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a b s t r a c t

System-level design space exploration (DSE), which is performed early in the design process, is of emi-
nent importance to the design of complex multi-processor embedded multimedia systems. During sys-
tem-level DSE, system parameters like, e.g., the number and type of processors, and the mapping of
application tasks to architectural resources, are considered. The number of design instances that need
to be evaluated during such DSE to find good design candidates is large, making the DSE process time
consuming. Therefore, pruning techniques are needed to optimize the DSE process, allowing the DSE
search algorithms to either find the design candidates quicker or to spend the same amount of time to
evaluate more design points and thus improve the chance of finding even better candidates. In this arti-
cle, we study several novel approaches that exploit domain knowledge to optimize the DSE search pro-
cess. To this end, we focus on DSE techniques based on genetic algorithms (GA) and introduce two new
extensions to a GA to optimize its search behavior. Experimental results demonstrate that the extended
GAs perform at least as well, but typically significantly better than a reference (non-optimized) GA.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

Advances in chip technology according to Moore’s Law, allow-
ing more and more functionality to be integrated on a single chip,
have led to the emergence of Multi-Processor Systems on Chip
(MPSoCs). Nowadays, these MPSoCs are key to the development
of advanced embedded multimedia systems, such as set-top boxes,
digital televisions, and 3G/4G smart phones. Designers of MPSoC-
based embedded systems are typically faced with conflicting
design requirements regarding performance, flexibility, power
consumption, and cost. As a result, MPSoC-based embedded
systems often have heterogeneous system architectures, consisting
of components that range from fully programmable processor
cores to fully dedicated hardware blocks. Programmable processor
technology is used for realizing flexibility (to support, e.g., multiple
applications and future extensions), while dedicated hardware is
used to optimize designs in time-critical areas and for power and
cost minimization.

The increasing design complexity of these MPSoC-based
embedded systems has led to the emergence of system-level de-
sign. A key ingredient of system-level design is the notion of
high-level modeling and simulation in which the models allow
for capturing the behavior of system components and their interac-
tions at a high level of abstraction. As these high-level models

minimize the modeling effort and are optimized for execution
speed, they can be applied at the early design stages to perform,
for example, design space exploration (DSE). Such early DSE is of
eminent importance as early design choices heavily influence the
success or failure of the final product.

Current DSE efforts typically use simulation or analytical mod-
els to evaluate single design points together with a heuristic search
method to search the design space. These DSE methods usually
search the design space using only a finite number of design-point
evaluations, not guaranteeing to find the absolute optimum in the
design space, but they reduce the design space to a set of design
candidates that meet certain requirements or are close to the opti-
mum with respect to certain objectives. However, the number of
design points that need to be evaluated to find these design candi-
dates is still large, making the DSE process time consuming. There-
fore, it is important to develop pruning techniques that can further
optimize the DSE process, allowing the DSE search algorithms to
either find the design candidates quicker or to spend the same
amount of time to evaluate more design points. The latter can be
used to enable the search of larger design spaces or to improve
the chance of finding better design candidates.

In this article, we study several novel approaches that exploit
domain knowledge to optimize the DSE search process. To this
end, we focus on DSE techniques based on genetic algorithms
(GA) [2,4] and introduce two new extensions to a GA to optimize
its search behavior. One extension aims at reducing the redun-
dancy present in chromosome representations of a GA, while the
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other extension introduces a new crossover operator based on a so-
called mapping distance metric. In addition, we have also investi-
gated the combination of the two extensions. Using a range of
experiments, we demonstrate that the extended GAs perform at
least as well, but typically significantly better than a reference
(non-optimized) GA.

The remainder of this article is organized as follows. In the next
section, we provide more background on system-level DSE of
MPSoCs and describe a number of prerequisites for our work. Sec-
tion 3 presents the two extensions to a GA, exploiting domain
knowledge, to optimize its search behavior. In Section 4, we eval-
uate these GA extensions by comparing their results to those from
a non-optimized reference GA. Section 5 describes related work,
after which Section 6 concludes the article.

2. System-level DSE of MPSoCs

In this article, we focus on application mapping DSE for MPSoCs,
where mapping involves two aspects: (1) allocation and (2) bind-
ing. Allocation deals with selecting the architectural components
in the MPSoC platform architecture that will be involved in the exe-
cution of application workloads. Here, it is important to note that
the allocation process also allows for selecting between different
configurations of a certain type of architectural component, like,
e.g., a specific processor type with different cache configurations.
Subsequently, the binding specifies which application task or appli-
cation communication is performed by which MPSoC component.

The process of mapping DSE for MPSoCs is comprised of two
core ingredients [9]: (1) a method to evaluate a single design point
(i.e., mapping) and, (2) a method to efficiently navigate the map-
ping design space. For the evaluation of single design points, we
deploy the Sesame system-level simulation framework [19,7].
Sesame is targeted at the evaluation of (multimedia) MPSoCs and
allows for rapid performance assessment of different MPSoC archi-
tecture designs, application to architecture mappings, and hard-
ware/software partitionings. Given that design spaces grow
exponentially in the number of parameters, exhaustive search
(evaluating every possible design point) is infeasible. In this article,
we therefore look at methods to navigate the design space that are
based on genetic algorithms (GA). GA-based DSE has been widely
studied in the domain of system-level design (e.g., [9,6,21]) and
has been demonstrated to yield good results.

GAs operate by searching through the solution space where
each possible solution has an encoding as a string-like representa-
tion, often referred to as the chromosome [2]. A (randomly initial-
ized) population of these chromosomes will be iteratively
modified by performing a fixed sequence of actions that are in-
spired by their counterparts from biology: evaluation and selec-
tion, crossover and mutation. A fundamental design choice of a
GA is the genetic representation of the solution space, because
each of the selection, crossover and mutation steps depends on
it. In our case, the problem is finding an optimal design candidate
in a large space of possible design candidates that can be evaluated
with Sesame. More specifically, our design space consists of
parameters that are related to the application-to-architecture
mapping. As a convenient mapping description for an application
with n tasks, we use a vector of size n with processor identifiers
pi, where pi indicates the mapping target of task i:

½p0; . . . ; pi; . . . ; pn"1#

This commonly used description is very suitable to serve as the
chromosome representation (or genotype) for a GA. A valid map-
ping specification is a partitioning of all n tasks. Note that partitions
may be empty (processor not in use) or contain all n tasks (a single
processor system). A processor that is not assigned any tasks

(having an empty task partition) can be considered idle or non-exis-
tent. Here, we assume that there are no functional restrictions on
the processors: all processors can execute all of the tasks (this is
generally true for programmable processors). Moreover, we assume
that each pair of processors can communicate so that there are no
topological communication restrictions. The result is that any task
can be mapped onto any processor so that we do not have to make
special provisions for repairing infeasible mappings. This means
that implementing crossover and mutation operators in the GA will
be relatively easy, since any recombination of such chromosomes
always results in a valid design-point specification. We note, how-
ever, that the methods presented in this article can also be applied
to GA-based DSE approaches that do generate infeasible mappings
(and thus need repair mechanisms for this).

Moreover, in this article, we focus on homogeneous architec-
tures or, alternatively, on the set(s) of homogeneous processing
elements that are often present in heterogeneous MPSoCs. So, this
means that we assume that all processors are the same and a task
incurs the same delays on each processor (except for additional de-
lays caused by interfering tasks mapped onto the same processor).
This condition also includes that the architecture is symmetrical:
other delays from the system that affect the processor (e.g., net-
work delays due to communication, memory delays, task schedul-
ing overhead, etc.) should also be the same for each processor. This
condition holds for many homogeneous architectures, like multi-
processor systems in which all processors are connected to a
central bus with a non-prioritizing arbiter. Addressing system
heterogeneity is considered as future work.

As mentioned before, although GA-based DSE methods search
the design space only using a finite number of design-point evalu-
ations, the number of design points that need to be evaluated to find
good design candidates is still large, making the DSE process time
consuming. Therefore, pruning techniques are needed to further
optimize the DSE process. In the next section, we present two of
such pruning techniques by exploiting domain knowledge in a GA.

3. Pruning by exploiting domain knowledge

3.1. Motivation

As described in the previous section, our DSE addresses the
mapping of application tasks onto architectural resources. The per-
formance of a single design point (i.e., mapping) is heavily influ-
enced by the (communication) dependencies between nodes in
the task-graph and the dependencies that are introduced by shar-
ing of architectural resources. The Sesame simulator captures these
dependencies in its models and the resulting performance evalua-
tion. A small change in the dependencies can, in theory, result in a
completely different performance result. For example, this is the
case when we change the mapping of a single task such that it is
added to or removed from the dependency chain that is part of a
performance bottleneck in that design point.

However, intuitively, we believe that in general most small
changes will not result in a hugely different performance result.
We confirm this hypothesis by checking the correlation of perfor-
mance results for pairs of design points. First, a random set of de-
sign points is created, after which we mutate each chromosome in
x positions by randomly choosing the positions and its mutation
value. The results are shown in Fig. 1 for a design problem where
an application with 20 tasks is mapped onto a homogeneous, sym-
metrical architecture with eight processors. Each dot represents a
pair of design points with the performance of the first design point
along the x-axis and the performance of the second along the
y-axis. We can see a clear correlation between points that have
mutated in 1 or 2 positions (top graphs), but this relation fades
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and disappears with changes in 4 or 8 positions (bottom graphs).
This is a clear indication that, at least for homogeneous systems/
system parts, small changes in the design point specification typi-
cally lead to modest performance differences. In this article, we
propose methods to exploit this correlation by integrating such do-
main knowledge into our GA-based DSE methods. To exploit do-
main knowledge for the purpose of design space pruning, we
propose new GA-operators for crossover and mutation. These
new GA-operators attempt to optimize search performance either
by (1) reducing the redundancy present in chromosome represen-
tations, or (2) using a new and improved crossover operator that is
based on a mapping distance metric. Combinations of these are also
possible and we will show and analyze the results of these meth-
ods in a range of experiments.

3.2. Reducing representation redundancy

A chromosome representation of a design point with k homoge-
neous processors can be represented in k! different ways by per-
mutating the k processor labels. This is sometimes referred to as
the ‘‘symmetry’’ of the search space [20]. For example, in our case,
the two mapping vectors [0,0,1,1] and [1,1,0,0] would refer to sym-
metrical (and thus equivalent) design points. It is known that in
some problem domains this symmetry in the search space can neg-
atively affect the performance of search algorithms like genetic
algorithms [23]. We therefore need to investigate whether the
same is true for the search spaces of our design problem. For this
purpose, we propose a set of genetic operators that enable the
GA to traverse the design space without symmetry. Intuitively,
removing the symmetry from the design space should result in a
more efficient search, as it effectively makes the design space smal-
ler. But it may equally be the case that the GA, which is optimized
for combinatorial problems, searches through the symmetrical
subspaces with ease. Therefore, whether symmetry is a limiting
factor on search performance is yet to be determined.

We observe that for our chosen chromosome representation, it
is easy to convert a set of chromosomes to equivalent chromo-
somes with a representation from the same, symmetry subspace.
We follow a naming convention where the vector A is a mapping
where A½i# denotes the processor number onto which application
task i is mapped. Then, it holds for each base-symmetry chromo-
some representation A:

A½0# ¼ 0
A½iþ 1# 6 maxðA½0#; . . . ; A½i#Þ þ 1

In the work of [23], the assignment function represented by A is
called a Restricted Growth Function (RGF): from left-to-right (start-
ing with 0), the mapping target is identified using the lowest possi-
ble number. This leads to a simple (order OðNÞ) re-assignment
function to change a mapping to its unique equivalent in the
base-symmetry space. This is shown in Algorithm 1; base is an array
initialized to "1 for all elements, and A is the design point to be re-
written.

Algorithm 1. The baseform function

cnt  0
base ½"1; . . . ; "1#
for i ¼ 0! ðn" 1Þdo
idx A½i#
if base½idx# < 0 then
base½idx# cnt
cnt  cnt þ 1
end if
A½i# base½idx#
i iþ 1
end for

We now use the baseform function to enforce that subspace
boundaries are not crossed during the normal operation of the
GA. The simplest way to implement this is to append the baseform
function to each normal GA operator. So, for example, a normal 2-
point crossover could transform parent chromosomes A and B in
child chromosomes A0 and B0. After a subsequent application of
the baseform function to both chromosomes, the result is A00 and B00:

before crossover : ½0;0; 0;0; 0;0;1;2# ¼ A

½0;1;1;1;2;2;2;2# ¼ B

after crossover : ½0;0;0;0;2;2;2;2# ¼ A0

½0;1;1;1;0;0;1;2# ¼ B0

after baseform : ½0;0; 0;0;1;1;1;1# ¼ A00

½0;1;1;1;0;0;1;2# ¼ B00
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Fig. 1. Correlation between results with mutation in x gene positions.
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The mutation function is similarly appended with the baseform
function. With the extended crossover and mutation operators, all
chromosomes in each generated population are guaranteed to re-
main in the base-symmetry space. Note that it is possible, but not
necessary to apply the baseform function to the initial random pop-
ulation, since all individuals would automatically be transformed to
baseform notation after the first GA iteration.

3.3. A metric for mapping distance

To further exploit domain knowledge in our GA-based DSE, we
first introduce a new distance metric that provides a measure of
similarity between design points (i.e., mappings). In the next sec-
tion, we subsequently explain how we deploy this distance metric
in our GA-based DSE. To calculate the distance metric, we use an
algorithm that for any pair of mappings ðA;BÞ can perform a step-
wise reassignment of tasks in B such that the result is equivalent to
A and that the number of required reassignments is minimal. The
algorithm considers the mapping as a partitioning of a set of task
groups: tasks mapped onto the same processor are in the same task
group. In each recursive iteration of the algorithm, a pair of task
groups ðtgA; tgBÞ will be selected where tgA is a task group from
mapping A and tgB is a task group from mapping B. Next, certain
tasks will be reassigned such that group tgB becomes the equiva-
lent of task group tgA. In each level of recursion another pair of task
groups will be selected and again reassignment of tasks takes
place. This continues until the task groups in both mappings are
equivalent: this means that mappings A and B are now equivalent.
The essence of the algorithm is to find a sequence of task group
pairs such that the accumulated number of reassignments to turn
B into A is minimal, which then yields the mapping distance be-
tween A and B.

Let map be a function that maps n tasks onto a k-processor
system.

map : f0 . . . ðn" 1Þg#f0 . . . ðk" 1Þg

Let A and B be two mappings where the ith element in A is denoted
as A½i#:

A ¼ ½A½0#; . . . ; A½n" 1## ¼ ½mapAð0Þ; . . . mapAðn" 1Þ#
B ¼ ½B½0#; . . . ; B½n" 1## ¼ ½mapBð0Þ; . . . mapBðn" 1Þ#

Then, a task group of a mapping A is defined as a set

tgA;x ¼ ft 2 f0 . . . n" 1gjmapAðtÞ ¼ xg

Note that when mappings A and B do not map to the same number
of processors, then one of the mappings has some empty task
groups (which does not influence the working of the mapping dis-
tance algorithm).

Next, we describe the three important stages of the recursive
algorithm:

3.3.1. Step 1: group selection
Find a task group from each mapping to form a pair:

ðtgA;i; tgB;jÞ ði; j 2 ð0 . . . k" 1ÞÞ

such that:

1. they share the maximum number of tasks: i; j with
maxðjtgA;i \ tgB;jjÞ, and

2. i and j have not been part of a task group pair in a previous iter-
ation of the algorithm.

If there are no more task groups that meet the requirements, then B
is equivalent to A and the algorithm has finished. The accumulated
value of the distance counter is returned as well as the sequence of

task group pairs that was used to rewrite B to A (the latter will be
used later to generate a ‘‘minimum path’’ from B to A, as will be ex-
plained in the next section). Note that there may be more than one
sequence that transforms B to A with the same number of reassign-
ments, but finding one such sequence is sufficient for our purpose.

3.3.2. Step 2: recursion
The pair found by the previous step will be used for task reas-

signment. However, there may be multiple pairs that have inter-
sections of the same (maximum) size. In this case, it is unknown
which pair should be used for reassignment, so there is no other
option than to try all of those pairs. To this end, a copy B0 of B is cre-
ated for each of these pairs and the task reassignment function (see
below) is applied. Next, the distance algorithm will be called recur-
sively to calculate the distance between A and every B0. When the
recursion has finished, we select and return:

( the minimum found distance between A and B0

( the corresponding sequence of task pairs

3.3.3. Reassignment function
This function takes as input a task group pair ðtgA;i; tgB0 ;jÞ from

mappings A and B0 respectively. The pair will now be used to mod-
ify mapping B0 such that tgB0 ;j includes at least those tasks that are
in tgA;i:

8y 2 ð0 . . . n" 1Þ : B0½y# :¼reassign
j if A½y# ¼ i and B0½y#– j

This results in: tgA;i # tgB0 ;j. Note that the additional tasks
ftgB0 ;j " tgA;ig (if any) will be reassigned in a later iteration such that
finally tgA;i ¼ tgB0 ;j. Also note that the number of reassignments may
be 0, in which case the distance counter is not increased.

3.3.4. Example
To illustrate the above algorithm, consider the following two

mappings A and B for an application with 6 tasks and any 4 proces-
sor (homogeneous and symmetrical) architecture.

A : ½0;1;2;2;2;3# B : ½0;1;1;0;0; 0#

In the first iteration of the algorithm we have the following task
groups:

tgA;0 ¼ f0g tgB;0 ¼ f0;3;4;5g
tgA;1 ¼ f1g tgB;1 ¼ f1;2g
tgA;2 ¼ f2;3;4g tgB;2 ¼ fg
tgA;3 ¼ f5g tgB;3 ¼ fg

We find that the pair ðtgA;2; tgB;0Þ has the largest overlap (tasks 3
and 4). Therefore: B0½y# :¼ 0 if A½y# ¼ 2, results in:
B0 ¼ ½0;1;0; 0;0;0#. The distance counter is incremented by 1, be-
cause task 2 was reassigned. In the second iteration the relevant
remaining taskgroups are:

tgA;0 ¼ f0g tgB0 ;1 ¼ f1;2g
tgA;1 ¼ f1g tgB0 ;2 ¼ fg
tgA;3 ¼ f5g tgB0 ;3 ¼ fg

The largest overlap is between the pair ðtgA;1; tgB0 ;1Þ, consisting of
task 1 only. No tasks are reassigned, since B0½1# is already set to 1.
Therefore, the distance counter is not incremented. In the third
iteration the relevant remaining task groups are:

tgA;0 ¼ f0g tgB00 ;2 ¼ fg
tgA;3 ¼ f5g tgB00 ;3 ¼ fg

All combinations of task groups from A and B00 now have the same
intersection (the empty set). At this point, we do not know with
which pair to proceed, and therefore the algorithm is run recursively
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for each pair: ðtgA;0; tgB00 ;2Þ; ðtgA;0; tgB00 ;3Þ; ðtgA;3; tgB00 ;2Þ; ðtgA;3; tgB00 ;3Þ.
In this case all four recursive branches will find a minimum of two
additional reassignments. In general, one of the shortest recursive
branches is selected. In the following we show only the first recur-
sive branch, so we reassign according to pair ðtgA;0; tgB00 ;2Þ:
B000 ¼ ½2;1;0;0;0;0# and the distance counter is incremented with
one, making the total recorded number of reassignments 2. In the
fourth iteration the relevant remaining task groups are:

tgA;3 ¼ f5g tgB000 ;3 ¼ fg

The only possible pair is ðtgA;3; tgB000 ;3Þ. We apply the reassignment
rule and with one reassignment we get: B

0000
¼ ½2;1;0;0;0;3#. The

algorithm is finished and B
0000

is now an equivalent mapping to A.
The distance counter has reached its final value of 3, which is the
guaranteed minimum number of reassignments required to change
mapping B into mapping A. The sequence of task group pairs used
was:

ðtgA;2; tgB;0Þ; ðtgA;1; tgB0 ;1Þ; ðtgA;0; tgB00 ;2Þ; ðtgA;3; tgB000 ;3Þ

In this example, the following sequence would also have found the
minimum:

ðtgA;2; tgB;0Þ; ðtgA;1; tgB0 ;1Þ; ðtgA;3; tgB00 ;3Þ; ðtgA;0; tgB000 ;2Þ

The above distance algorithm exhaustively tries all permutations of
pairs, resulting in an algorithmic worst-case complexity of Oðk!nÞ.
Although this is fine for small k and n, it does not scale well to large
problem sizes. However, it is possible [20] to reduce the distance
metric problem to an assignment problem, which can be solved in
only Oðn3Þ using the Munkres assignment algorithm [13]. Munkres
works on an assignment-cost matrix, e.g., workers (in columns) per-
form a job (in rows) for a cost specified in the matrix. The Munkres
algorithm then finds the minimal assignment of jobs to workers
such that the total cost is minimized. We can define the matrix
for two mappings A and B as mij ¼ n" jtgA;i \ tgB;jj for each task
group i from A and j from B. In this way, mij represents the cost of
transforming task group i to task group j: the cost is lower when
the groups overlap more. Note that mij is in general not equal to
the required number of reassignments, but rather we choose n
(number of tasks) so that all mij P 0. The outcome of the Munkres
algorithm is a list of pairs of task groups such that the cost is min-
imal. By applying the list of pair groups as reassignments to B, we
can transform B into A and obtain the distance value.

3.4. A distance-metric based cross-over operator

As was explained, the distance metric can relate any two design
points by finding a minimal set of atomic changes transforming de-
sign point B into design point A. While the number of changes can be
used to measure similarity, the resulting set of changes can also be
used to provide some much-needed structure in the complex map-
ping design space. For this purpose, we define a sequence of interme-
diate design points that is the result of applying one such minimal
set of atomic changes to B (in unspecified order). The sequence of
intermediate design points represents a ‘‘path’’ from B to A:

B; B1; B2; . . . ; Bn"1;A where n ¼ distance ðA;BÞ

For example, in the example of the previous section, the following
path was obtained to make design point B symmetrical to A (under-
lined indices refer to the tasks being reassigned):

B ¼ ½0;1;1;0;0;0#
B1 ¼ ½0;1;0;0;0;0#
B2 ¼ ½2;1;0; 0;0;0#
B3 ¼ ½2;1;0; 0;0;3#; which is symmetrical to A ¼ ½0;1;2;2;2;3#

Clearly, paths will be longer when A and B are less similar and when
the problem space (and thus the chromosomes) are longer. The
intermediate design points Bi share a varying number of character-
istics from both A and B, since every application of an atomic change
helps to transform B into A. We note that exchanging properties
from parent chromosomes is the main purpose of the GA crossover
operator. Therefore, we propose to use the constructed path as the
basis for a new type of crossover operator: the distance-path
crossover.

This new crossover operator creates offspring by simply select-
ing two random elements from the path between parents A and B.
The rationale behind such a distance-path crossover is the hypoth-
esis that an offspring design point that is chosen from the (short-
est) path between its two parents A and B, which have been
selected based on their fitness, will probably retain the strong
chromosome parts of both of its parents. In other words, we try
to exploit the locality of good design points, like described in Sec-
tion 3.1, with the aim to produce offspring design points that are
close to both parents. Special provisions can easily be made if
one objects against the fact that the children may be the same as
each other or as one of their parents. Finally we note that the off-
spring created by this crossover mechanism only mixes genetic
material from the parents, and that no new or random material
is inserted. In other words, properties from an element C that is
not on the path will not occur in the offspring, since the distance
metric is guaranteed to find the shortest path between A and B.
To complete the GA, the path-crossover operator can be followed
by one of the standard mutation operators in order to introduce
a controlled amount of new genetic material which is needed to
avoid premature GA convergence.

3.5. Combination of approaches

The baseform and crossover techniques that were presented in
the previous sections can also be used in combination. In that case,
we perform the baseform method after the modified crossover
operator. In the example of the previous section, this would mean
that if B2 was the result of the crossover, then application of the
baseform function would convert it to [0,1,2,2,2,2]. We note that
it is possible to delay the baseform function until after the muta-
tion operator, so that the baseform conversion needs to be per-
formed only once. We summarize in Fig. 2 that the proposed
new approaches give rise to three new GA methods. These will
be evaluated in the next section.

4. Experimental results

A set of experiments has been performed to determine the im-
pact of the two approaches that were described previously. We
look at both the impact of the crossover and baseform extensions
separately as well as at the combined approach. As the basis for
comparison we use a GA with tournament selection and uniform
crossover [2] for searching the design space. As was mentioned be-
fore, we deploy the Sesame system-level simulation framework
[19,7] to evaluate MPSoC design points during the process of
DSE. Sesame enables rapid performance evaluation of different
MPSoC architecture designs, application to architecture mappings,
and hardware/software partitioning with a typical accuracy of 5%
compared to the real implementation [19,7,16]. In Sesame, MPSoC
system models are comprised of separate application and architec-
ture models. An application model describes the functional behav-
ior of an application, where our focus is on applications from the
multimedia application domain. The architecture model defines
architecture resources and captures their performance constraints.
After explicitly mapping an application model onto an architecture
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model, they are co-simulated via trace-driven simulation. This al-
lows for evaluation of the system performance of a particular
application, mapping, and underlying architecture.

Since the focus of this article is to study DSE search algorithm
behavior rather than optimization of a specific application or plat-
form instance, we use a synthetically generated workload that
mimics a streaming (e.g., multimedia) application that has been
generated with a modified version of the process-network genera-
tor of [17]. Such a synthetic workload facilitates the explicit con-
trolling of specific application parameters, such as the number of
application tasks and their connectivity, which is useful in the
scope of our experiments. To challenge the search algorithm, we
use a synthetic application model of considerable size: 20 tasks.
The tasks are mapped onto a homogeneous, 8-processor MPSoC
platform architecture using a single shared bus for communication.
This results in a design space of approximately 3) 1013 unique de-
sign points.

Fig. 3 shows the results of the four types of GA: the regular (ref-
erence) GA, symmetry-aware GA with baseform, GA with path-
crossover and finally a GA with baseform and path-crossover. In
the following, we will refer to these simply as: reference, baseform,
path-crossover and combined GA. For the reference GA, we choose a
uniform crossover operator, since it performed better than single
or two-point crossover operators for our given problem space.
We have tested three different mutation rates (top-to-bottom:
0.15, 0.1 and 0.05) as well as two different population sizes (left:
40, right: 80). In all other aspects, the GAs use the same parameters
(e.g., crossover rate 0.9) and they all run for 30 generations. All
experiments are averaged over 120 runs to take the randomized,
non-deterministic nature of a GA into account.

The top part of the graphs are P–Q (Probability–Quality) plots,
in which the x-axis shows the quality of solutions (in terms of time
units used for application execution: lower is better) and the y-axis
the chance of obtaining such a solution. For a large design space
with an unknown optimum, the PQ plots effectively are cumulative
distribution functions of the experimental data (known as the
empirical CDF) [22]. Dominating lines (towards the top-left) show
a better performing GA since they indicate that a better result
(lower execution time) can be obtained with a higher (average)
probability. Although a PQ-plot gives a detailed overview of a
search method’s behavior, it does not specify the statistical signif-
icance of the difference between two or more search methods.
Therefore, to determine whether or not a method consistently out-
performs another method, we also compute for each experiment
the 80–95% confidence intervals of the mean value of the 120 rep-
etitions of a single search method. The confidence intervals, shown
at the bottom of the graphs in Fig. 3, indicate how certain (as spec-
ified by the confidence level) we are that the real mean lies within
the confidence interval. The more the confidence intervals for

different experiments are non-overlapping, the more significant
the difference of the mean behavior.

The first subplot (Fig. 3a) shows that the extended GAs perform
better than the reference GA. The difference between the average
result (as indicated by the center of the confidence interval) of
the reference GA and the best performing GA (combined method)
is quite large: 2470 vs. 2373 in terms of absolute performance.
Moreover, the confidence intervals between the reference and
combined GA are clearly disjoint, confirming the reliability of our
observation.

As we do not have access to the global optimum of the design
space, it is not possible to quantify exactly the meaning of a reduc-
tion of approximately 100 time units in objective space. However,
we can see that the best result that we found in all experiments is
2331 when using a population size of 80 (Fig. 3d), which is approx-
imately 40 units lower than our best average result in Fig. 3a. So, as
a very rough, intuitive comparison we say that a reduction of 100 is
2.5 times the improvement of doubling the population size. This is
significant, considering the fact that increasing the population size
increases the number of evaluations and thereby the search cost.
When comparing the reference and combined GAs in relative
terms in Fig. 3a: the probability of finding results within the range
2300–2475 differs around a factor 2 or 3.

In Fig. 3a, we also see that the results of using only the baseform
or only the path-crossover are also much better than the reference
GA. The baseform-only GA seems to perform slightly worse than
using only the path-crossover for mutation rate 0.15 (Figs. 3a
and 3b). The confidence interval plot of 3a clearly shows the order
in performance (from high to low): the combined method, path-
crossover, baseform and lastly the reference GA. The experiment
with a larger population (Fig. 3b) shows the same ordering,
although the difference between path-crossover and baseform is
less pronounced.

In the experiments with lower mutation rates (3c to f), the dif-
ference in performance between all GA methods becomes smaller.
For mutation rate 0.10 (Figs. 3c and d), the performance of the ex-
tended GA methods starts to become very similar (see the confi-
dence plots), but there is still a significant difference with the
reference GA. Only for the lowest mutation rate (Figs. 3e and f)
the reference GA catches up. For a population size of 40, the refer-
ence GA even performs a little better than the other methods,
though not so for the larger population size of 80 (Fig. 3f).

From these experiments, we conclude that using a sufficiently
high mutation rate, the proposed GA extensions clearly perform
better, or in the worst case similar, to the reference GA. For higher
mutation rates or bigger populations, the combined method that
combines the baseform and path-crossover performs best.

In a follow-up experiment, we check the impact of selective
pressure on the performance of the GAs. Selective pressure can
be defined as the preference of the selection method to choose
chromosomes with a better fitness over chromosomes with worse
fitness. A high selective pressure can allow a GA to converge quick-
er, but can also mean that the GA is likely to get stuck in local op-
tima. With a selective pressure that is too high, only successful
chromosomes make it into the next population and successful
combinations with lesser chromosomes may be missed.

In Fig. 4, the PQ-plots are shown for a series of experiments
where we vary the pressure (top-to-bottom: low, medium and
high) and different mutation rates (left: 0.10, 0.15 and 0.20, right:
0.01 and 0.05). Population size is 40 in all experiments. Since the
combined method performed consistently well in the previous
experiment, each plot now only compares the combined method
with the reference GA in Fig. 4. If we compare the graphs on the left
with those on the right, we can immediately see that for all differ-
ent selective pressure rates the combined GA methods with a low
mutation rate perform relatively poorly: a mutation rate of 0.01

Crossover

noitatneser pe
R

mr of esab
r al uger

regular metric-based

Standard GA
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Combined:
symmetry-aware 

and 
path-crossover

GA

Fig. 2. Summary of different GA methods.
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even shows the worst performance. A mutation rate of 0.05 per-
forms better, but still worse compared to the reference GA for
low pressure (Fig. 4b). In the case of medium and high pressure
and a mutation rate of 0.05 (Figs. 4d and f), the combined and ref-
erence methods perform practically the same.

The situation in the left figures (with higher mutation rates) is
very different. Now, the combined GA always outperforms the ref-
erence GA. There is a noticeable trend related to the pressure indi-
cating that a higher pressure increases the difference between the
combined method and the reference GA. In all of the three left-
hand graphs with mutation rates P0.10, the best performing refer-
ence GA is the one with mutation rate 0.10. In case of low pressure
(Fig. 4a), the combined method performs only slightly better than
the reference GA with mutation rate 0.10. However, if we increase
the pressure, then the distance between the two becomes much
larger. For example, in case of medium pressure (Fig. 4c), the com-
bined method GA with mutation rate 0.15 has an average result of
2376 and the reference GA 2410. And with high pressure (Fig. 4e),
the combined method performs approximately the same, but the
reference GA performs even worse, thus increasing the difference.
A further observation is that when we increase pressure, the differ-
ence between the three extended GAs becomes smaller: for med-
ium and high pressure, the results for mutation rates 0.10 and
0.15 are overlapping and the result for mutation rate 0.20 is closing
in. The difference between the three reference GAs, however,
seems to be constant from low to high pressure.

We conclude from these experiments that the performance of
the combined GA works best for higher pressure and a mutation
rate of 0.10 or 0.15. Where the combined GA method seems to ben-
efit from higher pressure and mutation rates, the opposite is true
for the reference GA. In fact, the best result with the reference
GA is obtained with a mutation rate of 0.05 and low pressure
(Fig. 4b). This is in fact the only time that the standard GA is able
to obtain a better average result (for the same pressure) than the
combined GA: an average value of 2372 (Fig. 4b) versus 2404 for
the combined GA (Fig. 4a). However, for the medium and high
pressure cases, the combined GA method always results in a better
average result, for both mutation rates 0.10 and 0.15. These results
are consistent with those from the previous set of experiments that
also identified 0.10 and 0.15 to be much better mutation rates for
the combined GA than a mutation rate <0.10.

Table 1 shows results for a range of different synthetic applica-
tions, where the number of tasks (N) in the application is varied as
well as the task interconnectivity (a connectivity of 1 implies a
fully connected graph). All numbers are percentages, where the
combined GA is compared to the reference GA. The column BEST
indicates the mean improvement of the best result found (aver-
aged over 120 runs), the column IT the difference of the average
search iteration in which the best result has been found, the col-
umn CONV the difference in convergence of the GA (where conver-
gence is the mean improvement per GA iteration of found
solutions), and the column TIME the difference in wall-clock time
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Fig. 3. P–Q plots for different GA types.
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of the search. The combined method shows a better performance
for N P 14. The relative performance improvement of the com-
bined GA seems small (between 0.1% and 2.4%), but this is likely
due to the fact that both GAs have had the chance to fully converge.
Had the GAs been allowed fewer iterations, then BEST would show
a much larger difference, since the reference GA would likely not
have fully converged. This is supported by IT, showing that the
combined GA finds its optimum 5–32% faster than the reference
GA. In general, we can observe the following trend in which the
combined GA: (1) shows a similar result as the reference GA but
using fewer GA iterations, or (2) shows a better result at the cost
of more iterations (but still fewer iterations than with the

reference GA). Moreover, the TIME column demonstrates that the
execution times for the combined GA are only around 1% higher.
Interestingly, this small overhead decreases for higher N, indicating
that the operators for the combined GA are efficient for larger
application models.

5. Related work

Current state-of-the-art in system-level DSE often deploys pop-
ulation-based Monte Carlo-like optimization algorithms like simu-
lated annealing, ant colony optimization, or genetic algorithms
(e.g., [21,6,17,8]). Several of these efforts also try to optimize the
search by tuning the underlying search algorithm. For example,
in [21], a fitness function (performance and cost) is defined that
adds extra penalties to steer an evolutionary algorithm away from
infeasible population individuals, while the work of [17] extends a
standard simulated annealing algorithm with automatic parameter
selection.

Design space pruning can also be performed via meta-model as-
sisted optimization, which combines simple and approximate
models with more expensive simulation techniques
[3,14,18,5,1,12]. In [3], the design space search problem is de-
scribed as a Markov Decision Problem (MDP) and design space tra-
versal is defined as a sequence of movement vectors between
states. Movement vectors change states in parameter space (num-
ber of processors, I/D cache size) and approximate analytically the
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Fig. 4. P–Q plots for combined GA vs. reference GA.

Table 1
The combined and reference GAs compared for different applications.

N BEST IT CONV TIME

Graph connectivity 0.2
10 "0.07 31.8 92.2 "1.8
14 0.13 16.4 50.9 "0.4
18 1.05 16.9 72.1 "0.2
22 1.90 7.7 "3.6 "0.2

Graph connectivity 0.5
10 "0.12 28.7 46.3 "1.8
14 0.93 15.1 31.6 "0.6
18 1.72 4.7 19.0 "0.4
22 2.43 6.8 27.1 "0.4
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impact on the objectives (power and performance). A major advan-
tage of this approach is that simulation only needs to be applied
when repeated application of movement vectors exceeds a prede-
fined level of estimation error. In [5], the authors use meta-models
as a pre-selection criterion to exclude the less promising configu-
rations from the exploration. In [12], meta-models are used to
identify the best set of experiments to be performed to improve
the accuracy of the model itself. In [14], an iterative DSE method-
ology is proposed exploiting the statistical properties of the design
space to infer, by means of a correlation-based analytic model, the
design points to be analyzed with low-level simulations. The
knowledge of a few design points is used to predict the expected
improvement of unknown configurations.

Another class of design space pruning is based on hierarchical
DSE (e.g., [10,15,11,6]). In this approach, DSE is first performed
using analytical or symbolic models to quickly find the interesting
parts in the design space, after which simulation-based DSE is per-
formed to more accurately search for the optimal design points.

We have proposed domain-specific methods to optimize a GA
using newly developed techniques that, to the best of our
knowledge, have not been used previously in the field of
system-level DSE. Our methods for optimization are not only rele-
vant since the mapping-based representation is commonly used,
but also because they are highly compatible with many other
optimizations (so that different optimizations can be applied
simultaneously).

6. Conclusions

In this article, we have addressed system-level design space
exploration (DSE) for MPSoCs, and in particular, the exploration
of application-to-architecture mappings and methods for optimiz-
ing such mapping exploration. To this end, we focused on DSE
techniques based on genetic algorithms (GA) and introduced two
new extensions to a GA that exploit domain knowledge in order
to optimize the search process. One extension aims at reducing
the redundancy present in chromosome representations of a GA,
while the other extension introduces a new crossover operator
based on a mapping distance metric. We have also investigated
the combination of the two extensions. In the presented experi-
mental results, the GAs with the proposed extensions perform at
least as well, but typically much better than the reference GA.
Important is the finding that we could identify a clear trend to
show for which parameters the extended GA methods performed
better. Once more of such trends are identified and verified, a sys-
tem designer can more accurately choose a search method to fit his
design problem. In particular, we showed that the extended GA
methods benefit from high mutation rates and high selective pres-
sure. We hypothesize that the higher mutation rate keeps popula-
tion diversity high, while the high selective pressure improves
convergence to the optimum result, but more research is required
to verify this. Also, we observed that the extended GA methods
work better for larger population sizes. We consider this to be a
desirable property, since for more complex design spaces, popula-
tion sizes are usually increased to exploit more parallel search
within the GA. Finally, we observed that the extended GA methods
seem to be effective for a wider range of GA parameters than the
regular, reference GA. The latter only seemed to perform well for
low mutation rates and low pressure, whereas the extended meth-
ods performed better in all other situations. As part of our future
work, we will consider whether the presented techniques can be
further exploited to optimize GAs for design space exploration.
This could, e.g., be done with so-called niching genetic algorithms,

which require a measure of distance in the parameter search space
to prevent premature convergence and to find optima in diverse
areas of the design space. To our knowledge, no such GAs have
been used for the purpose of system-level design space explora-
tion, but the distance metric presented here may prove to be suit-
able for this purpose.
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