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A recently developed inverse scattering algorithm [A. J. Devaney and M. Dennison, Inverse Probl., 19, 855
(2003) and M. Dennison and A. J. Devaney, Inverse Probl., 20, 1307 (2004)] is described and applied in a com-
puter simulation study of optical diffraction tomography (ODT). The new algorithm is superior to standard
ODT reconstruction algorithms, such as the filtered backpropagation algorithm, in applications employing a
limited number of scattering experiments (the so-called limited-view case) and also in cases where multiple
scattering occurs between the object being interrogated and the (known) background in which the object is
embedded. The new algorithm is compared and contrasted with the filtered backpropagation algorithm in a
computer simulation of ODT of weakly inhomogeneous cylindrical objects being interrogated in a limited num-
ber of scattering experiments employing incident plane waves. Our study has potential applications in bio-
medical imaging and tomographic microscopy. © 2005 Optical Society of America
OCIS codes: 110.6960, 290.3200, 100.3010, 100.3190, 100.6950.

1. INTRODUCTION

In optical diffraction tomography (ODT) a semitranspar-
ent object is interrogated in a set of scattering experi-
ments employing coherent incident waves, and the ampli-
tude and phase of the resulting scattered optical waves
are recorded and used to reconstruct the internal complex
index-of-refraction distribution of the object.'™ The stan-
dard reconstruction algorithms employed in ODT are
based on the well-known Born or Rytov approximation®®
and require that the object being studied be embedded in
a uniform constant-index-of-refraction background me-
dium whose (constant) index of refraction is closely
matched to that of the object. In addition, these algo-
rithms are usually based on the so-called generalized
projection-slice theorem®” of diffraction tomography (DT),
which requires that the experiments employ a large set of
incident plane waves whose directions of incidence are
closely packed over the unit sphere.

In two recent papersg’9 a new inverse scattering algo-
rithm was developed that is not based on the generalized
projection-slice theorem and that overcomes many of the
limitations of the standard DT reconstruction algorithms.
This new algorithm is based on the so-called distorted-
wave Born approximationlo and  Hilbert-space
decomposition''? and allows the object being interro-
gated to be embedded in a nonuniform background me-
dium and also allows arbitrary incident wave fields to be
employed in the set of scattering experiments. Unlike the
standard DT reconstruction algorithms such as the fil-
tered backpropagation (FBP) algorithm,5 this new algo-
rithm also applies to the so-called limited-view problem
where the number of scattering experiments is limited. In
such cases, it returns a minimum L? norm object distri-
bution that is consistent with the scattering data (a
pseudoinverse), whereas the standard DT algorithms will
generate reconstructions that are not necessarily consis-
tent with the scattering data.
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In this paper we adapt the inverse scattering algorithm
developed in Refs. 8 and 9 to the case of ODT and test and
compare its performance against the standard FBP algo-
rithm in a computer simulation study. We will perform
the comparison of the two algorithms only within the
Born approximation because the FBP algorithm is based
on and is valid only within the Born approximation.” The
application of the new algorithm to arbitrary source fields
and detection geometry within the distorted-wave Born
approximation does not serve the comparison purpose
and is not discussed in the paper but can be found in Refs.
8 and 9 The paper includes a brief description of the ex-
perimental requirements of ODT and suggests the use of
phase-shifting holog‘raphy13 (PSH) for determining the
amplitude and phase of the scattered optical wave fields
required by the reconstruction algorithm.

2. OPTICAL DIFFRACTION TOMOGRAPHY

We will employ the standard ODT experimental
configuration’™ where a semitransparent object is
mounted in such a way that it can achieve varying orien-
tations relative to the direction of propagation of an illu-
minating plane wave as illustrated in Fig. 1. In order to
simplify the theory and computer simulations, we will re-
strict our attention in this paper to the class of cylindrical
objects whose properties (index-of-refraction distribution)
do not vary along some direction, which we will take to be
the z axis of rotation of the rotating mount illustrated in
Fig. 2. (In the case of general 3D objects, the mount must
rotate about two axes, allowing illumination of the object
from all propagation directions over the unit sphere). For
any given orientation of the mount, a coherent plane wave
whose unit propagation vector s is perpendicular to the
axis of rotation of the mount is incident on the object, and
the intensity of the scattered wave field is recorded by the
CCD array. In order to reconstruct the object’s internal

© 2005 Optical Society of America



P. Guo and A. J. Devaney

Incident light

3D object

| : y
x Rotation stage EC

Fig. 1. Optically semitransparent object is mounted in such a
way that it can achieve varying orientations relative to the direc-
tion of incident light.

Incident wave

Fig. 2. Mathematic model of DT.

complex index-of-refraction distribution, one needs to de-
termine both the amplitude and the phase of the scat-
tered field from the measured intensity, and in many of
the previous studies of ODT this was accomplished via
the use of a phase-retrieval algorithm.M’lS Such algo-
rithms have a number of limitations, however, and an al-
ternative procedure using PSH can also be employed for
this purpose and is described in Ref. 13.

In order to accurately determine the internal structure
of the object, one needs to perform a number of scattering
experiments, using varying angles of illumination of the
incident plane wave relative to the object. For cylindrical
objects and the system illustrated in Fig. 1, this is accom-
plished by simply rotating the (cylindrical) object about
its axis. We can regard the object as being fixed (nonro-
tating) in space and the incident plane wave and CCD de-
tector array as rotating around the object with its optical
axis (and incident plane-wave direction) defined by the
unit vector s, which, in the ideal situation, can completely
cover the unit circle. For any given relative orientation
between the object and the optical axis of the system, the
optical scattered wave is then assumed to be determined
via phase retrieval or PSH, and the goal of ODT is to de-
termine the internal complex index-of-refraction distribu-
tion of the object from such a set of scattered wave field
amplitudes.

We note that the success of the reconstruction algo-
rithms of ODT depends on the validity of a weak scatter-
ing relationship between the object’s index-of-refraction
distribution and the scattered field amplitude over the de-
tector array plane. In practice, this is achieved by im-
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mersing the object in a test tube or similar structure that
is filled with an index-matching fluid. Unfortunately, al-
though this results in weak scattering between the object
and the wave propagating in the background index-
matching fluid, it also introduces multiple scattering be-
tween this background wave and the test tube that can
introduce image artifacts into the reconstructed object
profile unless accounted for in the ODT reconstruction al-
gorithm. The standard reconstruction algorithms of ODT
cannot easily account for these multiple-scattering ef-
fects, and one of the primary advantages of the new algo-
rithm to be described here is that it can accommodate
such effects.

A. Generalized Projection-Slice Theorem and the
Filtered Backpropagation Algorithm

The standard reconstruction algorithms of DT assume in-
cident plane waves and are based on the so-called gener-
alized projection-slice theorem, which, in turn, is based on
the first Born or Rytov approximation.5 In this paper we
will restrict our attention to the Born approximation, al-
though much of the development is readily extended to
the case of the Rytov approximation without difficulty.
The Born approximation results in a linear relationship
between the scattered field amplitude and the object’s
complex index-of-refraction profile. In the case of cylindri-
cal objects illuminated by plane waves propagating per-
pendicular to their axis of rotation, the index of refraction
and resulting scattered field vary only over a plane that,
in the experimental system illustrated in Fig. 1, is per-
pendicular to the axis of rotation of the rotating mount.
We define a Cartesian coordinate system whose z axis is
aligned along this axis of rotation and whose (x,y) plane
is fixed relative to the rotating mount or object. The scat-
tered field amplitude over the CCD array plane will be
constant along the z axis and will vary as a function of the
£ coordinate in an (¢, ,z) Cartesian system that is fixed
relative to the CCD array but rotates about the z axis
relative to the (x,y,z) system. The geometry is illustrated
in Fig. 2.

For cylindrical objects the generalized projection-slice
theorem relates the 1D spatial Fourier transform of the
scattered field amplitude as determined over the CCD
plane to the 2D spatial Fourier transform of the object’s
complex index-of-refraction distribution. In particular, as-
suming that the object is embedded in a medium with
constant and real wavenumber k,=kqn,; (%, is free-space
wavenumber, and n,; is the refractive index of the back-
ground media) and that the incident wave to the object is
a plane wave with unit propagation vector s lying in the
(x,y) plane, then the generalized projection-slice theorem
states that

~ ikin,
WK;lp) =
Y

exp(ivly) 5, (K, y-K), (1)

where (K ;1) is the spatial Fourier transform of the scat-
tered field at #=[,

(kg —KHY2, K<k,

(K2-EHY2, K>k, @

’)/:

and
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on(x,y) =n(x,y) —ny (3)

is the deviation of the object’s index-of-refraction profile
n(x,y) from the constant index n; of the uniform back-
ground medium and where the tildes denote spatial Fou-
rier transforms.

The generalized projection-slice theorem is the basis for
virtually all (quantitative) reconstruction algorithms in
DT. Again, we emphasize that its validity depends cru-
cially on the validity of the first Born approximation and
also on the requirement that in any given scattering ex-
periment the incident (probing) wave to the scatterer is a
single plane wave propagating in the direction defined by
the unit vector s. In the case where the object is immersed
in an index-matching fluid, the theorem will break down
owing to the fact that the incident wave is no longer a
plane wave but, rather, will be the wave field propagating
in the test tube or other structure containing the fluid and
object. In past studies of ODT, a rectangular test tube has
been employed to minimize these effects. However, even
in such cases the effects of undesired multiple scattering
in the test tube will be present and will reduce the quality
of the object profile reconstructions.

The FBP algorithm®® is derived in a straightforward
manner directly from the projection-slice theorem. The al-
gorithm derives its name from the sequence of steps it
employs to generate the reconstruction:

e Convolutional filtering of the scattered field data,
e Backpropagation of the filtered data,
e Summation over views,

where each view of the object corresponds to a different
incident plane-wave direction s. Mathematically, the algo-
rithm is expressed in the form

. i exp(—ikyly) (27 k -
on(x,y) = 4—f d¢f dK|K|K; p)
wky, 0 -k

Xexpli(y—Fkp)(x cos p+ysin ¢ —1)]
Xexp[iK(y cos ¢ —x sin ¢)], (4)

where the reconstruction 3n=(x ,¥) is equal to dn(x,y) low
pass filtered to the region |K|<\2k,. A derivation of the
FBP algorithm is presented in Ref. 5, and its computer
implementation is presented in Ref. 16.

ODT of weakly scattering objects has been performed
by a number of workers. Early work was performed using
phase-retrieval techniques14’15 applied to intensity scans
obtained using a scanning photodetector.? Later work
employed a monochrome digital camera and again used
phase retrieval to deduce the phase of the optical field
from its measured intensity distribution.* An excellent ex-
ample of the use of DT in this class of applications is
given in Ref. 3 and is reproduced in the latest edition of
Born and Wolf (Ref. 17 page 716).

B. New Algorithm

In this subsection, we specialize the newly developed in-
verse scattering algorithm reported in Refs. 1 and 2 to the
special case of ODT of cylindrical objects using the experi-
mental system illustrated in Fig. 1. Our goal in this paper
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is to compare the performance of the new algorithm to the
standard FBP algorithm,5 and to do this we will examine
the simplest case of a weakly scattering (cylindrical) ob-
ject embedded in free space where the Born approxima-
tion holds. Although the algorithm to be described is ap-
plicable to more general and practical situations, the
same is not true of the FBP algorithm, and a comparison
using these more general scenarios would not serve any
purpose.

We employ the same geometry and definitions used
above in connection with our discussion of the FBP algo-
rithm. The cylindrical object is located in a fixed (x,y,2)
coordinate system whose z axis is aligned along the axis
of the object, which is illuminated by an incident plane
wave propagating along the s; direction. Here, i
=1,2,...,Ng; a s; is a unit propagation vector lying in the
(x,y) plane; and Ny is the number of illuminating direc-
tions used in the suite of ODT experiments. For each di-
rection of illumination s;, we define a rotating coordinate
system (&, n,z) whose 7 axis is aligned along the direction
of propagation of the illuminating plane wave and whose
(¢,z) plane is parallel to the plane of the CCD array. For
each incident wave direction s;, the scattered wave field is
measured by point receivers (CCD pixels) located at p;
=(;,2) on the plane 7=1[j, where j=1,2,...,N,; N, is the
number of point receivers; and [, is the fixed distance of
the center of the CCD array from the axis of rotation of
the rotating mount.

Because the object is cylindrical and the probing plane
waves all have propagation vectors lying in the (x,y)
plane, the scattered field will be independent of the z co-
ordinate and will depend only on the position vector r
=(x,y). All the scattering equations then become 2D, and,
in particular, for each illumination direction s; the scat-
tered field at p; can be represented via the Born approxi-
mation in the form

¥ p;;s) = f d%rGy(p;,r)0(r) /" (r;s))
14

= f d’rGy(p;,r)O(r)exp(ikys; - 1), (5)
14

where the integrations in the above equations are taken
over the 2D support region V of the object’s index-of-
refraction profile on the (x,y) plane and where we have
defined the object function as

O(r) = kg[n% -n2(r)]=- Zk%nbén(r),

with én as the deviation of the object’s index-of refraction
profile from the constant index of the background medium
ny lef. Eq. (3)]. In the above equations ™(r;s;)
=exp(ikys; r) is the incident plane wave, G, is the 2D
background Green function, and k& is the free-space
wavenumber.

If we define

GZ(pj,r)exp(— tkys;-r), ifreV
m,(r) =

0, otherwise

(6)

and the integral operator as
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L,= f a%r, (v), (7)
where n=(-1)N,+j, i=1,2,...,N, j=1,2,...,N,, then
Eq. (5) can be represented in the form

¥, = ¥ (pj;s;) = L,0(r) = (m,(r),0(r)), (8)

where

mﬁhj¥%wmw

is the standard inner product in R2, i.e., over the (x,y)
plane.

Equation (8) states that the scattered field data ¢ is a
mathematical projection of the unknown object O(r) onto
the functions 7,(r), and it is shown in Ref. 8 that this re-
lationship implies that a minimum norm solution for the
unknown O(r) can be written in the form of linear combi-
nations of the m,,(r) functions; i.e.,

N
Or)= >, C,my(v), (9)

n=1

where N=N,xN, and where |0[=(0,0)"? is minimum
among all object functions compactly supported in V. The
expansion coefficients C,, are determined by substitution
of Eq. (9) into Eq. (8) and are thus required to satisfy the
coupled set of linear equations:

N
W= Colm,(x),m, )y forn=1,2,..,N. (10)

m=1

Equation (10) is a set of N linear equations that can be
represented in a matrix form

Ac=d, (11)

where
¢=(Cy,Cs,...,Cy)", (12)
d:(lﬁ‘;,l/f;,...,lﬁv)T (13)

are column vectors of length N and A is the N by N con-
stant matrix whose element at the ith row and jth column
is determined by

A(y) = (mi(r), m(r)) = f &%r; (x) m(x), (14)

where i1=1,2,...,N and j=1,2,...,N. It is easily shown
that the matrix A is Hermitian, i.e., 4:4*, and hence can
be expressed via its eigenvalue decomposition:

A=UAU', (15)

where U is a N by N unitary matrix and A is the N by N
diagonal singular-value matrix. The pseudoinverse least-
squares solution of Eq. (11) can now be obtained by
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c=UA"'U'd, (16)

where A~! denotes the diagonal matrix whose nonzero di-
agonal elements are the reciprocals of the corresponding
nonzero diagonal elements of A.

3. COMPUTER SIMULATION

We simulated an ODT experiment using the new algo-
rithm outlined above and compared its performance with
the FBP algorithm. For illustration purposes, we consider
a cylindrical object whose index of refraction varies only
over the (x,y) plane and where the data are measured at
(§,m=1lp) in the rotary (&,7) coordinate system. The
source was taken to be a He—Ne laser with wavelength

A=633 nm.
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Fig. 3. Cross-sectional images of an optical fiber’s refractive-
index distribution. (a) Actual cross-sectional refractive index of
an optical fiber. (b) Reconstruction of the refractive index of the
optical fiber using the new algorithm. (c) Reconstruction of the
refractive index of the optical fiber using the FBP algorithm.
Pixel size in (a)—(c) is & =A=633 nm. The following parameters
have been used for reconstruction: measurement distance [,
~40 mm, Ny=16 views, N,=41 CCD pixels per view, and dis-
tance between adjacent CCD pixels d=26.8 um.
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Fig. 4. (a) Comparison of the scattered data (solid curve) gener-
ated by the actual object (optical fiber) and the scattered data
(dot curve) generated by the reconstructed object that were ob-
tained by the new algorithm. (b) Comparison of the scattered
data (solid curve) generated by the actual object (optical fiber)
and the scattered data (dot curve) generated by the reconstructed
object that were obtained by the FBP algorithm.

A. Limited Data
We first tested the reconstruction of a cylindrical fiber
whose cross-sectional refractive-index distribution is
given in Fig. 3(a). The object was represented by a 201
X201 square matrix with a sampling distance dx=A\.
Therefore, the object’s size was about 127 um (diameter).
The synthetic data were generated using the Born ap-
proximation at /p=63191N~40 mm. N =41 CCD pixels
(detectors) were placed symmetrically about the 7 axis
and on the line z=[; for each illumination direction S;.
The distance between adjacent CCD pixels was d
=26.8 um. A total of Ng=16 illumination directions, which
were uniformly distributed in the 27 region, were used.
The results from the simulated experiment using the
above parameters obtained using the new algorithm and
the FBP algorithm are shown in Figs. 3(b) and 3(c), re-
spectively. The figures show that the reconstruction from
the new algorithm agrees roughly with the actual object
image, although very limited data were used for recon-
struction. In particular, only 16 views and 41 pixels per
view were employed in this case, and the data were mea-
sured at a very large distance (40 mm). The limited data
result in distortions and low resolution in the reconstruc-
tion as evidenced in the figure. The reconstruction from
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the FBP algorithm using the same experimental param-
eters loses much information about the cross-sectional
structure of the optical fiber and does not clearly show the
core and cladding structure of the fiber.

The reconstructed object was then used in the forward
model with the same parameters as discussed above to
generate the scattered data, which were then compared
with the scattered data that were generated by the actual
object. The scattered data for a single view are compared
in Figs. 4(a) and 4(b) where the dot curve in Fig. 4(a) rep-
resents the scattered data from the reconstructed object
obtained using the new algorithm, the dot curve in Fig.
4(b) represents the scattered data from the FBP-
reconstructed object, and the solid curves in both figures
represent the scattered data from the actual object. The
figures show that the reconstructed object by the new al-
gorithm generates scattered field data that agree very
well with the actual scattered data and that the recon-
structed object by the FBP algorithm generates scattered
field data that do not agree with the actual scattered field
data. In this sense, the new algorithm is superior to the
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Fig. 5. Reconstruction of a phantom with sparse (limited) data.
(a) Actual index of refraction of the phantom. (b) Reconstruction
of the refractive index of the phantom using the new algorithm.
(¢) Reconstruction of the refractive index of the phantom using
the FBP algorithm. Pixel size in (a)—(c) is x=A=633 nm. The fol-
lowing parameters have been used for reconstruction: measure-
ment distance /,~45 mm, N,=40 views, N;=61 CCD pixels per
view, and distance between adjacent CCD pixels d=67 um.
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Fig. 6. Comparison of the scattered data (solid curve) generated by the actual object (phantom) and the scattered data generated by the
reconstructed object obtained using the FBP algorithm (dotted curve) and the new algorithm (represented by the dashed curve, which
agrees with the solid curve). (a)—(d) show the scattered data for four different view angles, respectively.

FBP algorithm in that it yields reconstructions that agree
with the data in the limited-view problem.

In the second example, we used a more complicated
phantom as our object to test the reconstruction algo-
rithms. In this case, the object was represented by a 150
X 150 matrix with sampling distance x=\=633 nm. The
object’s size was about 90 um, and its refractive-index
distribution is shown in Fig. 5(a). We followed the same
procedure as in the optical fiber example and chose the
experimental parameters to be /p=71090A~45 mm, N,
=61, d=67 um, and Ng=40. The reconstructions using
two algorithms are shown in Figs. 5(b) and 5(c). In this
case, as in the last example, the FBP algorithm fails to
accurately reconstruct the object from the sparse data re-
sulting from the limited number of CCD pixels and large
distance between adjacent pixels. However, the new algo-
rithm can still produce a fairly good reconstruction with
such limited data.

We followed the same procedure as in the optical fiber
example to generate the scattered field data by replacing
the actual object with the reconstructed object in the for-
ward model. But in this case we compare the data for four
different view angles. The scattered field data from the
reconstructed object obtained by the new algorithm are
plotted as the dashed curve in Fig. 6 and coincide with the
scattered field data (solid curve) generated from the ac-
tual object. The scattered field data from the recon-
structed object by the FBP algorithm are shown as the
dotted curve in Fig. 6 and are not consistent with the ac-

tual data. In both figures, plots (a)—(d) correspond to the
scattered field data for four different view angles, respec-
tively.

B. Dense Data

We employed the same phantom used in the previous ex-
ample but with much denser data. In particular, we let
lp=301A~190 um, N,=61, d=1.9 um, and N¢=40. The
reconstructions using the new method and the FBP algo-
rithm are shown in Figs. 7(b) and 7(c), respectively. In
this case, both reconstruction algorithms are seen to yield
almost identical reconstructions. This is due to the fact
that the FBP algorithm yields a pseudoinverse in the case
of dense data.”>'®

C. Point-Spread Function

The point-spread function (PSF) is a useful tool to com-
pare the performance of the two algorithms. The PSF of
an algorithm is defined as the reconstruction of a point
scatterer and is a function of the scattering geometry as
well as the location of the point scatterer. In our experi-
ment we computed the reconstruction image of a point
scatterer located at the center of a supporting area that is
16\ X 16\ in size and sampled at a rate of o&x=\/8. The
CCD camera was placed 100\ away from the supporting
area center, and 401 pixels separated \ from one another
were employed. The spectrum of the PSF is approximated
by the 2D Fourier transform of the reconstruction images.
Each Ewald circle on the spectrum corresponds to the
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data collected from one incident angle. For simplicity and
illustration purposes, only one incident angle is consid-
ered in this experiment. The results were illustrated by
Fig. 8, and it is seen that a sharper image and a more
complete Ewald circle were obtained by the new method
than by the FBP algorithm.

D. Noise

In this subsection we examine the effect of noise on the
FBP algorithm and the new algorithm. The first example
employed the same object and parameters as those in the
ODT reconstruction of an optical fiber described previ-
ously and shown in Fig. 9(a). The experimental param-
eters are as follows.

Measurement distance /=40 mm,

Ny =16 views,

N =41 CCD pixels/view,

Distance between CCD pixels=26.8 um.
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Fig. 7. Reconstruction of a phantom with dense data. (a) Actual
index of refraction of a phantom. (b) Reconstruction of the refrac-
tive index of the phantom using the new algorithm. (¢) Recon-
struction of the refractive index of the phantom using the FBP
algorithm. Pixel size in (a)—~(c) is dx=A=633 nm. The following
parameters have been used for reconstruction: measurement dis-
tance /p=~190 um, Ny=40 views, N.=61 CCD pixels per view, and
distance between adjacent CCD pixels d=1.9 um.
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We first generate the object’s scattered field data using
the Born approximation as before and then add Gaussian
noise to the scattered data with a signal-to-noise ratio
(SNR) of 20 dB (i.e., |#/2/6®>=100, where ¢ is the scattered
field and o2 is the variance of the Gaussian noise). The
DT reconstruction from the noisy scattered field data us-
ing the new algorithm is shown in Fig. 9(c). The recon-
struction is seen to be very poor owing to the noise that
dominates the reconstruction at small values of the eigen-
values of the A matrix defined in Eq. (15). To regularize
the inversion, we truncated the eigenvalue spectrum and
obtained the result shown in Fig. 9(d). The reconstruction
from noise-free scattered field data is also given in Fig.
9(b) for comparison purposes.

In a second example we used the phantom shown in
Fig. 7(a) and the following experimental parameters.

Measurement distance /p=190 um,
Ng=40 views,

N=61 CCD pixels per view,

Distance between CCD pixels=1.9 um.

We followed the same procedure as in the previous ex-
ample to generate the synthetic data and reconstructions
from the noise-free and noisy synthetic data. The recon-
structions from noisy scattered data (SNR=20 dB) by the
new and FBP algorithms are shown in Figs. 10(c) and
10(e), respectively. We can see that in this case the new
algorithm is more sensitive to the noise than the FBP al-
gorithm. We then truncated the eigenvalue spectrum in
the new algorithm and obtained the reconstruction shown
in Fig. 10(d). The reconstructions by the new algorithm
and the FBP algorithm from noise-free data are also given
in Fig. 10(a) and 10(b), respectively, for comparison pur-
poses.

4. DISCUSSION AND CONCLUSIONS

In this paper, a new optical diffraction tomography (ODT)
reconstruction algorithm is introduced and compared
with the standard FBP algorithm within the Born ap-
proximation. The new algorithm generates a least-
squares psuedoinverse of the object from scattered field
data measurements in the form of a series of products of
complex-conjugate background Green functions whose ex-
pansion coefficients are readily found by inverting a set of
N simultaneous linear algebraic equations with N un-
knowns. A key feature of this algorithm is its ability to re-
construct the object profile with limited data. In addition,
the algorithm is computationally efficient and is easily
regularized so as to be stable in the presence of noise. Ex-
amples of the reconstruction using the two algorithms
have been presented to compare their imaging perfor-
mance. Another interesting aspect of this algorithm is the
limited-view problem where the range of view angles is
restricted. Because this algorithm can use the distorted-
wave Born approximation, reflection from known bound-
aries can be exploited to essentially expand the range of
views and hence to improve the reconstruction quality.s’9
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Fig. 8. Comparison of PSFs between the new and the FBP algorithms. (a) Real part of the reconstructed point scatter by the new
algorithm. (b) Spectrum of the new algorithm PSF. (c) Real part of the reconstructed point scatter by the FBP algorithm. (d) Spectrum of
the FBP algorithm PSF.
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Fig. 9. Reconstructions by the new algorithm. (a) Object. (b) Reconstruction by the new algorithm from noise-free scattered data. (c)
Reconstruction by the new algorithm from noisy data [Signal-to-noise ratio (SNR)=20 dB]. (d) Reconstruction by the new algorithm us-
ing a truncated eigenvalue spectrum with noisy data (SNR=20 dB).
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Fig. 10. Reconstructions with noisy data. (a) Reconstruction by the new algorithm from noise-free scattered data. (b) Reconstruction by
the FBP algorithm from noise-free scattered data. (c) Reconstruction by the new algorithm from noisy data (SNR=20 dB) without using
a truncated eigenvalue spectrum. (d) Reconstruction by the new algorithm using a truncated eigenvalue spectrum with noisy data
(SNR=20 dB). (e) Reconstruction by the FBP algorithm with noisy data (SNR=20 dB). Pixel size in (a)—(e) is &x=A=633 nm.
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