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Abstract

We study the convergence behavior of iterative decoding fora number of serially concatenated systems, such as a

serially concatenated code, coded data transmission over an inter-symbol interference channel, bit-interleaved coded

modulation, or trellis-coded modulation. We rederive an existing analysis technique called EXIT chart, simplify its

construction, and construct simple irregular codes to improve the convergence of iterative decoding. An efficient and

optimal optimization algorithm yields systems, which approach information theoretic limits very closely. However,

these systems exhibit their performance only for very long block lengths. To overcome this problem, we optimize the

decoding convergence after a fixed, finite amount of iterations yielding systems, which perform very well for short

block lengths, too. As an example, optimal system configurations for communication over an additive white Gaussian

noise channel are presented.

Keywords

Turbo decoding, bit-interleaved coded modulation, trellis-coded modulation, Turbo equalization, concatenated

codes

I. INTRODUCTION

Berrou et al. showed in 1993 that a concatenated error-correction code (ECC) code can be de-

coded almost optimally with low computational burden usingiterative decoding [1]. This decoding

principle was extended later to other communication systems, such as coded data transmission over

an inter-symbol interference (ISI) channel [2], bit-interleaved coded modulation (BiCM) [3, 4], or

trellis coded modulation (TCM) [5, 6], to name only a few. Theconcept of iterative decoding

can be generalized to message-passing on a graph [7], which was used to analyze the family of

the low-density parity-check (LDPC) codes [8] originally described in [9]. A major question for

understanding iterative decoding is to explain the regionsin signal-to-noise ratio (SNR), where

performance improvement over the iterations occurs or not at all. These regions are separated by

a transition calledwaterfall. A successful approach to this problem calleddensity evolution was

pioneered in [10, 11], which investigates the probability density functions (PDFs) of the communi-

cated information within the iterative decoding algorithm. Based on the evolution of these PDFs, a

design algorithm [11] and convergence thresholds [10] for LDPC codes have been obtained. Other
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approaches are simpler, e.g., by assuming that the PDFs considered above are Gaussian [12] or by

observing only a single parameter of them [13–16]. Among thelatter are the extrinsic informa-

tion transfer (EXIT) charts [14, 17], which have been applied successfully to various concatenated

systems [3, 18, 19], due its high accuracy reported in [20].

This paper aims on the following. We devise rules to design a concatenated system based on the

EXIT chart analysis. A new class of irregular codes with managable encoding and decoding com-

plexity is proposed, which is broader and more flexible than similar classes [21–23]. We derive a

simple optimization algorithm using EXIT charts to design systems approaching information the-

oretic performance limits as close as possible. The appliedoptimization tools are similar to those

for LDPC codes [11] or for repeat-accumulate (RA) codes [24]. A new optimization criterion is

proposed to optimize decoding convergence after a fixed number if iterations. Using this crite-

rion yields systems, which perform well for short block lengths, too, and even surpass the systems

optimized for convergence close to channel capacity. Reasons for this behavior are discussed. Re-

sults are presented for a serially concatenated system designed for communication over an additive

white Gaussian noise (AWGN) channel. We consider only serial concatenations in this paper and

note that the derived techniques can also be applied to parallel concatenated systems [25].

II. A SERIALLY CONCATENATED SYSTEM

Fig. 1 depicts a serially concatenated system utilizing iterative decoding in the receiver. The

encoder I is usually a ECC. Depending on the encoder II, the system or its receiver algorithm,

respectively, is referred to as Turbo code (encoder II is a ECC), Turbo equalization (ISI channel),

Turbo BiCM (mapper), or Turbo TCM (modulation code) in the literature. A block ofK data

bits is encoded with the rate-RI outer encoder I toL code bits
n. The set of all code words
= (
1; :::; 
n; :::; 
L) is denotedC. The interleaver, a fixed permutation onL elements, permutes

the bits in
 to x=(x1; :::; xL). The deinterleaver reverses the interleaver permutation.Thexn are

encoded with the rate-RII inner encoder II toN code bitsyn. The alphabet of the
n, xn, andyn isf0; 1g and operations on them are inF2 . The total rate of the concatenated system is
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4R = K=N = RI �RII : (1)

A Q-tupleyk = (yQk+1; :::; yQk+Q) of bits yn is mapped to a symbolS(yk) 2 C from the2Q-ary

signal constellationS. The average power of the symbols inS isP . All results in this paper assume

an AWGN channel specified by the noise variance�2. The noise sampleswk are independent and

identically distributed (i.i.d.) withfw(w) = 1=(��2) � exp(�jwj2=�2), w 2 C . Besides the plain

AWGN channel, wherezk=S(yk)+wk is received, we briefly mention Fading and ISI channels in

Sec. VII. The signal-to-noise ratio (SNR) at the receiver input is defined asEbN0 = EsN0 � 1R �Q = P�2 � 1R �Q:
The two decoders communicate log-likelihood ratios (LLRs)[25] on the code bits
n or xn. Input

to decoder II are thea-priori LLRs L(xn) = ln (P (xn = 0)=P (xn = 1)) andzk. Using bit-based

a-posteriori probability (APP) decoding, e.g., the BCJR algorithm [26], decoder II outputs�II ;n = ln P (xn=0 j z0; :::; zN=Q�1; L(x1); :::; L(xL))P (xn=1 j z0; :::; zN=Q�1; L(x1); :::; L(xL)) � L(xn): (2)

After deinterleaving,�II ;n is considered a-priori LLRL(
n) = ln(P (
n = 0)=P (
n = 1)) on 
n by

decoder I, which outputs�I;n and estimates of the transmitted data, e.g.,�I;n = ln P (
n=0 j L(
1); :::; L(
L))P (
n=1 j L(
1); :::; L(
L)) � L(
n);
using APP-based decoding. The LLRs�I;n and�II ;n are often calledextrinsic information in the

literature [25]. Performing iterative decoding, the LLRs�I;n are interleaved and regarded asa-

priori LLR L(xn) for decoder II, whereL(xn)=0 for all xn is assumed for the first iteration.

III. CONVERGENCE PREDICTION USINGEXIT CHARTS

The LLRs communicated between the two decoders can be modelled as outcomes of the random

variables (r.v.’s)�I and�II modeling the LLRs�I;n and�II ;n, respectively. The outcomes of�I and�II are distributed with the PDFfI(lj
) conditioned on
n = 
 andfII(ljx) conditioned onxn = x,

respectively, which both vary with the iterations. Analyzing these PDFs allows to predict the
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behavior of the decoding algorithm, but this is unfortunately extremely difficult for most system

configurations. A substantial simplification is to observe only a single parameter of the PDFs

[13–16], e.g., the mutual information between�I and the r.v.C [14],I(�I;C)= 12 X
2f0;1g Z 1�1fI(lj
) � log2 2 fI(lj
)fI(lj0)+fI(lj1) dl: (3)

The outcomes ofC are the bits
n, which are assumed to be equally likely0 or 1. Similarly is

definedI(�II ;X) on fII(ljx), where the outcomes of the r.v.X are the bitsxn. The evolution ofI(�I;C) andI(�II ;X) with the iterations is calledtrajectory of the decoding algorithm and can be

depicted in a chart with two axes labeled withI(�I;C) andI(�II ;X). In the following we focus

on I(�I;C) to show how these parameters can be obtained efficiently. Theintegral in (3) can be

evaluated numerically using a histogram ofL LLRs �I;n [14]. CalculatingI(�I;C) becomes much

simpler if the PDFfI(lj
) is bothsymmetric, i.e. fI(lj0) = fI(�lj1), andconsistent, i.e. fI(lj0) =fI(�lj0) �exp(l). For example, an APP-based decoder for a linear code produces symmetric output

PDFs if the input PDF (of thea-priori LLRsL(xn) orL(
n)) is symmetric and, when the decoder

processes the receivedzk, the communication channel is symmetric, e.g.,fw(w)=fw(�w). Since

the output of one decoder is input to the next one, symmetry isretained over the iterations for this

example. The consistency constraint is fulfilled when the output LLRs arevalid log-likelihood

ratios. For example, consider all LLRs�I;n at indicesn for which 
n = 0. These LLRs are

distributed withfI(lj0). A hard decision of�I;n on the value of
n is given by
n = 0 if �I;n � 0
and
n = 1 if �I;n < 0, where latter decision is wrong. From the LLR definition follows that the

probabilityp=P (�I;n�0) of a correct decision isexp(j�I;n)j=(1+exp(j�I;nj)) and that of a wrong

decision is1�p. Recalling that the�I;n are outcomes of�I, we find that a�I;n with a magnitudej�I;nj
in the small bin[l; l+�℄, l�0, of width � is positive with probabilityq=fI(lj0)=(fI(�lj0)+fI(lj0))
or negative with probability1� q for � ! 0. Clearly, the ratio of positive�I;n to negative�I;n
should be equal to the ratio of correct and wrong decisions, i.e., q=(1�q) = p=(1�p) in order

that the�I;n with such a magnitude are valid LLRs. Sincep = exp(l)=(1+ exp(l)) for these�I;n, we find thatfI(lj0)=fI(�lj0) = exp(l) must hold, the consistency constraint for a particular
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6l. The corresponding constraint on the distributionfI(lj1) is fI(lj1)=fI(�lj1) = exp(�l). Since

each decoder in an iterative decoding algorithm assumes that the input LLRs are valid, it is an

important design task to make sure that, disregarding the decoding principle, output LLRs with

a consistent distribution are produced. We note that the this constraint was defined earlier, e.g.,

in [27] or in [11] (called symmetry constraint), but there itis only used to simplify analysis or to

improve the accuracy of simulation results, respectively.In contrast, we consider this constraint as

a fundamental property of decoders to be used for iterative decoding. Applying both constraints,

the calculation ofI(�I;C) simplifies greatly,I(�I;C) = 1� Z 1�1 fI(lj0) � log2(1 + e�l) dl = EC=0(1�log2(1+e��I)): (4)

This expectation overfI(lj0) is arbitrarily closely approximated with the time averageI(�I;C) � 1� 1LXLn=1 log2(1 + exp(�m(
n) � �I;n)); (5)

wherem(�) is defined asm(0)=1 andm(1)=�1. Here, we again use the symmetry constraint to

average overall output LLRs, not just those for which
n=0.

To predict the behavior of the decoding algorithm without actually running the algorithm, both

decoders are analyzed separately via theirtransfer functions. For example, decoder I maps LLRsL(
n) distributed withfII(lj
) to LLRs �I;n distributed withfI(lj
). SincefII (lj
) is not known,

i.i.d. LLRsL(
n) distributed withg(lj
) = exp ��(l �m(
) � 2
)2=(8
)� =p8�
 (6)

conditioned on
n=
 are artificially generated. We refer to [13, 14] to explain this choice ofg(lj
).
Each
2 [0;1) is assigned the mutual informationIin(
) = 12 X
2f0;1g Z 1�1 g(lj
) � log2 2 g(lj
)g(lj0)+g(lj1) dl = 1� Z 1�1 g(lj0) � log2(1 + exp(�l)) dl;
with Iin(0)= 0 (no a-priori information) andIin(
!1)= 1 (exact knowledge of the associated

bit) as extremal values. For eachIin 2 [0; 1℄, decoder I produces LLRs�I;n with Iout = I(�I;X)
October 23, 2002 DRAFT
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yielding the transfer functionIout=TI(Iin). Similarly is defined the transfer functionIout=TII(Iin)
for decoder II, where in addition the bitsxn are transmitted over the channel yielding received

symbolszk. The analysis based on these transfer functions is accuratewhen the decoders output the

sameIout when fed with LLRs distributed with the true PDFfI(lj
) (andfII (ljx)) or the Gaussian

PDF g(lj
) at the sameIin. A comparative study observing6 different parameters revealed that

mutual information is one of the most accurate and robust ones [20]. Another simplification is

that the input LLRsL(
n) (andL(xn)) are independent when they are artificially generated usingg(ljx). This is not true with�I;n and�II ;n in the real system, but it is plausible for large interleaver

block lengths, at least for several iterations, in a neighborhood around each�I;n and�II ;n.

IV. CONVERGENCE PROPERTIES OF SERIALLY CONCATENATED SYSTEMS

A. Recursive encoding

Fig. 2 depictsTI(Iin) of an APP-based decoder I for a rate-1=2 convolutional code with generator(1+D2 1+D+D2), TII (Iin) of decoder II for 8-PSK at2:7 dBEb=N0 using a Gray or an Anti-Gray

mapping with a trivial (memory-less) encoder II (yn = xn), and the trajectory of a real system

for K 2 f250; 2500g using S-random interleaving (S2 f15; 25g) [28]. Using a Gray mapping

yields good performance after one iteration but no gain overthe iterations, sinceTII (1)� TII(0).
Using an Anti-Gray mapping causes a lowerTII (0), but a significant gain over the iterations even

surpassing the performance using Gray mapping. This apparent compromise betweenTII(0) andTII (1) was investigated in [3]. We note that the findings in the EXIT chart directly apply to the BER

performance. Comparing trajectory and transfer functionsreveals that the analysis is accurate only

for a small number of iterations, which increases withK. This number specifies that part of the

decoding process, where the independence assumptions on�I;n and�II ;n actually hold.

For the considered memory-less encoder II we find thatTII(Iin = 1) < 1 holds regardless of

the mappingS(�). At this Iin, all x1; :::; xL are known to decoder II orjL(xn)j ! 1 for all n,

respectively. Assuming APP-based demapping, it follows from (2) that the output LLRs�(1)
II ;n =

October 23, 2002 DRAFT



8�II ;njjL(xn)j!1;8n for this case are given by�(1)
II ;n = ln P (xn=0 j z; x1; :::; xn�1; xn+1; :::; xL)P (xn=1 j z; x1; :::; xn�1; xn+1; :::; xL) = ln �jzk�S(yk(n; 0))j2=�2�jzk�S(yk(n; 1))j2=�2 ;

whereyk(n; b)=(xQk+1; :::; xn�1; b; xn+1; :::; xQk+Q), b2f0; 1g, andk=(n�1) modQ. Clearly,

these�(1)
II ;n causeTII(1) < 1 and, thus, an error floor after decoding convergence, which will not

disappear even forK!1 [3]. Designing an encoder II such thatTII (1)= 1 is (nearly) achieved

by decoder II avoids this floor. Previous work reveals that a recursive encoder, whereyn depends

not only onxn and past versions of it, i.e.xn�1; xn�2; :::, but also on past versions ofyn [5, 29],

provides this property. Such encoders were utilized in [30,31] in the context of TCM and BiCM,

and in [32, 33] in the context of Turbo equalization. It is onetask of this paper to analyze and

design low-complexity implementations of such encoders.

B. Transfer function integrals

LetAI and �AI be the areas underTI(i) and its inverseT�1
I (i), i2 [0; 1℄, respectively:AI = Z 10 TI(i) di; �AI = Z 10 T�1
I (i) di = 1�AI:

Similar areasAII and �AII are defined forTII (i) andT�1
II (i), respectively. The equivalences�AI =1�AI and �AII =1�AII follow from the definition of the EXIT chart. It has been observed in [34,

35] that an APP-based decoder for a rate-RI code satisfies the property�AI � RI : (7)

Equality was proven in [34] when theL(
n) fed into decoder I are artificially generated using~g(lj
)= � � Æ(l) + (1��) � Æ(l�m(
) � L) for L!1, whereÆ(l) is the Dirac delta function. This

PDF follows when the
n are transmitted over a binary erasure channel with erasure probability �.
CalculatingIin(�)=1�� and evenTI(i) for some classes of linear codes becomes now managable

[34] in contrast to using the PDFg(lj
). We use (7) even wheng(lj
) is used to obtainTI(Iin), since

the transfer functions are almost identical in both cases. We note that the EXIT chart analysis itself

is based on such an assumption, since the true LLR distributionfI(lj
) is only approximated with
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9g(lj
). We say that a concatenated system converges wheneverTII (0)>0; TII(1)=1; and TII (i)�1<TI(i); 8i2 [0; 1): (8)

In [11, 24], decoding convergence is defined by analyzing thefixed point of the recurrence�i=TI(TII(�i�1)); i = 1; 2; :::; �0=0: (9)

Convergence is achieved when�i!1 for i!1, which implies thatTI(TII(i))>i must hold for alli2 [0; 1). ApplyingT�1
I (�) on both sides yieldsTII(i)>T�1

I (i), and taking the inverse on both sides

yieldsT�1
II (i)<TI(i), where we reasonably assume thatTI(i) andTII(i) are strictly monotonically

increasing. Attaining the pointTI(1) = 1 corresponds to a zero BER, which requires an infinite

amount of iterations and an infinite block lengthK.

An obvious convergence threshold is the bound�AI<AII , which is attained whenTI(i) is identical

to T�1
II (i). From this bound, (1), and (7) follows thatRI <AII as well as R<RII �AII : (10)

We made the observation thatAII is approximatelyQ times the uniform input capacityCUI of the

communication channel in bits per transmitted symbol [35],i.e.,Q �AII � CUI (11)

for any bijective rate-1 encoder II regardless ofS(�). An explanation for this fact was presented

in [36]. A proof was presented in [34] for the case that the LLRs L(xn) fed into decoder II are

generated using~g(ljx). As for property (7), we justify the use of (11) since the transfer functionsTII (i) obtained usingg(ljx) or ~g(ljx) to generate the LLRsL(xn) look almost alike.

An important design rule follows from (11) whenCUI is close to its maximumQ, i.e., for largeEs=N0. To assure that the overall code rateR is close toCUI, it has to approach1. From (1) or

(10) and the obvious boundAII � 1 follows thatR � RII . Consequently, we should setRII to 1.

This rule holds not only for largeEs=N0, since also for mediumEs=N0, whenCUI is significantly

smaller thanQ, the achievable rateR of a system spending redundancy on encoder II is below the

one using a rate-1 encoder [35].
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Eq. (8) states the conditions for decoding convergence assuming an infinite block lengthK and

number of performed iterations. Latter assumptions are of course not practical at all and design

rules for a finiteK and/or number of iterations are desired. In this paper we want to study how

the concatenated system can be optimized when only a finite numberF of iterations is performed.

Precisely, we want to maximize the mutual information�F of the output LLRs�I;n of decoder I

afterF iterations. Fig. 2 shows that this also allows to evaluate the performance for finiteK, since

the trajectorydoes follow the transfer functions for a smallF .

In the following, we show how to design serially concatenated systems according to the rules

stated in Sections IV-A and IV-B, i.e., to find an encoder II such thatTII(1) = 1 holds and to find

an encoder I such thatTI(Iin) fits toT�1
II (Iin) according to optimization criteria to be derived.

V. DESIGN OF SERIALLY CONCATENATED SYSTEMS

We start with the design of rate-RII =1 encoders II, i.e.L=N , for whichTII (1)=1 holds. We

assume that encoder II is a finite-state machine (FSM) with memoryM , which processesQ bitsxk = (xQk+1; :::; xQk+Q) to outputyk for k = 0; 1; :::; N=Q�1. This assures that encoder II and

decoder II work with the same2M -state trellis describing the FSM. The evolution of the encoder

statesk, a lengthM row vector, is in general described with the state-space equationssk+1 = skA+ xkB and yk = skCT + xkD:
whereA is anM�M matrix,B andC areQ�M matrices, andD is aQ�Q matrix, all with

elements fromF2 . TheQ rows ofB of lengthM are denotedbj, j=1; :::; Q. The initial encoder

state iss0=0, i.e., the transfer function using the delay operatorD is given byy(D) = x(D)G(D) = x(D) � (B(D�1IM +A)�1CT +D);
whereIM is theM �M identity matrix andx(D) = x0+x1D+x2D2+ :::. Clearly, the rate-1

encoder II must be bijective and, thus,G(D) be invertible. We observe the trellis to analyze the

output LLR�(1)
II ;n whenIin=1. Decoder II knowss0, but not the final statesN=Q. Even if the trellis

is terminated tosN=Q+t = 0 for somet > 0, determiningsN=Q requires the use of noisy symbols
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11zk, since decoder II does not know the termination bitsxn0, n0 >N , which yieldsN=Q+t = 0. In

general, a particular statesm at time stepm=0; :::; N=Q�1 is given bysm = s0Am +Xm�1l=0 xlBAm�l�1 =Xm�1l=0 xlBAm�l�1:
For anym>k, this sum can be split intosm = xQk+jbjAm�k�1+rm(k; j); rm(k; j)= QXl=1:l 6=jxQk+lblAm�k�1!+ m�1Xl=0:l 6=kxlBAm�l�1! ;
wherej=1; 2; :::; Q. To compute�(1)

II ;n for a particularn=Qk+j, all xn0, n0 6=n, are known and,

thus, the differencerm(k; j)=sm�xQk+jbjAm�k�1 is uniquely determined. The statesm is either

known exactly form<k or it takes one of the at most two valuesrm(k; j)+x � bjAm�k�1, x2F2 ,

for m>k. It follows that�(1)
II ;n = lnQN=Q�1l=k+1 p(zl jS(yl(k; j; 0)))QN=Q�1l=k+1 p(zl jS(yl(k; j; 1))) = 1�2 � N=Q�1Xl=k+1 jzl�S(yl(k; j; 1))j2�jzl�S(yl(k; j; 0))j2;

whereyl(k; j; x) = rl(k; j)CT+x � bjAl�k�1CT+xlD. The expectation ofj�(1)
II ;n j over fw(w)

is E(j�(1)
II ;n j) = 1�2PN=Q�1l=k+1 jS(yl(k; j; 1))�S(yl(k; j; 0))j2. For a finite�2, E(j�(1)

II ;n j) grows un-

bounded withN=Q if the number of non-zero1�Q vectorsbjAl�k�1CT, l=k+1; k+2; :::, is un-

bounded, since only non-zerobjAl�k�1CT yield a non-zero differenceS(yl(k; j; 1))�S(yl(k; j; 0)).
However, this number is bounded ifbjAl�k�1 is zero for anyl=k+1; :::. Since there are at most2M differentbjAl�k�1, it suffices to check whetherbjA2M�1 is zero. WhenbjA2M�1 is non-zero,

the number of non-zerobjAl�k�1CT is unbounded when there is at least one non-zerobjAl0CT,l0=0; 1; :::; 2M�1, for all j=1; :::; Q. The necessary und sufficient conditions on encoder II such

that decoder II approachesTII(Iin=1)=1 for largeN=Q are therefore(1) G(D) is invertible (2) bjA2M�1 6=0; 8j; and (3) 9bjAlCT 6= 0; l=0; :::; 2M�1; 8j:
Even thoughE(j�(1)

II ;n j)!1 holds only forN!1, i.e., a decoder II satisfyingTII(1)= 1 exists

only for N ! 1, we say thatTII(1) = 1 is achieved already when the three constraints above

are satisfied. A non-recursive encoder, whereA is lower triangular, cannot satisfy the second
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constraint, sinceAM is the all-zero matrix. On the other hand, simple 2-state (M = 1) encoders

yielding TII(1) = 1 can be found for anyQ by choosingA= 1, B= [1 1:::1℄, andC 6= 0. Fig. 3

showsTII(Iin) of decoder II at2:7 dB Eb=N0 for seven rate-1, 2-state encoders for 8-PSK using

Gray mapping,D= I3, andC2 f[100℄; [010℄; :::; [111℄g. Also included isTII(Iin) for a memory-

less mapperyn=xn andTI(Iin) for the rate-1=2 code from Section IV-A. As predicted,TII (1)=1
holds and, furthermore,3�AII is equal toCUI =1:76 in bits per channel use for all encoders II.

To approachCUI in the example above, we need an outer code whoseTI(Iin) fits to T�1
II (Iin).

Fig. 3 shows that convergence is possible using the encoder II with C = [100℄, but not withC= [111℄. In fact, sinceAII = 1:76=3 = 0:587, convergence is possible with a rate-0:587 code ifTI(Iin) is suitably chosen. However, there is little knowledge howTI(Iin) looks like for a given

codeC and optimizingTI(Iin) usually requires to scan through many possible codes. This search

procedure can be reduced and improved by selecting a family of subcodesCk, k=1; 2; :::, which

are used to construct a target codeC, whose code words consist of fractions of code words from

the subcodes. Such a code is usually referred to asirregular code, e.g., irregular LDPC codes [11]

or RA codes [24]. There, simple parity check and/or repetition constraints on the code bits ofC
are used as subcodes. The approaches in [22, 23] optimizeTII (Iin) by encoding fractions of the

code bitsxn with different encoders II. We propose to keepTII(Iin) constant and, instead, optimizeTI(Iin) by encoding fractions of theK information bits using a general set ofP subcodesCk.
To keep en- and decoding ofC simple, we propose to select a rate-r1 convolutional mother codeC1 and obtain theP �1 other subcodes of raterk > r1 by puncturing. Thus, en- and decoding

of all Ck can be performed on the mother code trellis. UsingCk to encode a fraction of�krkL
information bits to�kL, �k2 [0; 1℄, code bits
n, the�k have to satisfy1=XPk=1�k and RI =XPk=1�krk (12)

given the target rateRI 2 [0; 1℄. For example, a family ofP =17 subcodes constructed from a sys-

tematic, rate-1=2, memory 4 mother code defined by the generator matrixG(D) = 1=g0 � [g0 g1℄,g0=1+D+D4, g1=1+D2+D3+D4, is used in this paper. Higher rates are obtained by puncturing,
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lower rates are obtained by adding more generators and usingpuncturing while maximizing the

free distance. Latter optimization requires only two new generators,g2 = 1+D+D2+D4 andg3=1+D+D3+D4. We denote the17 subcodes with the tuplesfrk; [w0; w1; :::℄; lk; [p0; p1; :::℄g,k=1; :::; 17, wherewi, i=0; 1; 2; 3, denotes how oftengi occurs in the generator matrix,lk is the

puncturing period, andpi is the octal representation of the puncturing pattern associated togi:f0:10; [1; 4; 4; 1℄; 1; [1; 1; 1; 1℄g, f0:15; [1; 3; 2; 1℄; 3; [7; 7; 7; 3℄g, f0:20; [1; 2; 1; 1℄; 1; [1; 1; 1; 1℄g,f0:25; [1; 1; 1; 1℄; 1; [1; 1; 1; 1℄g, f0:30; [1; 1; 1; 1℄; 3; [7; 7; 7; 1℄g, f0:35; [1; 1; 1℄; 7; [177; 177; 077℄g,f0:40; [1; 1; 1℄; 2; [3; 3; 1℄g, f0:45; [1; 1; 1℄; 9; [777; 777; 021℄g, f0:50; [1; 1℄; 1; [1; 1℄g,f0:55; [1; 1℄; 11; [3777; 2737℄g, f0:60; [1; 1℄; 3; [7; 3℄g, f0:65; [1; 1℄; 13; [17777; 05253℄g,f0:70; [1; 1℄; 7; [177; 025℄g, f0:75; [1; 1℄; 3; [7; 1℄g, f0:80; [1; 1℄; 4; [17; 1℄g,f0:85; [1; 1℄; 17; [377777; 010101℄g, andf0:90; [1; 1℄; 9; [777; 1℄g.
For example, the last tuplef0:90; [1; 1℄; 9; [777; 1℄g denotes that onlyg0 andg1 are used where the

bits belonging tog0 are not punctured at all and those ofg1 are punctured in 8 out of 9 trellis sec-

tions (p1,000:000:001) yielding the rater17 = 1=2 �18=10 = 0:9. We note that at the beginning of

each block of�krkL trellis sections corresponding toCk, the puncturing pattern should be applied

from the beginning. Trellis termination is necessary only after all K information bits have been

encoded. The output LLRs�I;n of decoder I are distributed withfI;k(lj
) in the fraction of the

trellis belonging toCk. To eachfI;k(lj
) corresponds a transfer functionTI;k(Iin). Assuming that

the trellis fractions do not significantly interfere with each other, which might change the transfer

characteristic, the transfer functionTI(Iin) of the target codeC is the weighted superposition of theTI;k(Iin) when allfI;k(lj
) are symmetric and consistent, i.e.TI(Iin)=PPk=1�kTI;k(Iin), which fol-

lows from (4). The task of fittingTI(Iin) to a givenT�1
II (Iin) while satisfying (8) can be formulated

as a linear or quadratic programming problem [37]:

Minimize J(���) = 12 ����Q���T +���P
subject to

PPk=1 �kTI;k(i)>T�1
II (i); 8 i2 [0; 1);���C=[ 1 RI ℄; �k2 [0; 1℄; k = 1; 2; :::; P; C = 24 1 1 ::: 1r1 r2 ::: rP35T ; (13)

where���= [�1 ::: �P ℄, Q is a positive semi-definiteP�P matrix, andP is aP�1 matrix. Using
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the constraints on��� alone yields irregular codesC for which decoding convergence is possible

assuming an infiniteK andF . When many valid��� are possible, appropriate cost functionsJ(���)
can be used to find codesC satisfying or optimizing additional constraints, for instance:

C1 Penalize subcodes with high rates.

C2 Minimize the total square error
R 10 (TI(i)�T�1

II (i))2 di.
C3 Minimize the total absolute error

R 10 (TI(i)�T�1
II (i)) di.

C4 Maximize the mutual information�F afterF iterations.

The criteria C1-C3 are chosen ad-hoc, but they can be expressed with appropriateQ andP, e.g.,Q = 0, P = [1p 2p 3p:::P p℄, p = 2; 3; :::, for C1. The criterion C4 cannot be solved with (13).

Appendix A devises an iterative solution to this optimization problem.

Suppose we seek a codeC of highest rateRI , such that decoding convergence is possible at2:7
dBEb=N0 using two rate-1, 2-state encoders withA=1,B=[111℄,C2f[100℄; [110℄g, andD=I3
for 8-PSK using Gray mapping. The largest rate for convergence isAII = 0:587 = CUI=3. For

this application, a solution��� satisfying the constraints in (13) is sought, only. This is usually a

single vector, i.e., imposing any cost function is not necessary. The two uppermost plots in Fig.

4 depict the result includingTII(Iin) for the two encoders,TI;k(Iin) of the subcodes, andTI(Iin)
of the irregular codeC. The highest rate for convergence isRI = 0:559 using the encoder II withC=[100℄, but it isRI =0:583 using the one withC=[110℄.

Another application is to fix the rate ofC for example toRI =1=2, and to find aTI(Iin) aiming

on fast decoding convergence, which we define as a quick increase in�i over the first iterations.

This could be desired, e.g., for complexity reasons or givena finiteK (see Fig. 2). The last 8 plots

of Fig. 4 show the resultingTI(Iin) of irregular codesC optimized using the criteria C1 (p= 2),

C2, C3, and C4 (F = 6) and the expected system trajectory after 6 iterations. Nonof the ad-hoc

criteria C1-C3 give satisfactory results for both encodersII. Only the criterion C4, which is optimal

with respect to the stated problem formulation, always provides a useful codeC. However, latter

optimization is somewhat complicated and yields a different C depending on the type of encoder

II, Eb=N0, RI , andF . Heuristically, we found that for the chosen family of subcodes, encoders II
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yielding a largeTII(0) achieve the largest�F for smallF =1; :::; 10 when�F closely approaches1. This situation is well-explained in Fig. 4, where the encoder withC= [100℄ outperforms that

one withC = [110℄ for 2:7 dB Eb=N0 andRI = 0:5. In fact, the encoder withC = [100℄ yields

the largestTII(0) among all 2-state encoders for 8-PSK. In contrast, if we allow a large numberF
of iterations to be performed and a largeK, the encoder withC= [110℄ outperforms all others in

achieving the highest possible rateRI for convergence at thatEb=N0.
VI. RESULTS

We derived design rules for two criteria: to approach the channel capacity as close as possible

or to achieve a maximal gain in�F (or a low BER) at the output of decoder I afterF iterations.

Addressing the first criterion, we searched among all rate-1, 2-state encoders II for QPSK, 8PSK,

16QAM, 32QAM, and 64QAM using a Gray mapping yielding the smallest Eb=N0 for which

convergence is possible with the irregular codes from Sec. V. ThisEb=N0, denotedEb=N0jth, is

referred to asthreshold [11, 24, 30, 31]. The signal constellations and mappings aredefined in Figs.

2 and 5. Table I shows optimized codesC and encoders II for several throughputsT =R�Q=RI �Q
in bits per channel use. Also shown is the SNREb=N0jmin for which CUI = T when 64QAM

modulation is used. Fig. 6 shows that with a single family of subcodes we can closely approachCUI over a wide range of throughputs just by selecting the weights��� and the signal constellation

appropriately. We stated in Sec. V that decoders II yieldinga largeTII (0) improve the convergence

speed, i.e., they help to maximize�F for smallF . We found that among all rate-1, 2-state encoders

withD=IQ, those withA=1,B=[11:::1℄, andC=[10:::0℄ maximizeTII (0). Encoders with more

memory, i.e.M>1, or a more generalD do not improveTII(0) significantly.

We want to illustrate the results of this paper with an example. We seek to transmitT =1:5 bit

per channel use over an AWGN channel using 8PSK. Table I showsthat at least1:0 dB Eb=N0 is

required to transmit these1:5 bit reliably. An irregular rate-1=2 code constructed with the weights��� = (0, 0, 0, 0.05, 0.24, 0, 0.15, 0, 0.26, 0, 0, 0.11, 0.05, 0.07,0, 0, 0.07) and an encoder II withA = 1, B = [111℄, C = [110℄, andD = I3 optimizes decoding convergence. The convergence
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threshold is1:3 dBEb=N0. We also find that the rate-1=2 code constructed from��� = (0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) and an encoder II withA= 1, B= [111℄, C= [100℄, andD= I3
optimizes�6, the mutual informationI(�I;C) at the output of decoder I afterF =6 iterations.

Fig. 7 shows the BER performance of a concatenated system using these two parameter sets forK2f250; 2500; 25000g usingS-random interleavers withS2f15; 25; 40g. The receiver performsF 2f10; 20; 40g iterations. Reference is a BiCM system with a memory-less encoder II using the

Gray or the Anti-Gray mapping in Fig. 2. The codeC optimizing decoding convergence shows

indeed very early convergence starting at1:4 dBEb=N0 for K=25000. However, the performance

improvement over the iterations declines for shorterK and is actually worst among all systems

for K = 250. This is caused by the fractions of poorly protected bits in acode word
 from C
due to high-rate subcodesCk. We introduced the criterion C1, which attempts to avoid fractions of

high-rate codes inC, for this reason. The second system using the code optimizing �6 shows an

excellent performance for allK except that it converges at a slightly largerEb=N0. SinceTII (1)=1
holds for both example systems, they do not suffer from an error floor as the BiCM systems do.

VII. CONCLUSIONS

An iteratively decoded concatenated system achieving decoding convergence close to the chan-

nel capacity must use irregular codes to match the transfer functions of the two decoders in the

receiver. These irregular codes contain fractions of high-rate codes to fitTI(Iin) well to T�1
II (Iin)

yielding poorly protected information bits in the code words more prone to bit errors. The result

are significant error floors for smallK. We conclude that there is a fundamental trade-off in early

convergence and poor finite-length performance of an iteratively decoded system. Analyzing the

above-mentioned floors is cumbersome for two reasons. First, bounds on the BER performance,

e.g., using the distance spectrum of the global code consisting of both encoders and assuming

Maximum Likelihood (ML) decoding, are hard to obtain for thegiven system structure (recursive

encoder II). Second, iterative decoding performs significantly worse than ML decoding for shortK, i.e., bounds on the ML decoding performance are not meaningful. A treatment of this issue
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is omitted here, also because of space limitation. The EXIT chart analysis underlying the design

rules assumes a very largeK and optimized codes performing well for largeK unfortunately fail

for shortK. We solved this dilemma by introducing an optimization criterion for which the made

assumptions approximately hold also for shortK - the firstF iterations of iterative decoding.

We note that the derived design rules also apply for parallelconcatenated systems and for other

communication channels with possibly unknown and/or time-varying parameters. For example, in

presence of ISI in the channel, decoder II performs APP-based or linear equalization [18]. Using

encoders II with memory causes usually no complexity overhead using APP equalization [32,

33], but the extension of linear equalizers is more troublesome. We emphasize that property (11)

holds, too. Thus, applying the design rules from this paper,the uniform input capacityCUI of

channels such as ISI or Fading channels can be approached [35, 36]. A drawback is the fact that

the transmitter must knowTII(Iin) precisely, which depends on channel parameters such as the

SNR, the fading amplitude, or the impulse response. When these parameters are quickly time-

varying, using a largeK averages over the possible channel states and decoder II exhibits an

ergodic transfer functionTII(Iin) depending only on a few parameters such as the SNR, which

could be communicated to the transmitter via a feedback path. However, the faster the channel

is varying, the more difficult channel estimation becomes inthe receiver. For slowly varying

parameters, a feedback path is even more important. Withoutfeedback, the transmitter might

design a robust outer codeC, e.g., using criterion C4, which tolerates uncertainties in TII(Iin). We

conclude that the closer a concatenated system approaches aparticular channel capacity, the more

precise the transmitter needs to know the channel parameters.

APPENDIX A

We wish to find the weight vector���opt=argmax8���2A �F (���), whereA is the set of all��� satisfying���C=[1 RI ℄ and�k2 [0; 1℄ for all k. The first constraint in (13) is not considered, since there might

be solutions��� maximizing�F with TI(i)<T�1
II (i) for somei>�F . From (9) follows thatr�F = ��F (���)���� = ���F��1 ��F��2 ::: ��F��P �T ;
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the gradient of�F with respect to���, is also given by a recurrence,��i��k = Tk(�i�1) + ��i�1��k � PXj=1 �jT 0j(�i�1); i = 2; 3; :::; F;
whereTk(i)=TI;k(TII (i)), T 0k(i)=dTk(i)=di, i2 (0; 1), and��1=��k=Tk(0) for all k. We can find

a local maximum of�F (���) for all ��� in the domain�k2R using the steepest descent approach���j+1=���j+sjr�F (���j); j=0; 1; :::; ���j=[�j;1:::�j;P ℄; (14)

where���02A is an initial guess. We obtained���0 using (13) and the criterion C2. However, apply-

ing (14) may yield solutions���j outsideA. Projecting each intermediate���j onto the convex setA
yields a local maximum of�F (���) for��� being inA. This projection is carried out by projecting iter-

atively onto the set of all��� satisfying���C=[1 RI ℄ and onto the set of all��� satisfying�k2 [0; 1℄ for

all k. We are not able to show whether the obtained local maximum isequal to the global maximum���opt. In fact,�F (���) exhibits multiple local maxima. We assume that with the chosen���0 2A, the

local maximum found with (14) is a satisfactory solution to the stated optimization problem. An

appropriate step sizesj is (�F (���opt)��F (���j))=kr�F (���j))k2 [38], which requires the knowledge of���opt. We used the upper bound�F (���opt)�1 on�F (���opt), i.e.,sj=(1��F (���j))=kr�F (���j))k2, for

which we always achieved convergence. The devised algorithm is summarized in the following:

1. To initialize, set�0 = 0, l = 0, g1;k = Tk(0), k = 1; 2; :::; P , and choose���0 = [�0;1:::�0;P ℄.
2. Compute gradient and update���l:�i =XPj=1�l;jTk(�i�1); i = 1; 2; :::; F;gi;k = Tk(�i�1) + gi�1;k �XPj=1�l;jT 0j(�i�1); i = 2; 3; :::; F; k = 1; 2; :::; P;���l = ���l�1 + (1� �F )=�XPk=1g2F;k� � [gF;1 gF;2 ::: gF;P ℄;
3. Project���l ontoA:���0 = ���l;�l;k = 0 when�l;k < 0 and�l;k = 1 when�l;k > 1; k = 1; 2; :::; P;���l = ���l �C(CTC)�1CT(���l ����0);
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4. Go to step (3) whilek���0 ����lk2 > �.
5. Setl to l + 1. Go to step (2) whilel < lmax.

To find the irregular codes in this paper, we choselmax=1000 and�=10�8.
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T in EbN0 jmin EbN0 jth A B C D �1; �2; :::; �17 in percent
bpc in dB in dB
0.5 -0.854 -0.515 1 11 10 I2 00 36 42 00 00 00 14 00 00 00 04 01 00 02 00 00 01
1.0 0.040 0.184 1 111 110 I3 00 10 25 26 00 00 22 00 04 00 05 01 00 04 00 01 02
1.5 1.000 1.163 1 1111 1010 I4 00 00 09 47 00 00 15 01 14 00 00 05 00 06 00 00 03
2.0 2.045 2.061 1 11111 11100 I5 00 26 00 16 00 18 00 00 15 06 00 00 08 05 00 00 06
2.5 3.141 3.167 1 11111 11100 I5 00 00 08 23 00 00 15 01 13 00 08 05 00 16 00 00 11
3.0 4.269 4.358 1 11111 11100 I5 00 00 00 00 18 10 00 00 17 04 05 00 07 18 00 00 21
3.5 5.435 5.656 1 11111 11100 I5 00 00 00 00 00 00 00 29 02 01 02 00 19 10 00 00 37
4.0 6.620 6.847 1 111111 001010 I6 00 00 00 00 00 00 00 00 35 12 00 00 10 21 00 00 22
4.5 7.838 8.125 1 111111 001010 I6 00 00 00 00 00 00 00 00 00 06 30 00 00 24 03 00 37
5.0 9.151 9.609 1 111111 001010 I6 00 00 00 00 00 00 00 00 00 00 00 00 00 33 01 00 66

TABLE I

OPTIMIZED IRREGULAR OUTER CODESC AND INNER RATE-1, 2-STATE ENCODERS FOR SEVERAL

THROUGHPUTST IN BITS PER CHANNEL USE.
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Fig. 4. Optimization of the outer code via the transfer functionTI(Iin) of decoder I given the transfer functionTII (Iin)
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