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Nutrition, adult hippocampal neurogenesis
and mental health
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Introduction: Over the last 8 years, emerging studies bridging the gap between
nutrition and mental health have resolutely established that learning and
memory abilities as well as mood can be influenced by diet. However, the
mechanisms by which diet modulates mental health are still not well
understood.

Sources of data: In this article, a review of the literature was conducted using
PubMed to identify studies that provide functional implications of adult
hippocampal neurogenesis (AHN) and its modulation by diet.

Areas of agreement: One of the brain structures associated with learning and
memory as well as mood is the hippocampus. Importantly, the hippocampus is
one of the two structures in the adult brain where the formation of newborn
neurons, or neurogenesis, persists.

Areas of controversy: The exact roles of these newborn neurons in learning,
memory formation and mood regulation remain elusive.

Growing points: Nevertheless, there has been accumulating evidence linking
cognition and mood to neurogenesis occurring in the adult hippocampus.
Therefore, modulation of AHN by diet emerges as a possible mechanism by
which nutrition impacts on mental health.

Areas timely for developing research: This area of investigation is new and
needs attention because a better understanding of the neurological mechanisms
by which nutrition affect mental health may lead to novel dietary approaches
for disease prevention, healthier ageing and discovery of new therapeutic
targets for mental illnesses.
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Introduction

Recently, diet has emerged as important for mental health as it is for
cardiovascular health, cancer risks and longevity. Undeniably, learning
and memory abilities as well as mood can be influenced by diet, not
only during development, but also during adulthood (reviewed in
Gomez-Pinilla'). Indeed, a large number of epidemiological studies
have suggested a relationship between diet and mental illnesses where
inverse associations between diet quality and the common mental dis-
orders, depression and anxiety have been identified and reported in
adults.>~® Similarly, there is a large body of epidemiological evidence
linking diet to cognitive abilities, especially in the ageing population
(reviewed in Solfrizzi et al.,” Kanoski and Davidson® and Gu and
Scarmeas’). Although these studies emphasize an important role of diet
on mental health, further work is necessary to establish the mechan-
isms underlying these behavioural effects.

One of the brain structures associated with learning and memory as
well as mood is the hippocampus. Interestingly, the hippocampus is
one of the two structures in the adult brain where the formation of
newborn neurons, or neurogenesis, persists. Adult hippocampal neuro-
genesis (AHN) has been linked directly to cognition and mood
(reviewed in Zhao et al.'®); therefore, modulation of AHN by diet
could emerge as a possible mechanism by which nutrition impacts on
mental health. In this article, we give an overview of the functional
implications of AHN and we summarize recent findings regarding
AHN modulation by diet.

Adult hippocampal neurogenesis

Newborn neurons have been consistently found derived from two privi-
leged areas of the adult brain: the subgranular zone (SGZ) in the
dentate gyrus of the hippocampus'' and the subventricular zone (SVZ)
of the lateral ventricles'* (Fig. 1). Adult neurogenesis has been found in
all mammals studied to date, including humans.'® The process of adult
neurogenesis encompasses the proliferation of resident neural progeni-
tor cells and their subsequent differentiation, migration and functional
integration into the pre-existing circuitry. During AHN (Fig. 1), neural
progenitor cells proliferate in the SGZ and give rise to immature
neurons. Many die within 2 weeks, but the surviving neurons then
migrate into the molecular layer.'* The surviving neurons then send
axons to the CA3 region and the hilus to form functional synapses
with hilar interneurons and CA3 neurons within 3 weeks.'> Next,
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Fig. 1 Schematic illustration of the sagittal view of a rodent brain highlighting the two
neurogenic zones of the adult mammalian brain: the SVZ of the lateral ventricles and the
SGZ of the dentate gyrus (DG) in the hippocampus. Neurons generated in the SVZ migrate
through the rostral migratory stream (RMS) and are incorporated into the olfactory bulb.
The hippocampal region contained in the black square is enlarged showing in yellow (1)
neural progenitor cells in the SGZ of the dentate gyrus proliferating, (2) migrating into the
granule cell layer and (3) maturing into new granule neurons, integrating into the hippo-
campal circuitry by receiving inputs from the entorhinal cortex, and extend projections
into the CA3.

these new neurons start also to receive synaptic inputs from the cortex
and are capable of firing action potentials.'® Therefore, these newly
generated neurons become physiologically mature and functionally
integrated in the circuit.

The molecular control of AHN is very complex and remains to be
fully elucidated. Over the last 10 years, many signals have been impli-
cated in the regulation of AHN. They intervene at the stages of prolif-
eration, differentiation, survival, migration and integration. Growth
factors, cytokines, neurotransmitters and hormones are the types of ex-
trinsic factors that have been found to play a role in regulating AHN
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and have been reviewed by Mu ez al.'” Moreover, AHN is also subject
to intrinsic epigenetic regulation such as DNA methylation, histone
acetylation and non-coding RNAs. These intrinsic factors controlling
AHN have been recently reviewed by Sun et al.'®

Functionality of AHN

As described above, adult-born hippocampal neurons are functional
and integrated into the hippocampal circuitry. However, the incorpor-
ation of adult-born hippocampal neurons into current concepts of hip-
pocampal network function and behaviour is complex.

Learning and memory

The implication of AHN in learning and memory is supported by some
correlative and ablation studies (reviewed in Koehl et al.'®), as well as
by computational modelling (reviewed in Aimone et al.>°). AHN varies
among different genetic backgrounds in mice and a correlation
between the level of hippocampal neurogenesis and the performance in
hippocampal-dependent learning tasks is observed between mice of dif-
ferent strains.”"** Environment also has a major impact on AHN (this
will be discussed in detail later) and changes in neurogenesis induced
by the environment correlates with performance in hippocampal-
dependent learning tasks. These studies establish only a correlation;
therefore, it is possible that other factors such as structural plasticity,
neurotrophin or hormone levels also contribute to genetically and en-
vironmentally induced changes in hippocampus-dependent learning
and memory.

Newborn neurons represent only a small cell population within the
adult hippocampus. It is therefore difficult to imagine how such a
small number of cells can influence the function of the hippocampus.
In order to investigate whether hippocampal neurogenesis is required
for hippocampus-dependent learning tasks, a variety of approaches
have been taken to reduce or even ablate completely dividing cells in
the hippocampus. Blockade of neurogenesis has been achieved with
pharmacological, radiological and genetic strategies (reviewed in Koehl
et al.'®). Despite mixed results, behavioural evaluation of rodents with
reduced AHN has consistently suggested an involvement of hippocam-
pal adult-born neurons in learning and memory (reviewed in Deng
et al.”?). Nevertheless, the exact function of hippocampal adult-born
neurons in learning and memory process remains elusive and many
hypotheses have been proposed: (i) data have already suggested that
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Mood regulation

hippocampal neurogenesis is involved in pattern separation as it has
been shown that new hippocampal neurons are required for discrimin-
ation of proximal spatial locations®* and similar contexts,” where
pattern separation can be modulated by pattern integration.?® (ii) The
constant turn-over of immature hippocampal neurons suggest that
adult-born hippocampal neurons could have a role in temporal associ-
ation and separation during learning and memory (reviewed in Deng
et al.*®), but experimental evidence is needed to support that hypoth-
esis. (iii) Moreover, adult-born hippocampal neurons show enhanced
plasticity at 4—6 weeks of age,”” which make them well suited to
encoding new information, as predicted by computational studies
(reviewed in Aimone et al.>%). Importantly, it remains unclear whether
AHN is involved in the encoding, the consolidation or the recall of
memory. Therefore, developing techniques to study the physiology of
AHN in awaken behaving animals will be crucial to answer this ques-
tion. Moreover, the recent non-invasive imaging techniques developed
for monitoring AHN in humans®®*® need to be refined and reproduced
to allow the function of AHN to be investigated in humans.

Recently, it has been proposed that AHN might play a role in mood
regulation and in the aetiology of major depression.’**! This idea
arises from two lines of evidence. The first is that AHN is reduced by
stressful experiences, a causal factor in the pathogenesis of major de-
pression. Moreover, AHN is reduced in animal models of depression.>*
The second line of evidence indicates that many treatments for depres-
sion have been shown to enhance neurogenesis in laboratory animals;
these factors include electroconvulsive therapy®® and common anti-
depressant drugs, such as selective serotonin reuptake inhibitors
(SSRIs).>* It was also shown that antidepressants increase AHN in the
human dentate gyrus.’> Notably, other environmental interventions
conferring antidepressant-like behaviour such as running, exercise and
environmental enrichment also increase AHN (as discussed in detail
later). It is also important to note that the effects of SSRIs on neuro-
genesis are selective for the hippocampus, leaving the ongoing stem-cell
proliferation in the SVZ unchanged,’® suggesting a specificity of the
antidepressants to regulate adult neurogenesis in the hippocampus.
Finally, in several animal models of depression, disruption of neurogen-
esis blocks the behavioural efficacy of some antidepressants (reviewed
in Samuels and Hen>”).

One of the mechanisms thought to mediate the reduction in AHN by
stress is the elevation of corticosterone by an activated hypothalamic—
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pituitary—adrenal (HPA) axis. Indeed, corticosterone decreases cell pro-
liferation, whereas adrenalectomy increases AHN. Moreover, gluco-
corticoid levels are increased in a variety of stress paradigms,
adrenalectomy prevents the stress-induced suppression of AHN
(reviewed in Mirescu and Gould®®) and mice with ablation of AHN
showed and increased HPA axis response to an acute stress.>” Finally,
we have recently shown that antidepressants increase human hippo-
campal neurogenesis by activating the glucocorticoid receptor.*”
Because stimulation of the dentate gyrus can yield an inhibitory effect
on the HPA axis,*! it is possible that adult newborn neurons contribute
to hippocampal-dependent negative feedback of the HPA axis.

While there is requirement for AHN in mediating some of the effect
of antidepressants, decreasing AHN alone is not sufficient to drive a
depression-like phenotype (reviewed in Samuels and Hen®”) and
whether specific manipulations that increase AHN alone results in a
non-depressed phenotype remains to be tested. Therefore, the current
AHN hypothesis of depression can only be retained as at least partially
true. It will be critical for future work to determine how the addition
of new neurons to the dentate gyrus is involved in mediating the effect
of antidepressant.

AHN in CNS pathologies

AHN responds to neurodegenerative diseases such as Alzheimer’s,
Parkinson’s and Huntington’s diseases. Conflicting observations have
been reported on the level of AHN in Alzheimer’s disease various
mouse models and human studies. Data can be found for both
increased and decreased AHN depending on the model and stage of
the disease studied (reviewed in Mu and Gage*?). Mouse models of
Parkinson’s disease over-expressing the wild-type human a-synuclein
show a decrease in the survival rate of newborn hippocampal neurons
(reviewed in Thompson et al.**), and studies have reported a decrease
in AHN in rodent models of Huntington’s disease (reviewed in Winner
et al.**). AHN is also influenced by many other pathological conditions
and is increased, for example, in epilepsy* and stroke.*® Whereas it is
decreased in HIV infection*” and the integration of newborn neurons is
disrupted by CNS inflammation.*® It is apparent that AHN is influ-
enced by neurological diseases or/and that disruption of AHN might
contribute to their progression. However, further studies are needed to
understand the roles and consequences of AHN changes in pathologic-
al events. Realistically, taking into account the low number of newly
generated adult-born neuron in the dentate gyrus compared with the
large number of dying neurons in such CNS pathology in different
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brain regions, it is unlikely that these newly generated neurons in the
dentate gyrus will be able to achieve total repair. However, given the
crucial role of AHN in mood as well as in learning and memory, it is
possible that stimulating AHN might have some therapeutic effects.

Environmental modulation of AHN

The environment and diverse physiological conditions can significantly
alter AHN (Fig. 2). Ageing is associated with a decreased AHN, and
aged rodents display impaired learning and memory abilities (reviewed
in Klempin and Kempermann®®), and it has been recently suggested
that decline in AHN and cognitive impairments observed during ageing
in mice are in part attributed to changes in blood-borne factors.’”
Stress is also a major negative modulator of AHN, which can induce
depressive behaviour (reviewed in Mirescu and Gould®®). Accordingly,
social isolation is a stressful experience in rodents and has been shown
to negatively regulate AHN and learning abilities.’'

Likewise, sleep has recently appeared as another important modula-
tor of AHN. Prolonged restriction or disruption of sleep leads to a

" Diet

Learning and
Memory abilities

Mood —l

Fig. 2 Overview of physiological and environmental modulation of AHN and its impact on
learning and memory abilities and mood. The grey dots represent newborn neurons in the
dentate gyrus of the hippocampus.
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major decrease in AHN (reviewed in Meerlo et al.’?). Stress and gluco-
corticoids have initially been proposed to be the mediators of the
harmful effects of sleep disruption and deprivation. However, a
number of studies clearly show that prolonged sleep loss can inhibit
AHN independently of adrenal stress hormones (reviewed in Meerlo
et al.>?), circadian disruption or melatonin suppression.”® Interestingly,
sleep deprivation (SD) also disturbs memory formation (reviewed in
Stickgold®*) and this could suggest that promoting AHN may be a
mechanism by which sleep supports learning and memory processes.
Conversely, while prolonged disruption of sleep decrease AHN, short-
term or acute 1-night (12 h) SD up-regulates AHN by significantly in-
creasing cell proliferation and the total number of surviving cells.’”
Interestingly, one night SD has been clinically proven to produce transi-
ent antidepressogenic effect and has been used in the treatment of
patients with primary depression and bipolar disorders (reviewed in
Wu and Bunney’®). However, a recent report concluded that this short-
term (12 h) SD only transiently increases hippocampal progenitor cells
proliferation by altering the cell cycle and that the negative effect of SD
on AHN begins shortly after more than 12 h of SD.”” In addition, sus-
tained sleep fragmentation has also been found to reduce AHN and
caused delayed changes in cognitive function in rats.”®

Equally, pregnancy®” and maternal experiences®® in rodent also have
a negative impact on AHN. These are associated with a decline in per-
formance in hippocampus-dependent tasks during pregnancy.
Interestingly, the reduced AHN may be an outcome of
pregnancy-induced changes in the immune response rather than of hor-
monal changes.”” Whereas during the postpartum period, the decrease
in AHN is dependent on elevated basal glucocorticoid levels;®? it is
therefore attractive to postulate that decreased AHN during the post-
partum period could be a link to postpartum depression experienced
by some women.

On the contrary, voluntary running and enriched environment are
associated with enhanced AHN and spatial learning abilities. Running
increases the proliferation,®’ whereas enriched environment increase
the survival rate of newborn neurons.®*®® Both enriched environment
and running lead to increased synaptic formation and up-regulation of
neurotrophins; however, they most likely act via dissociable pathways.
Olson et al.®* suggest that exercise leads to the convergence of key
somatic and cerebral factors in the dentate gyrus to induce cell prolifer-
ation, whereas enriched environment-induced cell survival by cortical
restructuring as a means of promoting survival. The regulation of
AHN by neural activity suggests that learning might also induce the ac-
tivation of newborn neurons and enhance their survival and incorpor-
ation into circuits. Indeed, AHN is increased upon learning, but only
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by ler;lgning tasks that depend on the hippocampus (reviewed in Leuner
et al.>).

Conveniently, the detrimental effect of many negative regulators of
AHN can be offset by running or enriched environment in rodents, in-
cluding ageing,”' stress/depression (reviewed in Brene et al.°®) and
pregnancy.”” However, the molecular mechanisms by which physio-
logical and environmental changes modulate AHN are currently poorly
understood.

Dietary modulation of AHN

Diet is another important environmental factor that significantly mod-
ulates AHN. Nutrition can impact on AHN at four different levels:
calorie intake, meal frequency, meal texture and meal content (Fig. 3).
Not only do these four parameters modulate AHN in rodents (reviewed
in Table 1), but independent rodent studies and intervention or epi-
demiological studies in humans have shown that these same dietary
parameters modulate cognitive performance and mood (reviewed in

Table 2).

Calorie intake, meal frequency and texture

Calorie restriction (CR) has been suggested to extend lifespan, improve
behavioural outcomes in some experimental animal models of neurode-
generative disorders and enhance spatial learning (reviewed in
Mattson®’). It has been shown in rodents that a reduction in calorie
intake of 30-40% increases AHN.®® Further rodent studies have postu-
lated that, as a type of metabolic stress, CR creates favourable environ-
ment for facilitating neuronal plasticity, enhancing cognitive function,
stimulating AHN and regulating inflammatory response (reviewed in

Fig. 3 Overview of the four different levels at which diet impacts on AHN. The grey dots
represent newborn neurons in the dentate gyrus of the hippocampus.
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Table 1 Modulation of AHN by diet

Diet

Effect on AHN

Study models

References

Calorie restriction Increased survival Mouse 68-70,125-127
Omega 3 fatty acids Increased Rat 77,87,128-130
Flavonoids Increased proliferation Rat chronically 88
stressed

Increased proliferation Mice 131,132
Blueberry Increased proliferation Rat 133
Curcumin low concentrations Increased proliferation Mouse 91,93-95
Retinoic acid excess Decreased proliferation Mouse 106
Vitamin A deficiency Decreased proliferation Rat 108

(rescued with RA)
Thiamine deficiency Decreased proliferation/survival Mouse 134,135
Zinc deficiency Decreased proliferation/survival ~ Rat male 100,103,136
Folic acid Increased proliferation Rat 137
Folate deficiency Inhibited proliferation Mouse 138
Increased homocystein Inhibited proliferation Mouse 139,140
High fat Decreased proliferation Rat male 115,116

No change Rat female
Soft diet Decreased proliferation Rat 73,76
Caffeine at physiologically Decreased proliferation Mouse 114
relevant doses
Caffeine at supraphysiological Increased proliferation/ Mouse 113
doses decreased survival
Caffeine low doses chronically Decreased proliferation Rat
Ethanol Decreased proliferation Rat 141,142

Decreased proliferation Mouse 143
Capsaicin Decreased proliferation Mice 144
Resveratrol Increased proliferation Mice 97,98
High sugar (fructose) Decreased proliferation Male rat 117
Vitamin E deficiency Increased proliferation Rat 145-147
Vitamin E high doses Increased survival Rat 148

Park and Lee®’). These distinct effects of CR on the brain were attribu-
ted to CR-induced expressions of factors such as heat shock protein,
neurotrophic factors, cytokines and Sirtuin1 (SIRT1) (reviewed in Qiu
et al.’®). Interestingly, neurothrophic factors such as brain-derived
neurotrophic factor (BDNF) through its signalling pathway involving
TrkB has been implicated in the control of cell proliferation and sur-
vival. Other neurotrophic factor such as neurotrophin-3 (NT-3) and
cytokines such as interferon-y have also been suggested to up-regulate
neurogenesis upon CR by promoting neuronal differentiation (reviewed
in Park and Lee®”). Noticeably, an interventional trial on memory per-
formance in healthy human elderly subjects has demonstrated the bene-
ficial effects of caloric restriction at 30% for 3 months, although the
serum level of BDNF remained unchanged.”!
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Table 2 Modulation of learning and memory and depressive behaviour by diet

Diet Effect on depressive Effect on learning and memory Study models References
behaviour
Caloric/dietary restriction Enhanced spatial learning Rat (aged) 149
intermittent fasting Increased learning and motor performance Mouse 150
Increased learning consolidation Mouse 151
Enhanced verbal memory Human (healthy elderly) 71
Improved spatial learning Rat (traumatic brain injury) 152
Improved Mice (depression model) 153
Omega 3 fatty acids Improved Human (bipolar) 85,86
Delayed onset Human (bipolar) 154
Improved Human (bipolar) 155
No benefit Human (bipolar) 156
Improved spatial memory Mouse (Alzheimer’s model) 157
Improved acquisition and retention Mouse (aged) 158
Improved learning performance Rat (diabetic) 159
Improved mood state No effect Human (recovered from 160
depression)
Flavonoids Improved Rat 89
Improved Various Species For
review161,162
Improved Rodent Species For review %2~
164
Improved Rat 165-169
Blueberry Increased spatial memory Rat 90
Improved Human (old age) 170
Improved Mice 171
Curcurmin Improved cognitive performance Human 92
Improved cognitive performance Rat 94,172
Improve spatial memory and learning Rat 173,174
Improved Mice 175,176
Improved Rat (Alzheimer’s disease) 177
Improved Rat 96,178-180
Improved Mice 181
Retinoic acid excess Improved Mouse 107
Vitamin A/retinoid deficiency Impaired spatial learning and memory Rat 182
Impaired relational memory Mouse 183
Zinc Improved Rodent, human For review'%?
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Table 2 Continued

Diet Effect on depressive Effect on learning and memory Study models References
behaviour
High fat Decreased spatial learning Rat 118
Decreased learning and memory and Increased risk Rat 184
for dementia
Impair spatial learning Mice 185
Exacerbates Rat (depression model) 186
Increased susceptibility to spatial learning deficit Rat 187,188
Impaired memory Rat 189
High sugar Impaired spatial learning Rat 190
Impaired spatial learning Rat 191
Impaired Rat 192
Low glucose (extracellular) Impaired memory Rat (aged) 193
Soft diet Impaired Rat (Alzheimer’s model) 74
Impaired learning and memory Aged animals For review'®*
Impaired spatial learning and memory Mice (female albino) 195
Caffeine Improved object recognition Mouse 196
Reduced risk Human 197
Reduced risk Human 198
Improved cognitive function Rat 199
Ethanol Improved associative learning with moderate Mouse 200
chronic consumption
Impaired Human 201
Induced depressive Rat 202
behaviour
Capsaicin No effect Mice (young) 144
Resveratrol Improved Mice (despair test) 99
Improved cognitive function Mice 98
Vitamin E deficiency Associated risk Human (depression) 203
Associated risk Human (depression) 204
No association Human (aged adult with 205
depression)
Vitamin E Protective effect Rat (brain injury) 206
Delayed memory loss Mouse 99
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More recently, we have found that independently of calorie intake,
meal frequency is a key player in modulating AHN. Indeed, without
modifying significantly calorie intake, extending time between meals
increases AHN in mice. It also changes extensively the level of expres-
sion of specific genes expressed in the hippocampus and correlates with
performance in hippocampus-dependent tasks and mood.”* However,
further studies are ongoing to understand the mechanisms by which
meal frequency modulates AHN and mental health.

Intriguingly, food texture also has an effect on AHN; rats fed with a
soft diet, as opposed to a solid/hard diet, exhibit decreased prolifer-
ation of hippocampal progenitor cells. The authors hypothesize that
chewing resulting in cell proliferation is related to corticosterone
levels.”? Interestingly, independent studies have shown impairment in
learning and memory abilities in rodent consuming similar soft
diets.”*”> Another study in mice indicated that insufficient mastication
activity during development as well as ageing restrains AHN in adult-
hood.”® Indeed, if chewing plays a role in modulating AHN, these data
could be particularly relevant to the ageing population with cognitive
decline where dental weakening might limit chewing ability.

Omega-3 polyunsaturated fatty acids

Meal content offers the most flexibility to regulate AHN as a variety of
bioactives/nutrients have been identified as potential modulators. For
example, the Omega-3 polyunsaturated fatty acids (PUFA) docosahex-
aenoic acid (DHA) and eicosapentaenoic acid (EPA), mostly available
from oily fish, have long been associated with significant neuroprotec-
tive effects in ageing.”’~’” Indeed, a diet rich in Omega-3 fatty acids is
associated with a prevention of cognitive decline,®” whereas low intake
of Omega-3 fatty acids is associated with several forms of cognitive
decline in the elderly.®! Moreover, rodents deficient for Omega-3 fatty
acids have shown impaired performance in spatial memory tasks that
could be rescued after dietary replenishment with Omega-3 fatty
acids.®? Su suggested that AHN is one of the mediators of the effects of
DHA on learning and memory. Indeed, DHA treated aged-rat had
enhanced long-term potentiation and synaptic protein expression as
well as increased dendritic spine density and neurogenesis in the hippo-
campus.®® Interestingly, the omega-3 fatty acids EPA and DHA are
known endogenous ligands of retinoid X receptors (RXRs). RXRs are
transcription factors involved in many cellular processes, such as prolif-
eration and neuronal differentiation. Therefore, retinoid signalling
might mediate the effects of DHA on AHN.””
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Polyphenols

Furthermore, it has been reported that Omega-3 fatty acid concentra-
tions are lower in patients with depression,®* and Omega-3 fatty acid
supplementation has even emerged as a potential treatment for depres-
sion.®>%¢ In rodents, a mix of PUFA diet normalizes AHN and amelio-
rates anxiety-related symptoms.®” However, further studies are needed
to confirm that the effects of Omega-3 fatty acids on mood are
mediated by AHN.

Another well-studied family of nutrients are polyphenols. Among them
are flavonoids, which are enriched in foods such as cocoa and blue-
berries. Flavonoids have been shown to increase AHN in chronically
stressed rats, and the authors hypothesized that this is mediated by
BDNFE.*® Moreover, independent studies have shown that treatment
with flavonoids improves symptoms of depression®” and improves
spatial working memory in ageing rats via the activation of transcrip-
tion factor CREB and production of BDNF in the hippocampus.”®

Other dietary polyphenols such as curcumin and resveratrol have also
been found to regulate AHN. Curcumin, which is a natural non-
flavonoid phenolic component of the turmeric plant (Curcuma longa),
has been widely used as spice and cooking ingredient such in yellow
curry as well as a food preservative. Recently, curcumin has been asso-
ciated with increased AHN in rodents’’ and epidemiological studies
have reported better cognitive performance from curry consumption in
ageing populations.”> Moreover, in vitro studies have shown that cur-
cumin exerted biphasic effects on progenitor cells; high concentrations
were cytotoxic, whereas low concentrations stimulated cell prolifer-
ation. Curcumin also activates extracellular signal-regulated kinases
(ERKs) and p38 kinases, cellular signal transduction pathways known
to be involved in the regulation of neuronal plasticity and stress
responses.”’ More recently, the effects of curcumin on AHN and cogni-
tion were attributed to up-regulation of a transcriptional network regu-
lating neuronal progenitor cells proliferation and survival as well as
neuronal differentiation.”> Curcumin has also been shown to reverse
impaired AHN, cognition, memory deficits and neuronal plasticity
induced by chronic stress in rats. These effects were as potent as the
antidepressant imipramine and could be partly mediated by normaliz-
ing the corticosterone response, resulting in down-regulation of the
pCamKII and glutamate receptor levels.”*” It is also interesting to
note that in a chronic unpredictable mild stress study on rats, curcumin
also exert antidepressant-like effect on serotonergic receptor-coupled
AC-cAMP pathway.”®
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Resveratrol, another non-flavonoid polyphenols found abundance in
red wine, nut and berries, has been reported to improve hippocampal
atrophy in chronic fatigue mice model by enhancing AHN, improving
BDNF-mRNA expression in the hippocampus and inhibiting neuronal
as well as expression of hippocampal acetylated p53.”” It is also sug-
gested that resveratrol improves cognitive function in mice by increas-
ing hippocampal insulin-like growth factor-1 (IGF-1) via sensory
neuron stimulation in the gastrointestinal tract.”® Another rodent study
reported that resveratrol significantly increase serotonin and noradren-
aline levels and dose-dependently inhibited monoamine oxidase A ac-
tivity indicating an antidepressant-like effect involving serotonergic and
noradrenergic activation.””

Minerals and vitamins

Minerals also play an important role in modulating AHN. For
example, dietary zinc deficiency has been shown to inhibit AHN'%
and to induce depression in rodents,'®" whereas independent interven-
tion studies have shown efficacy of zinc supplement to improve symp-
toms of depression (for review, see Szewczyk et al.'®?). Corniola
et al.'® hypothesized that zinc plays a role in AHN by regulating
p53-dependent molecular mechanisms that control neuronal precursor
cell proliferation and survival. Meanwhile, it has been reported that
the apoptosis proteins, including Fas, Fas ligand (FasL),
apoptosis-inducing factor and caspase-3 were significantly activated in
zinc-deficient mouse hippocampus.'®® It is therefore suggested that
chronic zinc-deficient diet impaired AHN by reducing neural precursor
cell proliferation and differentiation as well as increasing neuronal
apoptosis (reviewed in Levenson and Morris'**). In addition, ERK1/2
has also been implicated to the disruptions in neurodevelopment asso-
ciated with zinc deficiency. Indeed, ERK1/2 deficits in mice lead to im-
pairment in neurogenesis and performance of learning and memory via
perturbation of neural progenitor cell proliferation and cell death regu-
lation (reviewed in Nuttall and Oteiza'®®).

Unbalanced vitamins intake can have a detrimental effect on AHN
and mental health. For instance, retinoic acid (RA), the active form of
the nutrient vitamin A, causes negative effects in excess but also by its
absence: excess in RA will diminish AHN, lead to depressive behaviour
and impaired spatial learning in rodents.'®'%” Similarly, a deficiency
in RA will lead to similar negative effects on AHN and mental health,
but importantly these effects can be reversed by re-establishing a
normal level of RA.'%® RA effect on AHN are mediated via specific RA
receptors (RARs) and RXR which are strongly expressed in the adult
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hippocampus.'®” RA has also been found to induce the differentiation
of embryonic stem cells into neuronal lineages in wvitro.''®''! In
another study using adult mice, Jacobs et al. reported that the depletion
of RA leads to a significant decrease in neuronal differentiation within
the granular cell layer of the dentate gyrus and reduced cell survival.
Metabolic targets of retinoid-induced genes have been identified and it
has been suggested that lipid transporters, CD-36 and ABCA-1, the
lipogenic master regulator SREBP1c as well as components of the Wnt
signalling pathway may play a role in down-regulating AHN.''?
Further studies are needed to differentiate the molecular mechanisms
leading to the dose-response of RA on AHN.

Caffeine, fat and sugar intake

Caffeine consumed at low doses chronically decreases AHN and per-
formance in hippocampus-dependent learning tasks in rodents.''?
Whereas at supra-physiological doses, there is an increase in prolifer-
ation of neuronal precursors. However, neurons induced in response to
supra-physiological levels of caffeine have a lower survival rate than
control cells and increased proliferation does not yield an increase in
AHN.'

Diets with high-fat content, independent of calorie intake, impair
AHN in male rats. The authors hypothesize that high dietary fat intake
disrupt AHN through an increase in serum corticosterone levels, and
that males would be more vulnerable than females.''” In addition,
another study reported that high-fat diet adversely affected neural pro-
genitor cells proliferation and AHN by increasing the level of malon-
dialdehyde (MDA) and decreasing BDNF level in the hippocampus.
High level of MDA indicated a higher lipid peroxidation rate, thus
resulted in toxic effect on progenitor cells reducing their prolifer-
ation.''® In accordance with high-fat diet, high sugar diet has also been
reported to reduce AHN in rats. A reduction in AHN was accompanied
by increased apoptosis and increased circulating level of tumour necro-
sis factor-a (TNF-a); hence, it was suggested that impairment of AHN
was mediated by TNF-a-induced apoptosis.'’” Rat fed on a diet high
in saturated fats and refined sugar performed significantly worse on
spatial learning and has been associated with high oxidative stress and
decreased BDNF levels.''®

All together, corticosterone and BDNF levels as well as ERKs activa-
tion emerge as common denominators of dietary modulated AHN;
however, there are likely to be additional mediators. For example,
further studies will need to be done to investigate if diet modulates
AHN by modifying its environment. Indeed, the microenvironments of
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the SGZ and SVZ, known as the neurogenic niche, provide specific
factors that are permissive for the differentiation and integration of
new neurons (reviewed in Zhao et al.'®). The vasculature''” and astro-
cytes'?” are important constituents of the neurogenic niche and inter-
estingly flavanol-rich foods can positively enhance cortical blood
flow'21:122 and are regulators of astrocytic signalling pathways and
gene expression.'?? Such changes in the neurogenic niche in response
to flavanols might underpin cognitive improvements through the pro-
motion of AHN. Future studies will not only have to refine the molecu-
lar and cellular mechanisms by which food intake influences AHN, but
also consider the role of epigenetic mechanisms. Undeniably, there is
evidence that epigenetic mechanisms underlie both changes in AHN*
and in gene expression in response to diet.'** Forthcoming research
will require investigating whether diet can modulate AHN through epi-
genetic changes, such as DNA methylation, histone acetylation and
non-coding RNAs.

Conclusion and perspectives

It is now firmly established that nutrition has an impact on mental
health. It is also becoming more evident that AHN affects cognition
and mood. Therefore, AHN is rising as a likely mediator of the effect
of diet on cognition and mood. However, further studies are required
to confirm that AHN does mediate the effect of certain diet on mental
health, and additional investigations are essential to understand the
mechanisms by which diet modulate AHN. Thereafter, modulating
AHN by diet could be a strategy of choice to prevent cognitive decline
during ageing as well as to counteract the effect of stress and prevent
depression.
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