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Abstract This paper proposes a multi-objective ant pro-

gramming algorithm for mining classification rules,

MOGBAP, which focuses on optimizing sensitivity, spec-

ificity, and comprehensibility. It defines a context-free

grammar that restricts the search space and ensures the

creation of valid individuals, and its heuristic function

presents two complementary components. Moreover, the

algorithm addresses the classification problem from a new

multi-objective perspective specifically suited for this task,

which finds an independent Pareto front of individuals per

class, so that it avoids the overlapping problem that appears

when measuring the fitness of individuals from different

classes. A comparative analysis of MOGBAP using two

and three objectives is performed, and then its performance

is experimentally evaluated throughout 15 varied bench-

mark data sets and compared to those obtained using

another eight relevant rule extraction algorithms. The

results prove that MOGBAP outperforms the other algo-

rithms in predictive accuracy, also achieving a good trade-

off between accuracy and comprehensibility.

Keywords Ant programming (AP) � Grammar-based

automatic programming � Multi-objective ant colony

optimization (MOACO) � Classification �
Data mining (DM)

1 Introduction

Mining comprehensible knowledge from data has become

one of the major challenges in many domains, since the

quantity of data available is huge and still continues to

increase rapidly. Thus, it becomes quite complicated to

manage and analyze these data in order to help domain

experts adopt decisions. Data mining (DM) algorithms

allow the automatic extraction of comprehensible, non-

trivial, and useful information from these data. One of the

most studied DM tasks is the classification task (Rudokaite-

Margelevičiene et al. 2006), which aims to induce a set of

classification rules (a classifier) from a training set of

labeled examples. Once the classifier is built, one can apply

these rules to other uncategorized data to label each

instance with one of the predefined classes. The perfor-

mance of the classifier is typically measured with the

accuracy obtained when applying the classifier to a sepa-

rate test set.

Many diverse classification algorithms have been pro-

posed. Among them, non-linear models such as support

vector machines (Huang et al. 2006) or neural networks

(Floreano et al. 2008), despite having demonstrated their

capacity to obtain accurate classifiers, have the disadvan-

tage of behaving like black boxes, and are lacking in terms

of comprehensibility. On the contrary, logic-based algo-

rithms, i.e., decision trees (Kapočite-Dzikiene et al. 2008)

and rule-based methods (Lanzi 2008), have the advantage

of being interpretable, which is a key issue since this can

J. L. Olmo � J. R. Romero � S. Ventura (&)

Department of Computer Science and Numerical Analysis,

University of Cordoba, 14071 Cordoba, Spain

e-mail: sventura@uco.es

J. L. Olmo

e-mail: jlolmo@uco.es

J. R. Romero

e-mail: jrromero@uco.es

123

Soft Comput (2012) 16:2143–2163

DOI 10.1007/s00500-012-0883-8



help experts during the decision-making process, especially

to support borderline decisions.

A metaheuristic (Blum et al. 2011; Blum and Roli 2003)

that has been successfully applied to the extraction of rule-

based classifiers is ant colony optimization (ACO) (Dorigo

et al. 2002), which is a nature-inspired optimization

metaheuristic based on the behavior and capabilities of

self-organization that ant colonies exhibit in their search

for food. The first application of ACO to classification was

the Ant-Miner algorithm (Parpinelli et al. 2002), which has

become a top algorithm in this field. Since its publication,

many classification algorithms based on ACO have been

proposed. Another related metaheuristic that has recently

been proved to extract accurate rule-based classifiers is ant

programming (AP) (Olmo et al. 2010), which is a kind of

automatic programming (Koza et al. 1992) that uses ACO

as its search technique.

The design of a rule-based classifier can also be tackled

from the point of view of multi-objective optimization

(MOO): unlike single-objective optimization problems, it

aims to discover classification rules optimizing simulta-

neously several metrics, and where the improvement in the

values of one metric often may be detrimental to the others.

Usually, multi-objective classification algorithms seek to

obtain classifiers with a good trade-off between compre-

hensibility and accuracy. It should be noted at this point

that a classifier can be considered to be more comprehen-

sible than another in terms of its size (if it presents less

rules than the other) or in terms of the length of its rules (if

it has a lower average number of conditions per rule).

Several proposals using MOO for classification rule mining

have been presented, for example using multi-objective

evolutionary algorithms (Dehuri et al. 2008; Ishibuchi

et al. 2007) or multi-objective particle swarm optimization

(PSO) (Alatas et al. 2009; Torácio et al. 2009). Neverthe-

less, to the best of our knowledge, ant-based algorithms

with the multi-objective property have never been

employed for this purpose.

A core contribution of this paper is investigating the

application of AP to classification from a multi-objective

point of view, for the sake of obtaining accurate but also

comprehensible classifiers, since MOO allows to look for a

trade-off between several metrics. Hence, a new multi-

objective AP algorithm for classification rule mining is

presented. The algorithm is called Multi-Objective Gram-

mar-based Ant Programming for classification (MOG-

BAP), and it generates a classifier composed of IF–THEN

rules. Our proposal combines the advantages of grammar-

based AP with those inherent to MOO, focusing on

achieving a good balance between accuracy and compre-

hensibility. Another important contribution lies in the fact

that the multi-objective algorithm developed addresses the

Pareto front discovery in a novel way, appropriate for the

classification task, finding a separate Pareto front for each

class available in the data set and then combining the

solutions of each Pareto front by using a niching

approach. A study of our proposal optimizing two and

three objectives is carried out, the former focusing on

maximizing sensitivity and specificity, and the latter also

considering the optimization of a comprehensibility

metric. The best one is compared to eight other rule

induction algorithms from several paradigms. Then, the

results obtained are analyzed statistically and show that

our algorithm is significantly more accurate than most of

the algorithms considered, also obtaining a good perfor-

mance with respect to comprehensibility metrics and,

therefore, reaching a good compromise between predic-

tive accuracy and comprehensibility.

The remainder of this paper is organized as follows. In

the next section, we introduce ACO as the primary tech-

nique of our algorithm, as well as AP. In Sect. 3, we

describe the proposed algorithm. Section 4 explains the

experiments carried out and the data sets used. Section 5

discusses the results obtained and, finally, some concluding

remarks are outlined in Sect. 6.

2 Related work

First, this section focuses on introducing the ACO meta-

heuristic, explaining briefly the ACO algorithms devoted to

classification that intervene in the experimental study.

Then, it also introduces the AP metaheuristic, mentioning

the algorithms published in the literature to date and their

applications.

2.1 Ant colony optimization

ACO is an agent-based nature-inspired optimization

metaheuristic belonging to the field of swarm intelligence

(SI) (Bonabeu et al. 1999). SI is concerned with the

development of multi-agent systems inspired by the col-

lective behavior of simple agents, e.g., flocks of birds,

schools of fish, colonies of bacteria or amoeba, or groups of

insects living in colonies, such as bees, wasps, or ants.

ACO bases the design of intelligent multi-agent systems on

the foraging behavior and organization of ant colonies in

their search for food, where ants communicate with each

other through the environment, in an indirect way, by

means of a chemical substance—a pheromone—that they

spray over the path they follow—a phenomenon known as

stigmergy. The pheromone concentration in a given path
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increases as more ants follow this path and decreases more

quickly as ants fail to travel it, since the evaporation in this

path becomes greater than the reinforcement. The higher

the pheromone level in a path, the higher is the probability

that a given ant will follow this path.

ACO algorithms were initially applied to combinato-

rial optimization problems (Dorigo et al. 1996), finding

optimal or near optimal solutions. Since then, ACO

algorithms have been used in an increasing range of

problem domains and have also been shown to be

effective when tackling the classification task of DM. The

first algorithm that applied ACO to rule induction was

Ant-Miner (Parpinelli et al. 2002), and it has become the

most referred to ACO algorithm in this field. It follows a

separate-and-conquer approach where, starting from a

training set and an empty set of rules, it finds new rules to

be added to the set of discovered rules. As the algorithm

discovers new rules, it removes those instances of the

training set that are covered by each new rule, reducing

the size of the training set. Ant-Miner chooses a new term

for the current partial rule by applying a transition rule

and it only considers including terms that have not been

previously chosen. It keeps adding new terms to build the

rule’s antecedent until one term from each available

attribute has been selected, or until when selecting any

term that is still available, the number of training

instances covered by the rule is reduced below the value

specified by the minimum cases per rule parameter. A

theoretic information measure in terms of entropy is used

as the heuristic function. The probability with which a

given ant will select a node termij—a rule condition of

the form Ai = Vij, where Ai is the ith attribute and Vij is

the jth value of the domain of Ai—to be added to the

current partial rule is assessed using the following

formula:

Pij ¼
gij � sijðtÞ

Ra
i¼1xi � Rbi

j¼1ðgij � sijðtÞÞ
ð1Þ

where gij is a heuristic function for termij which depends

on the problem; sij is the amount of pheromone associ-

ated with the transition between attribute Ai and attribute

Aj at time t; a is the total number of attributes; bi is the

number of values in the domain of attribute Ai; and xi is

set to 1 if Ai has not yet been selected for the construction

of the current partial rule by the current ant, or otherwise,

0.

Ant-Miner continues discovering new rules until either

the training set is empty or the number of training instances

not covered by any rule is below a user-defined threshold.

Finally, the majority class among the instances covered by

the rule is assigned as the consequent. The quality of the

rules is gauged by the following expression:

fitness ¼ sensitivity � specificity

¼ TP

TP þ FN

� TN

TN þ FP

ð2Þ

where TP stands for the true positives, which are positive

instances correctly classified as positives; FP stands for the

false positives, i.e., negative examples erroneously labeled

as positives; TN are the true negatives, i.e., negative

instances correctly identified as negatives; and FN are the

false negatives, i.e., positive examples incorrectly classi-

fied as negatives (Cios et al. 2010).

From the publication of Ant-Miner onward, other

research works have followed the research lines sug-

gested in Parpinelli et al. (2002). They focus on using

different mechanisms for pruning, pheromone updating,

or heuristic functions, or they are designed to include

interval rules, dealing with continuous attributes,

extracting fuzzy classification rules, or being applied to

multi-label or hierarchical classification. However, most

of these extensions only implement minor changes, and

the results obtained are only slightly different from the

ones obtained by the original Ant-Miner. Later, two

modifications of Ant-Miner that have reported superior

accuracy results will be discussed and, therefore, those

approaches are also included in the experimental study

presented in this paper.

The first extension considered here is Ant-Miner?,

proposed by Martens et al. (2007), which follows the max–

min ant system (Stützle et al. 2000) philosophy. The

authors devised the environment as a directed acyclic

graph, stating that it allows of selecting transitions more

adequate than those selected by the original Ant-Miner

algorithm. In this version, the inclusion of interval rules is

permitted and the original heuristic function is replaced by

a more accurate class-specific heuristic. Ant-Miner?

measures the quality of individuals by summing their

confidence and their coverage, as shown in Equation 3:

fitness ¼ confidenceþ coverage

¼ j A [ C � I; I 2 D j
j A � I; I 2 D j þ

j A [ C � I; I 2 D j
j Dcov¼0 j

ð3Þ

where confidence refers to the quotient of the number of

instances I belonging to the data set D that include both the

antecedent A and the consequent C by the number of

instances that include A. The coverage is gauged as the

proportion between the number of instances that include

both A and C and the number of instances that are not

covered by any of the extracted rules, referred to as

|Dcov=0|.

Otero et al. (2008) presented another ACO algorithm for

classification, called cAnt-Miner, capable of handling

numerical attributes directly by creating discrete intervals
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for continuous attributes internally, during the execution of

the algorithm. Later, they also introduced a modification of

this algorithm in (Otero et al. 2009), where they incorpo-

rated the minimum description length (MDL) (Barron et al.

1998) principle in the rule construction process, and the

pheromone values in the construction graph were associ-

ated with edges instead of the vertices, used by both the

previous version and Ant-Miner itself. cAnt-Miner2-MDL

significantly outperformed Ant-Miner in most of the data

sets tested, and this version is used for the experiments

carried out in this paper.

There are also other extensions related to the hybrid-

ization of ACO with other metaheuristics. Among them,

we appreciate the PSO/ACO2 algorithm, a hybrid algo-

rithm developed by Holden et al. (2008) for the discovery

of classification rules. PSO is another optimization tech-

nique positioned among SI, inspired by the social behavior

of birds in flocks or fish in schools. PSO/ACO2 is also a

sequential-covering algorithm, and it can cope with both

numerical and nominal attributes. It is a hybrid algorithm

because it uses ACO to deal with nominal attributes and

PSO to deal with numerical ones. The fitness function is

given by the following expression:

fitness ¼ 1þ TP

1þ TP þ FP

ð4Þ

Since the focus of this section has been on the ACO-

based algorithms used in the experimental study, we refer

the reader to the recent survey of SI approaches to DM,

written by Martens et al. (2011), where a deeper

description of the ACO algorithms proposed to date can

be found. It is also relevant to mention at this point the

work published by Salama et al. (2011), where five

extensions to the Ant-Miner classification rule discovery

algorithm were presented, and an experimental study was

performed to analyze their performance and compare them

to three other traditional rule induction algorithms.

It is worth mentioning that there are no existent ACO

proposals for classification that address this problem from a

multi-objective point of view, since the current proposals

usually employ, as their fitness function, simple measures

or a scalar aggregation of them (e.g., the fitness measure

used by Ant-Miner, as presented in Eq. 2). Nevertheless,

multi-objective ACO (MOACO) algorithms have been

used to address other kinds of problems rather than clas-

sification with great success. An excellent review and

analysis paper on the subject can be found in Angus et al.

(2009).

2.2 Ant programming

AP is an approach that follows the fundamentals of auto-

matic programming for constructing computer programs by

using ACO as the search technique, finding near-optimal

solutions to optimization problems in a reasonable com-

putational time. Similarly to other automatic programming

techniques, such as genetic programming (GP), a program

or individual in AP can be represented by using a tree

structure, where the nodes represent functions, variables,

and constants, and the closure and sufficiency properties

should be satisfied (Koza et al. 1992). Several proposals

use a graph structure instead of a tree structure, as

described next, and others make use of a grammar that

guides the search for solutions and the generation of the

states. Hereafter, we review the most relevant proposals

published to date using AP.

The work by Roux and Fonlupt (2000), where they

combined the ACO paradigm with the automatic genera-

tion of programs, involved the first approach to AP. They

implemented an AP algorithm for solving symbolic

regression and multiplexor problems. Their algorithm first

initializes a population of programs (trees) at random, by

using the ramped half-and-half initialization method and

storing a table of pheromones for each node of the tree.

Each pheromone table holds the amount of pheromone

associated with all possible elements (named terminals and

functions). Then, each program is evaluated and the pher-

omone table is updated by evaporation and reinforcement

based on the quality of the solutions. These steps are

repeated until some criteria are satisfied, but notice that

new populations of programs are generated according to

the pheromone tables.

Chen et al. (2004) followed a similar approach, in which

individuals build and modify trees taking into account the

quantity of pheromone at each node, where a pheromone

table is stored. The authors combined this approach with

PSO, AP being responsible for evolving the architecture of

flexible neural networks, and PSO being in charge of

optimizing the parameters encoded in the neural tree. Then,

the developed flexible neural networks were applied to a

time-series prediction problem, showing the effectiveness

of their algorithm.

Another application of AP to symbolic regression

problems was presented by Boryczka and Czech (2002)

and Boryczka et al. (2003), calling their method ant col-

ony programming (ACP). Two different versions of ACP,

known as the expression approach and the program

approach, were presented. Green et al. (2004) simulta-

neously proposed an AP technique similar to the ACP

expression approach, which basically consists in gener-

ating expressions in prefix notation from the path fol-

lowed by a given ant in the graph that represents the

environment. Here, nodes in the graph can refer to either a

variable or an operator, and the pheromone values are

assigned to the edges in the graph. In contrast, in the

program approach, the nodes in the graph represent
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assignment instructions, and the solution is made up from

a set of nodes, therefore representing a sequence of

assignments that evaluate the function. With the motiva-

tion of improving the evaluation performance, different

extensions to this work were presented by Boryczka

(2005, 2008).

Abbass et al. (2002) proposed AntTAG, an automatic

programming method employing ACO as search strategy

and a tree adjoining grammar (TAG) to build programs.

TAGs are compact context-sensitive grammars that use

tree manipulation operations for syntactic analysis and can

distinguish between derivation and derivation trees as well.

The authors tested their performance on symbolic regres-

sion problems.

Keber and Schuster published another algorithm guided

by grammar called generalized ant programming (GAP)

(Keber et al. 2002), which uses a context-free grammar

(CFG) (Mernik et al. 2004) instead of a TAG, and where

ants generate a program by following a path in the space of

states. Salehi-Abari and White (2008) worked on GAP,

proposing a variation of the algorithm called enhanced

generalized ant programming (EGAP). More specifically,

they introduced a new pheromone placement method that

tends to put an amount of pheromone in a derivation step

that is proportional to the depth of the path; it also employs

a specific heuristic function to control the path termination.

An extension to this work (Salehi-Abari and White 2009)

was also published, comparing the performance of GP to

that of their EGAP algorithm in three different problems:

quarctic symbolic regression, multiplexer, and Santa Fe ant

trail.

More recently, Shirakawa et al. (2008) proposed

dynamic ant programming (DAP). Its main difference with

regard to ACP lies in the use of a dynamically changing

pheromone table and a variable number of nodes, which

leads to a more compact space of states. The authors only

compared the performance of DAP to that of GP using

symbolic regression problems.

A very recent contribution to the AP field has been the

grammar-based ant programming (GBAP) (Olmo et al.

2011) algorithm. It uses a CFG to generate the space of

states and to create new valid individuals. This algorithm

implemented, as far as we know, the first application

of AP to the classification task of DM. The fitness

function used by GBAP during the training stage to

measure the quality of individuals is the Laplace accu-

racy, defined as:

Laplace accuracy ¼ 1þ TP

k þ TP þ FP

ð5Þ

where k represents the number of classes available in the

data set.

An interesting point of the algorithm is how it assigns a

consequent to the rules: for each individual created in the

current generation of the algorithm, k fitness values are

computed (one for each class in the data set), and then a

parallel niching procedure is carried out where the k fit-

ness values are degraded depending on the diversity of the

respective solutions. Finally, the class assigned as con-

sequent is the one that reports the best adjusted fitness

value.

The algorithm proposed in the present paper takes

GBAP as its starting point, aiming to improve the suc-

cessful results obtained by GBAP by following a multi-

objective approach to reach a better trade-off between the

different objectives.

Finally, to complete chronologically the list of contri-

butions to the AP field, it is worth mentioning Kumaresan’s

work (Kumaresan 2011), where AP is applied to control

and modeling. In that proposal, the space of states is rep-

resented by means of a graph where the nodes represent

functions and terminals and the edges are weighted by

pheromone. To obtain optimal control, AP is used to solve

differential algebraic equations to compute the solution of

the matrix Ricatti differential equation, which is the central

issue in optimal control theory. The author shows that the

solution obtained with AP is very close to the exact solu-

tion of the problem.

3 Description of MOGBAP

This section presents the MOGBAP algorithm, which

stands for Multi-Objective Grammar-Based Ant Program-

ming algorithm for classification.

The particular characteristics of the algorithm are

described in the following subsections, where it is

explained how the environment is constructed, the gener-

ation and encoding of individuals, the heuristic measures,

the pheromone reinforcement, the fitness objectives con-

sidered, and the multi-objective approach followed.

Finally, the pseudocode of the algorithm is provided.

3.1 Environment, individual generation,

and rule encoding

In MOGBAP, the environment that permits ants to com-

municate indirectly with each other is the derivation tree

that can be generated from the grammar, as shown in

Fig. 1. Therefore, ants can only visit valid states, enforcing

any solution found to be valid too. This grammar is

expressed in Backus–Naur form, and is defined in Fig. 2.

Notice that it can be adapted to other specific problems, for

instance by adding other logical operators such as not equal

Classification rule mining using ant programming guided by grammar with multiple Pareto fronts 2147

123



or the disjunctive operator. It is a four-tuple, G =

(RN;RT;P; hEXPiÞ, where RN is the set of non-terminal

symbols, RT is the set of terminal symbols, P is the set of

production rules, and hEXPi stands for the start symbol.

Note that any production rule is composed of two parts.

The first one is the left-hand side, which always refers to a

non-terminal symbol. This non-terminal symbol might be

replaced by the second part, the right-hand side of the rule,

which consists of a combination of terminal and non-ter-

minal symbols. Production rules are internally implemented in

prefix notation and should always be derived from the left.

This implies that each transition from a state i to another state

j is triggered after applying a production rule to the first non-

terminal symbol of state i. This design decision was taken

because of performance reasons, in order to save on compu-

tational costs when assessing rule quality.

The environment comprises all possible expressions or

programs that can be derived from the grammar in a given

maximum number of derivations, and it adopts the shape of

a derivation tree, as shown in Fig. 1. The initial state

corresponds to the start symbol of the grammar. A path

over the environment corresponds to the states visited by

any ant until reaching a feasible solution. The last state of a

path corresponds to a final state or solution, comprising

only terminal symbols. Thus, it directly represents the

expression of the encoded antecedent, which can be eval-

uated. Fulfilling the properties of an artificial ant (Mullen

et al. 2009), each ant stores the path explored in order to do

an offline pheromone update.

Concerning the individual encoding, MOGBAP follows

the ant = rule (i.e., individual = rule) approach (Espejo

et al. 2010). It is worth noting that when a given ant

reaches a final state, the ant just represents the antecedent

of the rule. MOGBAP assigns later a consequent to the ant,

which corresponds to the most frequent class among the

training instances covered by this antecedent.

Fig. 2 Context-free grammar used in MOGBAP
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3.2 Heuristic measure

A difference between MOGBAP and typical ACO algo-

rithms is the employment of a heuristic function which

considers two complementary components that cannot be

applied at the same time. To distinguish which metric can

be applied, first it is necessary to identify the kind of

transition involved. Two cases are considered: final tran-

sitions, if the transition involves the application of a pro-

duction rule that selects an attribute of the problem domain,

and intermediate transitions, if otherwise.

In the case of intermediate transitions, a measure asso-

ciated with the cardinality of the production rules is con-

sidered. It is referred to as Pcard, and increases the

likelihood of selecting transitions that may lead a given ant

to a greater number of candidate solutions. It is based on

the cardinality measure proposed by Geyer-Schulz et al.

(1995). Thus, given a state i having k subsequent states, j

being a specific successor among those k states, and where

d derivations remain available, Pcard_ij
k is the ratio between

the number of candidate solutions that can be successfully

reached from state j in d - 1 derivations, and the sum of

all possible candidate solutions that can be reached from

the source state i in d derivations (see Eq. 6). If this

measure is applied in final transitions, it would not be

meaningful, since each possible destination node would

embrace the same number of solutions.

Pcardk
ij
¼ cardinality ðstatej; d � 1Þ

Rk2allowedðcardinality ðstatek; d � 1ÞÞ ð6Þ

In contrast, the component considered for final

transitions is the information gain (G(Ai)) (Parpinelli

et al. 2002). It measures the worth of each attribute in

separating the training examples with respect to their target

classification; it is computed as:

GðAiÞ ¼ I � IðAiÞ ð7Þ

where I is the entropy of the classes in the training set (see

Eq. 8), and I(Ai) is the entropy of the classes given the

values for attribute Ai (see Eq. 9). In turn, these are

computed as follows:

I ¼ �
X#classes

c¼1

nc

n
� log2

nc

n

� �
ð8Þ

where nc is the number of instances of class c, and n is the

number of instances in the training set.

IðAiÞ ¼
X#valuesAi

j¼1

nij

n
� IðAijÞ

� �
ð9Þ

where nij is the number of instances with value j in attribute

Ai, and I(Aij) is the entropy of the classes given value j for

attribute Ai, computed as:

IðAijÞ ¼ �
X#classes

c¼1

nijc

nij
� log2

nijc

nij

� �
ð10Þ

where, finally, nijc is the number of instances of class c with

value j in attribute Ai.

3.3 Solution construction

Any ACO-based algorithm follows a probabilistic stepwise

solution construction method. Thus, in the MOGBAP

algorithm, a given ant constructs a rule incrementally by

following a sequence of steps or transitions. These transi-

tions are biased by some information considered in the

transition rule, which defines the probability with which a

given ant may follow each transition. Therefore, for a given

ant at the state i, the probability of taking the transition that

leads to state j is defined as:

Pk
ij ¼

ðgijÞ
aðsijÞb

Rk2allowedðgikÞaðsikÞb
ð11Þ

where k is the number of valid subsequent states, a is the

heuristic exponent, b is the pheromone exponent, g is the

value of the heuristic function, computed as G(Ai) ? Pcard, and

s indicates the strength of the pheromone trail.

Notice that a probability value is assigned to each

available next state, but the number of transitions that can

be followed is limited by the user-defined parameter

maxDerivations. Thus, if moving to a given state does not

allow any solution to the problem to be found in the

number of derivations remaining available at that point, the

algorithm will assign a probability of zero to this state and

it will never be selected.

3.4 Pheromone initialization, evaporation,

and reinforcement

In general, MOACO algorithms fall into two categories

according to how the pheromone information is stored (Angus

et al. 2009; Garcı́a-Martı́nez et al. 2007). This way, MOACO

algorithms can either use just one pheromone matrix, or a

pheromone matrix for each objective considered. MOGBAP

belongs to the first group, which entails a benefit regarding

memory and computational time requirements (Angus et al.

2009).

Reinforcement and evaporation are the two operations

considered with regard to pheromone maintenance. Evap-

oration takes place over the complete space of states:

sijðt þ 1Þ ¼ sijðtÞ � ð1� qÞ ð12Þ

where q represents the evaporation rate.

In turn, concerning pheromone reinforcement, only non-

dominated ants are able to retrace their path to update the

Classification rule mining using ant programming guided by grammar with multiple Pareto fronts 2149

123



amount of pheromone in the transitions followed. For a

given individual, all transitions in its path are reinforced

equally, and the value of this reinforcement is based upon

the length and the quality of the solution encoded, repre-

sented by the Laplace accuracy:

sijðt þ 1Þ ¼ sijðtÞ � Q � Laplace accuracy ð13Þ

where sij represents the amount of pheromone in the tran-

sition from state i to state j, and Q is a computed measure

that favors comprehensible solutions. In fact, the value of

this parameter depends on the length of the solution

encoded by the ant, and it is calculated as the ratio between

the maximum number of derivations in the current gener-

ation and the length of the path followed by the ant (thus,

shorter solutions will receive more pheromone).

When the pheromone updating operations have finished,

a normalization process takes place, to bind the pheromone

level in each transition to the range [smin, smax]. In addi-

tion, at the first generation of the algorithm, all transitions

in the space of states are initialized with the maximum

pheromone amount allowed.

3.5 Multi-objective fitness assessment

The quality of the individuals generated in MOGBAP is

assessed on the basis of three conflicting objectives: sen-

sitivity, specificity, and comprehensibility.

Sensitivity and specificity are two measures widely

employed in classification problems, even as a scalar function

of them, as seen in the fitness measure of Ant-Miner (see Eq.

2). Sensitivity indicates how well a rule identifies positive

cases. On the contrary, specificity reports the effectiveness of

a rule’s identifying negative cases or those cases that do not

belong to the class studied. If the sensitivity value of a rule is

increased, it will predict a greater number of positive exam-

ples, but sometimes at the expense of classifying as positives

some cases that actually belong to the negative class. Both

objectives are to be maximized.

Sensitivity ¼ TP

TP þ FN

ð14Þ

Specificity ¼ TN

TN þ FP

ð15Þ

Since MOGBAP is a rule-based classification algorithm,

it is intended to mine accurate but also comprehensible

rules. So, somehow, it should also optimize the complexity

of the rules mined. Although comprehensibility is a sort of

subjective concept, there are several ways to measure the

comprehensibility of the rules and the classifier, usually by

counting the number of conditions per rule and the number

of rules appearing in the final classifier. The latter can not

be considered here as an objective, since MOGBAP

follows the ant = rule approach, as mentioned in Sect.

3.1. On the other hand, if the number of conditions per rule

is directly used as the comprehensibility metric, it should

be minimized. Nevertheless, assuming that a rule can have

up to a fixed number of conditions, comprehensibility can

be measured as:

Comprehensibility ¼ 1� numConditions

maxConditions
ð16Þ

where numConditions refers to the number of conditions

appearing in the rule encoded by the individual, whereas

maxConditions is the maximum number of conditions that

a rule can have (Dehurı et al. 2008).

In MOGBAP, it is easy to compute the maximum number

of conditions that an individual can have, because the

grammar is known beforehand and the maximum number of

derivations allowed is also known. The advantage of using

this comprehensibility metric lies in the fact that its values

will be contained in the interval [0,1], and the closer its value

to 1, the more comprehensible will be the rule. Hence, just as

with the objectives of sensitivity and specificity, this objec-

tive, too, should be maximized. In Sect. 5.1, two versions of

MOGBAP are analyzed, one optimizing both sensitivity and

specificity, and the other considering simultaneously the

three objectives of sensitivity, specificity, and comprehensi-

bility. Finally, in the case of these three objectives, a given

rule anti is said to dominate another rule antj, written anti �
antj; if anti is not worse than antj in two objectives and is

better in at least one objective.

3.6 Multi-objective strategy

MOGBAP follows a multi-objective strategy that has been

specially designed for the classification task. The idea

behind this scheme is to distinguish solutions in terms of

the class they predict, because certain classes are more

difficult to predict than others. Actually, if individuals from

different classes are ranked according to Pareto dominance,

overlapping may occur, as illustrated in Figs. 3, 4 and 5,

which show the Pareto fronts found after running MOG-

BAP for the hepatitis, breast-cancer and lymphography

data sets, respectively, considering the optimization of

sensitivity and specificity.

For instance, for the hepatitis problem, if a classic

Pareto approach were employed, a single front of non-

dominated solutions would be found, as shown in Fig. 3b.

Hence, among the individuals represented in this figure,

such a Pareto front would consist of all the individuals that

predict the class ‘LIVE’ and just one individual of the class

‘DIE’ (the individual which has a specificity of 1.0). For

the remaining individuals of the class ‘DIE’ to be consid-

ered, it would be necessary to find additional fronts, and

they would have less likelihood of becoming part of the

classifier decision list. On the other hand, the multi-
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objective approach of MOGBAP (see Fig. 3a) guarantees

that all non-dominated solutions for each available class

will be found, so it ensures the inclusion of rules predicting

each class in the final classifier.

Similar behavior could be argued when looking at

Fig. 4, where many non-dominated solutions of the

class ‘NO-RECURRENCE-EVENTS’ could be hidden

if solutions for both classes are considered at the same

time and, therefore, just a single Pareto front were to be

found.

Moreover, considering now the lymphography data set

as depicted in Fig. 5, in the case of a classic approach, the

Pareto front would consist in just one point with a sensi-

titivity and a specificity of 1.0. Moreover, to contemplate

rules predicting the class ‘MALIGN_LYMPH’, it would be

necessary to find at least three fronts—since the figure only

shows the solutions belonging to the Pareto front for each

class and, therefore, it hides solutions of other classes

(a)

(b)

Fig. 4 Comparison between the k-Pareto fronts approach and a

classic approach for the data set breast cancer

Fig. 5 Pareto fronts found for the four-class data set lymphography

following the proposed strategy

(a)

(b)

Fig. 3 Comparison between the k-Pareto fronts approach and a

classic approach for the data set hepatitis
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rather than the target one that conforms to other interme-

diate fronts.

Roughly speaking, the multi-objective approach devised

for MOGBAP consists in discovering a separate set of non-

dominated solutions for each class in the data set. To this

end, once individuals of the current generation have been

created and evaluated for each objective considered, they

are divided into k groups, k being the number of classes in

the training set, according to their consequent class. Then,

each group of individuals is combined with the solutions

kept in the corresponding Pareto front found in the previ-

ous iteration of the algorithm, to rank all of them according

to dominance, finding a new Pareto front for each class.

Hence, there will be k-Pareto fronts, and only the non-

dominated solutions contained will participate in the

pheromone reinforcement.

The final classifier is made up of the non-dominated

individuals that exist in each one of the k-Pareto fronts

once the last generation of the algorithm finishes. To select

the rules of the classifier appropriately, a niching procedure

is carried out over each frontier, as described subsequently

in Sect. 3.7.

The decision of addressing the multi-objective evalua-

tion through considering a separate Pareto front for each

class was adopted after comparing its performance with a

dominance ranking procedure similar to that followed by

the NSGA-II algorithm (Deb et al. 2000). The results

achieved proved that the devised k-Pareto fronts approach

outperformed the one used by NSGA-II, where a single

Pareto front is found and, therefore, it can contain indi-

viduals predicting different classes. This multi-objective

approach can also be considered as an online Pareto

archival strategy for two reasons. Firstly, because non-

dominated solutions are used once all the generations take

place to select the individuals that make up the final clas-

sifier. Secondly, because Pareto optimal solutions are used

during the algorithm execution to update pheromone rates

in the environment.

3.7 Algorithm

The main steps of MOGBAP are given in the pseudocode

of Algorithm 1. It begins by starting up the grammar and

initializing the space of states with the initial state. It also

creates an empty object that represents the classifier and

also an empty hash table for storing the Pareto fronts found

in each generation. The algorithm starts with the minimum

number of derivations necessary to find a solution in the

space of states and computes the derivation step for each

generation. Notice that in the case of the grammar defined,

at least two derivations are needed to reach a solution from

the initial state, as can be seen in Fig. 1.

A new hash table ants is initialized when a new gener-

ation starts. This table has as many entries as there are

classes in the data set, each one mapping to a new list of

ants that will contain the ants predicting the corresponding

class that will be created in this generation. Then, the

algorithm creates numAnts individuals and assigns each of

them a consequent. The creation process of a new indi-

vidual is shown in Procedure 2: a new list path is created,

inserting there the initial state. From this one, new states

are added to path as the ant moves through the space of

states following the transition rule described in Eq. 11. If

the transition selected by the ant leads to a final state, the

procedure finishes and the path followed by the ant is

returned. Notice that Procedure 2 only returns the path

followed by a given ant, i.e., the antecedent of the rule. The

consequent is assigned by computing the percentage of

instances of each available class covered by this anteced-

ent, and assigning the class more covered in proportion.

The algorithm also evaluates each new individual by the

objective functions considered. Once the individual has

been evaluated, it is added to the corresponding list of ants

that predict the same consequent, which is stored in the

hash table ants.
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The next step performed by the algorithm is repeated for

each available category in the data set: individuals created

predicting the current category are merged with the non-

dominated individuals of the previous generation that also

predict this category. A new Pareto front is found among all

these individuals. Individuals in this new Pareto front rein-

force the pheromone concentration in the path they follow.

Once the k-Pareto fronts have been found, evaporation and

normalization processes take place, and the maximum number

of derivations is incremented by the derivation step.

Classification rule mining using ant programming guided by grammar with multiple Pareto fronts 2153

123



When the main loop of the algorithm ends, after per-

forming numIterations iterations, a subset of ants predict-

ing each class from the final Pareto fronts is selected by

means of the niching approach described in Procedure 3. In

this niching procedure, ants are sorted by their Laplace

accuracy and then they compete to capture as many

instances—here called tokens—as they can. Each ant can

capture a token just in case it covers the token and it has

not also been seized previously by another ant. Finally,

only ants whose number of captured tokens exceeds the

percentage of coverage established by the user are added to

the winnerAnts list, having an adjusted Laplace accuracy

computed as follows:

Laplace accuracyadj ¼ Laplace accuracy � capturedTokens

idealTokens

ð17Þ

where idealTokens is equal to the number of tokens cov-

ered by the ant.

Once the niching approach is carried out over the indi-

viduals of each Pareto front, the resulting ants are added to

the classifier. The classifier’s final decision list is made up

of these ants, sorted by their adjusted Laplace accuracy in

descending order. Finally, a default rule predicting the

majority class in the training set is added at the bottom of

the decision list and the classifier is run over the test set to

compute its predictive accuracy.

4 Experimentation

4.1 Data sets and preprocessing

The simulation was performed using 15 public-domain

UCI1 (Frank et al. 2010) standard classification problems.

This collection of data sets comprises problems with a

broad range of dimensionality. The particular characteris-

tics of these data sets can be seen in Table 1.

A tenfold cross-validation procedure is carried out,

where each data set is randomly split into ten mutually

exclusive folds, with each fold consisting of approximately

the same proportion of classes as in the original data set.

Each algorithm is executed ten times, with a different fold

left out as the test set each time, the other nine being used

for training. The predictive accuracy of the classifier is

estimated by considering the average accuracy over the ten

experiments:

predAcc ¼
X10

i¼1

#correctlyClassifiedPi

#instancesPi
� 100 ð18Þ

where #correctlyClassifiedPi is the number of test instances

correctly classified when the partition Pi is left out as the

test set, and #instances is the number of total instances in

the original data set.

Notice that when evaluating the performance of non-

deterministic algorithms, ten different seeds are used to

carry out the stratified tenfold cross-validation ten times, in

order to avoid any chance of obtaining biased results.

For each data set containing missing values, they were

replaced with the mode (in the case of nominal attributes)

or the arithmetic mean (in the case of numerical ones). In

addition, since several algorithms are unable to process

numerical attributes directly, by applying the Fayyad and

Irani’s discretization algorithm (Fayyad et al. 1993), each

training set was discretized and then the discrete intervals

found were used to discretize their corresponding test set.

This separation is necessary to obtain reliable results,

because when discretizing the entire data set before gen-

erating the cross-validation folds, the discretization algo-

rithm would take into account the test data, thus

invalidating the results obtained. Both preprocessing

actions were perfomed by means of the tool Weka.2

1 University of California at Irvine data set repository is available at

http://www.ics.uci.edu/ml/datasets.html.
2 The Weka machine learning software is publicly available at

http://www.cs.waikato.ac.nz/ml/index.html.
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Moreover, since the experimentation carried out includes

five algorithms that are able to cope directly with numerical

values (cAnt-Miner2-MDL, PSO/ACO2, Bojarczuk-GP,

JRIP and PART) and, hence, do not require prior discret-

ization of the cross-validation folds, we performed their

respective experiments in duplicate, as if we were con-

sidering two different algorithms instead of just one:

the first execution was performed over the original cross-

validation folds containing continuous values, and the second

over the discretized folds. To differentiate between them, the

suffix ‘D’ has been appended to the name of each algorithm

when run over the preprocessed data.

4.2 Comparison with other rule-based classification

algorithms

This section presents the algorithms with which MOGBAP

is compared. The comparison considers several represen-

tative rule-based classification algorithms belonging to

different paradigms:

• Ant programming: GBAP, a grammar-based AP algo-

rithm which was introduced in Sect. 2.2.

• Ant colony optimization: three ACO algorithms are

considered, Ant-Miner, Ant-Miner?, and cAnt-Miner2-

MDL. Another algorithm, PSO/ACO2, which follows an

approach which is a mix of the ACO and PSO is used for

the comparison. All the algorithms have been discussed in

Sect. 2.1.

• Genetic programming: a constrained syntax algorithm,

Bojarczuk-GP (Bojarczuk et al. 2004), is also included

in the comparison. The set of functions that this

algorithm considers consists of logical (AND, OR) and

relational (=, =, B, [) operators. It follows a mixed

individual = rule/rule set approach, where each indi-

vidual encodes a set of rules in disjunctive form

predicting the same class, and the classifier induced for

a given problem has a number of individuals equal to

the number of classes in the data set.

• Reduced error pruning: JRIP, the Weka implementation

of the well-known sequential covering Repeated Incre-

mental Pruning to Produce Error Reduction (Cohen

1995) algorithm.

• Decision trees: PART (Frank et al. 1998), which

extracts rules from the decision tree generated by the

J48 Weka’s algorithm.

The algorithms were executed using the following

implementations. For MOGBAP and GBAP, we used our

own implementations. For Ant-Miner and cAnt-Miner2-

MDL, the open source code provided in the framework

Myra was employed.3 In case of Ant-Miner?, the code

given by the authors was used. To run PSO/ACO2, its

open-source implementation was used.4 The GP algorithm

was executed using the implementation publicly available

in the framework JCLEC5 (Ventura et al. 2007). Finally,

Table 1 Data sets used in computational experiments

Data set Missing values Instances Attributes Classes Distribution of classes

Continuous Binary Nominal

Hepatitis Yes 155 6 13 0 2 32/123

Sonar No 208 60 0 0 2 97/111

Breast-c Yes 286 0 3 6 2 201/85

Heart-c Yes 303 6 3 4 2 165/138

Ionosphere No 351 33 1 0 2 126/225

Horse-c Yes 368 7 2 13 2 232/136

Vote No 435 0 0 17 2 267/168

Australian Yes 690 6 0 9 2 307/383

Breast-w Yes 699 9 0 0 2 458/241

Credit-g No 1,000 6 3 11 2 700/300

Iris No 150 4 0 0 3 50/50/50

Wine No 178 13 0 0 3 59/71/48

Lymphography No 148 3 9 6 4 2/ 81/61/4

Glass No 214 9 0 0 6 70/76/17/13/9/29

Primary tumor Yes 339 0 14 3 21 84/20/9/14/ 39/1/14/6/2/28

16/7/24/2/1/10/29/6/2/1/24

3 Myra framework is available at http://myra.sourceforge.net/.
4 PSO/ACO2 is publicly available at http://sourceforge.net/projects/

psoaco2.
5 JCLEC framework is at http://jclec.sourceforge.net.
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Table 2 User-defined parameter configuration

Algorithm Name Description Value

MOGBAP numAnts Number of ants 20

numIterations Number of iterations 100

maxDerivations Maximum number of derivations for the grammar 15

percentageOfCoverage Minimum percentage of instances belonging to the class which the rule predicts and that

it should cover (for MOGBAP)

5 %

minCasesPerRule Minimum number of instances covered per rule (for GBAP) 3

GBAP [s0] Initial pheromone amount for transitions 1.0

[smin] Minimum pheromone amount allowed for transitions 0.1

[smax] Maximum pheromone amount allowed for transitions 1.0

[q] Evaporation rate 0.05

[a] Heuristic exponent value 0.4

[b] Pheromone exponent value 1.0

Ant-Miner Number of ants Number of ants 1

Min. cases per rule Minimum number of instances covered per rule 10

Max. uncovered cases Maximum number of uncovered cases 10

Rules for convergence Convergence test size 10

Number of iterations Maximum number of iterations 3,000

cAnt-

Miner2-

MDL

Number of ants Number of ants 60

Min. cases per rule Minimum number of instances covered per rule 5

Max. uncovered cases Maximum number of uncovered cases 10

Rules for convergence Convergence test size 10

Number of iterations Maximum number of iterations 1,500

Ant-Miner? nAnts Number of ants 1,000

rho Evaporation rate 0.85

PSO/ACO2 numParticles Number of particles 10

numIterations Number of iterations 200

maxUncovExampPerClass Maximum number of uncovered cases per class 2

GP Population-size Number of individuals 200

Max-of-generations Number of generations 100

Max-deriv-size Maximum number of derivations for the grammar 20

Recombination-prob Crossover probability 0.8

Reproduction-prob Reproduction probability 0.05

Parents-selector Selection method for both parents Roulette

JRIP CheckErrorRate Whether check for error rate C1/2 is included in stopping criterion True

Folds Determines the amount of data used for pruning. One fold is used for pruning, the rest

for growing the rules

3

minNo The minimum total weight of the instances in a rule 2.0

Pptimizations The number of optimization runs 2

Pruning Whether pruning is performed True

PARTS BinarySplits Whether to use binary splits on nominal attributes when building the partial trees False

ConfidenceFactor The confidence factor used for pruning (smaller values incur more pruning) 0.25

minNumObj The minimum number of instances per rule 2

numFolds Determines the amount of data used for reduced-error pruning. One fold is used for

pruning, the rest for growing the rules

3

reducedErrorPruning Whether reduced-error pruning is used instead of C4.5 pruning False

Unpruned Whether pruning is performed False
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PART and JRIP were run by using the implementations

available in Weka.

It is also worth noting that, in order to make a fair

comparison, the same training and test sets, which were

obtained as explained in the previous section, were used to

test these algorithms. Otherwise, it would be difficult to

justify the equity of the experimental study.

Table 2 lists the parameter settings for each algorithm.

MOGBAP and GBAP share the same parameters, with the

exception of percentageOfCoverage, which replaces the

minCasesPerRule parameter in the MOGBAP algorithm.

Thus, for MOGBAP, the same parameter configuration

used in GBAP was adopted. Notice that both AP algo-

rithms have four mandatory parameters, and the other six

parameters—enclosed in square brackets—are optional,

having default values.

Notice that no additional parameter optimization was

done for MOGBAP. Thus, the configuration used for this

algorithm should not be taken as the optimal set of

parameters for each data set. Considering a particular

data set, by fine tuning even better results can be

achieved. Actually, the values employed correspond to

the configuration selected in (Olmo et al. 2010) for

GBAP, where the values for parameters were adopted

after carrying out a cross-validation procedure over three

data sets (primary tumor, hepatitis, and wine), using

values from different ranks for each parameter, and then

analyzing which specific setup globally reported the best

values.

5 Results and discussion

This section presents and interprets the experimental study

results. This section is divided into three different parts.

The first one compares two versions of MOGBAP, one

considering two objectives and the other one considering

three. The second part of the study presents a comparison

between MOGBAP and 8 other classifiers—13 if we take

into account the separate experiments performed in the

case of those classifiers capable of handling numeric

attributes directly—regarding predictive accuracy, whereas

the third part performs a similar analysis in terms of

comprehensibility.

5.1 Comparing two-objective versus three-objective

approaches

To study the performance of MOGBAP, its effectiveness

was analyzed when considering two and three objectives.

The two-objective MOGBAP version looks for the maxi-

mization of both sensitivity and specificity, whereas the

three-objective version attempts an optimization of com-

prehensibility as well.

Table 3 presents several results obtained by each ver-

sion of our algorithm. In both cases, the predictive accu-

racy results obtained for training are better than those

obtained for the test. The three-objective MOGBAP

obtains better average values in predictive accuracy (for

test), average number of rules in the classifier and average

Table 3 Results obtained by two-objective versus three-objective MOGBAP versions

Data set MOGBAP two-objectives MOGBAP three-objectives

Acctra rtra Acctst rtst #R #C/R Acctra rtra Acctst rtst #R #C/R

Hepatitis 89.00 1.40 84.59 10.93 8.7 2.24 89.33 1.52 85.15 11.51 9.1 1.99

Sonar 86.45 1.63 78.20 9.63 11.2 2.52 86.72 1.52 79.49 9.26 11.1 2.04

Breast-c 76.05 1.58 72.45 8.72 12.0 1.88 76.04 1.73 72.02 9.62 11.8 1.69

Heart-c 85.15 1.14 81.11 4.42 10.3 2.22 85.31 1.09 83.13 4.24 9.9 2.25

Ionos. 91.23 0.77 90.46 5.52 6.6 1.61 91.25 0.71 90.55 5.67 6.8 1.49

Horse-c 85.81 1.02 84.66 4.62 10.5 2.14 85.56 1.12 83.78 4.67 9.6 2.03

Vote 96.10 0.59 95.05 2.85 6.8 2.35 96.10 0.59 94.89 2.92 6.6 2.12

Australian 87.67 0.84 88.10 4.10 8.9 2.17 87.71 0.81 87.38 4.27 9.1 2.00

Breast-w 94.81 0.72 94.58 2.72 6.0 1.95 95.10 0.58 95.41 2.31 6.1 1.77

Credit-g 73.59 0.93 71.68 3.13 11.4 2.03 74.02 0.99 70.82 3.33 11.6 1.82

Iris 96.00 0.59 95.33 6.00 5.8 1.15 96.00 0.59 95.33 6.00 5.8 1.15

Wine 98.31 0.88 97.11 4.07 6.1 1.65 98.86 0.71 98.24 2.75 6.1 1.47

Lymph. 87.44 1.98 79.97 10.53 12.4 1.86 87.03 1.83 80.55 9.74 11.9 1.55

Glass 74.55 2.28 68.29 9.40 18.4 2.36 76.86 2.20 71.03 8.45 17.5 2.22

Primary tumor 50.52 1.39 41.83 6.79 35.6 2.89 50.16 1.40 42.18 7.19 34.9 2.53

Avg. results 84.85 1.18 81.56 6.23 11.38 2.07 84.67 1.16 82.00 6.13 11.19 1.87
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number of conditions per rule. However, this analysis is not

very meaningful, since it is based on the average of the

absolute values of several measures across data sets that

have different characteristics. Therefore, we performed the

Wilcoxon signed rank test with the continuity correction

over the test accuracy results of both MOGBAP versions,

although the results obtained indicated that at a significance

level of a = 0.05, there were no significant differences

between them.

We also analyzed the statistical significance of the

number of conditions per rule applying the Wilcoxon pair

test. The p value obtained was equal to 0.001363, which is

lower than 0.01. This proves that the three-objective ver-

sion, which also considers the comprehensibility metric, is

significantly more comprehensible than the two-objective

one with a 99 % probability.

Thus, the adopted version of MOGBAP is the one which

aims to simultaneously optimize the three objectives of

sensitivity, specificity, and comprehensibility.

5.2 Accuracy analysis

In this section, the performance of MOGBAP is compared

to several rule-based algorithms regarding the predictive

accuracy criterion. Table 4 reports on the average predic-

tive accuracy values, with their standard deviations,

obtained for each algorithm over each data set. The bold

results indicate the algorithm that yields the maximum

average classification rate in each data set. Notice that

because of space restrictions, the results are shown in two

separate tables: Table 4a presents the results obtained over

the discretized data sets; and Table 4b presents them for

the original data sets without discretization.

To statistically evaluate the differences between the

algorithms, the Friedman test is performed. This is a non-

parametric test that compares the mean ranks of k algo-

rithms over N data sets. These ranks indicate which

algorithm obtains the best results considering all data sets.

To compute them, a rank of 1 is assigned to the algorithm

with the highest accuracy in one data set, the algorithm

with the next highest accuracy is given a rank of 2, and so

on. Finally, the average ranks of each algorithm for all data

sets are calculated: they are shown in the last row of

Table 4.

According to the Iman&Davenport test, we state that all

the algorithms are equivalent if the null hypothesis is

accepted. In contrast, if the null hypothesis is rejected, we

will state that there are differences between the algorithms.

With a significance level of a = 0.05, the Iman&Daven-

port statistic of average rankings distributed according to

the F-distribution with k - 1 and ðk � 1Þ � ðN � 1Þ degrees

of freedom is 7.1368, which does not belong to the critical

interval equal to C0 = [0, (FF)0.05,13,182 = 1.7743]. Thus,

the Iman&Davenport test rejects the null hypothesis that all

algorithms perform equally well when a = 0.05.

To reveal the classifiers from which MOGBAP is sta-

tistically significantly different, it is necessary to perform a

post hoc test. The Bonferroni–Dunn test (Demšar 2006)

can be applied since all algorithms are compared with

respect to a control algorithm, MOGBAP, focusing on all

possible pairwise comparisons that involve the MOGBAP

algorithm. The critical value revealed by this test at the

same significance level of a = 0.05 is 4.4161 and, there-

fore, the performance of MOGBAP is statistically better

regarding accuracy than those of PSO/ACO2D, PSO/ACO,

Ant-Miner?, Ant-Miner, cAnt-Miner2D, cAnt-Miner2, GP,

GPD, and PART. These results are presented in Fig. 6,

where it is also possible to see that MOGBAP achieves

competitive or even better accuracy results than GBAP,

PARTD, JRIPD, and JRIP. These results show that MOG-

BAP is statistically more accurate than the other ant-based

algorithms considered, except for GBAP, although it

obtains a higher rank and superior average accuracy.

5.3 Comprehensibility analysis

As mentioned previously, all algorithms included in the

comparison are rule-based algorithms. Hence, the com-

plexity of the rule set obtained by each classifier and the

complexity of the rules should be compared appropriately.

The average number of rules and the average number of

conditions per rule of all algorithms over the 15 data sets

are presented in Table 5. Notice that there are specific

metrics related to the comprehensibility of the CFGs

(Crepinšek et al. 2010). However, they are not included in

the study since only three algorithms are based on the use

of a CFG. On the other hand, the complexity of the rule set

might also be computed by existing approaches used in the

programming language community (Kosar et al. 2010;

Mernik et al. 2005).

It should be pointed out that apart from the GP algo-

rithm, which also makes use of the OR operator, all algo-

rithms mine rules as a conjunction of conditions and,

therefore, the number of rules in the classifier can be

computed directly by counting the number of rules. How-

ever, in the case of the GP algorithm, to compute correctly

the number of rules in the classifier, it is necessary to

consider each disjunction as the connection of two different

rules, without considering OR nodes as conditions.

Table 6 summarizes the mean results of all algorithms

over the 15 data sets with respect to predictive accuracy,

the number of rules in the classifier, and the number of

conditions per rule. However, these results are not signif-

icant, and the average rankings of the algorithms across
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data sets was computed again. The last but one row of

Table 5 represents the average ranking obtained by each

algorithm with regard to the rule set length, and the

last row specifies the average rankings regarding the

number of conditions per rule. In both cases, the algorithm

with the lowest ranking value (in bold) corresponds to

GP-BojarczukD.

A first statistical analysis is performed considering the

average number of rules in the classifier (the lower the

number of rules, the more comprehensible the classifier).

Assuming a significance level of a = 0.05, the value of the

Iman&Davenport statistic according to the F-distribution

is equal to 18.1522, and the critical interval is

C0 = [0, (FF)0.05,13,182 = 1.7743]. Hence, the Iman&Dav-

enport test rejects the null hypothesis, which means that

there are significance differences among the algorithms

considering this measure. Further, according to the Bon-

ferroni–Dunn test at the 5 % level, a difference in mean

ranks greater than 4.4161 implies the existence of signifi-

cant differences between the pair of algorithms considered.

At the same significance level, the difference between the

ranks of GPD, GP, JRIPD, JRIP and Ant-Miner?, and the

rank of MOGBAP is greater than the Bonferroni–Dunn

critical value, 4.4161. Therefore, these algorithms are sig-

nificantly better than MOGBAP regarding rule set com-

plexity. Nevertheless, there are no differences between

MOGBAP and GBAP, Ant-Miner, PSO/ACO2D, and

PARTD.

Ideally, the best result regarding the classifier’s rule set

complexity would be obtained by mining a single rule for

Table 4 Predictive accuracy (%) comparative results

(a)

(b)
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Table 5 Rule set length and rule complexity comparative results

Data set MOGBAP GBAP Ant-Miner Ant-Miner? cAnt-Miner2D PSO/ACO2D GPD JRIPD PARTD

#R #C/R #R #C/R #R #C/R #R #C/R #R #C/R #R #C/R #R #C/R #R #C/R #R #C/R

(a) Rule set length and rule complexity results over discretized data sets

Hepatitis 9.1 1.99 8.1 1.89 4.8 1.99 3.9 3.25 6.0 2.04 7.4 2.28 3.1 1.22 3.8 2.15 8.4 2.30

Sonar 11.1 2.04 12.3 1.81 5.2 2.07 4.0 3.48 6.6 1.99 6.1 2.92 3.0 1.00 4.6 2.21 13.9 2.98

Breast-c 11.8 1.69 13.2 1.91 6.0 1.28 5.4 2.82 6.9 1.25 11.8 1.75 3.5 1.01 3.3 1.70 17.1 2.12

Heart-c 9.9 2.25 14.5 1.67 5.9 1.20 4.4 2.82 7.2 1.41 11.9 3.81 3.0 3.02 5.3 2.32 17.3 2.35

Ionos. 6.8 1.49 11.1 1.18 5.7 1.61 8.8 1.41 7.7 1.59 4.5 4.03 3.1 1.14 7.7 1.48 8.2 1.83

Horse-c 9.6 2.03 9.0 1.46 6.3 1.49 4.7 3.41 7.5 1.57 20.1 3.39 3.0 1.00 3.5 1.74 13.2 2.38

Vote 6.6 2.12 17.2 2.19 5.6 1.36 5.2 2.34 6.8 1.59 6.1 1.33 3.0 1.00 3.1 1.38 7.7 1.84

Australian 9.1 2.00 10.1 1.08 6.5 1.53 3.3 2.08 7.6 1.52 25.8 6.96 3.0 1.00 5.2 1.80 19.4 2.01

Breast-w 6.1 1.77 6.6 1.65 7.2 1.04 6.4 1.92 8.1 1.12 10.5 1.10 3.0 1.00 6.5 1.74 10.9 1.63

Credit-g 11.6 1.82 22.9 1.82 9.1 1.51 3.3 3.31 9.7 1.37 52.8 4.20 3.3 1.17 7.1 2.54 57.8 2.70

Iris 5.8 1.15 3.7 1.06 4.3 1.03 3.9 1.80 5.2 1.02 3.0 1.20 4.3 1.29 3.0 1.00 4.6 1.00

Wine 6.1 1.47 7.2 1.50 5.1 1.33 2.5 2.19 6.5 1.41 4.0 1.73 4.1 1.27 4.2 1.56 6.3 1.77

Lymph. 11.9 1.55 10.2 1.60 4.7 1.69 4.6 2.83 6.9 1.74 15.6 2.11 5.1 1.02 6.9 1.53 10.2 2.30

Glass 17.5 2.22 21.6 1.79 8.4 1.76 12.4 4.10 10.4 2.25 24.5 3.13 8.2 1.48 8.0 2.03 13.7 2.32

Primary 34.9 2.53 45.9 2.60 12.1 3.35 9.3 8.50 21.8 4.43 86.5 6.01 23.7 1.37 8.3 3.13 48.7 3.23

#R ranking 9.9 10.9 6.5333 4.7667 8.6667 9.7667 3.0333 4.5667 12.1333

#C/R ranking 7.2 5.5333 5.1 12.7333 5.8333 10.9333 2.8 6.7667 9.8333

Data set cAnt-Miner2 PSO/ACO2 GP JRIP PART

#R #C/R #R #C/R #R #C/R #R #C/R #R #C/R

(b) Rule set length and rule complexity results over data sets without discretization

Hepatitis 6.5 1.71 3.6 1.79 3.0 1.02 4.3 2.23 10.7 2.18

Sonar 6.6 1.99 4.5 3.09 3.0 1.00 4.9 1.92 12.6 2.51

Breast-c 3.3 1.70 11.8 1.75 3.5 1.01 3.3 1.70 17.1 2.12

Heart-c 7.4 1.71 12.8 3.18 4.0 3.39 4.0 2.05 20.0 1.76

Ionos. 6.8 1.81 4.8 2.95 3.6 1.16 5.9 1.20 7.3 2.41

Horse-c 7.0 1.78 15.3 3.60 3.1 1.72 4.2 1.81 18.7 2.53

Vote 6.8 1.59 6.1 1.33 3.0 1.00 3.1 1.38 7.7 1.84

Australian 8.5 1.56 3.8 1.51 3.0 1.00 4.9 2.01 17.2 2.05

Breast-w 6.7 1.87 7.1 1.93 3.0 1.00 5.8 1.86 9.5 2.46

Credit-g 9.9 1.57 54.1 4.25 3.1 1.07 6.3 2.33 70.1 3.07

Iris 4.3 1.14 3.0 1.03 4.2 1.21 3.8 1.08 3.3 1.30

Wine 4.9 1.46 4.0 1.88 4.4 1.33 4.2 1.52 4.5 1.57

Lymph. 6.8 1.68 13.3 2.11 5.2 1.03 6.3 1.60 12.1 2.54

Glass 10.4 1.94 20.5 2.92 8.3 1.12 7.4 2.07 15.2 2.81

Primary 21.8 4.43 86.5 6.01 23.7 1.37 8.3 3.13 48.7 3.23

#R ranking 7.7 7.9667 3.3 4.0667 11.5

#C/R ranking 6.9 10.1667 3.1667 7.2 10.8333

Fig. 6 Results of the

Bonferroni–Dunn test. All

classifiers with ranks outside the

marked interval are significantly

different from MOGBAP

regarding predictive accuracy

(p \ 0.05)
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predicting each class in the data set. However, this could be

detrimental to the accuracy obtained by the algorithm. This

statement is captured both in the results obtained by the GP-

Bojarczuk algorithm over the data sets discretized and without

discretization. This algorithm extracts nearly one rule per

class in the classifier, but conversely has the worse predictive

accuracy results. In contrast, MOGBAP has a good trade-off:

obtaining the best accuracy results and at the same time

behaving competitively when the rule set length is considered.

A second statistical analysis is performed applying the

Iman&Davenport test to the results obtained for the aver-

age number of conditions per rule. The F-distribution’s

statistical value is 14.8741, which does not belong to the

critical interval. Therefore the null hyphotesis that the

algorithms perform equally well is again rejected. The post

hoc Bonferroni–Dunn test leads to two conclusions. On the

one hand, MOGBAP is significantly better than Ant-

Miner? regarding this metric. On the other hand, MOG-

BAP is not significantly better than the other algorithms,

nor significantly worse which is more important.

It should be mentioned that the length of the rules mined

by MOGBAP directly depends on the maxDerivations

parameter. While more derivations are allowed, the algo-

rithm is capable of finding more complex relationships,

normally entailing the extraction of rules which have more

conditions.

After performing both tests, it is possible to conclude

that MOGBAP obtains competitive results in terms of

comprehensibility, regarding both the rule set length and

the number of conditions per rule. Actually, it presents a

good trade-off between accuracy and comprehensibility,

since it is the algorithm that presents the best ranking

values in predictive accuracy, also obtaining competitive

comprehensibility results. Complexity of rules mined can

be seen in the sample classifier of Table 7, obtained run-

ning the algorithm over a training set of the horse-c data

set.

6 Concluding remarks

This paper proposed a multi-objective AP-based algo-

rithm for classification rule mining. In short, this algo-

rithm, called MOGBAP, is guided by the use of a CFG

that restricts the search space and also uses a two-sided

heuristic function. Another contribution of this work to

the classification field is the novel multi-objective eval-

uation approach that avoids the overlapping problem

when ranking individuals from different classes according

to Pareto dominance. To do this, the algorithm finds a set

of non-dominated individuals for each possible class in

the training set. These solutions are kept in separate

Pareto fronts until the last generation of the algorithm,

when they are combined in the final classifier using a

niching approach.

The behavior of two versions of MOGBAP on 15 data

sets was studied. The first algorithm focuses on optimizing

Table 7 Sample classifier on iris data set

Table 6 Average results of the

algorithms

Bold types indicate the

algorithm that achieves the best

result for a given metric

Algorithm Accuracy #R #C/R

MOGBAP 82.00 11.19 1.87

GBAP 81.50 14.24 1.68

Ant-Miner 79.29 6.46 1.62

Ant-Miner? 79.71 5.47 3.08

cAnt-Miner2-MDLD 79.13 8.32 1.75

PSO/ACO2D 80.14 19.37 3.06

GPD 72.60 5.09 1.27

JRIPD 81.17 5.37 1.89

PARTD 80.68 17.16 2.18

cAnt-Miner2-MDL 78.81 7.85 1.86

PSO/ACO2 79.36 16.75 2.62

GP 72.73 5.21 1.30

JRIP 80.18 5.11 1.86

PART 79.13 18.31 2.29
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sensitivity and specificity measures, whereas the second

one also aims to optimize a comprehensibility metric. The

latter algorithm statistically outperforms the former in

terms of comprehensibility, even without being superseded

by the two-objective version regarding accuracy. Thus, the

three-objective version is later used in another experimental

study which considers seven other rule-based algorithms from

different paradigms. Non-parametric statistical tests are used

to analyze both the accuracy and comprehensibility of the

algorithms. The results indicate that, with a likelihood of

95 %, MOGBAP is statistically more accurate than the other

ant-based algorithms considered—Ant-Miner, Ant-Miner?,

cAnt-Miner2-MDL, and PSO/ACO2—and also a GP algo-

rithm and the PART algorithm run over the data sets without

discretization. In addition, our algorithm obtains competitive

results regarding the complexity of the classifier rule set and

the rules mined, reaching a good trade-off between accuracy

and comprehensibility. These results confirm that multi-

objective grammar-guided AP is an adequate technique for

tackling classification problems.
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