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a b s t r a c t

Dielectric elastomers are capable of large voltage-induced deformation, but achieving

such large deformation in practice has been a major challenge due to electromechanical

instability and electric breakdown. The complex nonlinear behavior suggests an

important opportunity: electromechanical instability can be harnessed to achieve giant

voltage-induced deformation. We introduce the following principle of operation: place

a dielectric elastomer near the verge of snap-through instability, trigger the instability

with voltage, and bend the snap-through path to avert electric breakdown. We

demonstrate this principle of operation with a commonly used experimental setup—a

dielectric membrane mounted on a chamber of air. The behavior of the membrane can

be changed dramatically by varying parameters such as the initial pressure in the

chamber, the volume of the chamber, and the prestretch of the membrane. We use a

computational model to analyze inhomogeneous deformation and map out bifurcation

diagrams to guide the experiment. With suitable values of the parameters, we obtain

giant voltage-induced expansion of area by 1692%, far beyond the largest value reported

in the literature.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Dielectric elastomers are being developed as artificial muscles for diverse applications, including soft machines,
adaptive optics, haptic surfaces, and energy harvesting (Brochu and Pei, 2010; Carpi et al., 2010; Kornbluh et al., 2012).
Desirable attributes include large voltage-induced deformation, high energy density, fast response, quiet operation, light
weight, and low cost. In such an artificial muscle, a membrane of a dielectric elastomer is sandwiched between two
compliant electrodes typically made of carbon grease (Fig. 1). When the electrodes are subject to a voltage, electrons flow
through the external circuit from one electrode to the other. Charges of opposite signs on the two electrodes attract each
other, so that the membrane reduces its thickness and expands its area. The dielectric elastomer enables electromecha-
nical transduction: the voltage can deform the membrane, and the deformation changes the capacitance of the membrane.

Large voltage-induced deformation gives dielectric elastomers a competitive edge over other active materials. Reported
voltage-induced strains have increased from a linear strain of 4% with polyurethane (Ma et al., 1994), to about 30% with
ll rights reserved.



Fig. 1. A membrane of a dielectric elastomer is sandwiched between two compliant electrodes. (a) In the reference state, the membrane is subject to neither

force nor voltage, and is undeformed. (b) In the activated state, the membrane is subjected to biaxial forces, and the two electrodes are subject to voltage.
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silicone (Pelrine et al., 1998), and to over 100% with a prestretched acrylic elastomer (Pelrine et al., 2000). Reliably
inducing large deformation by voltage, however, has remained a major challenge in practice. Deformable elastomers are
susceptible to electromechanical instability (Stark and Garton, 1955). As the voltage is ramped up, the membrane thins
down and the electric field amplifies, often leading to pull-in instability, followed by electric breakdown (Zhao and Suo,
2007; Norris, 2008). On the other hand, when charges are sprayed on a dielectric membrane with no electrodes,
electromechanical instability is removed and extremely large deformation is achievable (Keplinger et al., 2010; Li et al.,
2011). The lack of electrodes in this setup, however, limits its scope of application.

Electromechanical instability is affected by both material models and boundary conditions (e.g., Zhao et al., 2007;
Diaz-Calleja et al., 2008; Leng et al., 2009; De Tommasi et al., 2010; Xu et al., 2010; Bertoldi and Gei, 2011; Rudykh, et al.,
2012; Yong et al., 2012). Consequently, achievable voltage-induced deformation is not an intrinsic property of a material,
but is a property of a structure that can be markedly affected by boundary conditions. For example, voltage-induced
deformation is enhanced when a membrane is prestretched and constrained by a rigid ring (Pelrine et al., 2000; Wissler
and Mazza, 2005a), and is further enhanced when the membrane is subject to equal-biaxial dead load (Koh et al., 2011b;
Huang et al., 2012). By contrast, voltage-induced deformation is reduced when the membrane is subject to uniaxial dead
load (Huang and Suo, 2012; Lu et al., 2012). Furthermore, Kollosche et al. (2012) show that a relatively simple setup—a
membrane prestretched with two rigid clamps and a dead load—displays remarkably complex interplay of nonlinear
processes, including local instability, wrinkling, and snap-through instability. The setup gives drastically different values of
voltage-induced deformation, depending on the state of prestretches.

The complex nonlinear behavior suggests an important opportunity: electromechanical instability may be harnessed to
achieve giant voltage-induced deformation (Mockensturm and Goulbourne, 2006; Goulbourne et al., 2007; Zhao and Suo,
2010). Rather than causing failure, the instability can be a feature. As an example, we have recently introduced the following
principle of operation: place a dielectric elastomer in a state near the verge of snap-through instability, trigger the instability
with a voltage, and bend the snap-through path to avert electric breakdown (Keplinger et al., 2012). We have demonstrated
the principle of operation with a dielectric membrane mounted on a chamber (Fig. 2)—a setup commonly used to study
electromechanical coupling of dielectric elastomers (e.g., Fox and Goulbourne, 2008; Rosset et al., 2009). When air is pumped
into the chamber through a valve, the membrane is inflated into a balloon. The valve is subsequently closed to fix the amount
of air enclosed by the chamber and balloon. When voltage is applied between the two carbon-grease electrodes, the balloon
expands further. With an acrylic elastomer (3M

TM

VHB
TM

4910), we have demonstrated voltage-induced expansion of area by
1692%, well beyond the largest value of 380% reported before (Pelrine et al., 2000).

While our previous paper (Keplinger et al., 2012) has described the principle of operation and the experimental
demonstration, the present paper reports theoretical analysis and further experimental observations. We use a
computational model that combines the nonlinear electromechanical coupling of the material and the kinematics of
large deformation of the membrane. In numerical simulation, care is taken to capture inhomogeneous and large
deformation, as well as highly nonlinear behavior of the snap-through instability. We calculate bifurcation diagrams to
map out multiple branches of solutions as the parameters of the setup vary. For example, we show that the behavior of the
membrane is dramatically affected by varying the volume of the chamber. When the chamber is too small, the pressure
drops steeply as the membrane is actuated by the voltage, and the achievable voltage-induced deformation is small. When
the chamber is too large, the pressure is nearly constant as the membrane is actuated by the voltage, and the membrane
snaps into an excessively large balloon, failed by electric breakdown before it reaches a stable state. When the chamber is
of an intermediate size, the pressure drops somewhat as the membrane is actuated by the voltage, and the membrane
snaps to a stable state of a large volume, averting electric breakdown. We compare these theoretical predictions with
experimental observations. We further present experimental observations of voltage-induced local instability and clefts.

The VHB dielectric elastomer used in our experiments has been widely employed due to its large stretchability and high
electric breakdown strength. The material, however, exhibits pronounced viscoelasticity (Lochmatter et al., 2007; Plante
and Dubowsky, 2007). While a nonlinear viscoelastic model for dielectric elastomers has been proposed (Hong, 2011; Zhao
et al., 2011; Foo et al., 2012), the model has not been reliably calibrated for the VHB. Here we will adopt a nonlinear elastic
model. The object is to use numerical simulations to guide the experiment, rather than to achieve an exact match with the
experiment. To reduce the effect of viscoelasticity in the experiment, we will use low voltage ramping rates. While such
low ramping rates will not be interesting for the majority of projected applications, the combined model and experiment
shed light on large voltage-induced deformation. It is also anticipated that less viscoelastic materials, such as natural
rubber and PDMS, will be developed to function as dielectric elastomers.



Fig. 2. Experimental setup. (a) A dielectric membrane of 3M
TM

VHB
TM

4910, initial thickness 1 mm, is sandwiched between two carbon-grease electrodes.

The membrane is mounted on a chamber of circular opening, radius 22.5 mm. (b) When air is pumped into the chamber through a valve, the membrane

is inflated into a balloon. Subsequently, the valve is closed to fix the amount of air enclosed by the chamber and balloon. (c) When voltage is applied

between the two carbon-grease electrodes, the balloon expands further.
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The paper is organized as follows. Section 2 described a material model of nonlinear electromechanical coupling, with
material constants specified in Section 3. Section 4 recalls field equations in elasticity and electrostatics. Section 5
describes a method to calculate inhomogeneous deformation and bifurcation diagrams. Section 6 presents numerical
simulations that explore how to vary parameters to achieve giant voltage-induced deformation. Section 7 reports
experimental observations.
2. Homogeneous state

Along with the rapid advances in developing dielectric elastomers, the nonlinear field theory of deformable dielectrics
has gained renewed attention (e.g., Dorfmann and Ogden, 2005; McMeeking and Landis, 2005; Goulbourne et al., 2005;
Wissler and Mazza, 2005a; Vu et al., 2007; Suo et al., 2008; O’Brien et al., 2009; Trimarco, 2009). The theory has a
remarkably simple structure: fundamental field equations are identical to those in elasticity and electrostatics, while
electromechanical coupling enters the theory exclusively from material models. In the field theory, material models are
formulated using homogeneous states. For a review of the nonlinear field theory, see Suo (2010).

A material model to be used here is specified in this section. Fig. 1 illustrates a membrane of a dielectric elastomer
sandwiched between two compliant electrodes. In the reference state, the membrane is subject to neither force nor
voltage, and is of dimensions L1, L2 and L3. In a homogeneous state in which the membrane is subject to forces P1 and P2

and the two electrodes are subject to voltage F through a conducting wire, the dimensions of the membrane become l1, l2
and l3, and a quantity of charge Q goes through the conducting wire from one electrode to the other. Define the stretches
by l1¼ l1/L1, l2¼ l2/L2 and l3¼ l3/L3; the stresses by s1¼P1/(l2l3) and s2¼P2/(l1l3); the electric field by E¼F/l3; and the
electric displacement by D¼Q/(l1l2).
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When an elastomer undergoes large deformation, the change in the shape of the elastomer is typically much larger than
the change in the volume of the elastomer. As an idealization, the elastomer is taken to be incompressible:

l1l2l3 ¼ 1, ð1Þ

this idealization places a constraint among the three stretches. We regard l1 and l2 as independent variables.
To construct a material model, recall the molecular picture of an elastomer—a network of polymers held together by

crosslinks. Each polymer is a chain of many links, and each link is either a polar or a nonpolar molecular group. At a finite
temperature, the network fluctuates among many configurations: the neighboring links may rotate relative to each other,
and the polarization of each link may also rotate and change magnitude. Subject to a force and voltage, the elastomer
deforms and polarizes in certain directions.

For a polymer chain of many links, when the applied force and voltage are not too large, the end-to-end distance of each
polymer chain is much smaller than the contour length of the chain. Consequently, the deformation of the polymer chain
negligibly affects the polarization of the individual links. As an idealization, it is commonly assumed that the dielectric
behavior of an elastomer is exactly the same as that of a polymer melt, independent of deformation:

D¼ eE, ð2Þ

where e is the permittivity of the elastomer, taken to be a constant independent of deformation and electric displacement.
This idealization is known as the model of ideal dielectric elastomers (Zhao et al., 2007), and is consistent with the
following experimental observation: the permittivity changes negligibly when the membrane is stretched 25 times its
initial area (Kofod et al., 2003).

For an ideal dielectric elastomer, the stress–stretch relations take the form:

s1þeE2
¼ l1

@Wstretch l1,l2ð Þ

@l1
, ð3Þ

s2þeE2
¼ l2

@Wstretchðl1,l2Þ

@l2
, ð4Þ

where Wstretch(l1,l2) is the free energy associated with the stretching of the elastomer. The deformation due to the electric
field applied through the thickness of a membrane is the same as the deformation caused by equal-biaxial tensile stresses
of magnitude eE2, called the Maxwell stresses. Because the elastomer is taken to be incompressible, the deformation
caused by the equal biaxial tensile stresses applied in the plane of the membrane is the same as that caused by a uniaxial
compressive stress applied through the thickness of the membrane. The model of ideal dielectric elastomer has been used
almost exclusively in the literature (e.g., Wissler and Mazza, 2005a; Goulbourne et al., 2005; Plante and Dubowsky, 2006).
See also Zhao and Suo (2008) and Li et al. (2012) for models of non-ideal dielectric elastomers.

We choose a specific form of the free-energy function on the basis of the following consideration. Upon approaching a
limiting stretch due to the finite contour length of the polymer chains, the elastomer stiffens steeply, which can greatly
affect electromechanical instability. To account for stiffening, we adopt the Gent (1996) model:

Wstretch ¼�
mJlim

2
log 1�

l2
1þl

2
2þl

2
3�3

Jlim

 !
, ð5Þ

where m is the shear modulus, and Jlim a constant related to the limiting stretch. The stretches satisfy 0rðl2
1þl

2
2þl

2
3�3Þ=

Jlimo1. When ðl2
1þl

2
2þl

2
3�3Þ=Jlim-0, the Taylor expansion of (5) gives that gives Wstretch-mðl2

1þl
2
2þl

2
3�3Þ=2. That is,

the Gent model recovers the neo-Hookean model when deformation is small compared to the limiting stretch. When
ðl2

1þl
2
2þl

2
3�3Þ=Jlim-1, the elastomer approaches the limiting stretch. For example, under equal-biaxial stresses,

l1¼l2¼l and l3¼l�2, so that the limiting stretch llim is given by Jlim ¼ 2l2
limþl

�4
lim�3.

Inserting (5) into (3) and (4), we obtain that

s1þeE2
¼

mðl2
1�l

2
3Þ

1�ðl2
1þl

2
2þl

2
3�3Þ=Jlim

, ð6Þ

s2þeE2
¼

mðl2
2�l

2
3Þ

1�ðl2
1þl

2
2þl

2
3�3Þ=Jlim

, ð7Þ

Eqs. (1), (2), (6) and (7) are the equations of state for incompressible, ideal dielectric elastomers with the Gent free energy
of stretching.

3. Material constants

Wissler and Mazza (2005b) have fitted experimentally measured stress–stretch curves of the VHB to the eight-chain
model (Arruda and Boyce, 1993), giving the shear modulus m¼68 kPa and the number of links per chain n¼125. The eight-
chain model is known to exhibit similar behavior as the Gent model (Boyce, 1996). Fig. 3a shows that the eight-chain
model of m¼68 kPa and n¼125 corresponds well with the Gent model of m¼68 kPa and Jlim ¼ 372.



Fig. 3. (a) The membrane stiffens on approaching the limiting stretch associated with the contour length of the polymer chains. This behavior is captured

by both the Gent model and the Arruda-Boyce eight-chain model. (b) Comparison of the model and experiment for the pressure–volume curve for a

membrane mounted on a chamber.
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Using the material model, along with the field equations to be described in Section 4, one can numerically simulate the
inflation of a membrane. It has been difficult, however, to achieve quantitative agreement between the numerical simulation
and experimentally observed behavior of the inflating membrane (Klingbeil and Shield, 1964). For example, Fig. 3b plots the
pressure–volume curve for a membrane in the absence of voltage. When compared with the numerical predictions from the
Gent model, the difference between the experimental data and theoretical prediction becomes large after the peak pressure.
The disagreement is still evident when we try to fit the numerical simulation to experimental data by adjusting both m and
Jlim. We have adjusted the parameters to m¼45 kPa and Jlim ¼ 270 in comparing the experiment and the model (Fig. 3b). The
disagreement between the experiment and the model may be interpreted as follows. First, a two-parameter model such as the
Gent model or the Arruda-Boyce model may not adequately represent the stress–stretch behavior of the VHB. Second, the VHB
exhibits pronounced viscoelasticity, which is not captured by the numerical simulation on the basis of elastic behavior.

These complications aside, Fig. 3b indicates accurate prediction of the peak pressure and trend after the peak.
A qualitative analysis based on the Gent model seems to be feasible to reveal the snap-through instability. In the
subsequent analyses, with this simplification in mind, we will use the Gent model with m¼45 kPa and Jlim ¼ 270. We will
use the numerical simulation to guide the design of the experiment, and will not make quantitative comparison between
simulation and experiment.

The permittivity is commonly written as e¼e0er, where e0¼8.854�10�12 F/m is the permittivity of the vacuum, and er

the relative permittivity. For 3M
TM

VHB
TM

4910, Kofod et al. (2003) reported a value of er¼4.7.
Dielectric elastomers typically fail by electric breakdown. Electric breakdown is a poorly understood phenomenon. In this

paper, we proceed as follows. Experimental data for VHB show that the critical field for electric breakdown, EEB, increases with
stretch (Kofod et al., 2003; Plante and Dubowsky, 2006). The experimental data are fit to the form Koh et al. (2011a):

EEB ¼
30:6l1:13 MV=m, for lo5:7

218 MV=m, for l45:7

(
ð8Þ
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the experiments were carried out for membranes under equal-biaxial stretch l. In analyzing a membrane under unequal-
biaxial stretches, l1al2, we interpret l2 as the area strain, and use (8) by setting l2

¼l1l2. For a dielectric membrane with
inhomogeneous electric field, we assume that the membrane fails when the electric field of any point in the membrane
exceeds the electric breakdown field.

4. Inhomogeneous state

When the initially flat membrane expands into a balloon, the state of the membrane becomes inhomogeneous. For
example, the apex of the membrane is under equal-biaxial stretches, while the edge of the membrane is under unequal-
biaxial stretches. The edge of the membrane is clamped by the chamber; as the membrane expands into a balloon, the
latitudinal stretch remains fixed, but the longitudinal stretch changes. The inhomogeneous state of the membrane has
been modeled by combining the material model and the field equations (e.g., Goulbourne et al., 2005; Mockensturm and
Goulbourne, 2006; He et al., 2009; Zhu et al., 2010; Wang et al., 2012). As mentioned at the beginning of Section 2, the field
equations in the theory of deformable dielectrics are identical to those in elasticity and electrostatics. This section recalls
these field equations.

Fig. 4 illustrates the cross-section of the membrane in several states. In the reference state (Fig. 4a), the membrane is
subject to neither stress nor electric field, and is of flat circular shape, thickness H and radius A. In the reference state, we
label each material particle by its distance R from the center of the membrane O. In the prestretched state (Fig. 4b), the
membrane is stretched and mounted to a chamber with a circular opening of radius a, the ratio l0¼a/A being the
prestretch in the membrane. In the pressurized state (Fig. 4c), the air outside the balloon is under atmospheric pressure
patm, and the air inside the balloon is subject to pressure pþpatm; the difference, p, is called the differential pressure, or
simply the pressure for short. In the actuated state (Fig. 4d), the membrane is subject to both the pressure p and the
voltage F. The deformation of the membrane is assumed to be axisymmetric. A system of coordinates is set up with the
origin coinciding with the center of the membrane. The material particle, distance R from the center when the membrane
is in the reference state, occupies a place of coordinates r and z when the membrane is in a deformed state.

4.1. Field equations in elasticity

The field equations in the theory of elasticity of membranes are well established (Adkins and Rivlin, 1952). The two
functions, r(R) and z(R), specify the deformation of the membrane. Consider a circle of material particles, radius R when the
membrane is in the reference state. In a deformed state, the circle of material particles remain a circle, but is of radius r(R)
and height z(R). The deformation causes the latitudinal stretch

l2 ¼ r=R, ð9Þ

similarly, consider another circle of material particles, radius RþdR when the membrane is in the reference state. In the
deformed state, the circle of material particles remain on a circle, radius r(RþdR) and height z(RþdR). In the reference
state, the material particles between the two circles form an annulus of width dR. In the deformed state, these material
particles form a circular band of width l1dR, where l1 is the longitudinal stretch. In the deformed state, let y(R) be the
slope of a membrane at material particle R. The geometry dictates that

dz

dR
¼ l1 siny, ð10Þ

dr

dR
¼ l1 cosy, ð11Þ
Fig. 4. Cross-section of a dielectric membrane sandwiched between two compliant electrodes. (a) In the reference state, the membrane is of flat circular

shape. (b) The membrane is prestretched and held by a rigid ring. (c) Subject to a differential pressure, the membrane inflates out of the plane, and takes

an axisymmetric shape. (d) Subject to voltage, the membrane deforms further.
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when the membranes are in the prestretched state (Fig. 4b), both stretches are homogeneous in the membrane, l1¼l2¼l0.
When the membranes are in a curved state (Fig. 4c and d), however, the stretches are inhomogeneous in the membranes,
and are described by functions l1(R) and l2(R). Let h(R) be the thickness of the circular band in the deformed state. The
membrane is taken to be incompressible, so that

h¼H=ðl1l2Þ: ð12Þ

The equations that balance forces can be established by using free-body diagrams. In a deformed state (Fig. 4d), the
membrane is subject to longitudinal stress s1(R) and latitudinal stress s2(R). The geometry of the deformed membrane is
described by the thickness h(R), the radius r(R), the height z(R) and the slope y(R). Cut a band of the membrane by two
planes at z and zþdz. Balancing the forces acting on the band and in the z-direction, we obtain that

dðs1hr sinyÞ�prdr¼ 0, ð13Þ

next cut the band by a plane containing the z-axis. Balancing forces acting on the half band and in the direction normal to
the z-axis, we obtain that

dðs1hr cosyÞþprdz�s2h
dz

siny
¼ 0: ð14Þ

4.2. Field equations in electrostatics

The field equations in the electrostatics of membranes take a trivial from. Both faces of the membrane in Fig. 4c are
coated with compliant electrodes. When the two electrodes are subject to voltage F, the voltage induces in the membrane
an electric field:

E¼F=h, ð15Þ

the electric field is in the direction normal to the faces of the membrane. While the voltage F is homogeneous, the electric
field is inhomogeneous when the thickness of the membrane becomes inhomogeneous. The charge per unit area is given
by the electric displacement D. The charge in either electrode is also inhomogeneous.

5. Numerical simulation

The field equations in Section 4, together with the equations of state in Section 2, constitute a model for dielectric
membranes. This section briefly describes a numerical method to calculate inhomogeneous deformation and bifurcation
diagrams.

Rewrite (13) and (14) to express dy/dR and dz/dR explicitly:

dy
dR
¼�

s2l1

s1l2R
sinyþ

l2
1l2p

s1H
, ð16Þ

dl1

dR
¼

1

R @ðs1=l1Þ

@l1

s2

l2
cosy�

s1

l1
�
@ðs1=l1Þ

@l2
ðl1 cosy�l2Þ

� �
, ð17Þ

the stresses s1 and s2 are functions of l1, l2 and E, according to the equations of state (6) and (7).
The four functions r(R), z(R), y(R) and l1(R) are governed by the ordinary differential Eqs. (10), (11), (16) and (17),

together with the following boundary conditions. The origin of the coordinates coincides with the apex of the membrane:

zð0Þ ¼ 0, rð0Þ ¼ 0, ð18Þ

at the apex of the membrane, symmetry dictates that

yð0Þ ¼ 0, ð19Þ

the chamber clamps the edge of the membrane:

rðAÞ ¼ a: ð20Þ

We solve the two-point boundary-value problem as an initial-value problem by using the shooting method. The values
of all four functions at the apex of the membrane are set as r(0)¼0, z(0)¼0, y(0)¼0, l1(0)¼lapex. These values are used as
the initial conditions to integrate numerically the ordinary differential Eqs. (10), (11), (16) and (17) to obtain the four
functions r(R), z(R), y(R) and l1(R). The value of lapex is solved to satisfy the boundary condition r(A)¼a.

Once the four functions r(R), z(R), y(R) and l1(R) are determined, the volume under the membrane is calculated from

V ¼ p
Z R

0
r2 dz

dR
dR, ð21Þ

the charge on the electrode on either face of the membrane is the electric displacement integrated over the area of the
membrane. Recall that E¼F/h¼l1l2F/Hand D¼eE. In the deformed state, the area of a circular band of the membrane is
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2pl1l2RdR. The magnitude of the charge on either electrode is calculated from

Q ¼
2peF

H

Z R

0
ðl1l2Þ

2RdR, ð22Þ

inspecting the governing equations, we note the following dimensionless quantities:

z

A
,

r

A
,
s
m ,

Dffiffiffiffiffiffiemp ,
Effiffiffiffiffiffiffiffi
m=e

p ,
V

A3
,

p

mH=A
,

Q

A2 ffiffiffiffiffiffiemp ,
F

H
ffiffiffiffiffiffiffiffi
m=e

p : ð23Þ

Fig. 5 gives an example of the numerical simulation. The membrane is pressurized into a balloon (Fig. 5a). When a
voltage is applied in addition to the pressure, the balloon expands to a much larger volume (Fig. 5b). Indicated in Fig. 5b by
color is the inhomogeneous electric field in the membrane. The dashed line marks the latitude above which the electric
field exceeds the electric breakdown field. Accordingly, at a certain level of the voltage, the membrane should have
suffered electric breakdown. Also inhomogeneous in the membrane are the stretches and the stresses (Fig. 5c–f). At a fixed
voltage, the longitudinal stretch l1 may peak at the apex or an interior point. The latitudinal stretch l2 varies
monotonically from the maximum at the apex to the minimum at the edge, where the latitudinal stretch is held constant
by the rigid ring. Both the longitudinal and latitudinal stresses in the membrane change from the maximum at the apex to
the minimum at the edge.

In the absence of voltage, the pressure–volume relation of the membrane is an N-shaped curve—rising, falling, and
rising again (Fig. 6a). The curve is calculated by searching for all solutions of the ordinary differential equations for a given
value of the pressure, and then repeating the procedure as the pressure is gradually increased. The pressure–volume curve
may be regarded as a bifurcation diagram commonly used in nonlinear dynamics (Seydel, 2010). A bifurcation diagram
shows how a variable parameter affects states of equilibrium. Here the pressure is a variable parameter, and the volume is
a proxy to indicate the state of the membrane—a system of infinite degrees of freedom.

In an experiment in which the pressure is ramped up, when the pressure reaches the peak of the pressure–volume
curve, the membrane expands suddenly without appreciable change in the pressure, and attains another stable state of
much larger volume. The snap-through expansion of balloons is a subject of many previous studies (e.g., Rivlin and
Saunders, 1951; Alexander, 1971; Needleman, 1977; Bogen and McMahon, 1979; Muller and Struchtrup, 2002).

When the membrane is subject to a fixed voltage, the pressure–volume curve lowers somewhat, but still retains the
basic shape (Fig. 6a). Using the same procedure, we calculate the voltage–volume curve at a constant pressure (Fig. 6b). For
given values of the pressure and voltage, the membrane can be in multiple states of equilibrium (Goulbourne et al., 2005;
Mockensturm and Goulbourne, 2006). We may regard the voltage–volume curve as a bifurcation diagram, where the
voltage is a variable parameter, and the volume is a proxy to indicate the state of the membrane. Marked in the two figures
are several corresponding states: A, B, C and D. Because the pressure–volume curve at F¼0 is non-monotonic, the curve
intersects with the line of a constant pressure—the dashed line in Fig. 6a—at three states of equilibrium. Consequently, the
Fig. 5. Numerical results for a membrane subject to pressure of pA/mH¼1.82. (a) The differential pressure inflates the membrane into a balloon.

(b) Subject to the differential pressure and the voltage, the balloon expands to a much larger size. The electric field is inhomogeneous in the membrane,

and the dashed line marks the latitude above which the electric field exceeds the electric breakdown field. (c–f) Distributions of the stretches and

stresses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Fig. 6. (a) Pressure–volume curves of a membrane at several values of voltage. (b) Voltage–volume curve of a membrane subject to a constant pressure of

p/(Hm/A)¼1.82.
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voltage–volume curve at the constant value of pressure in Fig. 6b is broken into two parts. Recall that the voltage enters
electromechanical coupling as F2: voltages of the opposite signs cause the same deformation.

Next consider an experiment in which the membrane is inflated by pressuring the chamber to state A, near the verge of
instability. The pressure is subsequently held constant, and then voltage is switched on and ramped up in time. When the
voltage reaches a certain value B, the membrane expands suddenly to another stable state C. Note the large difference in
the volumes of the two states B and C. When the voltage is ramped down, the membrane shrinks back somewhat, reaching
state D at zero voltage.
6. A recipe to achieve giant voltage-induced deformation

As mentioned before, several aspects of the setup of a membrane mounted on a chamber enable the voltage to trigger
giant deformation. First, the chamber can be pressurized to place the membrane near the verge of snap-through instability.
Second, the instability can be triggered by voltage. Third, the setup can be designed so that the membrane snaps to a stable
state without electric breakdown. These aspects are examined in this section by using numerical simulation.
6.1. Placing a membrane near the verge of snap-through instability

When the maximum electric field of the membrane exceeds a certain limit, electric breakdown takes place. The critical
state for electrical breakdown is marked by a cross in Fig. 6b. In this case, the breakdown voltage is lower than the voltage
needed to trigger the snap-through instability. Consequently, after the voltage triggers the snap, the membrane expands
excessively, and suffers electric breakdown before it reaches the stable state C. To facilitate the snap-through expansion
without electric breakdown, one can either lower the voltage needed to trigger the snap or raise the voltage for electric
breakdown.

To lower the voltage needed to trigger the snap, one may place the membrane nearer the verge of instability by
increasing the pressure (Fig. 7). When the pressure is low, such as pA/mH¼1.2 (Fig. 7a and b), an excessively high voltage is
required to trigger the snap. Consequently, before the snap the membrane suffers electric breakdown, leading to small
voltage-induced deformation.

For a higher pressure of pA/mH¼1.5 (Fig. 7c and d), the initial state of the membrane is closer to the verge of instability.
The voltage needed to trigger the snap is lowered, enabling the snap-through expansion prior to electric breakdown.
However, during the snap-through expansion, the membrane thins down excessively, and the electric field in the
membrane exceeds the breakdown limit before the membrane reaches the stable state.

For an even higher pressure of pA/mH¼1.9 (Fig. 7e and f), a low voltage triggers the snap, enabling the membrane to
reach the stable state without electric breakdown. By raising the voltage further, the membrane continues to deform until
it reaches breakdown limit.

When the pressure is very high, such as pA/mH¼2.0 (Fig. 7g and h), the snap-through expansion of membrane occurs
prior to applying voltage. When the voltage is switched on and ramped up, the membrane deforms somewhat as the
voltage increases, until electric breakdown takes place.



Fig. 7. Numerical results for a membrane actuated at several values of differential pressure.
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Also labeled in Fig. 7 are the initial volumes V0 under the pressurized membranes prior to the application of voltage.
Evidently, the membrane can be pushed infinitely close to the verge of instability, and the voltage required to trigger the
snap can be infinitesimal. After the snap, the electric field in the membrane is still quite low, and the membrane reaches a
stable state of a large volume without electric breakdown. However, preparing the membrane too close to the verge of
instability is undesirable; the membrane would snap under disturbance in the environment other than voltage.
6.2. Bending the snap-through path by using an air chamber of suitable volume

Instead of pushing the membrane very near the verge of instability, we may restrain the excessive deformation by
bending the snap-through path. This can be accomplished by changing the volume of the chamber, VC. When a membrane
is mounted on the chamber, the membrane is flat, and the pressure in the chamber is the same as the atmosphere
pressure, patm. When air is pumped into the chamber through a valve, the membrane is inflated into a balloon of volume
V0, and the pressure in the chamber becomes p0þpatm. The valve is subsequently closed, fixing the amount of air enclosed
by the chamber and the membrane. When the voltage F is applied, the volume under the membrane becomes V, and the
pressure in the chamber becomes pþpatm. We assume the air moves fast enough so that the pressure keeps uniform in the
chamber and the balloon. As mentioned before, we restrict our analysis to isothermal processes. (Our experiment,
however, may deviate from isothermal processes when the balloon expands suddenly. This deviation is neglected in this
paper.) Because the amount of air enclosed by the chamber and the balloon remains unchanged, the ideal-gas law requires
that

ðpþpatmÞðVþVCÞ ¼ ðp0þpatmÞðV0þVCÞ ð24Þ

as the volume of the balloon increases, the pressure p drops. For a chamber of a given volume, the pressure–volume curve
of the air (24) is a curve on the pressure–volume plane, representing the snap-through path.

We fix the dimensionless value patm/(mH/A)¼50 and the initial volume of the balloon V0/A3
¼2.42. The pressure–

volume curve of the air (the dashed line) intersects with the pressure–volume curves of the membrane at several points,
each defining a state of equilibrium (Fig. 8a). These states of equilibrium are shown in the voltage–volume plane (Fig. 8b).
The balloon is in state A before the voltage is applied. When the voltage is turned on and ramped up, the balloon expands



Fig. 8. Numerical results for a membrane mounted on a chamber of volume VC/A3
¼1600. The membrane is pressurized to a balloon of initial volume

V0/A3
¼2.42. (a) Pressure–volume curves of the membrane at several values of voltage. The dashed line is the pressure–volume curve of the air.

(b) Voltage–volume curve.
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further, and the pressure–volume curves of the balloon lowers. When the voltage reaches 0.08, the pressure–volume curve
of the air is tangential to the pressure–volume curve of the balloon at B, and the balloon snaps to state C. As the voltage
increases further, the balloon expands further, until it suffers electric breakdown. If the voltage is ramped down from state
C, the balloon will shrink back and stay in state D when voltage drops to zero. States A and D are bistable states under no
voltage. For a structure of two stable states of equilibrium, one state can be switched to the other by voltage, but voltage is
not needed to maintain either state (Wingert et al., 2006). Such a mechanism of actuation eliminates energy dissipation
associated with applying a high voltage over a long period of time. In this particular example, one can use voltage to switch
the membrane from state A to state D, but cannot use voltage to switch back from state D to state A. One can also design
structures to achieve two-way switches (Chouinard and Plante, 2012).

Fig. 9 shows the snap-through paths for membranes mounted on chambers of different volumes. For a small chamber
(VC/A3

¼30, Fig. 9a and b), the pressure drops steeply as the balloon expands under voltage. Before the membrane snaps,
the electric field at the apex of the membrane is already sufficient to cause electric breakdown. Consequently, the
membrane fails with small deformation.

For a chamber of volume VC/A3
¼800 (Fig. 9c and d), the pressure drops less steeply as the balloon expands under

voltage, and the membrane snaps when the voltage reaches a certain level. The deformation after the snap is restrained so
that the membrane survives the snap, reaching a stable state without electric breakdown. When the voltage is ramped
down, the balloon shrinks, and snaps back at a certain voltage and eventually returns to its initial state. Consequently, as
the voltage ramps up and down, the state of the membrane goes through hysteresis. The electromechanical snap-through
and snap-back jumps may be used in actuators. A possible advantage would be the option to trigger large changes in shape
with small changes in voltage. Furthermore, with less viscoelastic materials such as natural rubber or PDMS, the N-shaped
voltage–volume relation could also allow for very fast actuation.

The case of VC/A3
¼1600 has been discussed above. For a very large chamber (VC/A3

¼25,000, Fig. 9g and h), the pressure
remains nearly constant after voltage is applied, and the voltage needed to trigger the snap is substantially reduced. The
balloon becomes very large; before reaching a stable state, the membrane suffers electric breakdown.

6.3. Altering voltage-induced deformation by prestretch

Before being mounted on the chamber, membranes can be prestretched (Fig. 4b). The prestretch can alter the
bifurcation diagrams. Fig. 10 shows the experimentally measured pressure–volume curves for membranes of different
values of prestretch mounted on a chamber. When the prestretch is l0¼1, the pressure–volume curve shows clear peak
pressure followed by a large deformation. When the prestretch is l0¼2, the peak pressure is less pronounced. When the
prestretch is l0¼3, the pressure increases monotonically with volume. Consequently, the prestretch can also be used as a
parameter to the behavior of the setup. This effect of prestretch is consistent previous experimental observation (Pelrine
et al., 2000) and theoretical analysis (Koh et al., 2011b).

Simulations are carried out under several values of prestretch and constant pressure. For a pre-stretch of l0¼1, the
pressure–volume curves at fixed values of voltage are N-shaped (Fig. 11a). When the voltage triggers the snap, and
membrane suffers electric breakdown before reaching the stable state of large volume (Fig. 11b). For a pre-stretch of l0¼2,



Fig. 9. Numerical results for a membrane mounted on chambers of different volumes.

Fig. 10. Experimentally determined pressure–volume curves for membranes of different values of prestretch mounted on a small chamber (0.35 L).
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the pressure–volume is essentially monotonic at zero voltage, but becomes N-shaped at a constant value of voltage
(Fig. 11c). When voltage is ramped up and down, the membrane undergoes hysteresis, averting electric breakdown
(Fig. 11d). For an even larger pre-stretch of l0¼3, the pressure–volume curves become monotonic even when voltage is
quite large (Fig. 11e). The voltage–volume curve is monotonic (Fig. 11f), a behavior desirable in many applications.

Suitable amount of prestretch can reduce the pressure needed to place the membrane near the verge of instability,
enlarge the voltage-induced deformation, and restrain the excessive deformation after the snap.
7. Experiments and discussions

Inspired by the numerical simulations described in Section 6, we conduct the following experiment. A dielectric
membrane of acrylic elastomer (3M

TM

VHB
TM

4910), thickness H¼1 mm, is sandwiched between two carbon-grease
electrodes, and mounted without prestretch on a chamber with an opening of radius A¼22.5 mm. Air is pumped into



Fig. 11. Numerical results for membranes subject to various values of prestretch.
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the chamber through a valve, inflating the membrane into a balloon of volume V0¼12 ml and pressure p0¼19 mbar.
The side view of the balloon is tracked with a video camera, and the recorded images are used to calculate the volume of
the balloon, assuming the balloon is axisymmetric. The excess pressure in the chamber is recorded with a pressure sensor
(JUMO

TM

dtrans p30) placed inside the chamber. The balloon is near the verge of the snap-through instability. The valve is
subsequently closed to fix the amount of air enclosed by the chamber and the balloon. The voltage is then applied between
the two electrodes, and is ramped up and then down in time (Fig. 12a). To ascertain the drastically different types of the
voltage–volume curves, we conduct the experiment with chambers of different volumes: 0.35 L, 20 L and 300 L.

For the small chamber of volume 0.35 L, the voltage increases the volume of balloon negligibly, and no snap-through
instability is observed (Fig. 12b). As the voltage is ramped up and down, the balloon deforms from A to B and back to C.
This behavior corresponds to the type shown in Fig. 9b predicted by the model.

For the chamber of an intermediate volume of 20 L, however, the response to the voltage is drastically different
(Fig. 12c). For voltages below the critical level around 4 kV, the volume of the balloon only varies slightly. When the
voltage exceeds this value, the balloon expands suddenly, reaching a stable state of a much larger volume. As the voltage is
ramped up and then ramped down, the balloon first expands greatly from D to E, and then contracts slightly to F. When the
voltage is ramped down to zero, the balloon does not recover its initial volume. This behavior corresponds to the type
shown in Fig. 9f predicted by the model.

For the chamber of a large volume of 300 L, the balloon snaps when the voltage reaches a certain level (Fig. 12d). The
balloon expands under the same level voltage. The electric field in the membrane intensifies causing electric breakdown
before the balloon reaches a stable state. The failure occurs when the voltage is still ramped up, and the experiment is
terminated by switching off the voltage. This behavior corresponds to the type shown in Fig. 9h predicted by the model.

Fig. 13 shows the side views and top views of the membrane on the chamber of 20 L at states D and E in Fig. 12. Giant
voltage-induced deformation is achieved. We measure the stretch at the top by locating three tracer particles. An average
vector–length stretch ratio of 4.23 is measured between the tracer particles, giving an expansion of area of 1692%. This
experiment is discussed in more detail in Keplinger et al. (2012). Though no intension is made to optimize the
experimental conditions to maximum voltage-induced deformation, the value obtained here is well beyond the previously
reported maximum of 380% (Pelrine et al., 2000).

Fig. 14 shows four states of the membrane mounted on the small chamber of volume 0.35 L. Here voltage is ramped up
until the membrane fails by electric breakdown. Prior to electric breakdown, a region of the membrane bulges out. The
formation of the bulge is captured in detail in supporting videos. Video 1 shows a stereo view (recorded with Trilion
QualitySystems ARAMIS) of the process, together with a visualization of in situ pressure and voltage data. Video 2 is a high
speed video (recorded with Photron FASTCAM, 2500 frames per second) of the process filmed from the side. Fig. 15 shows
a state of the balloon mounted on chamber of the intermediate volume of 20 L. When the voltage is ramped up and kept at
5.5 kV for several minutes, the membrane deforms further and forms wrinkles and clefts. Similar instabilities in dielectric



Fig. 12. Experimental observations. (a) Voltage is ramped up and then down in time. (b)–(d) Voltage–volume responses of the balloons mounted on

chambers of different volumes.

Fig. 13. (a) and (b) Side-views for states D and E of Fig. 12. (c) and (d) The corresponding top-views with tracer particles to measure the area strain.
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elastomers have been observed (e.g., Plante and Dubowsky, 2006; Ha et al., 2007), but their systematic study is limited
(Huang and Suo, 2012; Zhu et al., 2012). They indicate additional modes of bifurcation and effects of viscoelasticity.

8. Concluding remarks

Dielectric elastomers are susceptible to electromechanical instability. The instability often leads to electric breakdown,
but can also be harnessed to achieve giant voltage-induced deformation. We demonstrate this idea with a commonly used



Fig. 14. Small chamber (0.35 L) is used for a membrane without prestretch. Pressure and volume are set to the initial conditions of Fig. 12. Voltage is

ramped up like in Fig. 12 until local instability happens. The electric breakdown happens at 8 kV. A region of the membrane bulges out prior to electric

breakdown.

Video 1. A video clip is available online. Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmps.2012.09.

006 The stereo view of the bulge formation (recorded with Trilion QualitySystems ARAMIS) together with a visualization of in-situ pressure and

voltage data.
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experimental setup—a dielectric membrane mounted on a chamber. The membrane is inflated by pressurizing the
chamber, and by applying voltage through the thickness of the membrane. The electromechanical behavior can be
dramatically changed by varying the initial pressure in the chamber, the volume of the chamber, and the prestretch of the
membrane. To model the experiment, we combine nonlinear electromechanical coupling and kinematics of large
axisymmetric deformation. Numerical simulation captures inhomogeneous deformation and maps out bifurcation
diagrams. The theoretical prediction has guided us to perform the experiment with suitable values of the parameters,
demonstrating record-high voltage-induced deformation. The experiment has also shown phenomena that are beyond the
scope of the model. Even for this relatively simple setup, the rich nonlinear coupling enables dramatic changes in the
behavior. This work illustrates the importance to combine theory and experiment in exploring complex nonlinear



Video 2. A video clip is available online. Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmps.2012.09.

006 High speed video (recorded with Photron FASTCAM, 2500 frames per second) of the bulge formation process filmed from the side.

Fig. 15. The chamber size is 20 L and the membrane is not prestretched. Voltage is ramped up and is then kept at 5.5 kV for several minutes. The

membrane forms wrinkles and clefts.
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behavior. This work also highlights the potential of harnessing the complex nonlinear behavior to achieve extreme
performance. Large voltage-induced deformation is desired for many applications, including soft robots (Shephard et al.,
2011), adaptive optics, balloon catheters and Braille displays (Carpi et al., 2010). Snap-through expansion may be used in
applications in ‘‘polymer intelligence’’ (O’Brien et al., 2010) as switches or valves. Moreover, for a structure of two stable
states of equilibrium, one state can be switched to the other by voltage, but voltage is not needed to maintain either state
(Chouinard and Plante, 2012; Wingert et al., 2006). Our results could provide options in designing binary systems.
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