or selecting an alternate method

Carbonell [18] ME A in T-space reduces differences

ARIES between source and target sequences

Carbonell [20| check justifications for source steps

in target description; reconsider

alternative source steps or prior failures;

monitor a perseverance threshold

Simpson [103] verify the source classification and plan

MEDIATOR preconditions in target; confirm plan

predictions wi lh user; remediate failures

Winston [108] check for violations of known target

FOX properties, confirm existing justification

frames, or ask the tutor

Hobbs [51] preserve contextual coherence and
DIANA satisfy pragmatic constraints

Dyer [26] find a coherent interpretation of the;

HORRIS, target narrative; confirm plan-based

MORRIS predictions

Winston [114] analogical inferences are confirmed directly,

MACBETH by further analogies, by abductive

inference, or by the teacher

Burstein [15] discard unsupported inferences;

CARL tutor gives feedback and corrections;
multiple analogies correct misconceptions

Pirolli [93] check inferred components against the

target specification; test target code in
the LISP environment; repair or abandon

the current analogy

Kedar- justify explanatory inferences for target;

Cabelli [62] replace structural attributes or

plan steps as necessary

builds error detection and recovery productions;

adds target instantiation of successful
method productions

store target solution sequence;

generalize operator sequences; tune
similarity metric and difference

table; cluster over T-space failures

update case memory with target solution;

generalize target and source traces;

justification points identify instances

for learning search heuristics; decompose

traces into general plan components

memory update installs, inserts,

and generalizes episodic structures

transfer properties; construct transfer,

justi f ication, and typical-instance frames;

conjecture additional properties

or new similes

target schemata arc extended; metaphors

tire and die with repeated use

augment the target interpretation;

reorganize existing memory structures to

maintain discriminable access to the
target narrative

record the target case; build general

inference rules; augment rules to censor

exceptions; index original case with rule

integrate multiple causal abstractions
in the target domain

proceduralization and composition

build general productions which
supplant structural analogies

find a common explanatory structure
for the refined concept
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