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Abstract

We study the convergence behavior of iterative decoding fuumber of serially concatenated systems, such as a
serially concatenated code, coded data transmission oveter-symbol interference channel, bit-interleavedexmbd
modulation, or trellis-coded modulation. We rederive aistixg analysis technique called EXIT chart, simplify its
construction, and construct simple irregular codes to owprthe convergence of iterative decoding. An efficient and
optimal optimization algorithm yields systems, which aggorh information theoretic limits very closely. However,
these systems exhibit their performance only for very lologk lengths. To overcome this problem, we optimize the
decoding convergence after a fixed, finite amount of iteratigielding systems, which perform very well for short
block lengths, too. As an example, optimal system configamatfor communication over an additive white Gaussian

noise channel are presented.

Keywords

Turbo decoding, bit-interleaved coded modulation, tsetibded modulation, Turbo equalization, concatenated

codes

. INTRODUCTION

Berrou et al. showed in 1993 that a concatenated error-@arrecode (ECC) code can be de-
coded almost optimally with low computational burden ustegative decoding [1]. This decoding
principle was extended later to other communication systeonch as coded data transmission over
an inter-symbol interference (I1SI) channel [2], bit-inéaved coded modulation (BiCM) [3, 4], or
trellis coded modulation (TCM) [5, 6], to name only a few. Téwncept of iterative decoding
can be generalized to message-passing on a graph [7], wiaishused to analyze the family of
the low-density parity-check (LDPC) codes [8] originallgstribed in [9]. A major question for
understanding iterative decoding is to explain the regionsignal-to-noise ratio (SNR), where
performance improvement over the iterations occurs or hatlaThese regions are separated by
a transition calledvaterfall. A successful approach to this problem caltshsity evolution was
pioneered in [10, 11], which investigates the probabiliysity functions (PDFs) of the communi-
cated information within the iterative decoding algorithBased on the evolution of these PDFs, a

design algorithm [11] and convergence thresholds [10] DPIC codes have been obtained. Other
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approaches are simpler, e.g., by assuming that the PDFsleoed above are Gaussian [12] or by
observing only a single parameter of them [13-16]. Amongl&tter are the extrinsic informa-
tion transfer (EXIT) charts [14, 17], which have been appbeaccessfully to various concatenated
systems [3, 18, 19], due its high accuracy reported in [20].

This paper aims on the following. We devise rules to desigoreatenated system based on the
EXIT chart analysis. A new class of irregular codes with ngatde encoding and decoding com-
plexity is proposed, which is broader and more flexible thamlar classes [21-23]. We derive a
simple optimization algorithm using EXIT charts to desigstems approaching information the-
oretic performance limits as close as possible. The appixinization tools are similar to those
for LDPC codes [11] or for repeat-accumulate (RA) codes .[2hew optimization criterion is
proposed to optimize decoding convergence after a fixed euifliterations. Using this crite-
rion yields systems, which perform well for short block Iéing} too, and even surpass the systems
optimized for convergence close to channel capacity. Resafsw this behavior are discussed. Re-
sults are presented for a serially concatenated systemrassfor communication over an additive
white Gaussian noise (AWGN) channel. We consider only keoiacatenations in this paper and

note that the derived techniques can also be applied tol@lazahcatenated systems [25].

[I. A SERIALLY CONCATENATED SYSTEM

Fig. 1 depicts a serially concatenated system utilizingattee decoding in the receiver. The
encoder | is usually a ECC. Depending on the encoder Il, tisgery or its receiver algorithm,
respectively, is referred to as Turbo code (encoder Il is & Qurbo equalization (ISI channel),
Turbo BICM (mapper), or Turbo TCM (modulation code) in theetature. A block of ' data
bits is encoded with the ratB; outer encoder | toL code bitsc,,. The set of all code words
c=(cy,...,cn, ..., cp) is denoted’. The interleaver, a fixed permutation dnelements, permutes
the bits inc to x= (x4, ..., z1). The deinterleaver reverses the interleaver permutafibe.:,, are
encoded with the raté, inner encoder Il toN code bitsy,,. The alphabet of the,, x,,, andy,, is

{0,1} and operations on them arelih. The total rate of the concatenated system is
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R = [X'/N = R| . R”. (1)

A Q-tupleyy = (ygrr1, - Yorrq) of bits y, is mapped to a symbd(y;,) € C from the2-ary
signal constellatioty. The average power of the symbolsins P. All results in this paper assume
an AWGN channel specified by the noise varianée The noise samples,, are independent and
identically distributed (i.i.d.) withf,,(w) =1/(r0?) - exp(—|w|?/o?), w € C. Besides the plain
AWGN channel, where, = S(y;.)+w; is received, we briefly mention Fading and ISI channels in

Sec. VII. The signal-to-noise ratio (SNR) at the receiveuinis defined as

B, E, 1 _ P 1

No N RQ o R-Q
The two decoders communicate log-likelihood ratios (LLR&] on the code bits,, or x,,. Input
to decoder Il are the-priori LLRs L(x,) =In (P(x, =0)/P(x, =1)) andz;. Using bit-based

a-posteriori probability (APP) decoding, e.g., the BCJ§oathm [26], decoder Il outputs

P(x,=0|2,..., 25/0-1, L(x1), ..., L(x1))
P(x,=1]z20, ..., 25/0-1, L(@1), ..., L(x1))

/\Il,n = ln — L<$n> (2)

After deinterleaving\ ,, is considered a-priori LLR.(¢,) = In(P(¢, =0)/P(c, =1)) one¢, by

decoder I, which output, ,, and estimates of the transmitted data, e.g.,

)\I,n = lD

- L<Cn>7

using APP-based decoding. The LLRs, and ) ,, are often calledxtrinsic information in the
literature [25]. Performing iterative decoding, the LLRs, are interleaved and regarded &s

priori LLR L(x,) for decoder Il, wherd.(z, ) =0 for all x,, is assumed for the first iteration.

[1l. CONVERGENCE PREDICTION USINGEXIT CHARTS

The LLRs communicated between the two decoders can be redadedloutcomes of the random
variables (r.v.’s)\; andA; modeling the LLRs\, ,, and)\, ,,, respectively. The outcomes af and
Ay are distributed with the PDFf (/|c) conditioned or,, = ¢ and f; (/|x) conditioned onz,, = x,

respectively, which both vary with the iterations. Analygithese PDFs allows to predict the
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behavior of the decoding algorithm, but this is unfortuhatxtremely difficult for most system
configurations. A substantial simplification is to observdyca single parameter of the PDFs

[13-16], e.g., the mutual information betweg&nand the r.vC [14],

o 2f| lle
1i0)=3 3 [ 010 lons 2 et S

ce{0,1} 7~

The outcomes of” are the bits:,,, which are assumed to be equally likélyor 1. Similarly is
defined/(Ay; X) on f, (I|z), where the outcomes of the r.\X are the bitse,,. The evolution of
I(Ay; C)andI(Ay; X) with the iterations is callettajectory of the decoding algorithm and can be
depicted in a chart with two axes labeled with\,; C') and(A;; X). In the following we focus
onI(A; C) to show how these parameters can be obtained efficiently.irnfagral in (3) can be
evaluated numerically using a histogram/oELRs ), ,, [14]. Calculatingl (A;; C') becomes much
simpler if the PDFf,(l|c) is bothsymmetric, i.e. f,({|0) = f(—I|1), andconsistent, i.e. f,({|0) =
fi(=1]0)-exp(l). For example, an APP-based decoder for a linear code predyoemetric output
PDFs if the input PDF (of the-priori LLRs L(x,) or L(c,)) is symmetric and, when the decoder
processes the receiveg, the communication channel is symmetric, efg.(w) = f,(—w). Since
the output of one decoder is input to the next one, symmetgténed over the iterations for this
example. The consistency constraint is fulfiled when thgpouLLRs arevalid log-likelihood
ratios. For example, consider all LLRs, at indicesn for which ¢, = 0. These LLRs are
distributed withf,(7/0). A hard decision of\,,, on the value of;, is given byc, =0 if A/, >0
andc, =1 if X, <0, where latter decision is wrong. From the LLR definition 6olis that the
probabilityp= P(\,,, >0) of a correct decision isxp(| A, )|/(14+exp(|A »|)) and that of a wrong
decision isl—. Recalling that the, ,, are outcomes af,, we find that a\, ,, with a magnitude\, ,, |

in the small binl, I-+¢], 1 >0, of width e is positive with probability; = £,(1/0) /( fi(=1]0)+ f1(1]0))

or negative with probabilityt —¢ for ¢ — 0. Clearly, the ratio of positive\ ,, to negative), ,
should be equal to the ratio of correct and wrong decisiaes,d/(1—¢) = p/(1—p) in order
that the )\, ,, with such a magnitude are valid LLRs. Singe= exp(l)/(1+exp(l)) for these

Ain, We find thatf (1/0)/ fi(—=1|0) = exp(l) must hold, the consistency constraint for a particular
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[. The corresponding constraint on the distributif(i|1) is f,(1[1)/fi(—=I]|1) = exp(—1). Since
each decoder in an iterative decoding algorithm assuméghbanput LLRs are valid, it is an
important design task to make sure that, disregarding tikedieg principle, output LLRs with
a consistent distribution are produced. We note that theedbnstraint was defined eatrlier, e.g.,
in [27] or in [11] (called symmetry constraint), but therastonly used to simplify analysis or to
improve the accuracy of simulation results, respectivielzontrast, we consider this constraint as
a fundamental property of decoders to be used for iteraeding. Applying both constraints,

the calculation of (A,; C') simplifies greatly,
I(A;C) =1~ / Ai(110) - logy (1 + e™) dl = Ec—o(1—logy(1+¢7™)). @)

This expectation ovef,(|0) is arbitrarily closely approximated with the time average

HAC) 1= 237 togy(1+ exp(omie) - b)) ®

wherem(-) is defined asn(0) =1 andm(1)=—1. Here, we again use the symmetry constraint to
average oveall output LLRs, not just those for which, =0.

To predict the behavior of the decoding algorithm withouuady running the algorithm, both
decoders are analyzed separately via thrainsfer functions. For example, decoder | maps LLRs
L(cy) distributed with f, (I|c) to LLRs ), ,, distributed with f,(/|c). Sincef(I|c) is not known,
i.i.d. LLRs L(c,) distributed with

g(lle) = exp (=(I = m(c) - 29)%/(87)) / /87y (6)

conditioned on,, = ¢ are artificially generated. We refer to [13, 14] to explaiistthoice ofg(/|c).

Eachy €0, c0) is assigned the mutual information

Z / g(llc) log2 29(” ) d=1 —/ g(1]0) - logy (1 + exp(—1)) d,
with 7;,(0) = 0 (no a-priori information) and;, (v — oc) =1 (exact knowledge of the associated

bit) as extremal values. For eaély € [0, 1], decoder | produces LLRS ,, with I,,; = I(A;; X)
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yielding the transfer functioi,,, =7,(1;,). Similarly is defined the transfer functidp,; =T, (1;,)

for decoder I, where in addition the bits, are transmitted over the channel yielding received
symbolsz;. The analysis based on these transfer functions is acourete the decoders output the
samel,,; when fed with LLRs distributed with the true PDi/|c) (and f; (/|x)) or the Gaussian
PDFg(l|c) at the samd,,,. A comparative study observirgdifferent parameters revealed that
mutual information is one of the most accurate and robuss ¢2@]. Another simplification is
that the input LLRS.(¢,) (andL(z,)) are independent when they are artificially generated using
g(l|z). This is not true with\, ,, and\, ,, in the real system, but it is plausible for large interleaver

block lengths, at least for several iterations, in a neighbod around each, ,, and), ,,.

V. CONVERGENCE PROPERTIES OF SERIALLY CONCATENATED SYSTEMS
A. Recursive encoding

Fig. 2 depictd(I;,) of an APP-based decoder | for a rdate2 convolutional code with generator
(1+-D?* 1+D+D?), T, (I;,) of decoder Il for 8-PSK a.7 dB E}, /N, using a Gray or an Anti-Gray
mapping with a trivial (memory-less) encoder l,(= x,), and the trajectory of a real system
for K € {250,2500} using S-random interleaving (& {15, 25}) [28]. Using a Gray mapping
yields good performance after one iteration but no gain ¢heriterations, sincé, (1) ~ 7;(0).
Using an Anti-Gray mapping causes a lowgr(0), but a significant gain over the iterations even
surpassing the performance using Gray mapping. This appeoenpromise betwe€R, (0) and
Ty (1) was investigated in [3]. We note that the findings in the EXthart directly apply to the BER
performance. Comparing trajectory and transfer functiewgals that the analysis is accurate only
for a small number of iterations, which increases with This number specifies that part of the
decoding process, where the independence assumptions @md .\, ,, actually hold.

For the considered memory-less encoder Il we find #dt,, = 1) < 1 holds regardless of
the mappingS(-). At this I;,, all z4, ..., x; are known to decoder Il ot (z, )| — oc for all n,

respectively. Assuming APP-based demapping, it followsnfi(2) that the output LLRg (™) =

II,n
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Al ||L(zn)|—o00,vn TOT this case are given by

P(x,=0|2, 21, ... Tp_1, Tny1, .oy Tp)

L= S0
P(rp=1|2,21, ... Tpn_1, Tny1, .., Tp) —lz=S(yr(n,1))|%/0%

wherey.(n,b) = (2Qr+1s - Tn-1, b, Tnt1, s Torto), bE{0,1}, andk = (n—1) mod Q. Clearly,
these)\l(lffl) causeT; (1) < 1 and, thus, an error floor after decoding convergence, whidhnot
disappear even fok” — oc [3]. Designing an encoder Il such thAf(1) =1 is (nearly) achieved
by decoder Il avoids this floor. Previous work reveals that@irsive encoder, wherg depends
not only onxz,, and past versions of it, i.er,_, r,_», ..., but also on past versions ¢f [5, 29],
provides this property. Such encoders were utilized in §Q,n the context of TCM and BiCM,

and in [32,33] in the context of Turbo equalization. It is dask of this paper to analyze and

design low-complexity implementations of such encoders.

B. Transfer function integrals

Let A, and A, be the areas und& (i) and its inversd;| (i), i €[0, 1], respectively:

1 1
A.:/ T, (i) di, A.:/ T7'()di = 1-A,.
0 0

Similar areasA; and A, are defined fofT} (i) and T, ' (i), respectively. The equivalencels =
1—A; and A, =1— A, follow from the definition of the EXIT chart. It has been obssat in [34,

35] that an APP-based decoder for a r&jecode satisfies the property
A| ~ R|. (7)

Equality was proven in [34] when thE(c,) fed into decoder | are artificially generated using
g(llc)=€-0(l) + (1—¢) - 6(I—m(c) - L) for L — oo, wherei(l) is the Dirac delta function. This
PDF follows when the,, are transmitted over a binary erasure channel with eragotzapility e.
Calculatingl;, (¢)=1—¢ and ever{ (i) for some classes of linear codes becomes now managable
[34] in contrast to using the PDF|c). We use (7) even whej(/|c) is used to obtaiff}(1;,), since

the transfer functions are almost identical in both casesn@fe that the EXIT chart analysis itself

is based on such an assumption, since the true LLR distiiti/|c) is only approximated with
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g(l]c). We say that a concatenated system converges whenever
T (0)>0, T;(1)=1, and Ty(i) '<Ti(), Vieo,1). (8)

In[11, 24], decoding convergence is defined by analyzindides point of the recurrence
,Ltl‘:Ti<T'||(,Lli,1>>, i:172a"'7 IUOZO (9)

Convergence is achieved when— 1 for i — oo, which implies thaf} (7, (7)) > must hold for all
€10,1). Applying7,”'(+) on both sides yield®; (i) >7,~" (i), and taking the inverse on both sides
yieldsT, ' (i) < T, (i), where we reasonably assume tffigt) andT; (i) are strictly monotonically
increasing. Attaining the poirif;(1) = 1 corresponds to a zero BER, which requires an infinite
amount of iterations and an infinite block lendth
An obvious convergence threshold is the bouinet A, which is attained whef (1) is identical

to 7); ' (). From this bound, (1), and (7) follows that
R <Ay aswellas R<R) -A. (20)

We made the observation thdf, is approximately) times the uniform input capacityy, of the

communication channel in bits per transmitted symbol [88],
Q- Ay = Cuy (11)

for any bijective rate-1 encoder Il regardlesssif). An explanation for this fact was presented
in [36]. A proof was presented in [34] for the case that the KLURz,) fed into decoder Il are
generated using(/|x). As for property (7), we justify the use of (11) since the &fan functions
T (i) obtained using(l|x) or g(1|z) to generate the LLR&(x,,) look almost alike.

An important design rule follows from (11) wheT,, is close to its maximun, i.e., for large
E/N,. To assure that the overall code rdtes close toCy,, it has to approach. From (1) or
(10) and the obvious bound,, <1 follows thatR < R,. Consequently, we should s&f, to 1.

This rule holds not only for larg&’, / Ny, since also for mediunt’; /Ny, whenCy, is significantly
smaller than®, the achievable rat& of a system spending redundancy on encoder Il is below the

one using a rate-1 encoder [35].
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Eq. (8) states the conditions for decoding convergencenaisglan infinite block length and
number of performed iterations. Latter assumptions areoofse not practical at all and design
rules for a finite X' and/or number of iterations are desired. In this paper wetwastudy how
the concatenated system can be optimized when only a finiderF of iterations is performed.
Precisely, we want to maximize the mutual informatjog of the output LLRs), ,, of decoder |
after F iterations. Fig. 2 shows that this also allows to evaluaggogrformance for finités, since
the trajectorydoes follow the transfer functions for a smafi.

In the following, we show how to design serially concatedatgstems according to the rules
stated in Sections IV-A and IV-B, i.e., to find an encoder I¢lsthat7;, (1) = 1 holds and to find

an encoder | such th&(I;,) fits to T, ' (I;,) according to optimization criteria to be derived.

V. DESIGN OF SERIALLY CONCATENATED SYSTEMS

We start with the design of ratBn =1 encoders Il, i.eL = N, for which 7}, (1) =1 holds. We
assume that encoder Il is a finite-state machine (FSM) witmamg 1/, which processeg bits
X = (TQr+1. ---» Tor+q) 10 outputy, for £ =0,1,..., N/Q—1. This assures that encoder Il and
decoder Il work with the sam2" -state trellis describing the FSM. The evolution of the efeo

states;, a lengthM row vector, is in general described with the state-spacatsaus
sii1 =spkA +x,B and  y, =s,CT + x,D.

where A is an M x M matrix, B andC are @ x M matrices, and is a( x ) matrix, all with
elements fron¥,. The( rows of B of length M are denoted;, j =1. ..., Q. The initial encoder

state issg =0, i.e., the transfer function using the delay operdbais given by
y(D) =x(D)G(D) =x(D) - (B(D™'T; + A)"'C" + D),

wherel,, is the M x M identity matrix andx(D) = xo+x;D +x,D*+.... Clearly, the rate-1
encoder Il must be bijective and, thus{ D) be invertible. We observe the trellis to analyze the
output LLRA whenl;, =1. Decoder Il knows,, but not the final statey, . Even if the trellis

Il,n

is terminated t® /o, = 0 for somet > 0, determiningsy, requires the use of noisy symbols
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2k, since decoder Il does not know the termination bits »’ > N, which yieldsy/g; = 0. In

general, a particular stasg, at time stepn=0, ..., N/Q—1 is given by

m—1 m—1
S = SgA™ + Zz:o x,BA™ ! = Zz— x,BA™ -1,

For anym >k, this sum can be split into
Q m—1
Sm = .%'QkJrjbjAmikil + I‘m(k, j)a rm<k7 j) = ( ZkaJrlblAmkl) +< ZXZBAmZI) )
I=1:1#j 1=0:1#k
wherej=1,2,...,Q. To compute>\II for a particularn = Qk+ 5, all x,,/, n' # n, are known and,
thus, the difference,, (k, j) =sn—z gk ;b; A™ ¥~ 1 is uniquely determined. The statg is either
known exactly fonn <  or it takes one of the at most two valugs(k, j)+x - b;A™*=! 2 e,

for m > k. It follows that

N/Q-1 N/Q-1
/\|(|OO) _ Hz k+1 p(z | S(yi(k, j 0))) p (k. j, 2 |, _g ki )2,
n va/ﬁfp@z\s( (k. 1) ) l;l |20=S(yi(k, J, 1) [" = (yi(k,5,0))]

wherey,(k, j,z) = r)(k,j) CT+x - b;A"*"1CT+x;D. The expectation o[/\” | over f,(w)

is E(|/\|| n ) = 0_221]\;/13_11‘5()’1(]?’]" 1)) = S(yi(k. 7. 0))*. For a finites?, E(‘)\Il,n ) grows un-
bounded withV/Q if the number of non-zero x @ vectorsb,; A'"*='CT, I=k+1,k+2, ..., is un-
bounded, since only non-zebg A'~*~'CT yield a non-zero differencé(y; (k. j, 1) S (y:(k, 5, 0)).
However, this number is boundedtif A'~*~! is zero for anyl =k +1, .... Since there are at most
2M differentb, A'*~!, it suffices to check whethér, A" ! is zero. Wherb;A%"' ! is non-zero,

the number of non-zerb; A'~*~'CT is unbounded when there is at least one non-ketd’ CT,
I'=0,1,...,2M 1, forall j=1, ..., Q. The necessary und sufficient conditions on encoder Il such

that decoder Il approach&%(7;,,=1)=1 for large N/@ are therefore
(1) G(D) isinvertible (2) b;A2"~'+£0, Vj, and (3) 3b,A'CT #0, 1=0,...,2" —1, Vj.

Even thoughE(|/\II o |) — oo holds only forN — oo, i.e., a decoder Il satisfyin@j, (1) = 1 exists
only for N — oo, we say thaftl} (1) = 1 is achieved already when the three constraints above

are satisfied. A non-recursive encoder, wharas lower triangular, cannot satisfy the second
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constraint, sinceA" is the all-zero matrix. On the other hand, simple 2-state=£ 1) encoders
yielding 7}, (1) = 1 can be found for any) by choosingA =1, B=[11...1], andC # 0. Fig. 3
showsT;, (I;,,) of decoder Il a.7 dB E,/N, for seven rate-1, 2-state encoders for 8-PSK using
Gray mappingD =13, andC € {[100], [010], ..., [111]}. Also included isT}(I;,) for a memory-
less mappey,, =z, andT,(1;,) for the ratei /2 code from Section IV-A. As predicted; (1) =1
holds and, furthermore,- A, is equal taCyy, =1.76 in bits per channel use for all encoders II.

To approachCyy, in the example above, we need an outer code whpge,) fits to 7); ' (1;,,).
Fig. 3 shows that convergence is possible using the encodeiti C = [100], but not with
C =[111]. In fact, sinceA; = 1.76/3 = 0.587, convergence is possible with a rdt&37 code if
Ti(I;,) is suitably chosen. However, there is little knowledge HGW,,,) looks like for a given
codeC and optimizindT, (I;,) usually requires to scan through many possible codes. Eaick
procedure can be reduced and improved by selecting a fahdylcodes’,, £ =1, 2, ..., which
are used to construct a target catlevhose code words consist of fractions of code words from
the subcodes. Such a code is usually referred toregular code, e.g., irregular LDPC codes [11]
or RA codes [24]. There, simple parity check and/or repmtittonstraints on the code bits Of
are used as subcodes. The approaches in [22, 23] optifiZe,) by encoding fractions of the
code bitsr,, with different encoders Il. We propose to k€Bp /;,,) constant and, instead, optimize
Ti(I;,) by encoding fractions of th&” information bits using a general set Bfsubcodeg;.

To keep en- and decoding 6fsimple, we propose to select a rateeonvolutional mother code
C; and obtain theP — 1 other subcodes of ratg, > r; by puncturing. Thus, en- and decoding
of all C; can be performed on the mother code trellis. Usihgo encode a fraction ofy;r; L

information bits ton,, L, ay, €10, 1], code bits:,, thea,, have to satisfy

P P
1:Zk:104k and R, :ZkZIOtka (12)

given the target rat&, € [0, 1]. For example, a family oP =17 subcodes constructed from a sys-
tematic, ratet/2, memory 4 mother code defined by the generator m&i©) =1/go - [90 91],

go=1+D+D*, g, =1+D>*+D?*+D*, is used in this paper. Higher rates are obtained by pumgjuri
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lower rates are obtained by adding more generators and psingturing while maximizing the
free distance. Latter optimization requires only two neweators,g, = 1+ D+ D?+ D* and
g3 =1+ D+ D3+ D*. We denote theé7 subcodes with the tuples, [wq, w1, ...], I, [po, p1, -]},
k=1,...,17, wherew;, =0, 1, 2, 3, denotes how oftep, occurs in the generator matrik, is the
puncturing period, ang; is the octal representation of the puncturing pattern aassttog;:
{0.10,[1.4,4,1],1,[1,1,1,1]}, {0.15,[1.3,2,1],3,[7.7,7,3]},{0.20, [1,2,1,1],1, [1, 1,1, 1]},
{0.25,[1,1,1,1],1,[1,1.1,1]},{0.30,[1,1,1,1].3,[7,7,7,1]},{0.35,[1,1, 1], 7, [177, 177,077},
{0.40,[1,1,1),2,[3,3,1]},{0.45,[1,1,1],9,[777,777.021]}, {0.50, [1, 1], 1, [1,1]},

{0.55,[1,1],11, [3777,2737]}, {0.60, [1, 1], 3, [7. 3]}, {0.65, [1, 1], 13, [17777, 05253]},
{0.70,[1,1],7,[177,025]}, {0.75,[1,1], 3, [7, 1]}, {0.80, [1. 1], 4, [17, 1]},

{0.85,[1,1], 17, [377777,010101]}, and{0.90, [1, 1],9, [777. 1]}.

For example, the last tupl.90, [1,1],9,[777, 1]} denotes that only, andg, are used where the
bits belonging tay, are not punctured at all and thosegfare punctured in 8 out of 9 trellis sec-
tions (p, £000.000.001) yielding the rate;; = 1/2-18/10 = 0.9. We note that at the beginning of
each block oty ;. L trellis sections corresponding &, the puncturing pattern should be applied
from the beginning. Trellis termination is necessary orftg@all /& information bits have been
encoded. The output LLRS,,, of decoder | are distributed witli ,(/|c) in the fraction of the
trellis belonging toC,. To eachf; . (I|c) corresponds a transfer functi@y,(Z;,). Assuming that
the trellis fractions do not significantly interfere withaeother, which might change the transfer
characteristic, the transfer functidi(7;,) of the target cod€ is the weighted superposition of the
T x(1;n) when allf, .(1|c) are symmetric and consistent, iB(I;,) = kazlozkﬂk(fm), which fol-
lows from (4). The task of fitting; (1;,) to a given | ' (I;,) while satisfying (8) can be formulated

as a linear or quadratic programming problem [37]:

Minimize J(a) = ; - aQa' + aP T
1 1.1

subject to Y1, Ty (i) > Ty (i), Vi€[0,1), C= : (13)
MTre...Tp

OlC:[l R|}, akE[O,l}, k:1,2,...,P,
wherea =[a; ... ap], Q is a positive semi-definit® x P matrix, andP is a P x 1 matrix. Using
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the constraints o alone yields irregular codes for which decoding convergence is possible
assuming an infinitdd and 7. When many validv are possible, appropriate cost functioh)
can be used to find cod€ssatisfying or optimizing additional constraints, for iaste:

C1 Penalize subcodes with high rates.

C2 Minimize the total square errof, (T (i) — T} (1)) di.

C3 Minimize the total absolute errqﬁo1 (T, (i) =T, ' (7)) dhi.

C4 Maximize the mutual informatiop - after F' iterations.

The criteria C1-C3 are chosen ad-hoc, but they can be exgutegish appropriat€) andP, e.g.,
Q=0,P=[172r3". PP, p=23,.., for Cl. The criterion C4 cannot be solved with (13).
Appendix A devises an iterative solution to this optiminatproblem.

Suppose we seek a codef highest ratek;, such that decoding convergence is possibleat
dB E},/N, using two rate-1, 2-state encoders with=1, B=[111], C € {[100], [110]}, andD =13
for 8-PSK using Gray mapping. The largest rate for convergen A, = 0.587 = Cy,/3. For
this application, a solution satisfying the constraints in (13) is sought, only. This ssially a
single vector, i.e., imposing any cost function is not neaeg The two uppermost plots in Fig.
4 depict the result includingj (I;,) for the two encodersT, ;.(I;,) of the subcodes, anfi(I;,)
of the irregular cod€’. The highest rate for convergencelts= 0.559 using the encoder Il with
C=[100], but itis R, =0.583 using the one witlC =[110].

Another application is to fix the rate offor example toR, =1/2, and to find &r;(7;,) aiming
on fast decoding convergence, which we define as a quick increaggomer the first iterations.
This could be desired, e.g., for complexity reasons or gavénite k' (see Fig. 2). The last 8 plots
of Fig. 4 show the resulting;(1;,) of irregular code&’ optimized using the criteria Ch & 2),
C2, C3, and C4K = 6) and the expected system trajectory after 6 iterations. dfdhe ad-hoc
criteria C1-C3 give satisfactory results for both encode®nly the criterion C4, which is optimal
with respect to the stated problem formulation, always les a useful codé. However, latter
optimization is somewhat complicated and yields a diffetedepending on the type of encoder

Il, E,/No, R, andF'. Heuristically, we found that for the chosen family of subles, encoders Il
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yielding a largeT), (0) achieve the largestr for small FF =1, ..., 10 whenyur closely approaches
1. This situation is well-explained in Fig. 4, where the enmodith C = [100] outperforms that
one withC = [110] for 2.7 dB E,/N, and R, = 0.5. In fact, the encoder witlC = [100] yields
the largest; (0) among all 2-state encoders for 8-PSK. In contrast, if wenaidarge numbef’
of iterations to be performed and a largie the encoder withC = [110] outperforms all others in

achieving the highest possible ratefor convergence at thdt, /Ny.

VI. RESULTS

We derived design rules for two criteria: to approach thencleh capacity as close as possible
or to achieve a maximal gain im- (or a low BER) at the output of decoder | aftEriterations.
Addressing the first criterion, we searched among all ratz-dtate encoders Il for QPSK, 8PSK,
16QAM, 32QAM, and 64QAM using a Gray mapping Yyielding the 8est F,/N, for which
convergence is possible with the irregular codes from SecTNis E},/N,, denotedFE}, /Ny |, iS
referred to ashreshold[11, 24, 30, 31]. The signal constellations and mappingslefieed in Figs.

2 and 5. Table I shows optimized codeand encoders Il for several throughpifts- R-Q) = R,-Q

in bits per channel use. Also shown is the SWE/ Ng |, for which Cy = T when 64QAM
modulation is used. Fig. 6 shows that with a single family dicdes we can closely approach
Cu over a wide range of throughputs just by selecting the wsighdand the signal constellation
appropriately. We stated in Sec. V that decoders Il yiel@ditargeT;, (0) improve the convergence
speed, i.e., they help to maximize for small F'. We found that among all rate-1, 2-state encoders
with D=1, those withA =1, B=[11...1], andC =[10...0] maximizeT; (0). Encoders with more
memory, i.e.M > 1, or a more generdD do not improveT;; (0) significantly.

We want to illustrate the results of this paper with an exampVe seek to transmit = 1.5 bit
per channel use over an AWGN channel using 8PSK. Table | stmtst least.0 dB E;, /N is
required to transmit theske5 bit reliably. An irregular ratet/2 code constructed with the weights
a=(0,0,0,0.05,0.24, 0, 0.15, 0, 0.26, 0, 0, 0.11, 0.05, AP®, 0.07) and an encoder Il with

A =1, B =[111], C = [110], andD = I; optimizes decoding convergence. The convergence
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threshold isl.3 dB E},/N,. We also find that the raté/2 code constructed from = (0, O, 0, 0, O,
0,0010,0,0,0,0,0, 0, 0) and an encoder Il with=1, B=[111], C =[100], andD =13
optimizesyg, the mutual informatiord (A; C') at the output of decoder | aftéf=6 iterations.

Fig. 7 shows the BER performance of a concatenated system tihsse two parameter sets for
K €{250,2500, 25000} usingS-random interleavers with € {15, 25, 40}. The receiver performs
F €{10,20,40} iterations. Reference is a BICM system with a memory-lesoéer Il using the
Gray or the Anti-Gray mapping in Fig. 2. The codeoptimizing decoding convergence shows
indeed very early convergence startind atdB E, /N, for K =25000. However, the performance
improvement over the iterations declines for shoteand is actually worst among all systems
for K = 250. This is caused by the fractions of poorly protected bits itode wordc from C
due to high-rate subcod€s. We introduced the criterion C1, which attempts to avoidtins of
high-rate codes i@, for this reason. The second system using the code optigizirshows an
excellent performance for all” except that it converges at a slightly largey/ Ny. SinceT; (1)=1

holds for both example systems, they do not suffer from aor éiwor as the BiCM systems do.

VII. CONCLUSIONS

An iteratively decoded concatenated system achievingdiega@onvergence close to the chan-
nel capacity must use irregular codes to match the tranafestions of the two decoders in the
receiver. These irregular codes contain fractions of hie-codes to fit'} (1;,,) well to T, (I;,,)
yielding poorly protected information bits in the code wsmore prone to bit errors. The result
are significant error floors for small’. We conclude that there is a fundamental trade-off in early
convergence and poor finite-length performance of an iteslgtdecoded system. Analyzing the
above-mentioned floors is cumbersome for two reasons., Biosinds on the BER performance,
e.g., using the distance spectrum of the global code camgist both encoders and assuming
Maximum Likelihood (ML) decoding, are hard to obtain for thigen system structure (recursive
encoder II). Second, iterative decoding performs signifiigaworse than ML decoding for short

K, i.e., bounds on the ML decoding performance are not meéuling treatment of this issue
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is omitted here, also because of space limitation. The EX@rtcanalysis underlying the design
rules assumes a very lardgé and optimized codes performing well for largé unfortunately fail
for short K. We solved this dilemma by introducing an optimizationemin for which the made
assumptions approximately hold also for shiart the first F' iterations of iterative decoding.

We note that the derived design rules also apply for paretietatenated systems and for other
communication channels with possibly unknown and/or tiraesng parameters. For example, in
presence of ISI in the channel, decoder Il performs APP¢basdinear equalization [18]. Using
encoders Il with memory causes usually no complexity ovedhesing APP equalization [32,
33], but the extension of linear equalizers is more trouties. We emphasize that property (11)
holds, too. Thus, applying the design rules from this pagyer,uniform input capacity’y, of
channels such as ISI or Fading channels can be approache®b]3%\ drawback is the fact that
the transmitter must know, (1;,,) precisely, which depends on channel parameters such as the
SNR, the fading amplitude, or the impulse response. Whesetparameters are quickly time-
varying, using a largel’ averages over the possible channel states and decoderihitexn
ergodic transfer functionT), (7;,,) depending only on a few parameters such as the SNR, which
could be communicated to the transmitter via a feedback. pdtiwever, the faster the channel
is varying, the more difficult channel estimation becomeshia receiver. For slowly varying
parameters, a feedback path is even more important. Wittematback, the transmitter might
design a robust outer codg e.g., using criterion C4, which tolerates uncertaintie®i(/;,). We
conclude that the closer a concatenated system approapaescalar channel capacity, the more

precise the transmitter needs to know the channel parasneter

APPENDIX A

We wish to find the weight vectar,, = argmax,, 4 1tr (), whereA is the set of alb satisfying
aC=]1 R anday €0, 1] for all k. The first constraint in (13) is not considered, since theightn
be solutionsy maximizing» with T;(i) < T, * (i) for somei > yi;-. From (9) follows that

Our(@) _ [Opr Opr  Opr]’
O aozl 80@ aOzP '

V,uF:
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the gradient of.» with respect tax, is also given by a recurrence,

O
6’ak

Ofti-1 _
6’ak

P
= Tk(u’bfﬁ + ZajT]%Mifl)a I = 2a 37 X Fa
j=1

whereT}, (i) =T x(Tu (1)), T} (i) =dI} (i) /di, i € (0, 1), anddp /Oy, = T} (0) for all k. We can find

a local maximum of:r () for all a in the domaim;, € R using the steepest descent approach
aj—l—l :aj+SjVMF(C¥j>7 j:O7 1, ceey aj = [Otj)l...OZj_’pL (14)

whereq, € A is an initial guess. We obtaineg using (13) and the criterion C2. However, apply-
ing (14) may yield solutiona; outsideA. Projecting each intermediadg onto the convex setl
yields a local maximum ofi - () for a being in.A. This projection is carried out by projecting iter-
atively onto the set of alk satisfyingaC =[1 R|] and onto the set of adt satisfyingay, € [0, 1] for
all k. We are not able to show whether the obtained local maxim@qusl to the global maximum
aopt. IN fact, up(a) exhibits multiple local maxima. We assume that with the einag, € A, the
local maximum found with (14) is a satisfactory solution e tstated optimization problem. An
appropriate step sizg is (jir(opt)—ttr () / ||V ir(e;))||* [38], which requires the knowledge of
aopt- We used the upper boung-(aopt) <1 0N g (aopy), i€, 5, =(1—pur(a;)) /|| Ve (a;))|?, for
which we always achieved convergence. The devised algoiglsummarized in the following:

1. Toinitialize, sefyy = 0,1 =0, g1 = Tx(0), £ = 1,2, ..., P, and choosey, = [ag ;... p).

2. Compute gradient and updaie
P .
Hi = ijlalvak(ﬂi—l)a i=12,...F
P / .
Gik = Ti(pti-1) + gi1k - ijlaz,jTj(uiq), 1=2,3,..,F k=12 ..P,

a=a 1+ (1—pp)/ (Z

3. Projectn; onto A:

P

kil!]%,k) : [9F,1 gr2 - gF,P]a

o' = a,
Q= 0 WheﬂOé“C <0 andal,k = 1Whenal,k > 1, k= 1,2, ...,P,

a=a;— C(C'C)'CT(ay — ay).

October 23, 2002 DRAFT



19

4. Go to step (3) whilda’ — ay[» > e.

5. Set/ tol + 1. Go to step (2) whilé < [,,,.

To find the irregular codes in this paper, we chgsg = 1000 ande=10"2.
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Fig. 1. A serially concatenated system.
1 : : . .
—— decoder | (outer code)
— - decoder Il (inner code)
—e— system trajectory
08Ff
Gray Mapping
%ol A
S—O 6 _ V. _ _ _ _ _ _ -
2 _ -7
[}
~ — - I K=250
= 0.40=—" i
= .
8-PSK: Anti-Gray
0.2
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1
TI(Iin) and I(/\I;C)
Fig. 2. Transfer functions and system trajectory of a sgri@ncatenated system.
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Fig. 3. Transfer functions of 2-state decoders for 8-PSKatlB E;, /Ny.
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C=[100] C=[110]

largest rate R largest rate R

0 0.5 1 0 0.5 1
R=0.5, criterion (1) and (2) R=0.5, criterion (1) and (2)

0 0.5 1 0 0.5 1
R=0.5, criterion (3) R=0.5, criterion (3)

0 0.5 1 0 0.5 1
R=0.5, criterion (4) R=0.5, criterion (4)

0 0.5 1 0 0.5 1
TI(Iin) TI(Iin)

Fig. 4. Optimization of the outer code via the transfer fumref| (1;,,) of decoder | given the transfer functid (Z;

zn)

of two inner encoders Il wittA =1, B=[111], C€{[100],[110]}, andD =13 at2.7 dB E; /Nj.
Ti,,(7) of the subcodes —— Ti(7) of the outer decoder |
— — Ty(i) ofthe innerdecoder Il —o— system trajectory afte} iterations

64-QAM: Gray mapping )
4.6 22201618 2 O 32-QAM: Gray mapping

........ 16-QAM: Gray mappin
21 20,22 23 !
5,7, 233117193 1 D S 111010104 10001100
3739 555349 51 3533 SRR AR A
36 38 54 528 50 34 32 4 121 |0 16 17 01100010 09000100
L, 22549189

01110011 00010101
45 47 63 6157 59 43 41 e e e e

13 15 31 295 27 11 9

12 14 30 2824 26 10 8

11111011 10011101
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Fig. 5. Some higher-order signal alphab8&taith Gray mapping.
Decimal numbers denote a tupfg as follows:3 = (1, 1,0,0).
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Fig. 6. Achievable throughputs using irregular codes.

0 X: iteration number b 0

Fig. 7. BER performance of a serially concatenated systemifi@rent block lengths.
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—— optimized for early convergence— — optimized to maximizeus
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