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THE DOUBLE-EDGED SWORD OF RECOMBINATION IN BREAKTHROUGH 
INNOVATION 

Abstract: !

We explore the double-edged sword of recombination in generating breakthrough innovation: 
recombination of distant knowledge is needed because knowledge in a narrow domain might trigger 
myopia; but, recombination can be counterproductive when local search is needed to identify anomalies. 
We take into account how creative processes shape both the cognitive novelty of the idea in addition to 
the subsequent realization of economic value. We develop a text-based measure of novel ideas in patents 
by identifying those patents that originate new topics in a body of knowledge using a computer science 
technique called topic modeling. This measure allows us to distinguish inventions that are novel from 
those that are valuable (as measured by subsequent citations). We find that, counter to theories of 
recombination, patents that originate new topics are more likely to be associated with local search, while 
economic value is the product of broader recombinations as well as novelty. !

 

Keywords: breakthrough innovation; recombination; patents; creativity; topic modeling; text analysis; 
nanotechnology; cognition  
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THE DOUBLE-EDGED SWORD OF RECOMBINATION IN BREAKTHROUGH 
INNOVATION 

INTRODUCTION 

Research on innovation has long sought to determine the sources of innovative breakthroughs because 

they are the basis of change in scientific and technological ideas and of potential increases in social 

(Kuhn 1962/1996), firm (Hall et al 2005, Phene et al 2006) and individual economic value (Ahuja et al 

2005). Most of this research has drawn on theories of recombination based in a ‘tension’ view of the 

relationship between knowledge and creativity (Weisberg, 1999): deep knowledge in one domain 

dampens creativity by entrenching researchers into one way of thinking. Breakthrough innovation 

therefore requires a broad search for information and the recombination of different kinds of 

knowledge to break those bonds and produce novel ideas that achieve high economic value (Ahuja & 

Lampert 2001; Guilford 1967). Bridging distant or diverse knowledge or providing structures that 

enable such recombination should therefore enhance creativity (e.g., Hargadon & Sutton 1997; Audia 

& Goncalo 2007). 

A contrasting, and less tested, theory of creativity – the ‘foundational’ view – differs from the 

tension view in arguing that local search to identify anomalies is most likely to produce breakthrough 

innovations (Weisberg 1999; Taylor & Greve 2006). That is, in order to break out of existing 

constraints and advance a field beyond its current state, one must have a deep understanding of the 

foundations of a particular knowledge domain, its assumptions and its potential weaknesses. 

Recombination may be detrimental to innovation because only a deep dive can produce breakthroughs. 

In theory, all innovations are based on some sort of recombination. We follow the lead of other 

innovation scholars in referring to recombination as that involving distant or diverse knowledge, where 

recombination of local or similar knowledge should be seen as local search (e.g., Fleming 2001; Ethiraj 

& Levinthal 2004). 

Rather than seeing the tension and foundational views of recombination as alternatives, we 

might usefully conceptualize them jointly as a “double-edged sword” (Sternberg & O’Hara 1999: 256):  
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recombination of distant or diverse knowledge is required to create breakthroughs because knowledge 

in a narrow domain might trigger intellectual lock in and lead to incremental innovation; on the other 

hand, such recombination might be counterproductive because local search in a domain may be 

required in order to find the openings for breakthrough innovations. Yet, to date, the field of 

management has not examined how the two blades of the sword are interrelated. In our study, we 

develop a new method for examining these relationships in the context of patented innovations. 

We can reconcile the tension and foundational views of recombination and understand their 

interrelationships if we take into account how creative processes shape both the novelty of the idea (the 

cognitive dimension of breakthroughs) as well as the subsequent realization of value (the economic 

dimension of breakthroughs). Innovations potentially differ along these two dimensions. (Amabile 

1983; Audia & Goncalo 2007; Amabile & Pillemer 2012). An innovation might be novel in the sense 

that it introduces a potential new technological trajectory or incremental because it follows on an 

existing trajectory. Subsequently, an innovation may or may not turn out to be valuable in terms of 

generating economic returns for the owners of the invention. Art must appeal to collectors or museums, 

books must be sold to publishers and readers, new startups must attract venture capital funding, patents 

must garner licensing or sales revenues, etc. Inventors will first generate insights with different levels 

of novelty. Subsequently, if they understand which ideas will have the most economic value and ‘sell’ 

the idea to the appropriate audience, the novel ideas will be recognized as valuable (Sternberg & 

O’Hara 1999). By corollary, if they do not recognize which ideas are most valuable or are unable to 

sell the ideas, the economic value of the invention will not be realized. 

Importantly, while innovation studies have suggested a positive link between novelty and the 

value of innovations (Trajtenberg et al 1997; Singh & Fleming 2010; Phene et al 1997), creativity 

scholars have suggested that the skills associated with generating cognitively novel ideas and those for 

selecting and promoting ideas that have economic value are weakly related at best (Sternberg & 

O’Hara 1999; Sternberg 1997). Thus, a comparison of the tension (recombination) and foundational 

(local search) processes of creativity would benefit from considering their separate impacts on novelty 
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and value.  

In studies of innovation, particularly of innovative patents, research has repeatedly found 

strong evidence for various forms of recombination as the main mechanism producing breakthroughs 

(e.g., Fleming 2001; Hall et al 2001, Rosenkopf & Nerkar 2001; Hall 2002; Gittelman & Kogut 2003). 

Yet, the measure of breakthroughs to which they have been constrained is one of citation counts to 

patents, which have been shown to correlate (if noisily, Bessen 2008) with measures of economic value 

(Griliches 1990), such as inventors’ or other experts’ estimates of future financial value (Albert et al 

1991, Harhoff et al 1999), patent renewal fee payments (Harhoff et al 1999; Hegde & Sampat 2009), 

filing patents for the same invention in multiple jurisdictions (Lanjouw & Schankerman 2004), and 

firms’ stock market values (Deng et al 1999; Hall et al 2005). As a result, citations may most 

appropriately measure the value or usefulness of patents but do not capture their novelty.  

To develop a separate measure of cognitive novelty, we draw on Kuhn’s (1962/1996) argument 

that scientific ideas are embedded in vocabularies and therefore shifts in ideas can be detected in shifts 

in language. If we are interested in understanding the emergence of breakthrough novel ideas, then, we 

need methods that pay attention to the language that represents the innovations. In this paper, we 

introduce just such an approach. Borrowing a computer science technique called ‘topic modeling’ that 

discovers the latent topics in a collection of documents and identifies which composition of these 

topics best accounts for each document, we map the formation of new topics in patent data – which can 

be seen as the emergence of novel ideas –and, further, locate the patents that introduce them. Those 

patents that originate new topics can be thought of as cognitive breakthroughs. In introducing this new 

measure of cognitive breakthroughs, we can unpack the relationship between contrasting creative 

processes – tension vs. foundational – and differing creative outcomes – cognitive novelty vs. 

economic value.  

To develop and validate this approach, we examine the formation of novel ideas in a domain of 

nanotechnology, that of Buckminsterfullerenes (and the related area of carbon nanotubes). This is a 

useful setting because fullerenes can be seen as a ‘general purpose technology’ (Bresnahan & 
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Trajtenberg, 1995; Helpman, 1998) with potential applications in many areas (Rothaermel & Thursby, 

2007). Thus, a wide variety of cognitive and economic breakthroughs should be possible to identify.  

In this nanotechnology field, we find that – consistent with tension theories of creativity – 

various forms of recombination are positively associated with economic value as measured by patent 

citation rates. However, in support of foundational theories, we find that cognitive novelty (a patent 

that originates a new topic) is more likely to be associated with local search that is the product of 

narrower recombinations. At the same time, we show that novel ideas tend to have higher economic 

value. This suggests an alternative model of innovation, where novelty is one source of economic value 

produced by innovators who ‘draw on a single domain in a practiced manner’ (Taylor & Greve 2006, 

p. 727), while the recombination of distant or diverse knowledge directly positively influences the 

economic value of innovation, though reducing the likelihood of developing cognitively novel 

breakthroughs. Few patents in our study were both cognitive and economic breakthroughs (less than 

one percent of our sample), but they appear to have a greater impact on future innovation than any 

other kind of invention. 

A text-based approach to the analysis of patents gives the researcher new traction in 

understanding breakthroughs and the emergence and evolution of technologies over time. First, we use 

texts of patents to develop a measure of cognitive novelty and find that novelty contributes to the 

creation of economic value. At the same time, we highlight the conflicting creative processes that lead 

directly to novelty and value, the former requiring local search and the latter distant and diverse 

recombinations. This contrasts with the common view that local search should be associated with 

exploitation and not exploration. It also draws attention to the organizational design implications for 

managing the double-edged sword of recombination in innovation, where innovation strategies must 

deal with the trade-offs and interrelationships between allocation of resources towards the development 

of deep knowledge in particular domains and the creation of opportunities for recombination.  
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HYPOTHESES: EXPLORING THE DOUBLE-EDGED SWORD 
 
The creativity literature proposes that the creative process involves the generation of novelty and then 

the subsequent achievement of economic value through the recognition and promotion of those novel 

ideas that have the most promise (Sternberg & O’Hara 1999). This can be seen as a process of 

variation (either “blind” or intentional production of novelty) followed by selection and retention 

(realization of economic value) (Campbell 1960; Simonton 1999). Creativity research has proposed 

two different models – the tension and foundational views – of the role of knowledge in these creative 

processes. The tension view asserts that deep knowledge can lead to myopia such that recombination of 

distant or diverse knowledge is needed in order to see new ideas. The foundational view suggests that 

the only way to see potential anomalies that could lead to breakthroughs is through search in a 

narrower domain, i.e. local search. These are the two blades of the double-edged sword: recombination 

is either seen as promoting or detracting from innovation. 

Figure 1 portrays the two blades of the sword as they relate to each innovative outcome – 

cognitive novelty and economic value. In the tension view, recombination should be positively 

associated with novelty (Path A) and economic value (Path C). In the foundational view, local search is 

more likely to produce novel (Path A’) and economic value (Path C’). In both cases, novelty, once 

achieved, should also be associated with economic value (Path B).  

--Insert Figure 1 about here --!

Note that most innovation studies have an implicit model of innovation based in the tension 

theory of creativity: they argue that recombination generates novel ideas which, in turn, are more likely 

to be valuable (in these studies, the focus is patented inventions, so economic value is measured as 

citations as prior art by subsequent patents) (Fleming 2001; Hall et al 2001, Trajtenberg et al 1997; 

Gittelman & Kogut 2003; Singh & Fleming 2010). The dynamics are represented in Figure 1 in Paths 

A and B. To date, however, these studies have mainly looked at the effect of recombination in patents 

(using a variety of measures) on subsequent citations to those patents. In other words, rather than 

testing paths A and B separately, they have tested Path C in Figure 1. They find that recombination is 
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positively associated with economic value but do not analyze directly the intervening step associated 

with the generation of novelty from those recombination processes.   

In using topic modeling to analyze breakthrough patents, we can explore this relationship 

directly by measuring the presence of novel ideas (as indicated by shifts in vocabularies in the patent 

texts) and determining if this variable mediates the association between recombination and value (as 

indicated by forward citations) or if local search (narrower recombination) is more likely to lead to 

cognitive and economic breakthroughs. This approach will allow us to understand if there are any 

contradictions between the processes leading to novelty and those engendering economic value. We 

will accomplish this through a test of mediation (Baron & Kenny 1986; Iacobucci et al 2007; Zhao et 

al 2010) so that we can examine each of the paths and their joint effects. In testing paths C and C’, we 

replicate prior innovation studies showing the association between recombination and economic value. 

In testing paths A (and A’) and B, we explore the relationship between tension and foundational views  

in producing novel ideas that should subsequently be associated with economic value.  

Foundational vs. tension theories and economic value 

Tension assumptions about recombination (Hargadon & Sutton 1997; Weisberg 1999) have dominated 

management scholarship on innovation. The view is that deep knowledge in a single or small number 

of domains may lock inventors into one way of thinking and therefore block their ability to generate 

breakthrough innovations. Local search will only produce incremental innovations and, therefore, to 

generate breakthroughs, inventors must combine knowledge from distant and diverse sources. In 

theory, all innovations are based on some sort of recombination. Whenever we use the term 

recombination, we are referring to the recombination of distant or diverse knowledge, where 

recombination of local or similar knowledge would be considered local search (e.g., Fleming 2001; 

Ethiraj & Levinthal 2004). 

Drawing on tension view assumptions, researchers investigating the sources of breakthrough 

patents have identified recombination processes as their source. Their studies have examined a series 

of recombination measures to show that breakthroughs are the product of combinations of distant and 
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diverse knowledge. In addition, previous research demonstrates that inventors with experience in 

recombination and situated in contexts that are conducive to recombination (such as teams and 

organizations) are more likely to produce breakthroughs. In all cases, these studies examining the 

sources of breakthroughs use forward citation counts as a measure breakthrough, which captures the 

economic value of the patent. The relationship they test is represented by path C in Figure 1. 

 The literature has operationalized recombination in a number of ways. Research has suggested 

that recombination is most likely to lead to higher citation rates if the knowledge combined is 

technologically distant. The idea is that combining knowledge from exploratory or long jump search 

(Gavetti & Levinthal 2000; March 1991) is more likely to produce inventions that break from the 

existing technological and scientific models and ultimately become highly cited (Phene et al 2006, 

Rosenkopf & Nerkar 2001, Trajtenberg et al 1997). Similarly, scholars have argued that highly cited 

patents are more likely to be combinations of not just distant but also diverse knowledge domains (Hall 

et al 2001), where greater diversity (lower concentration) of knowledge avoids intellectual lock in. 

Fleming (2001) has extended these ideas to suggest that if inventors are familiar with the 

components of an invention and their prior combinations, they will be more able to create new 

combinations that are valuable. Scholars have also suggested that the degree to which a patent draws 

on basic scientific knowledge is associated with its future citations. The logic is that science serves as a 

map for locating innovative combinations (Fleming & Sorenson 2004), and therefore, inventors’ 

embeddedness in science increases the likelihood of finding the most valuable ones (Gittelman & 

Kogut 2003; Deng et al 1999). !

Inventors are also seen to be able to recombine ideas better when they collaborate, which, 

theory suggests, prevents the inertial thinking that any one inventor might experience (Audia & 

Goncalo 2007). Specifically, top cited patents are more likely to be associated with larger inventive 

teams due to the greater diversity of viewpoints represented as well as the higher capacity to iterate 

ideas and select better ones (Singh & Fleming 2010). Teams with greater inventive experience on 

average will also be more skilled in recombination and therefore better able to create valuable 
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inventions (Singh & Fleming 2010; Conti et al forthcoming). Further, inventors embedded in 

organizations – especially those that have norms encouraging exploration (Audia & Goncalo 2007) – 

will be more likely to produce breakthroughs because they are able to recombine a rich amount of 

knowledge accumulated collectively in the organization (Singh & Fleming 2010). Taking these 

insights together, we hypothesize that: 

H1a: A patent based on recombination processes is more likely to receive a higher number of 
citations than a patent produced based on local search (path C in Figure 1).  
 
To operationalize the general construct of ‘recombination processes,’ we will replicate the 

variety of measures used by prior scholars mentioned above. Specifically, we will examine the impact 

of increased distance of knowledge, increased diversity of knowledge, increased familiarity of 

components and combinations, greater use of science as a map for recombination, invention within 

teams and organizations that have more resources for recombination, and increased experience of 

inventors in making recombinations.  

While the existing empirical evidence for breakthrough patents has overwhelmingly supported 

the tension view of recombination, the foundational view would propose an alternative relationship 

between recombination and measures of economic value. Under this logic, inventors should need to 

explore a relatively narrow domain in-depth in order to know how to “defy the crowd” and “buy low 

and sell high” (Sternberg & O’Hara 1999; Sternberg & Lubart 1995). Inventors cannot see new sources 

of value without understanding what assumptions are behind the existing sources of value, and these 

insights can only come from focused, local search. This view of creativity is consistent with ecological 

theories that domain-spanning activities may suffer market penalties due to both deficiencies in 

production of innovations as well as problems of market reception. Recombinations of distant or 

diverse knowledge might get in the way of identifying value because they would disperse effort and 

distract from obtaining the incisive insight that comes from a deep appreciation of one domain 

(Hannan, Polos & Carroll, 2007). Thus, recombination could prevent the realization of economic value 

because it produces superficial or incremental work. One might also infer that recombination could 
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compromise the realization of economic value because market audiences penalize offerings that span 

categories (Hsu, Kocak & Hannan 2009; Rao, Monin & Durand 2005; Ruef & Patterson 2009; 

Zuckerman 1999). That is, recombination of inputs could potentially lead to difficulties in classifying 

the innovation and thus to penalties in the form of fewer citations over time. We therefore offer a 

competing hypothesis (as represented in Path C’) to the recombination model of creativity in 

generating economic value: 

H1b: A patent based on local search (narrower recombination) is more likely to receive a 
higher number of citations than a patent produced based on recombination processes (path C’ 
in Figure 1).  
 

Foundational vs. tension theories and novelty 

By calling out novelty as a separate creative output from the generation of economic value, we are able 

to interrogate existing research that has privileged recombination processes as the source of innovative 

breakthroughs. Implicit in the arguments made in studies of breakthroughs is the idea that 

recombination generates novel ideas (path A in Figure 1), which in turn are more likely to be cited as 

prior art by subsequent patents (path B).  

With regard to the connection between novelty and economic value, while the creativity 

literature makes it clear that not every truly novel idea will become valuable (Amabile 1983; Sternberg 

& O’Hara 1999; Sternberg 1997), they also indicate that novelty will increase the probability that 

economic value can be obtained, all else equal. This logic is consistent with the arguments made in the 

innovation literature on patents discussed above. Of course, it is a requirement of the US Patent Office 

that every patent be novel to some extent, though some inventions may be ‘improvements,’ built upon 

existing technological trajectories, while others may be truly novel, introducing new technological 

trajectories. Our concern here is with those that meet this latter standard. Thus, we hypothesize: 

H2: Patents that represent cognitive breakthroughs (truly novel ideas) are more likely to 
receive a higher number of citations than patents that do not (path B in Figure 1).  
 
As reviewed above, novelty has been portrayed in the innovation literature as an (unmeasured) 

output of recombination and an input to the creation of economic value (citations). For example, 
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Trajtenberg et al (1997: 29) claim that ‘synthesis of divergent ideas is characteristic of research that is 

highly original.’ Similarly, Phene et al (2006: 370) suggest that, ‘Knowledge that is technologically… 

distant provides the organization with an opportunity to make novel linkages,’ and Singh and Fleming 

(2010: 52) claim that, ‘collaboration in the form of team and/or organization affiliation enables more 

careful and rigorous selection of the best ideas while also increasing the combinatorial opportunities 

for novelty.’ These arguments are based in the tension view of recombination, which assumes that 

knowledge and creativity are opposing forces, such that ‘knowledge may provide the basic 

elements…out of which are constructed new ideas, but in order for these building blocks to be 

available, the mortar holding the old ideas together must not be too strong’ and too much knowledge of 

a domain can be habit-forming and inertial (Weisberg 1999, p. 226). Recombination of distant or 

diverse knowledge can break the habits and inertia. 

In introducing a measure of novel ideas, we can make the implicit model in innovation studies 

explicit: novel ideas – what we can conceptualize as cognitive breakthroughs – are the products of 

recombination processes: 

H3a: Patents produced through recombination processes are more likely to be cognitive 
breakthroughs (truly novel ideas) than those that are not (path A in Figure 1).  
 
The ‘foundational’ view makes the opposite claim (Weisberg 1999). Here, immersion in a 

particular domain is required in order to produce novelty (Csikszentmihalyi 1996). Local search and 

narrower recombinations based on deep knowledge in one area enables the identification of anomalies 

that lead to new insights by exposing the tensions or challenges in the current ways of thinking. This is 

consistent with the Kuhnian (1962/1996) model in which paradigm shifts are triggered by the 

accumulation of anomalies. Narrow but deep search leads to truly novel breakthroughs in knowledge 

because it enables researchers to identify ‘what rules to break’ (Taylor & Greve 2006, p. 726). These 

findings are also consistent with work at the inventor level of analysis suggesting that specialization is 

important to push the frontier of knowledge outward as the ‘burden of knowledge’ increases over time 

(Jones 2009, Agrawal el al, 2012, Conti et al forthcoming). We therefore offer a competing hypothesis 
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(as represented in Path A’) to the recombination model of creativity:    

H3b: Patents produced through local search (narrower recombination) are more likely to be 
cognitive breakthroughs (truly novel ideas) than those that are not (path A’ in Figure 1). 
 
If developing truly novel inventions were the only mechanism through which recombination 

processes would lead to higher economic value, we should expect full mediation of Path C when 

introducing Paths A and B. However, there are reasons to expect that this may not be the case. Indeed, 

while the primary mechanism that scholars of innovative breakthroughs theorize is that of novelty, they 

have not claimed that novelty is the sole driver of economic value (as measured by citations) nor that 

recombination only serves to generate novel ideas and has no direct effects on the degree of economic 

value created. However, without a measure of novel ideas, they have not been able to tease apart the 

effect of novelty from other effects of recombination. For example, combining diverse knowledge 

domains might enlarge audiences for the innovation or increase the likelihood it will be found by 

inventors or patent examiners in a search for prior art. Similarly, working in a team might not only 

enhance novelty through combining the ideas of different members, but could also broaden the 

network in which innovations would diffuse. To date, scholars have mainly treated these effects as 

alternative explanations to be controlled for in their analyses so that they can make stronger claims 

about the implicit relationship between recombination and novelty (e.g., Singh & Fleming 2010).  

We do not propose here to test all of the alternative effects of recombination processes and thus 

would not expect full mediation of Path C when introducing the topic-modeling based measure of 

novel ideas into the analysis. To demonstrate the distinctive effects of recombination or local search on 

novelty and economic value (while at the same time taking into account that the generation of novelty 

is on the path to the eventual realization of economic value), we simply need to find that the 

combination of Paths A and B is significant. To the extent that we find path C remains significant even 

when introducing the measure of novel ideas, we would be reinforcing the notion that recombination 

processes are not only about the generation of novelty or that they support certain parts of the creative 

process (e.g., selection and retention) and not others (e.g., variation).  
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TOPIC MODELING OF PATENT TEXTS: A MEASURE OF NOVEL IDEAS 

Crucial to our analysis is the introduction of topic modeling as a way to create a new measure of 

novelty to contrast with existing citation-based measures of economic value in patents. The intuition 

behind topic modeling as a method to identify novel ideas is the following: the algorithm uses the co-

location of words in a collection of documents to infer the underlying (or latent) topics in those texts 

and the weight of each topic in each individual document. We can then identify the documents that are 

the originators of each topic as those early documents with a significant weight in the topic. These 

originating documents can be seen as cognitive breakthroughs. In our case, because we study patents, 

we call these topic-originating patents. Because topic modeling is a new method in strategic 

management, we introduce it first here before delving, in the next section, into the empirical methods 

and measures of other variables, which are more standard in the field. We explain how our method 

works and then show how we have implemented it in our sample of fullerene patents in order to 

construct the measure of novelty. 

Our methodological move is to treat the texts of patents as representations of the inventive 

ideas embodied in them. Bibliometric techniques to understand the evolution of science and technology 

have a long tradition starting from the pioneering work of de Solla Price (1965a; 1965b). However, 

most of the work to date has used citation analyses (e.g., Leydesdorff et al 1994; Meyer et al 2004; 

Dahlin & Behrens 2005). Text analysis has been much less frequent, and, until recently, the main uses 

of the texts were counts, factor analyses and co-word analyses of keywords (typically in the titles of 

papers or patents) (Yoon & Park 2005; Azoulay et al 2007; Mogoutov & Kahane 2007, Upham et al 

2010). With the increasing power of computation and availability of texts in electronic form, scholars 

are exploring the possibilities of more comprehensive uses of the texts, which would therefore require 

automated (unsupervised) approaches. In the field of technology, some recent studies have developed 

text-based techniques to identify overlaps between documents (Gerken & Moehrle 2012, Winston-

Smith & Shah 2013).  

The study reported here follows these recent trends. It is premised on the idea that studying 
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language in documents should provide a reading of their cognitive content (Duriau et al 2007, Whorf, 

1956). In management studies, this idea has been adapted methodologically to use word counts to 

represent themes (Huff, 1990; Abrahamson & Hambrick, 1997; Kaplan et al 2003). Where the concern 

is in identifying themes over large numbers of texts, topic modeling – a text analysis technique 

developed in computer science – offers exciting potential (see Blei 2012 for an overview; and also, 

Ramage et al 2009; McFarland et al 2013 for details). The advantage of topic modeling over word 

counts and keyword analyses is that it allows for polysemy – words can take on different meanings 

depending on their contexts – and it is inductive – the scholar does not have to specify categories a 

priori but can allow them to emerge from the data. 

Thus, we believe topic modeling should be a fruitful approach to measuring interpretations in 

the emergence of a new technological field (Hall, D. et al 2008). For our purposes, we use the texts in 

the abstracts of patents to understand how different actors describe what the technology is and could 

be, and then to identify shifts in language that represent the emergence of novel ideas. We describe the 

specific choices we made regarding the selection of fullerene patent texts below, but first we offer a 

primer on the topic modeling procedures we use.  

A primer on topic modeling 

The goal of topic modeling techniques as developed in the computer sciences is unsupervised analysis 

of text designed both to generate a predictive model to aid search and to provide a representation of the 

topics in an existing corpus (Hall, D. et al 2008; Chang et al 2009). We focus on this second goal, and 

we will use our data to track the emergence of new meanings over time and identify the patents that 

lead to these shifts in language. 

The topic modeling approach we use is based in the Bayesian statistical technique of Latent 

Dirichlet Allocation (LDA)1 (Blei et al 2003). Topic modeling allows the researcher to uncover 

automatically themes that are latent in a collection of documents and to identify which composition of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The Dirichlet distribution is a ‘distribution over distributions’ that gives the probability of choosing a group of items from a set 
given that there are multiple states to consider (it is a distribution over multinomials). Blei et al (2003) provide more details on 
LDA and its comparison with other methods such as latent semantic analysis. 
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themes best accounts for each document. The documents and the words in the documents are observed 

but the topics, the distribution of topics per document and distribution of words over topics are 

unobserved and represent a ‘hidden structure’ (Blei 2012). Topic modeling uses the co-occurrence of 

observed words in different documents to infer this structure. According to Blei (2012, p. 79), ‘This 

can be thought of as ‘reversing’ the generative process – what is the hidden structure that likely 

generated the observed collection?’ Computationally, the algorithm identifies the posterior distribution 

of the unobserved variables in a collection of documents.  

This idea is represented schematically in Figure 2. The shaded circle denotes what can be 

observed (w, the words in the documents in the collection). The unshaded circles denote latent 

(unobservable) variables: z, the topic assignment in each document; θ, the per-document topic 

proportions; and α and β, the parameters of the Dirichlet priors for θ and the distribution of topics over 

words respectively. Each box is a plate where the N plate denotes the words within documents, the D 

plate denotes the documents within the collection and the T plate denotes the distribution of words over 

topics. Each word is assumed to be drawn from one of T topics. All topics are used in every document, 

but exhibit them in different proportions (usually where a few topics are quite important and most are 

hardly salient). The arrows indicate conditional dependencies between the variables such that assigning 

topics to words (z) depends on the per-document topic proportions (θ), and the appearance of a word in 

a document is inferred to be dependent on the distribution of topics over words (β) and the topics in 

each document (z).  

-- Insert Figure 2 about here -- 

Given a collection of documents, the topic model algorithm provides two outputs, the first 

being a list of topics with a vector of words weighted by their importance to the topic, and the second 

being a list of documents (in our case, patent abstracts) with a vector of topics weighted by their 

importance to the document. This method allows the researcher to quantify meaning over large 

numbers of texts and to identify shifts in thought. A feature of this approach – a feature that moves 

beyond simple word counts or overlaps – is that the same word may have different meanings 
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depending on its co-occurrence with other words in a document, where the number of topics in a word 

corresponds with the number of different meanings it has (Chang et al 2009). This is particularly 

important given Kuhn’s (1962/1996, p. 205) argument that ‘proponents of different theories are like the 

members of different language-culture communities,’ where vocabularies might share many of the 

same words but the actors attach different meanings to them.  

A topic is a multinomial over a set of words, and therefore is not labeled by the algorithm (Blei 

& Lafferty 2007). Though some scholars have experimented with the automatic labeling of topics, this 

approach is not reliable enough to have been widely adopted (Mei et al 2007). Thus, a further step in 

using topic models is the labeling of topics based on the words in them, which serves an important 

function in validating the topics produced by the model as well as generating a label to characterize 

each topic. As described below, we engaged three nanotechnology experts to label and validate the 

topics generated by the topic model.  

We used the publicly available ‘Stanford Topic Modeling Toolbox’ developed by the Stanford 

Natural Language Processing Group and made available in 2009 (Ramage et al 2009).2 The algorithm 

requires inputs for the two parameters α (sometimes called ‘topic smoothing’) and β (sometimes called 

‘term smoothing’). Values above one lead to more even distributions. Values below one favor more 

concentrated distributions across fewer topics or words. In order to produce semantically meaningful 

topics, the Stanford Topic Modeling Toolbox recommends 0.1 for both parameters as a default. As a 

smaller β results in more fine-grained topics (Griffiths & Steyvers, 2004), we lowered this parameter to 

0.01 because we are studying a narrow field of technology. The algorithm thus allocates documents to 

the fewest topics possible while at the same time assigning a high probability to as few words as 

possible for each topic.  

For computer science applications such as the development of predictive models for text 

searches, the best-fit model often produces a very large number of topics. However, Chang et al (2009) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 See http://nlp.stanford.edu/software/tmt/tmt-0.4/ for further details on the toolbox. Another good option is MALLET 
(http://mallet.cs.umass.edu/). Many new implementations are emerging as topic modeling becomes more prevalent, e.g., one can 
use the R package recently developed by Grun and Hornik (2011).  
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show that these best-fit models do not produce topics that represent distinct meanings and that smaller 

numbers of topics make interpretation more feasible. Thus, scholars have found it most useful to 

constrain the number of topics (where the typical number selected is 100) (Blei & Lafferty 2007; Hall, 

D. et al 2008). Following their lead, we limited the model to 100 topics, which was the maximum 

number that would still be interpretable by fullerene experts. This provided both statistically and 

semantically meaningful topics.  

Sample of fullerene and related patents 

To test the use of topic models to identify shifts in vocabularies, we focused on a single technical 

domain, that of buckminsterfullerenes (and the chemically related carbon nanotubes). This narrow 

focus is essential because it allowed us to identify field-level experts to validate the topics generated 

using the topic-modeling algorithm. Prior studies of the emerging field of nanotechnology have found 

fullerenes and nanotubes to be a useful site for analysis (Kuusi & Meyer, 2007; Wry, et al 2010) 

because they can be applied in a broad range of potential applications from medicine to electronics to 

sports and therefore can be conceptualized as general purpose technologies (GPTs) (Bresnahan & 

Trajtenberg, 1995; Helpman, 1998).3 They have the chemical formula of C60 or Carbon 60. 

Buckminsterfullerenes (also known as fullerenes) were discovered in 1985 by Dr. Richard Smalley, 

Robert Curl and Harold Kroto (for which they won the Nobel Prize in Chemistry in 1996). Carbon 

nanotubes are in the fullerene family and their discovery is attributed to Sumio Iijima of NEC 

Corporation in 1991.  

The choice of fullerenes and nanotubes is appropriate for the application of topic modeling 

because they are subject to substantial patenting over time and are associated with a multiplicity of 

interpretations. These patents show that inventors envision technologies for revolutionary new 

applications (e.g., implantable medical devices to control insulin levels for diabetics, more targeted 

treatments for cancer, structural materials for combat and sports gear, super lightweight batteries and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Fullerenes compare quite well in the generality index with other GPT’s studied (Hall, B. et al, 2001). For example, from 1990 to 
2000, the average generality index of fullerene patents is above 0.6 which is nearly 50 percent higher than that reported for patents 
in computers and communications (the technologies Hall et al identify as having the highest generality). 
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new computing processors that provide quantum leaps in speed and storage capability). Because of this 

range of potential applications, researchers and managers in universities and firms have broad purview 

to guide the research and development of the technology in many directions. As a result, their 

interpretations of what the technology is and how it might be used have consequences for the 

development and evolution of the technology. Research and development (and ultimately 

commercialization) resources will be placed in some areas and not others depending on the 

interpretations and choices these researchers make.  

We collected the 2,826 fullerene and nanotube patents granted by the US Patent and Trademark 

Office (USPTO) through 2008 (stopping in 2008 allows us to collect 5-year forward citation data for 

all patents in the sample). We identified the population of patents using three separate search 

techniques. First, we used Derwent’s technology classifications to select all patents they identify as 

pertaining to either of these technologies: B05-U; C05- U; E05-U; E31-U02; L02-H04B; U21-C01T; 

X12-D02C2D; X12-D07E2A; X12-E03D; X16-E06A1A. Second, the USPTO established a 

nanotechnology ‘cross reference’ class (#977) in 2004, which was applied retroactively to all 

previously-granted patents deemed relevant as well as to new nanotechnology patents. All the patents 

in subclasses pertaining to fullerenes and nanotubes (977/735-752) were selected. To complement the 

use of these formal classification systems, we also selected all utility patents with the terms ‘fullerene’ 

or ‘carbon nanotube’ in the title, abstract or claims.  

Creating a comprehensive set of patents is imperative because the output of topic modeling 

depends on the collection of documents used. Figure 2 demonstrates that no individual sampling 

technique provided a complete picture of patents that could plausibly be associated with fullerenes, and 

we believe our approach to developing the population of patents in this field compensates for biases 

created by any one method of classification.  

-- Insert Figure 2 about here -- 

Deriving fullerene and nanotube topics 

For each patent, the abstracts from its USPTO document were used. Patents’ abstracts are particularly 
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appropriate for an analysis of shifts in language because they are meant to represent a summary of the 

novel aspects of the invention. Specifically, the USPTO instructs applicants that, ‘The purpose of the 

abstract is to enable the [USPTO] and the public generally to determine quickly from a cursory 

inspection the nature and gist of the technical disclosure,’ where, ‘the form and legal phraseology often 

used in patent claims… should be avoided’4 (see also Emma 2006). Further, the USPTO requires that 

abstracts be 150 words or less, thus assuring that the documents compared in our analysis are of 

approximately equal size.   

In several cases, multiple patents with the same abstract have been granted to protect a single 

invention. To prevent multiple counting of such texts, we grouped patents with identical abstracts and 

assignees into patent families. This resulted in 2,384 patent families based on the 2,826 patents (there 

are 336 families with more than one patent, most of which include only 2 patents, with an average of 

2.56 and a maximum of 15). We use the data associated with the chronologically first patent in the 

family. As is typical practice, we removed ‘stop words’ such as ‘the,’ ‘and,’ ‘that,’ or ‘were’ that do 

not contribute to the identification of topics. Using the approach described above, we identified 100 

separate topics, the probability that each of the words appeared in each topic, and the weight of each 

topic in each abstract.  

To label the topics and validate their usefulness in identifying separate ideas, three 

nanotechnology experts5 separately reviewed each of the 100 topics. Based on the list of the top 20 

words and their weights as produced by the topic modeling algorithm, we asked each coder to provide 

a short name to label the topic. We obtained a Krippendorff’s α, a common measure of inter-rater 

reliability, of 0.78, which is high given that the coders were not starting from an initial list of codes to 

apply to each topic. Disagreements for 22 topics were all resolved in joint discussions.6 A series of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 First quote from, http://www.uspto.gov/web/offices/pac/mpep/documents/0600_608_01_b.htm (accessed November 15, 2012). 
Second quote from the Manual of Patent Examining Procedure (MPEP), Eighth Edition, August 2001, Latest Revision July 2010, 
Chapter 600 Parts, Form, and Content of Application, 608.01(b) ‘Guidelines for the Preparation of Patent Abstracts’ Section C: 
‘Language and Format’ 
5 Two post docs and one graduating PhD student, each with experience in research on fullerenes and nanotubes. 
6 Coders found 25 topics to be very general and therefore difficult to label with distinctive codes. This is not surprising as topic 
models tend to place noisy data into broad or uninterpretable topics (which serves to bolster the coherence of the other topics). We 
performed all of our statistical analyses omitting these general topics. We found fully consistent results (results available from the 
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topics focused on production processes such as chemical functionalization of nanotubes, metal 

catalysts for production, or using a reaction vessel for producing nanotubes. Other topics covered 

applications into such areas as neural networks, reinforced golf balls, optical devices, batteries, 

transistors, magnetic memory, recording devices, temperature sensing devices, x-ray devices, DNA 

detectors or plasma display panels. A third category included topics related to the equipment – 

primarily scanning probe microscopes – used for visualizing and manipulating nanoscale matter.  

Figure 3 shows a sample abstract and the weight of its most important topics. This abstract for 

patent number 7288970 ‘Integrated nanotube and field effect switching device’ is dominated by topic 

24 (‘Nanotube switching devices and applications’) with 63 percent weight and topics 54 (‘Electronic 

implementations of look up tables’) and 49 (‘Field emissions display devices’) each with 5 percent 

weight. No other topic is greater than 5 percent weight. The sum of the weights of all the topics for any 

given patent is 100 percent. Figure 4 provides graphical representations of sample topics with the top 

20 words associated with each sized in proportion to their importance.  

-- Insert Figures 3 and 4 about here -- 

The topics as generated from the abstracts of patents do not give us the same information as 

that captured by patent office classifications. The correlation between categories developed using topic 

modeling and the USPTO technological classes (using primary topics and primary 3-digit patent class) 

is 0.22 with a standard deviation of 0.10 (where the average correlation is the average over all the 

calculated maximum correlation values for each topic with all the patent classes). This is perhaps not 

surprising. In the case of nanotechnologies, the USPTO did not have a standardized classification 

system for this field until the introduction of the 977 class in 2004 and, even then, 977 was only a 

cross-reference class, and therefore would never appear as a primary patent class. However, even when 

examining the correlation between primary topics and 977 class assignments (for the 305 patents that 

were assigned a 977 class), we find that it is only slightly higher (0.29). This may be the case because 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
authors). However, since our interest is in introducing a replicable approach using unsupervised analysis of texts, we report the 
results based on all 100 topics below rather than the results that depend on human intervention by coders. 
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topics are generated from the writings of inventors (and others who help construct the patent) to 

describe the nature of the invention, while classifications are assigned by patent examiners using 

previously established classification systems to facilitate their search for prior art (USPTO, 2005).  

Identifying topic-originating patents that represent truly novel ideas  

There are many potential analytical uses of the data produced using topic modeling. For the purposes 

of this study, we focus on the identification of patents that originate novel ideas. To do so, we detect 

the entry of new topics into the sample. We then select all patents over a threshold weighting for that 

topic (in our case, 0.2) and appearing in the first 12 months of the topic formation (based on 

application date). The average number of topic-originating patents using this method is 1.89 per topic 

for a total of 189. The median is 1. Two topics had more than 10 patents associated with them in the 

first year; results are robust to their omission. Thus, topic originating patents is an indicator variable 

where a 1 identifies those patents that are over the threshold (though results are robust to the use of a 

continuous variable where topic originating patents are measured according to the weight of the topic 

in the patent). 

The selection of topic-originating patents is sensitive to the cutoff points we set. For the time 

frame, we chose 12 months as reasonable estimate of the time for which the knowledge of that 

invention would not be widespread (where the average lag between application and granting of a patent 

in our data is 34 months). Thus, any patents applied for in this 12-month window could be considered 

simultaneous inventions (though, in our regressions we test the use of only the first patents in each 

topic and get similar results as those reported here). The threshold for topic weight is also an important 

choice. To identify the appropriate threshold, for each of the 100 topics, we provided our three expert 

coders with a chronological list of patents (and their abstracts) that had a greater than ten percent 

weight in the topic. They were asked to identify the first patent chronologically that represented the 

essence of the topic. The weight that best matched the expert assessments was a 0.20 threshold. 

Nevertheless, to check the robustness of this threshold, we conducted our statistical analyses with 

topic-originating patents as identified using thresholds of 0.15 and 0.25. These results are qualitatively 



The double-edged sword of recombination in breakthrough innovation - 21 - 

similar to those using the best-fit threshold, with the effect of topic originating patents in our 

regressions slightly lower (but still significant) for patents using the tighter 0.25 threshold and slightly 

higher (but also still significant) for patents using the less-strict 0.15 threshold.7  

Though few other scholars studying breakthrough innovations have attempted to measure 

novelty directly, Ahuja and Lampert’s (2001) study of organizations offers some analogues in their 

measures of ‘pioneering,’ ‘novel’ and ‘emerging’ technologies. The challenge in comparing our 

measure of novel ideas to their metrics is that they are all calculated at the firm-level of analysis and 

therefore are not easily transposed to the invention- (patent-) level of analysis we use in our study. If 

we were to adjust their measure of ‘pioneering’ technologies from a count of a firm’s patents that have 

no prior art to a dummy indicating if a single patent has no prior art and their measure of ‘emerging’ 

technologies from a count of firm patents that cite prior art that is on average less than 3 years in age to 

the average age of citations for a single patent, we find that they are weakly but positively correlated 

with topic originating patents (0.064 and 0.055 respectively). We could not find an equivalent 

invention-level measure for their variable ‘novel technologies’ because this is based on the number of 

new patent classes entered by the firm in the previous 3 years. Nevertheless, this analysis in some 

small way validates our invention-level measure of novelty.  

One might be worried that the identification of topic-originating patents is merely mechanical. 

Since topic modeling calculates posterior probabilities, the patents we identify as topic-originating 

could be supposed to exist only because of the many citations to those patents that follow subsequently 

or because certain topic originating patents are associated with more heavily populated topics. We do 

not believe this to be the case for several reasons. First, the number of patents per topic differs from 

topic to topic, ranging from 9 to 44 (mean 23.2, standard deviation 8.7). Second, in examining the 5-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 We also explored other methodologies for identifying topic-originating patents, such as selecting the first patent to 
represent a substantial jump in weight relative to prior patents. For example, if we look at patents that represent a 3 
standard deviation jump from prior patents and all subsequent patents over that weight in the first year, we obtain a list 
of 141 patents, of which 73% are the same as those topic-originating patents identified using our .2 threshold. The 
results using this alternative measure are substantially the same as those we report in the paper. Note, however, that in 
every case, the selection of a topic-originating patent requires an assumption about a threshold, whether it is a weight 
of .2 or a number of standard deviations. Therefore, we prefer to use the threshold that has been validated by coders. 
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year forward citations for each of the topic-originating patents, we see that there is substantial variation 

around the mean of 22.17, where the minimum is 0 and the maximum is 187. Indeed, only 20 of the 

189 topic-originating patents are also in the top 5 percent of cited patents (those that are often 

considered ‘breakthroughs’). Moreover, the correlation between the topic size and the number of 

citations to its originating patents is negative and insignificant. When we enter the topic size as a 

control variable in our regressions, its estimated coefficient is very small, negative and not statistically 

significant, suggesting that there is no direct positive relationship between the size of the topic and the 

number of citations that topic’s originating patents receive from follow-on patents. Many of the 

forward citations are made by non-fullerene patents (and therefore not in our dataset and not used in 

the text analysis that identified the topics), and for those that are fullerene patents, the citation pattern 

does not indicate any skewed dependence on topics. Finally, because prior art is assigned based on 

patent classifications, the low correlation between such classes and the topics would also mitigate any 

argument of reverse causality. The advantage of topic modeling is precisely that it allows us to identify 

both heavily and sparsely populated topics. This technique enables the researcher to identify shifts in 

vocabulary, whether or not many other patents then continue the conversation.  

MEASURING AND TESTING THE DOUBLE-EDGED SWORD OF RECOMBINATION 

We will use this measure of truly novel ideas (topic-originating patents) as the mediator variable in an 

analysis of the creative processes producing these novel ideas and subsequent economic value (where 

citations capture the value of the patent). We describe the dependent and independent variables below 

and explain how their relationships will be tested using structural equation modeling. 

Dependent and independent variables 

Dependent variables 

Breakthrough innovations have typically been measured by the number of ‘forward citations’ (prior art 

citations made to the focal patent by subsequent patents). Higher numbers of citations indicate that a 

patent represents a breakthrough (Trajtenberg 1990). Because studies of innovative breakthroughs vary 

as to whether they use a count of forward citations or a dummy variable indicating the ‘breakthroughs’ 
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(for the top tier of cited patents) as the outcome of interest, we examine both dependent variables in 

our analyses. We examine the 5-year count of forward citations as a dependent variable in negative 

binomial count models and a dummy variable indicating whether a patent is in the top 5 percent of 

cited patents in a probit model. The two dependent variables are measured from the grant date in our 

reported regressions. Our results are robust to the use of a 5-year window since application date. 

Independent variables 

To test for the competing effects of the tension and foundational views of recombination, we can draw 

on measures of recombination from prior studies where higher levels of any of the measures would 

capture recombination (the tension view) and lower levels would capture local search (the foundational 

view). Here, we replicate a wide series of studies using patents to examine different aspects of 

breakthrough innovations.  

Technological distance. To measure the distance of the knowledge recombined, we use the 

technological distance measure proposed by Trajtenberg et al (1997). This measures the distance of the 

focal patent’s prior art based on USPTO patent classifications as follows: 

!"#ℎ!"#"$%&'#!!"#$%&'(! =
!"#ℎ!!"#$%&'(!,!

#!!"!!"#$%"&'!!"#$#"%&'!!"!!

#!!"!!"#$%"&'!!"#$#"%&'!!"!!

!
 

where !"#ℎ!!"#$%&'(!,! is 0 if prior art patents ! and ! belong to the same 3-digit technological 

class, 0.33 if they are in the same 2-digit class, 0.66 if they are in the same 1-digit class, and 1 if they 

are in different 1-digit classes or have no prior art. The higher the value of this measure, the more 

distant the knowledge combined. 

Technological diversity. To capture the breadth of recombination, Hall et al (2001) use a 

Herfindahl index of citation concentration in a measure that represents technological diversity (which 

they termed ‘patent originality’). A high value of diversity (a lower concentration of USPTO patent 

classes in the prior art cited by a focal patent), the more diverse sources of knowledge it combines. As 

suggested by Hall (2002), we adjusted the measure to correct for the downward bias associated with 

patents with few citations to prior art.  



The double-edged sword of recombination in breakthrough innovation - 24 - 

!"#ℎ!"#"$%&'#!!"#$%&"'(! =
!"#$%&!!"!!"#!"#$!

!"#$%&!!"!!"#$%#&! − 1
(!"#ℎ!"#"$%&'#!!"#$%&"'(!),

!ℎ!"!!!"#ℎ!"#"$%&'#!!"#$%&"'(!! = 1 − !!"!
!!

!
 

and !!" denotes the percentage of citations made by patent ! to patents in class !, out of !! 

patent classes. For patents that cite no prior art, this measure cannot be calculated. Therefore, we set 

the value to zero and include a dummy (No prior art) as a control.  

Familiarity of components and combinations. According to Fleming (2001), familiarity with 

the components of an invention and their prior combinations will enable inventors to create new 

combinations. Familiarity of components is inferred from how frequently and recently patent 

subclasses have been used previously by other researchers. This variable – Ln(component familiarity) – 

is measured as the average time-discounted count of all previous usage of the focal patent’s subclasses 

across all patents listed by the USPTO. Following Fleming’s (2001) formulation: 
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Similarly, combination familiarity – Ln(combination familiarity) – is measured as the time-discounted 

count of the previous use of the focal patent’s particular subclass combination across all patents listed 

by the USPTO: 
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On the other hand, Fleming (2001) suggests that too much cumulative use of a combination may mean 

that it has been exhausted of its potential. We control for this possibility using the variable 

Ln(cumulative combination), which is the same as combination familiarity but without the time 

discount.  
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Science intensity. Another means for inventors to develop a map of the scientific terrain and 

understand what recombinations are possible is to draw heavily on scientific research. This use of 

science is often represented as the ‘science intensity’ of a patent. We follow the typical 

operationalization of this construct as a count of the ‘non-patent references’ listed in focal patent 

(Gittelman & Kogut 2003; Deng et al 1999): # non-patent references.  

Inventor experience. Inventors with greater experience on average will also be better able to 

generate recombinations (Singh & Fleming 2010; Conti et al forthcoming). This is measured as the 

average number of previous patents by the inventors of the focal patent, using a log normal 

transformation to deal with the skewness of the data: Ln(average experience).  

Teams and organizations. Collaborations are also seen to produce more recombinations, due to 

their greater diversity of views and backgrounds. We follow the lead of Singh and Fleming (2010) and 

measure this as a dummy (Team) but in separate analyses test the count of team members and find 

similar results. Relatedly, if an inventor is embedded in an organization rather than being solo operator, 

s/he can draw on a greater variety of accumulated knowledge to make recombinations (Audia & 

Goncalo 2007; Singh & Fleming 2010). This is measured according to Singh and Fleming’s (2010) 

approach as dummy variable (Assigned) indicating the patent was assigned to organization. 

Additional controls. We include three other measures as controls because they have been 

shown to be associated with the forward citations garnered by patents. We control for the total number 

of patents cited as prior art (# domestic references) because it is assumed that patents that cite more 

will also be cited more (Podolny & Stuart 1995). We also control for the number of claims (# claims), 

because it has been argued that the greater the scope of the patent, the more likely the invention will 

receive future citations (Singh & Fleming 2010). Finally, we control for family size, where the family 

is the set of patents that contain identical abstracts and assignees and therefore are assumed to represent 

a cluster of patents around a single invention. We assume that patents in large families will be more 

likely to receive higher numbers of future citations (this is related to arguments by Cockburn & 

Henderson 1998; Gittelman & Kogut 2003; Harhoff et al 2003, who measure patent families as patents 
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that are patented in multiple jurisdictions). We include annual time dummies as a simple control for 

possible time trends. 

Table 1 shows the means and standard deviations for the whole sample – the majority of which 

have similar values to those reported in the studies we cite above – as well as for subsamples of topic-

originating patents, highly cited patents vs. all others. Note that, relative to other patents, topic-

originating patents have higher numbers of citations but statistically significantly lower values for most 

of the variables measuring recombination, an initial indication of support for the foundational view of 

creativity in producing novelty. In contrast, highly cited patents have higher values for most of the 

recombination measures, in line with prior results reported in the innovation literature based on the 

tension view. Note also that the measure of novelty is positively correlated with economic value. The 

correlation table (not reported here for reasons of space) confirms these results. 

-- Insert Table 1 about here -- 

Structural equation modeling to test for mediation 

We will use structural equation modeling to examine the double-edge sword of recombination. Where 

there are more than one independent variable (the case in our analysis), structural equation modeling 

(SEM) is the recommended approach for testing mediated relationships (Iacobucci et al 2007; Zhao et 

al 2010; Cho & Pucik 2005). Positive signs for our recombination variables as tested in paths A, A*B 

(the indirect effect of recombination on citations as mediated by novelty) and C in Figure 1 would 

support the tension view of creativity; negative signs (Paths A’, A’*B, and C’) would be evidence for 

the foundational view. This approach will also allow us to verify prior studies showing a direct, 

positive association between recombination and citations (Path C). The advantage of SEM relative to 

running three separate regressions (the traditional approach to testing mediation, according to Baron & 

Kenny 1986) is that the simultaneous equations control for measurement errors that might lead to 

under- or over-estimation of mediation effects (Shaver 2005). The indirect effect of one of the 

independent variables (IV) on the dependent variable (DV) through the mediator can be calculated by 

multiplying the estimated direct effect of the IV on the mediator (path A) and the estimated direct 
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effect of the mediator on the DV (path B). As a robustness check, we also conducted a mediation 

analysis with separate regressions for each path in Figure 1 and found highly consistent results in both 

the effect size and significance.  

The nature of our dependent variables (one is a count and the other binary) and mediator 

variable (also binary) places additional constraints on the SEM approach. Using a linear model with 

count and categorical dependent and mediator variables can lead to biased results. We therefore use the 

Generalized SEM (GSEM) model introduced in Stata 13 that allows generalized linear response 

functions with count and binary outcomes. We use a negative binomial function for regressions with 

count outcomes and a probit function for regressions with binary outcomes. Employing a maximum 

likelihood estimator, GSEM provides consistent, efficient and asymptotically normal estimates for 

paths A, B and C. We further use nonparametric bootstrapping (with 1,000 replications) to adjust 

estimates for bias and to estimate the indirect effects (A*B), total effects ([A*B]+C), their standard 

errors and their confidence intervals. All the significance levels are determined by the bias-adjusted 

bootstrap confidence intervals (Mooney & Duval 1993, Efron & Tibshirani 1993). 

RESULTS 

Tables 2 (for citation counts) and 3 (for breakthroughs in the top 5 percent of citations) report the 

results of the structural equation models. Column 1 shows the direct effect of the independent variables 

measuring recombination processes and mediator measuring novel ideas on the dependent variable 

(paths C and B). Column 2 shows the direct effect of recombination processes on novel ideas (path A). 

Column 3 identifies mediation effects in the analysis and shows the indirect effect of recombination 

processes as mediated by novel ideas (A*B). Column 4 represents the total effect of the independent 

variables and mediator on the dependent variables, taking into account the direct and indirect effects 

([A*B]+C). 

-- Insert Tables 2 and 3 about here -- 

Testing path C 

In testing H1a and H1b for path C, we are in essence replicating the prior studies on breakthrough 
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innovations linking recombination with subsequent citations. This is a first step of a test of mediation 

but also serves to establish the validity of the dataset used in this current study. Though the samples of 

the prior studies are vastly different (in terms of numbers of observations, time periods, technological 

arenas, etc.), we find support for H1a in our fullerene patent dataset in terms of direction and, in most 

cases, significance of effect for each of the citation-based measures (Model 1 in Tables 2 and 3). That 

is, as previous studies have found, recombination processes – greater distance and diversity of 

knowledge, greater use of science as a map for recombination, more familiarity with components and 

combinations, invention in organizations and teams with greater resources for recombination and 

greater experience of inventors – are positively associated with the generation of economic value in the 

form of citations to patents.  

For the citation count models in Table 2, we find that more distant (technological distance) and 

more diverse (technological diversity) combinations of knowledge have a positive, though sometimes 

only marginally significant, effect on subsequent citations. Further, the coefficients for inventor 

familiarity with prior knowledge – Ln(component familiarity) and Ln(combination familiarity) – are 

positive and mainly significant. We also find that Ln(# non-patent references) – used as a proxy for the 

science intensity of a patent – is positively and significantly associated with citations. Ln(average 

experience) – used as a proxy for experience in recombination – is also positive. Looking at the 

organizational factors that might promote recombination, we find that the effects of team and assigned 

are unambiguously positive and significant. The various controls also operate mainly as expected. The 

significance of the effects are attenuated when using the dummy variable for citation-based 

breakthroughs (in Table 3), but this is likely due to the reduction in variance in the dependent variable 

and to the much smaller number of observations in our sample relative to other studies that have used 

this outcome measure. 

Testing mediation (paths B and A)  

Confirming H2, Model 1 in both Tables 2 and 3 shows that the measure of truly novel ideas (topic-

originating patents) is strongly positively associated with subsequent citation rates. This relationship 
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(for path B) is statistically and economically significant. Looking at Model 1 in Table 2, a topic-

originating patent is likely to receive 1.4 times more citations than the average patent. Similarly, 

looking at Model 1 in Table 3, if a patent is topic-originating, the odds of it becoming an economic 

breakthrough as measured by citation rates increase by a factor of 1.7. In other words, holding all other 

variables at their means, the probability of gaining a breakthrough level of citations is 0.072 for topic-

originating patents (those representing divergent ideas) compared to 0.024 for other patents. The 

marginal effect of topic originating patents on the likelihood of becoming a top cited patent is 0.031, 

which is substantially greater than the marginal effects of any of the other recombination variables. 

On the other hand, we do not see the positive effect of recombination on novelty anticipated by 

tension theories (H3a). First, looking at the direct effect of recombination variables on novel ideas in 

Model 2, we find that technological distance and technological diversity are negatively and 

significantly associated with topic-originating patents. That is, topic-originating patents are not the 

result of the combination of distant or diverse knowledge. No other recombination variables (except 

experience) appear to have a significant association with novelty as measured by topic-originating 

patents. The positive and significant signs for experience on both value and novelty suggest that 

inventors’ previous experience in patenting may increase familiarity with recombination (as suggested 

by the tension view) or deep knowledge in the field (as suggested by the foundation view), or both. 

Future research might explore the effect of experience on these two different creative processes.!

Further, turning to Model 3, which is the test of mediation from structural equation modeling 

(Iacobucci et al 2007, Zhao et al 2010), we do not find the complementary mediation relationship 

hypothesized in H3a. Instead we find support for H3b, which suggests a competing mediation 

relationship (for some variables). Breakthrough novel ideas are associated with higher citation rates but 

recombination processes do not appear to produce that novelty, and in the case of the distance and 

diversity of knowledge recombinations, pull in the opposite direction (a partial confirmation of the 

foundational view of creativity as represented in H3b). Because distant and diverse recombinations 

have a positive direct effect on citations but are negatively associated with cognitive breakthroughs, 
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their total effect (Model 4) is not statistically significantly different from zero. This is the essence of 

the double-edged sword of recombination. 

These competing mediation effects are statistically significant based on multiple tests. Where 

the dependent variable is citation counts, estimates associated with paths A and B are calculated using 

different response functions (probit versus negative binomial). Thus, one might be concerned that the 

estimates for the total indirect effects (A*B) and their standard errors might not be accurate. While the 

properties of GSEM estimates and the bootstrapping method should take care of this concern, we 

nevertheless performed a robustness test suggested by Iacobucci (2012) to examine the significance of 

the indirect effects. Here we find the z-statistic of each indirect effect is significant, consistent with the 

results from the GSEM method. Furthermore, where the dependent variable is a dummy, we used the 

method proposed by Kenny (2013, see also, MacKinnon & Dwyer 1993) as a robustness check of our 

results. In this method, the estimates for paths A and B are scaled to similar levels and then their 

product is estimated using the delta method. Here, again, we find the indirect effects are significant.  

Relationship between cognitive novelty and economic value 

We find that patents that are especially novel are also especially valuable. Following the methodology 

introduced by Rysman and Simcoe (2008) to evaluate patent citation patterns and rates adjusted for 

confounding factors such as cohort effects, we found that topic-originating patents are more likely to 

have higher citations than other patents both in their first generation and in their second generation 

(that is, in patents citing patents that cite the focal patent) (results available from the authors).  

On the other hand, this relationship is not perfect. As mentioned above, only 20 of the 189 

cognitive breakthroughs (as measured by topic modeling) are also economic breakthroughs (patents in 

the top 5 percent of 5-year forward citations – there are 109 of these in our dataset). Our method thus 

highlights the separate but interrelated nature of cognitive and economic breakthroughs. Those patents 

that represent breakthrough levels of both novelty and value are rare (less than one percent of our 

sample) but appear to have a greater impact on future innovation than any other kind of invention. As a 

result, our approach may offer empirical handholds for addressing questions of cumulative research, 
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especially where, as Scotchmer (1991, p. 39) suggests, a ‘first technology has very little value on its 

own but is a foundation for second generation technologies’ (see also Furman & Stern 2011). 

There are several reasons to believe that generating novel ideas may not automatically lead to 

achieving breakthrough levels of citations (which represent economic value). A novel idea embodied in 

a patent still depends on other factors to become known and used, including the reputation and status of 

the inventors (Merton, 1968; Azoulay, Stuart & Wang, forthcoming), the distribution of the idea in the 

relevant network (Singh, 2005), match of the invention itself with the current environmental demand 

(Sorensen & Stuart 2000) and the presence of complementary technologies (Rosenberg 1996). In the 

absence of such factors, a patent that represents a novel idea may not gain traction. Similarly, not all 

highly cited patents represent divergent breaks in knowledge. Patents with a broad scope and general 

claims, patents inside patent thickets (dense networks of patents with overlapping claims), patents that 

make an original idea more understandable and usable or patents that distribute an idea strategically in 

a network, all may lead to a high level of citations regardless of whether the patent introduces a truly 

novel idea or not. By adding a direct measure of novelty, our analysis is a first step in separating out 

the effects of novelty from these other social dynamics (often associated with recombination processes) 

that should increase value. 

DISCUSSION AND CONCLUSION 

Our primary objective for this study was to examine the double-edged sword of recombination in 

creating innovative breakthroughs. To do this, we look at the effect of recombination on two 

innovative outputs: novelty and economic value. We introduce a new method – topic modeling – for 

measuring the novelty of ideas embedded in patent texts by identifying those patents that originate new 

topics in a body of knowledge. This measure allows us to distinguish inventions that are cognitively 

novel in the Kuhnian sense – they introduce new language and therefore new ways of thinking – from 

inventions that are economically valuable (as measured by the subsequent citations they receive). It 

also enables us to examine contrasting creative processes – those based in either ‘tension’ or 

‘foundational’ assumptions – that contribute to novelty and value.  
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Implications for understanding breakthroughs 

 Our approach takes seriously the idea put forth by Griliches (1990) and pursued in recent studies 

(Jaffe et al 2000; Alcácer & Gittelman 2006; Alcácer et al 2009; Benner & Waldfogel, 2008; Hegde & 

Sampat, 2009; Tan & Roberts, 2010) that patents should be assessed as historical documents produced 

by inventors, prosecuted by patent attorneys and evaluated by patent examiners. An implication is that 

it should be useful to analyze the texts in these patents, which is also consistent with the cognitive turn 

being made in studies of technology emergence and evolution (Kaplan & Tripsas, 2008). In doing so, 

we complement existing research on technology evolution, in particular that which draws on patent 

data to understand the sources of innovation. !

The imperfect relationship between topic-originating patents and those that receive high 

citations may indicate that there are different kinds of ‘breakthroughs,’ those that introduce truly novel 

knowledge and those that are associated with economic value. Distinguishing between the novel and 

the valuable (and understanding the sources of each) is quite important for several reasons. 

Breakthroughs in knowledge mark the potential origins of new technological paradigms. Furthermore, 

identifying the patents that mark shifts in knowledge may help us understand different mechanisms 

through which new ideas spread over time and space and explain why some new ideas become the 

wheels of economic fortune and some simply grind to a halt after a few years (Podolny & Stuart 1995).  

By operationalizing the concept of novel ideas implicit in many studies of the sources of 

innovation, we are able to distinguish processes that produce novelty from those that produce 

economic value. The contrasting results for the measures of recombination are particularly striking. 

They suggest that generating new topics require deep immersion in a narrower domain rather than 

linking to more distant or diverse knowledge. On the other hand, patents that cite prior art from a wide 

range of patent classes are more applicable in a variety of domains and therefore more likely to be cited 

in the future. These findings highlight the double-edged sword of recombination based on the tension 

and foundational models of the role of knowledge in creativity (Weisberg 1999; Taylor & Greve 2006). 

Theories of recombination are based in the former, while our results on the sources of cognitive 
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breakthroughs are better explained by the latter: local search to uncover anomalies is more likely to 

produce breaks in the existing knowledge and language. Identifying breakthroughs in knowledge using 

topic modeling may help us develop further insights into Kuhn’s (1962/1996, p. 62) model of 

technological change based on, ‘the previous awareness of anomaly, the gradual and simultaneous 

emergence of observational and conceptual recognition, and the consequent change of paradigm 

categories and procedures.’ 

As an early foray into the use of a new method, this study is, not surprisingly, constrained by 

some limitations. Most importantly, topic modeling is sensitive to the corpus of documents selected for 

the analysis. Because the technique is based in the generation of posterior probabilities, the 

identification of topics and topic-originating patents will be affected by which documents are included 

in the analysis. This is in turn affected by which inventions are patented and by which documents the 

researcher selects to include in the corpus. Patents are an imperfect source of information on new 

scientific and technological ideas. Not all inventions are patented (Scherer 1983; Griliches 1990). We 

are therefore surely missing ideas and topics that withered on the vine. This constraint is balanced by 

the rich bibliometric data that patents provide, which allow the scholar to examine the effects of 

citations, inventors, assignees, patent classes and the like. We have also addressed potential bias in our 

sample that pre-established classification systems create by using three different search methodologies 

to identify patents related to fullerenes.  

Further, the use of fullerenes as a context may reduce the generalizability of the findings. The 

selection of this technological field was useful for an initial test of the topic modeling approach 

because it is a fairly constrained field and yet, because fullerenes function as a general purpose 

technology (GPT), offers the potential for many different interpretations of what the technology is or 

could do. Using a narrow context enabled us to identify subject experts who could validate the topics 

produced by the computer algorithm (Grimmer & Stewart 2013). Our ability to replicate (in testing 

path C) the results obtained by other scholars on very different datasets gives us some confidence that 

our 2,826 fullerene patents behave in similar ways as other technologies, at least along the dimensions 
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we have tested. To the extent that the effect of recombination in producing cognitive and/or economic 

breakthroughs in a technological domain depends on idiosyncratic characteristics of that domain, these 

findings may change accordingly. For example, one can imagine that recombination might be more 

effective in generating novel breakthroughs in more established technological fields where innovators 

have access to well-developed technological components to recombine. Future research can shed more 

light on how underlying characteristics of a technological domain would influence these relationships. 

Implications for organizations 

Our results are shaped by the possibility that the processes we observe are endogenous to each other. 

We measure the impact of recombination on two different aspects of innovation: novelty and value. 

Assuming that individuals and organizations are strategic in setting their goals, they simultaneously 

decide about how much novelty and value they should pursue in their innovative activities. In other 

words, the decision to achieve a certain amount of economic value is simultaneously determined with 

the decision to achieve a certain amount of novelty. As a result, what we observe in our data is the 

resulting outcome of such simultaneous decisions by individuals and organizations about how much 

effort to place on recombination. In that sense, while pursuing novelty can lead to high citation rates 

(as we see in our results), pursuing economic value at the same time can influence the level of effort 

put by individuals and organizations to achieve novel innovations.  

This endogeneity has an empirical implication. The simultaneity and mutual dependency 

between the two decisions directly influence the number of valuable vs. novel innovations we observe 

in our sample and also the size and significance of the regression coefficients. One can think of another 

equilibrium in which organizations would have put much more effort in finding novel innovations, 

which could change the number of topic originating patents in our sample and consequently the size 

and significance of the effects we find. In that sense, what we measure in paths A and B is influenced 

by what we measure in path C and vice versa (and this is precisely why we use the GSEM 

methodology). While this simultaneity and correlation of outcomes can influence our estimated 

coefficients, our results nevertheless highlight important contrasting effects from recombination 
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processes on novel and valuable innovative outcomes.  

Thus, this endogeneity also has an organizational implication. The results suggest that an 

effective innovation strategy needs to bridge between recombination and local search in order to 

facilitate the transformation of novel ideas into economically valuable ones. By understanding the 

double-edged sword of recombination in driving novelty and value, organizations can think about how 

to manage these conflicts. The literature has not yet studied the ways in which tension and foundational 

views of creativity interact. These views have been positioned as alternatives rather than as two 

processes operating simultaneously in organizations. Our model might be consistent with a variation-

selection-retention view of innovation where variation (novelty) is produced by one set of processes 

while selection and retention of the most potentially valuable ideas is produced by another. Future 

research could explore the organizational design implications of the presence of these conflicting 

effects, potentially across different stages of innovation. 

Further, while our study has focused on the invention as the unit and level of analysis, research 

on inter-organizational knowledge spillovers (Jaffe, 1989; Bernstein & Nadiri, 1989; Audretsch & 

Feldmand, 1996; Chacar & Liberman, 2003) and inter-firm competition (Cockburn & Henderson, 

1994; Aghion et al 2003) may provide additional explanations for the sources and impacts of 

breakthroughs in novelty, the study of which could offer a fruitful avenue for future research at the 

firm-level of analysis. 

Extensions of topic modeling as a tool in studies of innovation 

In addition to identifying the sources and impacts of breakthroughs, topic modeling may usefully 

contribute to other areas of research on science and technology. For example, topic modeling can allow 

us to analyze at a more fine-grained level technological distance, ties and spillovers between firms and 

other entities. To date, this research has primarily been conducted through cross-citation analyses of 

the overlaps in USPTO patent classifications amongst the patents of different entities (e.g., Jaffe 1986; 

Ahuja 2000; Song et al 2003) or citations between entities  (e.g., Jaffe et al 1993; Mowery et al 1996; 

Henderson et al 1998). Scholars are increasingly raising concerns about the degree to which patent 
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classifications are proxies of location in technological space (Benner & Waldfogel 2008) and about the 

noisiness of patent citations as measures of knowledge flows (Duguet & MacGarvie 2005; Alcacer & 

Gittelman 2006; Roach & Cohen, 2013). In the case of nanotechnology, for example, ethnographic 

research has found that knowledge flows are not fully captured by co-authoring and citations, where 

exchanging students and experimental materials, commenting on each other’s work, or participating in 

problem-solving workshops were more powerful and frequent mechanisms (Mody 2011). Yet, we have 

lacked reasonable alternative quantitative measures for knowledge flows (Roach & Cohen 2013).  

Topic modeling of patents may provide one solution to augment existing approaches. Because 

topic models produce a vector of weights of each topic for each patent, there is an opportunity to 

evaluate the content of ties using topics and the strength of ties using weights. This approach may be a 

useful complement to patent classes because it tracks the language of the actors rather than the 

classifications assigned by others. It also adds greater nuance than available in current cross-citation 

approaches by, first, examining the ideas directly rather than inferring them from citation ties and, 

second, allowing for the possibility that connections amongst ideas occur even if specific patents are 

not cited.  

Topic modeling, thus, offers a new means of generating inductively classifications of ideas 

from texts, which may be advantageous as we look beyond patents to other collections of documents. 

With the burgeoning interest in classification and categorization (e.g., Lounsbury & Rao 2004; 

Kennedy 2005; Navis & Glynn 2010; Pontikes 2012), topic models can identify themes or frames as 

they emerge and evolve over time (Ruef & Nag, 2014; DiMaggio et al, 2013). This approach has the 

distinct appeal of dispensing with the requirement to use pre-established categories or to come up with 

ex-post classification systems. Instead, the data can speak for themselves, thus allowing the researcher 

to observe paths that fall away as well as paths that become consolidated over time. As such, topic 

modeling could be vital in understanding the emergence and institutionalization of new fields. We 

hope that our early foray into the application of topic modeling to social science questions can instigate 

further explorations in these directions.   
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Figure 1: The double-edged sword of recombination 
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Figure 2: Latent Dirichlet allocation in topic modeling 

 

 

 
 
Figure 3: Sample of fullerene and nanotube patents 
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Figure 4: Example coded abstract 
!
Patent!Number:!US7288970!
Title:!Integrated!nanotube!and!field!effect!switching!device!
Inventors:!Bertin,!Claude!L.!
Assignee:!Nantero,!Inc.!
Application!Date:!January!2005,!Issue!Date:!October!2007!
!

Abstract!
Hybrid57!switching24!devices32!integrate54!nanotube56!switching24!elements25!with!field49!effect52!devices32,!such!as!
NFETs!and!PFETs.!A!switching24!device93!forms46!and!unforms24!a!conductive59!channel52!from!the!signal24!input24!to!
the!output24!subject22!to!the!relative86!state!of!the!control24!input24.!In!embodiments94!of!the!invention,!the!
conductive59!channel52!includes!a!nanotube56!channel52!element25!and!a!field49!modulatable58!semiconductor46!
channel52!element25.!The!switching24!device93!may!include!a!nanotube56!switching24!element25!and!a!field49!effect52!
device93!electrically59!disposed42!in!series24.!According!to!one!aspect33!of!the!invention,!an!integrated54!switching24!
device93!is!a!fourSterminal29!device93!with!a!signal24!input24!terminal42,!a!control24!input24!terminal29,!a!second!input24!
terminal29,!and!an!output24!terminal29.!The!devices32!may!be!nonSvolatile24.!The!devices32!can!form24!the!basis!for!a!
hybrid57!NTSFET52!logic54!family!and!can!be!used!to!implement82!any!Boolean!logic54!circuit54.!
!

!
Topic!24!(Nanotube!switching!devices!and!applications):!63%!
Topic!54!(Electronic!implementations!of!lookCupCtables):!5%!
Topic!49!(Field!emissions!display!devices):!5%!
The!rest:!less!than!5%!each!for!a!total!of!27%!
  
 
 
Figure 5: Graphical representation of words in example topics (date of topic-originating 
patent)* 
 

Topic 14: Sensors and detectors  
(1993) 

Topic 60: Application to batteries and charge storage devices 
(1994) 

 
 

 
Topic 58: Application to plasma display panels  

(1995) 

 
Topic 24: Nanotube switching devices  

(1999) 

 
 

* Size of words based on importance in topic 
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Table 1: Descriptive statistics, total sample, topic originating patents, top cited patents, and all others 
Means and standard deviations, t-test 

  
All 

Topic 
originating 
patent=1 

Topic 
originating 
patent=0 

Difference Top 5% cited 
patent=1 

Top 5% cited 
patent=0 Difference 

Breakthroughs (top 5% cited) 0.048 0.111 0.042 0.069** 1.000 0.000 1.000** 
  (0.213) (0.315) (0.202) (p=0.000) (0.000) (0.000) (p=0.000) 
# forward citations (5-yr) 13.507 22.173 12.767 9.406** 91.982 9.559 82.422** 
  (21.678) (30.958) (20.536) (p=0.000) (29.963) (11.106) (p=0.000) 
Topic-originating patent 0.079 1.000 0.000 1.000** 0.183 0.074 0.110** 
  (0.270) (0.000) (0.000) (p=0.000) (0.389) (0.261) (p=0.000) 
Technological distance 0.405 0.366 0.409 -0.043+ 0.474 0.402 0.072* 
  (0.328) (0.331) (0.327) (p=0.094) (0.325) (0.328) (p=0.026) 
Technological diversity 0.736 0.681 0.741 -0.059* 0.758 0.735 0.023 
  (0.323) (0.353) (0.320) (p=0.018) (0.317) (0.323) (p=0.466) 
Ln(component familiarity) 4.661 4.337 4.689 -0.353** 4.735 4.658 0.078 
  (1.001) (1.090) (0.989) (p=0.000) (0.834) (1.009) (p=0.430) 
Ln(combination familiarity) 0.306 0.264 0.309 -0.045 0.225 0.310 -0.084 
  (0.773) (0.709) (0.778) (p=0.448) (0.687) (0.776) (p=0.265) 
Ln(# non-patent references) 1.498 1.641 1.486 0.156 2.360 1.455 0.905** 
  (1.301) (1.341) (1.297) (p=0.124) (1.419) (1.280) (p=0.000) 
Ln(average experience) 2.101 1.961 2.113 -0.152+ 2.158 2.098 0.059 
  (1.171) (1.272) (1.162) (p=0.096) (1.197) (1.170) (p=0.605) 
Team  0.791 0.722 0.797 -0.075* 0.899 0.786 0.113** 
  (0.406) (0.449) (0.402) (p=0.017) (0.303) (0.410) (p=0.005) 
Assigned  0.889 0.889 0.889 0.000 1.000 0.883 0.117** 
  (0.314) (0.315) (0.314) (p=1.000) (0.000) (0.321) (p=0.000) 
No prior art  0.048 0.094 0.044 0.051** 0.027 0.049 -0.021 
  (0.214) (0.293) (0.205) (p=0.002) (0.164) (0.216) (p=0.308) 
Ln(cumulative combination) 0.409 0.370 0.412 -0.041 0.287 0.415 -0.127 
  (0.965) (0.871) (0.973) (p=0.581) (0.819) (0.971) (p=0.179) 
Ln(# prior art patents) 2.123 1.896 2.142 -0.246** 2.413 2.108 0.304** 
  (1.066) (1.198) (1.052) (p=0.003) (1.238) (1.055) (p=0.004) 
Ln(# claims) 2.835 2.725 2.844 -0.119* 3.133 2.820 0.313** 
  (0.764) (0.816) (0.759) (p=0.045) (0.749) (0.762) (p=0.000) 
Ln(Family size) 0.126 0.201 0.120 0.081** 0.386 0.113 0.273** 
  (0.331) (0.390) (0.325) (p=0.002) (0.547) (0.311) (p=0.000) 

 



The double-edged sword of recombination in breakthrough innovation - 46 - 

Table 2: Tests of mediation (dv=citation counts, 5-year window since grant date) (1991-2005) 
Generalized structural equation model using bootstrapping (1000 repetitions), bias-corrected 
coefficients and robust standard errors  
 

! Direct effect on 
citation counts 

(Paths C and B) 
(1) 

Direct effect on 
topic-originating 
patents (Path A) 

(2) 

Indirect on 
citation counts 
(Paths A *B) 

(3) 

Total effect on 
citation counts 
([A * B] + C) 

(4) 
Topic-originating patent 0.330**   0.330** 
 (0.094)   (0.094) 
Measures of recombination:     
Technological distance 0.211* -0.391* -0.129* 0.082 
 (0.093) (0.184) (0.073) (0.119) 
Technological diversity  0.065 -0.486** -0.158** -0.093 
 (0.101) (0.167) (0.067) (0.118) 
Ln(component familiarity)  0.077** 0.028 0.009 0.086** 
 (0.029) (0.054) (0.018) (0.034) 
Ln(combination familiarity)  0.286 -0.198 -0.068 0.217 
 (0.213) (0.328) (0.115) (0.241) 
Ln(# non-patent references ) 0.163** -0.024 -0.007 0.156** 
 (0.023) (0.041) (0.014) (0.026) 
Ln(average experience)  0.070* 0.122** 0.040** 0.110** 
 (0.028) (0.042) (0.018) (0.033) 
Team  0.226** -0.134 -0.044 0.183* 
 (0.073) (0.116) (0.041) (0.084) 
Assigned  0.385** 0.020 0.008 0.393** 
 (0.089) (0.155) (0.054) (0.103) 
Controls:     
No prior art  0.255 0.491+ 0.159+ 0.413+ 
 (0.202) (0.279) (0.103) (0.224) 
Ln(cumulative combination)  -0.275+ 0.192 0.065 -0.209 
 (0.162) (0.252) (0.090) (0.186) 
Ln(# prior art patents) 0.090** 0.249** 0.082** 0.172** 
 (0.032) (0.067) (0.031) (0.044) 
Ln(# claims)  0.211** -0.035 -0.012 0.199** 
 (0.036) (0.064) (0.022) (0.042) 
Ln(Family size) 0.414** 0.113 0.037 0.451** 
 (0.088) (0.121) (0.042) (0.096) 
Constant 0.106 0.272 0.089 0.195 
     
Year fixed effects Yes Yes Yes Yes 
Observations 2276 2276 2276 2276 

 
** p<0.01, * p<0.05, + p<0.10  
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Table 3: Tests of mediation (dv=dummy for citation-based breakthroughs, top 5%, 5-year 
window since grant date) (1991-2005) 
Generalized structural equation model using bootstrapping (1000 repetitions), bias-corrected 
coefficients and robust standard errors 
 

 Direct effect on 
on citation-based 

breakthroughs 
(Paths C and B) 

(1) 

Direct effect on 
topic-originating 
patents (Path A) 

 
(2) 

Indirect on 
citation-based 
breakthroughs 
(Paths A *B) 

(3) 

Total effect on 
citation-based 
breakthroughs 
([A * B] + C) 

(4) 
Topic-originating patent 0.538*   0.538* 
 (0.188)   (0.188) 
Measures of recombination:     
Technological distance 0.044 -0.391* -0.209* -0.165 
 (0.189) (0.184) (0.126) (0.227) 
Technological diversity  0.118 -0.486** -0.257* -0.138 
 (0.211) (0.167) (0.125) (0.232) 
Ln(component familiarity)  0.103 0.028 0.015 0.118 
 (0.058) (0.054) (0.031) (0.065) 
Ln(combination familiarity)  0.564 -0.198 -0.111 0.452 
 (0.508) (0.328) (0.196) (0.535) 
Ln(# non-patent references) 0.247** -0.024 -0.011 0.235** 
 (0.047) (0.041) (0.023) (0.052) 
Ln(average experience)  0.079 0.122** 0.065* 0.145* 
 (0.054) (0.042) (0.032) (0.062) 
Team  0.320* -0.134 -0.072 0.248 
 (0.175) (0.116) (0.070) (0.190) 
Assigned  4.522** 0.020 0.011 4.533** 
 (0.265) (0.155) (0.091) (0.278) 
Controls:     
No prior art  -0.462 0.491+ 0.261+ -0.202 
 (1.093) (0.279) (0.180) (1.119) 
Ln(cumulative combination)  -0.519 0.192 0.105 -0.413 
 (0.413) (0.252) (0.151) (0.444) 
Ln(# prior art patents) -0.062 0.249** 0.132* 0.070 
 (0.066) (0.067) (0.057) (0.077) 
Ln(# claims)  0.200** -0.035 -0.019 0.180* 
 (0.072) (0.064) (0.037) (0.078) 
Ln(Family size) 0.550** 0.113 0.061 0.611** 
 (0.128) (0.121) (0.072) (0.144) 
Constant -12.737** 0.272 0.142 -12.594** 
 (0.650) (0.404) (0.229) (0.667) 
     
Year fixed effects Yes Yes Yes Yes 
Observations 2276 2276 2276 2276 

 
** p<0.01, * p<0.05, + p<0.10 


