
Papier publié dans «Proceedings of the 26th Annual International Computer Software and Applications Conference
(COMPSAC'02), IEEE (Ed), Oxford, England, August 2002, pp265-270»

1

Towards an MDA-Oriented Methodology

Marie-Pierre Gervais
Laboratoire d'Informatique de Paris 6 (LIP6) and Université Paris X

8 rue du Capitaine Scott - F75015 Paris
Marie-Pierre.Gervais@lip6.fr

Abstract

With the introduction of the Model Driven
Architecture by the OMG, modeling technology seems to
take the step on the middleware technology for distributed
applications development. The MDA recommends to
separate the business from their technical aspects in the
development of applications. Modeling techniques offer
tools providing abstraction that enables the isolation of
business concerns from their technical achievement.
EDOC Profile is an example of such tools as it provides a
modeling framework. It makes use of the RM-ODP
architectural framework that provides conceptual tools.
These tools, so useful are, remain insufficient in the sense
that they do not provide any process to guide the software
designers in the modeling step, i.e., they are not
methodological tools.

We present in this paper a methodology based on the
RM-ODP that falls under the MDA initiative. We describe
its principles by illustrating them with an example. Then
we provide the research directions enabling to get a fully
compliant MDA methodology.

1 .  Introduction

The combined evolution of the telecommunications
technology and the organizations structure leads to the
emergence of complex distributed applications. To assist
the software engineers when developing such applications,
middleware technology emerged, offering facilities
supporting distribution management. CORBA, .NET, EJB
or CCM are examples of such technologies. However, the
proliferation of these platforms raises new problems of
interoperability, increasing the cost of migration and
adaptation from one platform to a new one. A way of
managing this heterogeneity is to base the distributed
applications development on the separation of concerns
between the business aspects and the technical aspects. In

this optic, OMG issued the Model-Driven Architecture
(MDA) initiative aiming at a global approach for
integration and interoperability where models play a
central role [9]. Indeed, the use of modeling techniques is
strongly anticipated as a way of simplifying the
construction of applications. In this way, the main part of
the development becomes an activity upstream, dedicated
to the business concerns through the elaboration of the
application specification that abstracts away technical
details, i.e., the so-called Platform-Independent Model
(PIM). The transformation of a PIM into a Platform-
Specific Model (PSM) is then achieved when introducing
into the PIM the technical considerations depending on the
chosen platform.

In conformance with this MDA approach, the OMG
Enterprise Distributed Object Computing (EDOC) Profile
has been produced aiming at simplifying the development
of component based systems [10]. This is a modeling
framework composed of set of UML Profile
Elements [11]. Among them is the Enterprise
Collaboration Architecture (ECA) that is a technology
independent profile allowing the definition of PIMs. ECA
is an MDA approach for specifying systems that uses as
conceptual framework the Reference Model of Open
Distributed Processing (RM-ODP). The RM-ODP
developed by the International Standardization
Organization (ISO) and the International
Telecommunication Union — Telecommunication
Standardization Sector (ITU-T) provides an architectural
framework that defines a set of rigorous concepts for
developing distributed systems [6].

Thus the EDOC modeling framework and the RM-
ODP architectural framework provide a set of very useful
tools, respectively modeling and conceptual tools. These
support the elaboration of sophisticated models describing
at various levels of abstraction the applications to be
developed. However, none of them includes precise rules
or guidelines explaining how software engineers can use



these tools to build their models. Together they provide a
set of concepts and a notation, but no steps or process. In
fact, they do not provide a methodology that is a set of
concepts, the usage rules of these concepts by organizing
them into various steps, the process associated with these
steps and a notation.

We present in this paper a methodology named
ODAC, which is based on the RM-ODP and has the
potential to be an MDA-oriented methodology. Indeed,
ODAC makes use of the RM-ODP concepts, defines
steps, process for these steps and uses the UML notation
and profiles. It then provides a set of guidelines in terms
of UML Profiles to software engineers to explain how
they can describe the architecture of the system he/she is
building, from the most abstract level to the most concrete
level, which is the implementation of the system. The
methodology is not dedicated to a domain of applications.
For example, we use it in the active network area in one
hand and in the mobile agents systems field on the other
hand [3][4].

This paper is organized as follows. Section 2 provides
an overview of the ODP standards, pre-required to approach
our methodology, which is introduced in Section 3.
Section 4 focuses on the ODAC part devoted to the PIM
elaboration. Section 5 provides the research directions
enabling to get a fully compliant MDA methodology. The
conclusion expresses the future developments of the
methodology and draws some issues to this work.

2 .  The ODP Standards

The Open Distributed Processing (ODP) standards
developed by ISO and ITU-T provides a Reference Model
(RM-ODP) that defines an architectural framework for the
construction of distributed systems and applications [8]. It
provides a set of concepts and their structuring rules. A
main concept is that of viewpoint, which enables to
structure the modeling activities. A viewpoint is a
subdivision of a complex system specification. It
corresponds to a particular perspective, allowing the
system to be “viewed” from a particular angle, focusing on
specific concerns. The five viewpoints are the Enterprise,
Information, Computational, Engineering and Technology
viewpoints.

The whole specification of a system is obtained by
establishing the five specifications from each viewpoint
and their correspondences. Nevertheless, RM-ODP is an
architectural framework and not a methodology, i.e. it is
not prescriptive enough and does not provide tools such as
a notation or a sequence between the viewpoints that

would help the software designers to build the system
specification. We then present in the next Section how we
use this framework and supplement it in order to provide a
methodology.

3 .  The ODAC Methodology

As mentioned previoulsy, a methodology should
provide a set of concepts, the usage rules of these concepts
by organizing them into various steps, the process
associated with these steps and a notation. We describe
below how these various elements are defined in ODAC.

3.1. The ODAC Concepts and Steps

The ODAC concepts are the ODP concepts, in
particular the viewpoint concept. It is used to define the
ODAC steps by identifying a parallel between the
activities of analysis, design and implementation and the
ODP viewpoints (Figure 1). Thus the ODAC
methodology associates in an informal way the Enterprise,
Information and Computational viewpoints to the
analysis, the Engineering viewpoint to the design and the
Technology viewpoint to the implementation. It
distinguishes then in these steps intended to define the
system those that describe it independently of any target
environment of those that describe it according to the
environment in which it will be carried out. Three
categories of specifications are identified: Behavioral
Specification of the system, Engineering Specification of
the system and its Operational Specification. The
relationships between them are illustrated in Figure 2.

The Behavioral Specification is the output of the
analysis, i.e., it corresponds to the specifications
established in the Enterprise, Information and
Computational viewpoints. It describes the system
according to its objective, its place in the company in
which it is developed, information that it handles and the
tasks that it carries out. Thus it is a Platform-Independent
Model (PIM) as described in the MDA [9]. 

The Engineering Specification is the specification
established in the Engineering viewpoint, i.e., the
description of the execution environment. It can be seen as
a Platform-Description Model (PDM) [1]. Thus for each
kind of environment, ODAC provides the designer with a
PDM Guideline that helps for describing the considered
environment.

The Operational Specification results from the
projection of the behavioral specification (i.e., a PIM) on
a target environment reflecting the real execution



environment. It constitutes the description from which
code is generated and the implementation is carried out. It
corresponds to the transformation of the PIM, which is
configured according to the PDM. It is the Platform-
Specific Model (PSM) of the MDA.

ODP

Automatic code generation
code

implementation

Behavioral
specification

analysis

For what, What, How ?
requirements

Enterprise

Information

Computational

design
Execution

environment
Engineering

Where, with what?
Platform facilities Operational

specification
Engineering
specification

(PIM)

(PSM)

(PDM)

Figure 1: The ODAC Methodology Principles

Specification 
(PIM)

Specification 
(PDM)

operational Specification 
(PSM)

Behavioral 
Engineering 

Figure 2: The Three Models in ODAC and their
Relationships (from [1])

3.2. The ODAC Process and Notation

Associated with each step, a process is provided that
prescribes how the modeler can establish the specification.

The ODAC analysis process prescribes to consider first
the Enterprise viewpoint, then Information and
Computational viewpoints. The system description
according to one of these viewpoints gives place to a
specification in this viewpoint. Consequently, for each
viewpoint, ODAC identifies a set of steps to write the
corresponding specification, the concepts involved at each
step and the associated notation. All the obtained
specifications constitute the PIM of the system. Regarding

to the notation, ODAC makes use of the UML notation
and its extension mechanism. Thus to help the modeler for
writing such a PIM, we provide the “ODAC Guideline for
PIM” as a UML profile (cf. Section 4).

In the same way, the ODAC design process consists of
providing a set of rules with the associated notation to
enable the designer to describe the considered environment
in order to obtain the PDM. Once again, the UML profile
approach is used. Then each guideline for each kind of
environment mentioned above, namely the MASIF-
DESIGN Guideline for describing mobile agent platforms
and the ODACforANTS Guideline for describing active
network platforms [4][3].

We focus hereafter on the ODAC Guideline for PIM
we propose. To illustrate how the modeler can apply the
principles mentioned in this guideline, we use a case study
briefly introduced hereafter.

3.3. The Reliable Active Multicast Service

The Reliable Active Multicast (RAM) service enables
the emission of data by a source to a set of receivers that
request for them by subscription. It is reliable since lost
data are retransmitted [12].

A station that wants to receive data first subscribes to
a source. The set of subscribers and the source constitute a
group. In the group, there is only one source. Links
between source and receivers are not necessarily direct:
“intermediate nodes” can exist. The source broadcasts data
to all the receivers of its group, through the “intermediate
nodes”. A receiver has the ability to detect and to notify
the loss of data to the source. In this case, the source
retransmits data.

4 .  The ODAC Guideline for PIM

The PIM deals with the functional aspects of the
system under development, describing the behavior of the
system and its business logic, with no concerns of its
technical aspects relating to the execution environment.
We provide a PIM modeler with a UML profile that is a
composition of three profiles (one for each viewpoint
involved in a PIM elaboration, namely the Enterprise,
Information and Computational viewpoints) and their
correspondences.

As each profile enables the modeler to describe the
same system according to a specific concern, the three
specifications must be consistent. Consequently the
guideline includes correspondence rules that apply on the
specifications. The set of the three specifications together



with their correspondences constitutes the PIM of the
system.

For reasons of brevity, we limit here the presentation
to a part of the profile for the Enterprise specification
dedicated to the specification steps. These are a set of rules
that prescribes how the modeler must apply the profile to
obtain the specification of a viewpoint.

4.1. The Process  for Developing an Enterprise
Specification

An Enterprise specification describes the system
behavior in the environment with which it interacts. It is
an abstraction of the system and the environment in which
this system exists. It describes the relevant aspects of what
the system is supposed to do in the context of the
objective, the scope and the policies of its environment.
ODAC defines the process for elaborating an Enterprise
specification as composed of several steps that we identify
from the Enterprise viewpoint concepts as described in [7].
To supplement this process with its steps and their
associated concepts, the methodology provides a notation
in order that the software engineer expresses the result of
each step. So we have mapped the ODP concepts onto the
UML. We describe hereafter each of these steps and
provide an illustration with the RAM service example.
The figures are realized with Rational Rose©.

Step 1:  defining the object ive

The objective1 of the service is to provide a RAM
service that guarantees the reception of all the sending
messages from a source to a set of receivers that subscribe
the services (Figure 3). It is represented by a Use Case.

MultiCastActifFiable

Figure 3: Objective of the RAM Service

Step  2:  Role  Types

Enumerating all the role types of the system and
their associated behavior enabling to perform this
objective. For this, refine the objective several times, stop
the refinement when elementary objectives are identified,
i.e., the decomposition is no longer possible and assign a
role type to each elementary objective. To represent a type

                                                
1 When mentioned for the first time, the terms corresponding to ODP
concepts will be written in this font

of role and its associated behavior, we use a class
stereotype «RoleType». Since a role is an identifier of a
behavior made up of actions, list these actions and make
distinction between interactions and internal actions
(underline names of internal actions). Express the
constraints on the occurrence of an action as UML notes,
if there are some;

We identify in the RAM service the following role
types (Figure 4):

SourceRole

Transmission()
TraitementRejet()
Retransmission()
Enregistrement()

<<RoleType>>
NoeudIntermediaireRole

Transmission()
TraitementRejet()
Retransmission()
Rejet()
Enregistrement()
Souscription()
Routage()
Reception()

<<RoleType>>
DestinationRole

Rejet()
Souscription()
Reception()

<<RoleType>>

 Figure 4: The RAM Service Roles Types

• The SourceRole: produces and sends data;
• The DestinationRole: receives data for which they

subscribe;
• The IntermediateNodeRole: transmits data to

receivers.
 The objects that fulfill a role instantiated from the role
type “IntermediateNodeRole” can interact together.

 Step 3:  Identifying the S-Community

An Enterprise specification includes at least the
description of a community in which the ODP system is
seen as a single Enterprise Object interacting with its
environment. This community is referred to as the S-
Community. It is represented as a Use Case diagram in
which UML actors represent the environment roles and
Use Cases represent the objective of the system.

Source Destination
MultiCastActiFiable

Figure 5: the RAM Service S-Community

 Among the roles enumerated above, we identify that the
SourceRole and DestinationRole represent the
environment of the system whereas the



IntermediateNodeRole is intrinsic to the RAM system
(Figure 5).

 Step 4: Identifying the Interface roles

An Enterprise specification can include the description
of more than one community. It can thus be structured in
a set of communities that interact, each of these
communities being seen as a composite object (called the
C-object). The particular case of the C-object leads to the
definition of the so-called interface roles. This role
represents some services proposed by a community (as a
C-object) within a larger community.

There is only one community in the RAM service that
models the multicast group. It includes all the objects that
fulfill the roles that are instances of the identified role
types. Thus in this example, there is no interface role.

 For each community:

Step 5: Identifying the Enterprise Objects

Enterprise Object is the basic concept of the
Enterprise viewpoint. It is the model of an entity, this
being a part of the universe of discourse (for example,
human beings, data processing systems, resources etc.). It
is represented by a UML object. However, let us note that
in general, an Enterprise specification does not deal with
instances, but rather with types or templates. The notation
of anonymous object offers this facility and can be used.

For the RAM service, we use this notation for objects
fulfilling the roles instantiated from the SourceRole and
DestinationRole role types and we choose two objects Oi

and Oj that fulfil a role instantiated from the
IntermediateNodeRole role type  (Figure 6). This enables
us to introduce interactions between objects fulfilling a
role of the same type [7].

 Step 6:  Describing the Community behavior

A major structuring concept of an Enterprise
specification is that of community. This is a
configuration of Enterprise objects formed to fill an
objective. The community behavior expresses the
temporal progress of the interactions between the
Enterprise Objects. The term “interaction” is used here
with ODP semantics, i.e. it is not synonymous of method
invocation. Therefore, the arrows used in Figure 6 reflect
no meaning of this type. The behavior of the RAM
service is represented in Figure 6.

Step 7:  Describing the Policies

The policies are used to express rules, which apply
to the Enterprise objects, to the roles and to the

communities. A policy can be expressed as an obligation,
an authorization, a permission or a prohibition. They are
represented as UML notes, which contain OCL (Object
Constraint Language) expressions. The expressions are
presented in terms of invariants, pre or post conditions and
guards.

:Source Oi:NoeudIntermediaire Oj:NoeudIntermediaire :Destination

Souscription

Souscription

Souscription

Transmission

Transmission
Transmission

Rejet
Rejet

Rejet Retransmission
Retransmission

Retransmission

Retransmission

Retransmission Retransmission

Figure 6: The Behavior of the Community

An example of the policies of the RAM service is the
policy applied on the subscription action of the
DestinationRole: “A subscription request is sent to one
source (and only one) of a multicast group”, which
corresponds to an OCL invariant (Figure 7).
 

 

DestinationRole

Rejet()
Souscription()
Reception()

<<RoleType>>

 Groupe.Source = 1

Figure 7: A Policy for the RAM Service

4.2. Conclusion

In the same way, we provide an Information Profile
and a Computational Profile, with their correspondence
rules [5]. Together, the three profiles and their
correspondence rules constitute a guideline enabling the
software modelers to define the PIM of the application
being developed. This ODAC Guideline for PIM is
supplemented with PDM guidelines enabling the software
modelers to describe the platform providing the technical
facilities for the applications execution. In this sense,
ODAC is a methodology compliant with the MDA



principles. We give in the next Section the issues to be
solved in order to get an MDA-oriented methodology.

5 .  ODAC : An MDA-Oriented
Methodology

As mentioned in Section 4, ODAC defines its own
UML profiles in the Guideline for PIM. In order to be
aligned with the MDA recommendations, ongoing work in
ODAC is the use of the EDOC Profiles Elements,
especially those of the Enterprise Collaboration
Architecture (ECA). The EDOC standard already proposes
a mapping between RM-ODP basic concepts and the
EDOC Profile Elements. However, it is insufficient since
many RM-ODP concepts are not considered in this
proposal and thereby it needs to be supplemented. We
evaluate that this work does not present any major
technical difficulty as it corresponds to the adaptation of
the ODAC notation.

Another issue is the transformation of a PIM according
to a PDM in order to get a PSM (see Figure 2). Let us
recall that the PIM describes the functional aspects of the
application, i.e., its business logic, with no technical
consideration of the execution environment that will
support it. The PDM describes the technical aspects of
this execution environment, i.e., the facilities it provides
to applications. The PSM is a configuration of a PIM for
a given PDM. This transformation is a key issue for
which the MDA identifies three basic ways, namely
manual, semi-automatic and fully automatic. The latter is
most interesting and implies the ability of models’ storage
and models’ transformation. Regarding the models’
storage, we already provide a MOF/XMI tool that is a
meta-models repository [2]. Thus models are XMI files on
which XSLT stylesheets can be applied in order to
transform them. All these techniques can then be useful in
the PIM transformation into a PSM. However, the
difficulty is the identification of the transformation rules,
which must express how the PIM and the PDM can be
merged to constitute the PSM. This relates to the
introduction of the non-functional properties described in
the PDM in the PIM that deals with the functional
concerns. For this, works from Aspect-Oriented
Programming that deal with the weaving of aspects could
help and should be investigated in order to study if the
solutions existing at the code level would be adaptable at
the model level. In this case, the transformation rules
would establish the weaving of the PIM profile and the
PDM profile. This issue is for further works.

6 .  Conclusion

We have presented in this paper the ODAC
methodology that is originally based on the RM-ODP and
that is currently adapted to become an MDA-oriented
methodology. The availability of such a methodology
would benefit to software designers because it would help
them to construct the models of applications they are
developing by using modeling tools as described in OMG
Profiles such as EDOC Profiles or platforms-oriented
Profiles (e.g., CORBA Profile or EFB Profile). Thus the
methodology supplements the works on the MDA
currently achieved at the OMG.

Future works are concerned with the key issue of the
automatic transformation of the PIM into the PSM
according to a PDM. Research direction is to investigate
the Aspect-Oriented Programming in order to apply it at
the model level.

7 .  References

[1] J. Bézivin and N. Ploquin, Combining the Power of Meta-
Programming and Meta-Modeling in the OMG/MDA
Framework, OMG's 2nd Workshop on UML˙ for Enterprise
Applications, San Francisco, USA, December 2001
[2] X. Blanc, M.P. Gervais and R. Le Delliou, On the
Construction of Distributed RM-ODP Specifications, In "New
Developments in Distributed Applications and Interoperable
Systems", Kluwer  Academic Publishers, pp99-111
[3] S. Bouzitouna et al., Création de services actifs dans
ANTS , 4ème Colloque francophone GRES, Marrakech,
décembre 2001
[4] M.P. Gervais and F. Muscutariu, Towards an ADL for
Designing Agent-Based Systems, in Proc. of AOSE’01, LNCS
n°2222, Springer Verlag (Ed)
[5] M.P. Gervais, Méthodologie ODAC : le guide de
spécification comportementale, LIP6 2001 / 024, nov. 2001
[6] ISO IS 10746-x, ODP Reference Model Part x, 1995
[7] ISO/IEC CD 15414, ODP Reference Model: Enterprise
Viewpoint, January 2000
[8] J.R. Putman, Architecting with RM-ODP, Prentice Hall
PTR, 2001
[9] OMG, Model Driven Architecture, A Technical
Perspective, Document ab/21001-02-05, Februray 2001,
http://www.omg.org
[10] OMG, UML Profile for Enterprise Distributed Object
Computing, Document ptc/2001-12-04, December 2001
[11] OMG, Unified Modeling Language Specification v. 1.4,
TC. Document ad/01-02-13, Februray 2001
[12] P. Spathis, K.-L. Thai, Spécifications du multicast fiable,
livrable RNRT Amarrage-SP2-D2.3, Dec 2000 (in French)


