
Towards Exascale Co-design in a Runtime System

Thomas Sterling, Matthew Anderson, P. Kevin Bohan, Maciej Brodowicz,
Abhishek Kulkarni, Bo Zhang

Center for Research in Extreme Scale Technologies,
School of Informatics and Computing,

Indiana University, Bloomington Indiana

Abstract. Achieving the performance potential of an Exascale machine
depends on realizing both operational efficiency and scalability in high
performance computing applications. This requirement has motivated
the emergence of several new programming models which emphasize fine
and medium grain task parallelism in order to address the aggravat-
ing effects of asynchrony at scale. The performance modeling of Exas-
cale systems for these programming models requires the development of
fundamentally new approaches due to the demands of both scale and
complexity. This work presents a performance modeling case study of
the Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) proxy application where the performance modeling approach
has been incorporated directly into a runtime system with two modal-
ities of operation: computation and performance modeling simulation.
The runtime system exposes performance sensitivies and projects oper-
ation to larger scales while also realizing the benefits of removing global
barriers and extracting more parallelism from LULESH. Comparisons
between the computation and performance modeling simulation results
are presented.

1 Introduction

Understanding and managing asynchrony effects in simulating Exascale parallel
machines with eventual billion-way parallelism is a crucial factor in achieving
application efficiency and scalability. Efforts to manage asynchrony have resulted
in the creation of a number of emerging programming models and the renovation
of several traditional programming models all with the aim to utilize asynchrony
and extract more parallelism from applications at large scale. A key component
of these efforts is performance modeling.

Several performance models have been created specifically to highlight short-
comings in how traditional programming models fail to adequately address asyn-
chrony. One of these is the Starvation-Latency-Overhead-Waiting for Contention
(SLOW) performance model [14] where each letter of the acronym SLOW iden-
tifies one of the key causes for constrained scalability in an application and
highlights a challenge when programming using the conventional practice. Sev-
eral alternatives to conventional practice have been developed to better address
the issues highlighted by SLOW by utilitizing lightweight concurrent threads

2

managed using synchronization primitives such as dataflow and futures in order
to alter the application flow structure from being message-passing to becoming
message-driven.

However, the performance modeling necessary to understand and manage
asynchrony effects at scale can be especially challenging for emerging program-
ming models that rely on lightweight concurrent threads. Trace-driven approaches
for such programming models tend to substantially alter the application execu-
tion path itself while cycle-accurate simulations tend to be too expensive for
co-design efforts. While discrete event simulators have been successfully used
for the performance modeling of many-tasking execution models before [4], they
require both an implementation of the execution model in the simulator as well
as a skeleton application implementation. This skeleton code has to preserve the
dataflow of the original application while appropriately modeling the computa-
tional costs of the full application in between communication requests.

A robust implementation of the execution model in the discrete event simula-
tor and a close representation between the skeleton code and the full application
are both crucial in order to achieve accurate performance predictions from the
discrete event simulator. A skeleton code which closely represents the computa-
tional costs and dataflow of the full application code can be especially difficult
to achieve because a significant code fork is necessary in order to develop the
skeleton code. Updates and improvements made to the full application code are
not automatically reflected in the skeleton code and inconsistencies between the
two codes are easily introduced. Likewise, accuracy in implementing the exe-
cution model in the event simulator is also difficult to achieve: modeling the
contention on resources, the variable overheads when using concurrent threads,
the highly variable communication incidence rates, the network latency hiding,
the thread schedulers and associated contention, and the oversubscription be-
havior all contribute in complicating the implementation of the execution model
in the discrete event simulator.

This paper presents a performance modeling case study for many-tasking ex-
ecution models which incorporates performance modeling directly into the run-
time system implementation of the execution model without requiring a skeleton
code or application traces. A runtime system is the best equipped tool for per-
formance modeling an application as it comes with the necessary introspection
capability, it does not require a skeleton code separate from the application for
modeling, and is itself already a robust implementation of the execution model
it represents. For this case study, the performance modeling capability of the
HPX-5 runtime system is explored for a proxy application developed by one of
the US Department of Energy co-design centers: the Livermore Unstructured La-
grangian Explicit Shock Hydrodynamics (LULESH) proxy application code [1].
LULESH has been ported to multiple programming models, both emerging and
traditional, and its scaling behavior has been extensively explored making it a
good candidate for this case study. More importantly, the scientific kernel en-
capsulated in the LULESH proxy application is expected to be representative of
computational science applications requiring future Exascale resources.

3

The HPX-5 runtime system is an implementation of the ParalleX execu-
tion model [9] and supports message-driven computation as well as two different
modalities of operation: full computation and performance modeling simulation,
hereafter referred to as simulation. The simulation modality in this case study is
restricted to those cases where the prototype Exascale node is already available
for simulation. This enables the runtime system to produce performance predic-
tions for large systems composed of those prototype nodes. This approach that
does not require a separate skeleton code nor code tracing instrumentation for
use in performance studies and application co-design.

Overall, this work provides the following new contributions:

– It presents a port of LULESH proxy application to the ParalleX execution
model.

– It presents a performance modeling approach for many-tasking execution
models where the performance modeling has been incorporated into the run-
time system.

– It presents a performance modeling approach that is not trace-driven and
does not require a skeleton code.

– It explores a runtime system with two modalities of operation for both per-
formance modeling simulation and full computation operation.

This work is structured as follows. Related work is given in Section 2, followed
by a description of the performance modeling approach proposed here. Details
about the runtime system used in the case study are given in Section 4 along
with motivation why modern runtime systems are well suited for performance
modeling when using a many-tasking execution model. Secton 5 gives details
about the HPX-5 implementation of LULESH used here while Section 6 presents
the results of the LULESH case study. Our conclusions and directions for future
work are given in Section 7.

2 Related Work

While there have been a large number of approaches to developing perfor-
mance modeling techniques which are application independent, most of these
have centered around the Communicating Sequential Processes (CSP) execu-
tion model. Trace-driven approaches are a key component in many performance
modeling and co-design frameworks, including DUMPI in SST/Macro [11], Log-
GOPSim [10], and the Performance Modeling and Characterization (PMaC)
framework [6]. A key challenge in trace-driven approaches is the trace collection
overhead. Carrington et al. [5] demonstrate how to reduce the trace collection
overhead by extrapolating results to larger core count sizes using smaller core
count traces. While trace-based approaches generally do not require changes to
the user application and work well with the coarse-grained computation style
favored by CSP, trace collection overhead can significantly alter the execution
path for the fine-grained computation style favored in many-tasking execution
models.

4

A domain specific language (DSL) approach to performance modeling was
introduced by Spafford et al. [13], named Aspen. Aspen provides a common set of
tools and concepts to more easily enable coarse-grained exploration of algorithms
and co-design. However, Aspen also makes some limiting assumptions which
could prevent fine-grained, message-driven style computations. To work around
such shortcomings, the message-driven toolkit Charm++provides its own trace-
driven parallel discrete event simulator, BigSim [15], which is itself capable of
parallel computation. When used in conjunction with the Charm++performance
emulator, BigSim Emulator [16], coarse timing predictions can be made to guide
co-design decisions. As it is a trace-driven approach, the traces can impact the
execution path of sufficiently fine-grained computations.

In the context of fine-grained computations with significant resource over-
subscription, performance modeling options for many-tasking execution models
are very few and, up to now, require skeleton code creation in order to avoid
trace-driven approaches. Sottile et al. [12] present a semi-automatic way of ex-
tracting software skeletons using source-to-source code generation as one way to
avoid forking application codes for discrete event simulation. Robust, generic,
and fully automatic approaches for skeleton code generation are difficult to find.

Programming Model
(MPI, HPX, Charm++)

Execution Model
(Runtime System)

Execution
Traces

Simulator
(SST, BigSim)

Machine Model

Application

Computation

Execution
TracesSkeleton

Machine Model
(Abstract or Actual)

SimulationEmulation

(a) Traditional simulation approaches
are either trace-driven or skeleton code
driven making the application one step
removed from the simulator.

Programming Model
(HPX)

Execution Model
+ Simulator

(HPX runtime system)

Machine Model

Application

Computation SimulationEmulation

(b) An alternative approach takes ad-
vantage of the increasing runtime sys-
tem introspection available to add sim-
ulation capability directly to the run-
time.

Fig. 1: An illustration comparing the traditional performance modeling ap-
proaches with what is proposed here.

5

3 Performance Modeling

This case study targets performance modeling scenarios where the actual or
prototype Exascale node is available. Unlike traditional simulation approaches,
the proposed simulation methodology does not involve generating traces nor a
skeleton code but rather integrating the simulation capability with the runtime
system. Figure 1 highlights the differences between traditional simulation ap-
proaches and what is proposed here. This alternative approach is motivated by
the goal of improving user access to performance modeling, the rapid increase in
the number of many-tasking execution models, and the ability for modern run-
time systems to incorporate all necessary introspection mechanisms to properly
operate in a performance modeling simulation mode. Further motivation as to
why the runtime system is well suited for this type of modeling is provided in
Section 4.

For any application, the many-tasking runtime system has full and direct
access to the task phase information. When the runtime is operating in a simu-
lation modality on prototype Exascale nodes, a sample of nodes is selected for
performing the application simulation. Other nodes that directly interact with
these nodes are also simulated but only for a small set of communication iter-
ations to provide accurate message incidence rates for the sample nodes. Using
select iteration snapshots in the course of the application simulation, the run-
time system uses these sample nodes to predict application performance at the
scale indicated by the user. While this approach does not require traces, it has
a disadvantage of not providing performance predictions for the entire duration
of application execution. The performance predictions are provided only for a
specific subset of communication iterations.

The approach is illustrated in Figure 2. Each square and circle represents
a node in an Exascale simulation while arrows indicate communication. When
the runtime system is in simulation mode, a user defined set of sample nodes,
indicated by the red outlined boxes, is selected for running the application. Nodes
which interact with this sample set, indicated by blue circles, are identified by the
runtime system accessing the node interaction data. The application is also run
on these nodes in order to provide correct incidence rates and phase information
to the sample nodes but their runtime information, such as specific execution
times of various subroutines, is not used in the performance prediction. Network
communication is performed between all nodes that are running the application
while a network model handles communication between circle nodes and non-
running ghost nodes, indicated by blue squares. Green arrows indicate network
traffic approximated by a network model, red arrows indicate real network traffic,
and black arrows indicate traffic not modeled.

The accuracy of the predictions relies on how well the sample nodes repre-
sent the overall state of the application. For static dataflow applications which
are well-balanced, this would be easily achieved with a very small sample size.
For highly dynamic applications, it would not be unlikely to require terascale
computing in order to predict Exascale performance.

6

This runtime system based approach can be improved and refined in several
ways. The number of buffer nodes which provide incidence rate and node in-
teraction information to the sample set can be increased to improve accuracy.
Likewise, the introspection capability of the runtime system can be expanded
to directly model these phases and incidence rates while in full computation
mode and then later re-used in the simulation modality while still avoiding trace
collection. In this case study, we present results from the simplest performance
modeling approach where sample nodes operate in full computation mode with
all other nodes operating as ghost (non-computing) nodes. The following sec-
tion gives details about the runtime system selected for this case study and how
runtime system capabilites are well suited for taking on the role of performance
modeling.

Fig. 2: A runtime system based performance modeling approach. Each square
and circle represents a node in an Exascale simulation while arrows indicate
communication. When the runtime system is in simulation mode, a user defined
set of sample nodes, indicated by the red outlined boxes, is selected for running
the application. Nodes which interact with this sample set, indicated by blue
circles, are identified by the runtime system accessing the node interaction data.
The application is also run on these nodes in order to provide correct incidence
rates and phase information to the sample nodes but their runtime information
is not used in the performance prediction. Network communication is performed
between all nodes that are running the application while a network model handles
communication between circle nodes and non-running ghost nodes, indicated by
blue squares. Green arrows indicate network traffic modeled by a network model,
red arrows indicate real network traffic, and black arrows indicate traffic not
modeled.

7

4 Runtime Systems and
Performance Modeling

Performance modeling of Exascale systems requires development of fundamen-
tally new approaches due to demands of both scale and complexity. The trace
based methodologies are infamous for generating prohibitively large volumes of
data when run on many nodes of a large system, necessitating the use of the
on-the-fly compression that potentially distorts timing, or decimation of data,
which reduces overall accuracy. Full scale fine-grain discrete event simulation may
easily exceed the application’s run time on the actual hardware. The skeleton
based approximations may result in faster simulation, but also tend to reduce
the accuracy due to overly simplified models of execution resources, memory,
and network, as well as their interactions. To address these shortcomings, an
approach inspired by and integrated with the model of execution is proposed.
Unlike most existing solutions that necessarily restrict their functionality to a
single or at most a few layers of system software stack, execution model spans
the whole gamut of software services and underlying hardware, permitting more
thorough analysis. The ParalleX execution model and its associated HPX-5 run-
time system implementation are used for this case study.

ParalleX is a new model of execution explicitly created to identify and miti-
gate the effects of primary sources of performance degradation in parallel appli-
cations. They include: (i) Starvation, or insufficient amount of work necessary to
efficiently utilize the available execution resources, (ii) Latency, or delay in ac-
cessing remote resources and services, (iii) Overhead, or additional work required
for management of parallel computations and resource allocation on critical path,
but absent from the sequential variant, and (iv) Waiting for resolution of con-
tention on concurrently accessed resources and services. The newly added exten-
sions of the ParalleX model deal with Energy efficiency of computation and its
Resilience, or achieving reliable execution in the presence of faults (SLOWER).
ParalleX addresses many limitations of commonly used application programming
models such as MPI, by breaking free of Communicating Sequential Processes
scheme (which frequently results in overly constrained implementations abus-
ing global barriers). Instead ParalleX relies on message-driven approach that
avoids predetermined patterns of interaction by combining lightweight threads,
fine-grain synchronization, and active messages called parcels.

Even though some of the model components have been known for more than
a decade, ParalleX organizes them into a novel parallel execution framework
with unified semantics. The system is subdivided into a number of localities,
or physical resources with bounded service response time. In typical platforms
(clusters, constellations), locality corresponds to a computational node. The lo-
calities are connected by asynchronously operating network. Application state
may be arbitrarily distributed across any number of localities in the system.
Local modifications of application state are carried out by threads. In ParalleX,
threads are by definition ephemeral, created for and existing only long enough to
execute a specific task. This makes them a convenient medium to represent the
unconstrained parallelism available in the application. Thread execution is syn-

8

chronized by Local Control Objects (LCOs). These structures implement high-
level synchronization primitives, such as futures or dataflow elements, although
support of traditional atomic operations is also possible. Both threads and LCOs
are closely integrated with scheduling algorithms to permit event-driven oper-
ation (and avoiding busy-waits and polling) as much as possible. Threads and
LCOs along with related data structures can be embedded in ParalleX processes
— entities that hierarchically organize parallel computation and provide logi-
cal encapsulation for its individual components. Unlike UNIX processes, they
can span multiple localities (and therefore multiple address spaces). Processes,
threads, and LCOs may migrate between the nodes and are globally addressable,
permitting the programmer to access them from anywhere in the system. This
is controlled by the Active Global Address Space (AGAS), a distributed service
that maintains lookup tables storing physical locations of all first class objects
of the computation. ParalleX functionality manifests itself primarily in the run-
time system layer, which, through its proximity to the application code permits
additional optimizations and acts as an intermediate layer for access to expen-
sive (in terms of overhead and latency) OS kernel services. ParalleX compliant
runtime system implements introspection, supporting direct access to integrated
performance counters and enabling monitoring of application activity. This is
particularly valuable for low overhead collection of performance data.

HPX-5 is a high performance runtime system that implements the ParalleX
model, providing the ability to run HPC applications at-scale and to simulate
the performance characteristics of code without actually fully running the ap-
plication.

Written in C and assembly, the HPX-5 runtime system is focused primarily
on algorithmic correctness, performance, and stability. To achieve this, HPX-5
is developed with an extensive suite of tests that execute well known scientific
codes with published results and uses these to ensure correctness and stability.

The runtime is highly modular and is comprised of several components, in-
cluding:

– A user-space thread manager made up of M:N coroutines similar to Python
Green Threads. HPX-5 threads are continously rebalanced across logical
CPU cores in a NUMA-aware way that ensures a high degree of continuous
work.

– An asynchronous network layer built on RDMA verbs capable of running
on InfiniBand, Cray Gemini, and Ethernet networks as well as in a non-
networked (SMP) environment.

– A parcel dispatch system that routes messages between objects and makes
runtime optimizations through direct integration with the node’s network
interface controller (NIC).

– A variety of distributed lock-free control structures, including futures and
logical gates that provide programmers with an easy-to-use environment in
which to define application dataflow.

– An active global address space (AGAS) that automatically distributes and
balances data across all nodes in an HPC system.

9

– Support for multi-core embedded architectures (such as ARM).
– Instrumentation to perform simulations of application runs in a variety of
environments, using spec files that describe several well-known machines.

In addition to normal operation, the HPX-5 runtime supports a simulation
mode in which it models performance of a full (non-skeleton) computation ap-
plication as it would run on a target system. It achieves this in two ways: a)
by directly modeling performance on the target system (simulation), and b) by
emulating the performance of system other than the one it is running on through
the use of pre-generated specification files that detail the typical performance
characteristics of the target system’s hardware as well as interconnect network
topology and other features.

Using the ParalleX execution model, the MPI based LULESH proxy applica-
tion has been ported to the HPX-5 runtime system. The following section briefly
describes this port and how it differs from the MPI implementation.

5 ParalleX LULESH

The implementation of LULESH in ParalleX is optimized by removing global
barrier calls like Allreduce and overlapping the communcation needed for the
reduction operation with computation. Owing to this, ParalleX is able to extract
some performance benefits over the original MPI implementation of LULESH.
The HPX-5 implementation of the LULESH application is based on the same
domain-element hierarchy employed in the MPI version available at [2]. But it
differs from the MPI implementation in three aspects.

First, the two implementations differ in how they determine the time in-
crement. Specifically, at the end of each iteration, each element computes a
time increment satisfying the local Courant and Hydro constraints and the min-
imum value among all elements is used as the next time step. In the MPI-
implementation, this is done by placing a blocking collective MPI_Allreduce at
the beginning of each iteration (see Figure 3a). In contrast, the HPX-5 implemen-
tation replaces the MPI_Allreduce call with a nonblocking future and does not
wait for its completion until after completing ApplyAccelerationBoundaryCondition,
where the time increment is first needed (see Figure 3b). As a result, the HPX-
5 implementation can effectively overlap the communication and computation
phases associated with the reduction operation.

The second difference between the two versions is oversubscription. In the
MPI-implementation, each core on a compute node is responsible for one domain.
For the HPX-5 implementation, it is normal to assign more than one domain
to one core. Oversubscription in conjunction with nonblocking synchronization
semantics enable computation to overlap with communication effectively hiding
network latency.

Lastly, each domain has three fixed communication patterns in the course
of the computation in the HPX-5 implementation. The MPI-implementation re-
generates the communication pattern with neighboring domains each time com-
munication occurs even though it is always the same.

10

time

TimeIncrement()

MPI_Allreduce()

LagrangeNodal()

CalcForceForNodes()

CalcAccelerationForNodes()

ApplyAccelerationBoundaryConditionsForNodes()

CalcVelocityForNodes()

main()

LagrangeLeapFrog()

new dt computed

first use of new dt

timestep calculation

communication

other computation

inactive call frame

function call

(a) Call sequence determining the global time step value along with the follow-on
computations in the original MPI LULESH code. The new time step is returned by
the allreduce operation which blocks until all contributing processes reach the same
execution point, effectively imposing a barrier. Even though several functions could
start execution (their workload does not depend on the new time step value), they are
blocked until the communication phase completes.

time

TimeIncrement()

future_allreduce()

LagrangeNodal()

CalcForceForNodes()

CalcAccelerationForNodes()

ApplyAccelerationBoundaryConditionsForNodes()

CalcVelocityForNodes()

main()

LagrangeLeapFrog()

future_wait()
first use of new dt

new dt computed

timestep calculation

communication

other computation

inactive call frame

function call

(b) Call sequence of the HPX-5 LULESH version of the code shown above using future
for a non-blocking collective operation. After future_allreduce returns, the pending
computations that do not depend on the new time step may proceed immediately,
overlapping the communication phase. A portion of the code from TimeIncrement
function has to be moved after future_wait to correctly post-process the new time step
value. The combined latency of future_allreduce and future_wait calls is usually
substantially shorter than that of blocking allreduce on a large machine.

11

These changes have an immediate and visible impact on the computational
phases of LULESH. Figure 4 compares the computational phases between MPI
LULESH and HPX-5 LULESH on 64 processors where red indicates computation
and white indicates communication. By replacing global barriers with futures
based nonblocking communication, the time spent waiting for communication to
complete can be reduced substantially in an application.

(a) The computational phases for MPI
LULESH on 64 processors. Red indicates
computation while white indicates wait-
ing for communication.

(b) The computational phases for HPX
LULESH on 64 processors. Red indicates
computation while white indicates wait-
ing for communication.

Fig. 4: A comparison of computational phases between MPI and HPX versions
of LULESH.

6 Results

Strong and weak scaling results for HPX-5 LULESH are presented in this section
along with the runtime system’s performance predictions. All computations and
simulations were performed on 16-node Xeon E5-2670 2.60 GHz based cluster
with an Infiniband interconnect. The oversubscription factor for all distributed
cases was two; that is, the entire LULESH computational domain was partitioned
into twice as many subdomains as available cores.

Our simulation approach is most similar to SMPI [7] where online simulation
(or emulation) is performed on a subset of the nodes. The rest of the nodes
in the simulation are either ignored or simulated depending on the application

12

requirements. In case of LULESH, we computed the global values offline such
that there were no message dependencies from the simulated nodes to the emu-
lated nodes. For structured communication patterns, we use periodic boundary
conditions to meet the receive depenences from the simulated nodes to the em-
ulated nodes. Since the pending receives can generate load on the emulated
nodes, we are presently working on recovering these dependences through of-
fline traces. Communication is performed only between emulated nodes. For
network simulation, we used the LogP cost model [8] to calculate communica-
tion time for the simulated nodes. Under the assumption that each parcel is sent
using a single message1, per the LogGP [3] model, a send was computed to take
(2×o)+(n−1)G+L cycles where L is the network latency, o is the overhead of
transmission and G is the gap per byte. The LoGP parameters for the 16-node
Xeon E5-2670 2.60 GHz based cluster were measured empirically for the above
experiments.

In Figure 5, the workload was increased from 1 to 512 domains as the number
of nodes were increased from 1 to 16. The simulator introduces some overhead
since it has to inspect every message and either emulate or simulate it. We found
that the predicted value was within 25% of the actual running time. The strong-
scaling results in Figure 6 confirm the above observation. For the above runs,
each “simulated” workload was run with half the number of actual nodes. Figure 7
shows the simulation accuracy of our online simulation approach. We see that the
accuracy improves (that is, the difference between the emulated and simulated
value decreases) as the number of emulated nodes are increased. This confirms
the trade-off between simulation accuracy and the computation requirements
for the simulation. As stated previously, simulating the performance of the ap-
plication at Exascale levels might demand considerable computation resources.
Hence, such an approach where the accuracy can be bounded by sampling a
subset of the available nodes might be favorable.

7 Conclusions

Efficiency and scalability requirements for high performance computing applica-
tions has cultivated the development of new programming models which employ
fine and medium grain task parallelism creating challenges for performance mod-
eling at Exascale. In particular, task-driven approaches cause significant prob-
lems for runtime systems using lightweight concurrent threads while discrete
event simulators require skeleton codes which are difficult to reliably extract
from the full application codes. At the same time, runtime systems now reg-
ularly provide the introspection capability to reliably carry out performance
modeling within the runtime system itself. An approach to incorporating perfor-
mance modeling in the runtime system has been described here for use in cases
where a prototype Exascale node is available for computation. Using a sam-
pling approach in conjunction with a network model, a runtime system can be

1 Almost all messages were under 32K for our HPX-5 port of the LULESH application.

13

0.0e+00

2.0e-01

4.0e-01

6.0e-01

8.0e-01

1.0e+00

1.2e+00

1.4e+00

 1 2 4 8 16

T
im

e
 p

e
r

It
e

ra
ti
o

n
 [

m
s
]

Number of Nodes

Full Emulation
Computation

Simulation

Fig. 5: Weak scaling results for HPX-5 LULESH. “Computation” represents the
actual running time for a fixed workload for 500 iterations. “Full Emulation”
indicates the time to perform full emulation of the workload using our hybrid
emulation and simulation approach. “Simulation” shows the running time pre-
dicted by the simulator.

2e-01

1e+00

5e+00

 1 2 4 8 16

T
im

e
 p

e
r

It
e

ra
ti
o

n
 [

m
s
]

Number of Nodes

Full Emulation
Computation

Simulation

Fig. 6: Strong scaling performance of HPX-5 LULESH across 16 nodes. The
description of the legend is same as the previous figure, Figure 5.

quickly transformed into a performance modeling tool without requiring traces
nor discrete event simulation.

A case study has also been presented here where the LULESH proxy appli-
cation has been ported to the HPX-5 runtime system and run in both of the

14

1.0e+02

1.5e+02

2.0e+02

2.5e+02

3.0e+02

3.5e+02

4.0e+02

4.5e+02

5.0e+02

5.5e+02

6.0e+02

6.5e+02

1 2 4 8 16

T
im

e
 p

e
r

It
e

ra
ti
o

n
 [

m
s
]

Number of Nodes

Simulation Computation

Fig. 7: Simulation accuracy as the number of emulated nodes are increased. A
prediction is more accurate if the difference between the computation and sim-
ulation times is lower.

computation and simulation modalities provided by the runtime. The HPX-5
LULESH port illustrates all of the features of a many-tasking implementation,
including oversubscription, asynchrony management semantics, and active mes-
sages. Strong and weak scaling results were provided for comparison between
the computation and simulation modalities.

Incorporating performance modeling into modern runtime systems resolves
several issues when operating at Exascale while also simplifying co-design for
application developers. While such an approach is new and mostly untested, it
ultimately can remove one layer of separation between application development
and performance modeling for approaches employing fine and medium grain task
parallelism.

8 Acknowledgments

The authors acknowledge Benjamin Martin, Jackson DeBuhr, Ezra Kissel, Luke
D’Alessandro, and Martin Swany for their technical assistance.

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Technical Report LLNL-TR-490254.

2. Livermore unstructured lagrangian explicit shock hydrodynamics (lulesh). Avail-
able from https://codesign.llnl.gov/lulesh.php.

15

3. A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. Loggp: incorpo-
rating long messages into the logp modelone step closer towards a realistic model
for parallel computation. In Proceedings of the seventh annual ACM symposium
on Parallel algorithms and architectures, SPAA ’95, pages 95–105, New York, NY,
USA, 1995. ACM.

4. M. Anderson, M. Brodowicz, A. Kulkarni, and T. Sterling. Performance modeling
of gyrokinetic toroidal simulations for a many-tasking runtime system. In Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (SC13), 2013.

5. L. Carrington, M. Laurenzano, and A. Tiwari. Inferring large-scale computation be-
havior via trace extrapolation. In Large-Scale Parallel Processing workshop (IPDPS
2013), 2013.

6. L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance prediction
framework for scientific applications. In ICCS Workshop on Performance Modeling
and Analysis (PMA03, pages 926–935, 2003.

7. P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and M. Quinson.
Single node on-line simulation of mpi applications with smpi. In Parallel Distributed
Processing Symposium (IPDPS), 2011 IEEE International, pages 664–675, 2011.

8. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. Logp: towards a realistic model of parallel computation.
In Proceedings of the fourth ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, PPOPP ’93, pages 1–12, New York, NY, USA, 1993.
ACM.

9. G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. Parallex: A study of a new
parallel computation model. In Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, pages 1–6, 2007.

10. T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim - Simulating Large-Scale
Applications in the LogGOPSModel. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pages 597–604. ACM,
Jun. 2010.

11. C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A. Evensky,
and J. Mayo. A simulator for large-scale parallel computer architectures. IJDST,
1(2):57–73, 2010.

12. M. Sottile, A. Dakshinamurthy, G. Hendry, and D. Dechev. Semi-automatic ex-
traction of software skeletons for benchmarking large-scale parallel applications.
In Proceedings of the 2013 ACM SIGSIM conference on Principles of advanced
discrete simulation, SIGSIM-PADS ’13, pages 1–10, New York, NY, USA, 2013.
ACM.

13. K. L. Spafford and J. S. Vetter. Aspen: a domain specific language for perfor-
mance modeling. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’12, pages 84:1–84:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

14. T. Sterling. Towards a Parallex-enabled Exascale Architecture. Presentation to
the DOE Architecture 2 Workshop, 10 Aug 2011.

15. E. Totoni, A. Bhatele, E. Bohm, N. Jain, C. Mendes, R. Mokos, G. Zheng, and
L. Kale. Simulation-based performance analysis and tuning for a two-level directly
connected system. In Proceedings of the 17th IEEE International Conference on
Parallel and Distributed Systems, December 2011.

16. G. Zheng, T. Wilmarth, O. S. Lawlor, L. V. Kalé, S. Adve, D. Padua, and
P. Geubelle. Performance modeling and programming environments for petaflops

16

computers and the blue gene machine. In NSF Next Generation Systems Pro-
gram Workshop, 18th International Parallel and Distributed Processing Sympo-
sium(IPDPS), page 197, Santa Fe, New Mexico, April 2004. IEEE Press.

