
Good Codes based on Very Sparse MatricesDavid J.C. MacKay and Radford M. NealNote: the following paper was completed 6th October 1995 and was publishedin \Cryptography and Coding. 5th IMA Conference", ed. Colin Boyd, LectureNotes in Computer Science number 1025, pp. 100-111 (1995) Springer, Berlin.Unfortunately this paper contains two errors with respect to Gallager's workon low density parity check codes. We gained the impression from the literaturethat \the sparse parity check codes studied by Gallager are bad," but this is infact not the case. We also had the impression that Gallager's decoding algorithmwas the same as Meier and Sta�elbach's, and that our use of belief propagationwas a new innovation. However, Gallager in fact proposed and used the identicalbelief propagation algorithm in 1962.We became aware of these errors shortly before the IMA conference on Cryp-tography and Coding (December 1995). We established that Gallager's low den-sity parity check codes share all the `goodness' properties of the `MN' codespresented in this paper, and that their empirical performance is superior, asdescribed in our more recent papers.



Good Codes based on Very Sparse MatricesDavid J.C. MacKay1 and Radford M. Neal21 Cavendish Laboratory, Cambridge, CB3 0HE. United Kindom.2 Depts. of Statistics and Computer Science, Univ. of Toronto, M5S 1A1. Canada.Abstract. We present a new family of error-correcting codes for thebinary symmetric channel. These codes are designed to encode a sparsesource, and are de�ned in terms of very sparse invertible matrices, in sucha way that the decoder can treat the signal and the noise symmetrically.The decoding problem involves only very sparse matrices and sparsevectors, and so is a promising candidate for practical decoding.It can be proved that these codes are `very good', in that sequences ofcodes exist which, when optimally decoded, achieve information rates upto the Shannon limit.We give experimental results using a free energy minimization algorithmand a belief propagation algorithm for decoding, demonstrating practi-cal performance superior to that of both Bose-Chaudhury-Hocquenghemcodes and Reed-Muller codes over a wide range of noise levels.We regret that lack of space prevents presentation of all our theoretical andexperimental results. The full text of this paper may be found elsewhere [6].1 BackgroundIn 1948, Shannon [14] proved that there exist block codes, for a given memorylesschannel, that achieve arbitrarily small probability of error � at any communi-cation rate R up to the capacity C of the channel. We will refer to such codefamilies as `very good' codes. By `good' codes we mean code families that achievearbitrarily small probability of error � at non-zero communication rates R up tosome Rmax that may be less than the capacity C of the given channel. By `bad'codes we mean code families which can only achieve arbitrarily small probabil-ity of error � by decreasing the information rate R to zero. (This does not meanthat they are useless for practical purposes.) By `practical' codes we mean codefamilies which can be encoded and decoded in time and space polynomial in theblock length.Since 1948, few constructive and practical codes that are good have beenfound, fewer still that are practical, and none at all that are both practicaland very good [8]. Goppa's recent algebraic geometry codes (reviewed in [15])appear to be both practical and good, but we believe that the literature has notestablished whether they are very good.In this paper we present a new code family that we call `MN codes'. Thesecodes have a very sparse structure that shows promise for practical decoding.



At the same time it can be proved that these codes are very good, in that se-quences of codes exist which, when optimally decoded, achieve information ratesup to the Shannon limit of the binary symmetric channel [6]. In sections 3 and4 we describe empirical results of computer experiments using �rst a free energyminimization algorithm [5] and second a `belief propagation' algorithm for de-coding. Our experiments show that practical performance signi�cantly superiorto that of BCH and Reed-Muller codes (in terms of information rate for a givenprobability of decoder error) can be achieved by MN codes.2 Description of MN codesWe will denote the error probability of the binary symmetric channel (BSC) byfn, where fn < 0:5, and the binary entropy function by H2(f) = f log2(1=f) +(1�f) log2(1=(1�f)). The weight of a vector or matrix is the number of 1s in it.We denote the weight of a vector x by w(x). The density of a source of randombits is the expected fraction of 1 bits. A source is sparse if its density is less than0.5. A vector v is very sparse if its density vanishes as its length increases, forexample, if a constant number t of its bits are 1s. The capacity C(fn) of a BSCwith noise density fn is, in bits per cycle, C(fn) = 1�H2(fn): The rate R0(fn)is R0(fn) � 1� log2 h1 + 2pfn(1 � fn)i : (1)This is the computational cuto� of sequential decoding for convolutional codes|the rate beyond which the expected cost of achieving vanishing error probabilityusing sequential decoding becomes in�nite.The Gilbert bound GV (fn) isGV (fn) = �1�H2(2fn) fn < 1=40 fn � 1=4: (2)This is the rate at which one can communicate with a code whose codewordssatisfy the Gilbert-Varshamov minimumdistance bound, assuming bounded dis-tance decoding [7].2.1 Conventional linear codes, and the ideas behind MN codesA linear error correcting code can be represented by a N by K binary matrixG(the generator matrix), such that a binary message s is encoded as the vectort = Gsmod2 (�gure 1a). (Note that our generator matrices act to the rightrather than the left.) The channel adds noise n to this vector with the resultingreceived signal r being given by:(Gs+ n)mod2 = r: (3)The decoder's task is to infer s given the received message r, and the assumednoise properties of the channel. The optimal decoder returns the message s that



a) G s = t b) G s = tFig. 1. a) A conventional code. The source vector s, of length K, is dense. The trans-mitted vector t is of length N > K. Here N = 2K, so the symbol rate and informationrate are both K=N = 0:5 bits. b) Square code for a sparse source. The symbol rate is 1,but if the density of the source, fs, is 0.1 then the information rate is H2(0:1) = 0:47,about the same as that of the conventional code.maximizes the posterior probabilityP (sjr;G) = P (rjs;G)P (s)P (rjG) : (4)It is often not practical to implement the optimal decoder.It is conventional to de�ne the error correcting code to have N > K, andto use signals s of density fs = 0:5. The (N �K) extra bits are parity checkbits, which produce redundancy in the transmitted vector t. This redundancy isexploited by the decoding algorithm to infer the noise vector n.MN codes take a di�erent approach. Instead of adding redundancy in theform of parity check bits, we assume that the source itself is redundant, havingfs, the density of s, less than 0.5. Consecutive source symbols are independentand identically distributed. Redundant sources of this type can be producedfrom other sources by using a variation on arithmetic coding [16, 13]; one simplyreverses the role of encoder and decoder in a standard arithmetic coder basedon a model corresponding to the sparse messages [6]. Given that the source isalready redundant, we are no longer constrained to have N > K. In MN codes,N may be less than K, equal to K or greater than K. We distinguish betweenthe `symbol rate' of the code, K=N , and the `information rate' of the code,H2(fs)K=N . Error-free communication may be possible if the information rateis less than the capacity of the channel. For example, consider a BSC havingfn = 0:1, and assume that we have a source with density fs = 0:1. Then wemight construct a code with N = K, i.e., a square linear code with symbolrate 1 (�gure 1b). The information rate, 0.47, is less than the channel capacity,0.53, so it is plausible that we might construct a sequence of codes of this formachieving vanishing probability of error.The ideas behind MN codes are (1) that we use a sparse source and (2) thatwe construct the generator matrix in terms of invertible matrices, such that thesparse source and the sparse noise can be treated symmetrically in the decodingproblem.



a) C�1n Cs s + n= r b) Cs Cn sn= zFig. 2. Pictorial representation of MN Code with � = 1. a) Encoding, transmissionand reception. b) Decoding. The matrices Cs and Cn are very sparse. The vectors sand n are sparse. The vector z is given by z = Cnr.2.2 Construction of MN codesThe encoder is a linear block code constructed from very sparse matrices asfollows. A transmitted block length N and a source block length K = �N areselected. Figures 1 and 2 illustrate the case � = 1. The symbol rate of the code is� and the information rate is �H2(fs). We select a column weight t, which is aninteger greater than or equal to 3. We create two matrices Cn and Cs as follows.The matrixCn is a square N�N matrix that is very sparse and invertible. Itis created randomly with exactly weight t per column and weight t per row. [Sucha random sparse matrix is not necessarily invertible, but there is a probability(for largeN ) of about 0.29 that it is.] The inverseC�1n of this matrix is computed.This inverse is likely to be a dense matrix. The inversion takes N3 time and isperformed once only.The matrix Cs is a rectangular N � K matrix that is very sparse. [N rowsand K columns.] It is created randomly with exactly weight t per column and aweight per row as uniform as possible. If � is chosen to be an appropriate ratioof integers then the number per row can be constrained to be exactly �t.We mention three variations on this construction.1. By slightly relaxing the constraint of weight t per column (by allowing oneor two columns to have weight t+ 1), a random very sparse Cn may easilybe made invertible, by ipping one or two bits.2. When generating the matrices Cs and Cn, one can constrain all pairs ofcolumns in the matrix [CsCn] to have an overlap (the number of 1s in com-mon between the two vectors) � 1. This is expected to improve the propertiesof the ensemble of codes, for reasons explained in [6].3. One can further constrain the matrix [CsCn] so that the topology of thecorresponding belief network does not contain short cycles. This is discussedfurther in section 3.



2.3 EncodingA source vector s of length �N is encoded into a transmitted vector t de�nedby (�gure 2a): t = C�1n Cssmod2: (5)This encoding operation takes time of order min��Nt +N2; �N2�.2.4 The decoding problemThe received vector is r = t+ nmod2; (6)where the noise, n, is assumed to be a sparse random vector with independentidentically distributed bits, density fn. The �rst step of the decoding is to com-pute: z = Cnr; (7)which takes time of order Nt. Because z = Cn(t+n) = Css+Cnn, the decodingtask is then to solve for x = �sn� the equation:Ax = z; (8)where A is the N by (K+N ) matrix [CsCn] (see �gure 2b). The optimal decoder,when fs = fn, is an algorithm that �nds the sparsest vector x̂ that satis�esAx̂ = z.We emphasize two properties of equation (8):1. There is a pleasing symmetry between the sparse source vector s and thesparse noise vector n, especially if fs = fn.2. Both the matrix A and the unknown vector x are sparse. The vector xhas density fs or fn, and the matrix A is very sparse, having only t 1s percolumn, where t may be much less than N . One might therefore hope that itis practical to solve this decoding problem. The decoding problem is of thetype studied by Gallager [4]. However, the sparse parity check codes studiedby Gallager are bad. The trick that makes MN codes good is the constructionin terms of an invertible matrix.We now describe theoretical properties that we have proved for MN codes. Wethen describe empirical results with a practical decoding algorithm.2.5 Theoretical properties proven for MN codesIn [6] we prove properties of these codes by studying properties of a `typical setdecoder' [3] for the decoding problem Ax = z, averaging over an ensemble ofrandom matrices A. We prove two theorems (our proofs are computer-aided),whose implications are as follows.
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t=3Fig. 3.Main theoretical result. Lower bounds R�(f; t) on achievable informationrate versus noise level f for MN codes with t from 3 to 6. In bits, compared withthe channel capacity. The lines are lower bounds on rates achievable by MNcodes. As the weight per column t increases the achieveable region rises towardsthe fundamental limit, the capacity.1. MN codes with weight per column t � 3 are good, i.e., can achieve error-free transmission up to a non-zero information rate R�(f; t), if N is madesu�ciently large. This rate is plotted numerically in �gure 3. This rate isless than the capacity C(f), but for useful values of f , even for t as small as4, it is not much below the capacity.2. MN codes are very good|if we are allowed to choose t, then we can get arbi-trarily close to capacity, still using very sparse matrices with t=N arbitrarilysmall. The second theorem states:Given a density f < 0:5, a desired information rate R < C(f), anda desired block error probability � > 0, there exists an integer t � 3,a symbol rate � and an Nmin such that for any N > Nmin, there is amatrixA having N rows and K 0 = N +K = (�+1)N columns withweight t or less per column, with the following property: if x hasdensity f then the optimal decoder from z = Ax back to x̂ achievesa probability of error less than �, and the information rate that isachieved is � R.3 Practical decoding by free energy minimizationWe generated random matrices A corresponding to symbol rate � = 1, withuniform weight t = 4 per column and tr = 8 per row. We �rst attempted to solvethe decoding problem using a variational free energy minimization algorithm [5].We found that as the block size N was increased at a constant information rate,the performance improved.We examined the errors made by the free energy minimization decoder andfound that they tended to occur when the vector x was such that another slightly



di�erent typical vector x0 had a similar (but not identical) encoding z0. Theseerrors were attributable to rare topologies in the network corresponding to theA matrix such as the topology illustrated in �gure 4c. We can eliminate thepossibility of these errors by modifying the ensemble of random matrices A sothat the corresponding network does not have short cycles in it.The topological modi�cations gave codes which were able to communicate athigher rates with a smaller probability of error. The conclusion of these exper-iments was that MN codes, when decoded by free energy minimization, can besuperior to Reed-Muller codes, but not to BCH codes. Signi�cantly better resultswere obtained when we used the belief net decoder which we now describe.(a) (d)(b) (e)(c) (f)Fig. 4. The vectors x and z viewed as nodes in a belief network. White circles denotebits xk. Black dots denote checks zn. We illustrate the case t = 4; tr = 8. (a) This�gure emphasizes with bold lines the 8 connections to one check and the 4 connectionsfrom one bit. Every bit xk is the parent of 4 checks zn, and each check zn is the childof 8 bits. (b-e) Certain topological structures are undesirable in the network de�ned bythe matrix A: in (b) there is a cycle of length 4 in the network; we forbid this topologyby saying, equivalently, that the overlap between two columns of A must not exceed 1;in (c, d, e) more complex topologies are illustrated. Our most successful experimentshave used matrices A in which these topologies are also forbidden [we eliminate bitsthat are involved in structures like the `doublet' (e), of which (c) and (d) are hazardousspecial cases]. This means that every bit's `friends' (other bits that are parents of itschildren) consist of t non-overlapping sets of bits as shown in (f).4 Belief network decodingWe have developed a `belief net decoder' for the problem Ax = zmod2, whichgeneralizes the methods of Gallager [4] and Meier and Sta�elbach [9] by usingmethods of belief propagation over networks [11].We refer to the elements zn corresponding to each row n = 1 : : :N of A aschecks. We think of the set of bits x and checks z as making up a `belief network',also known as a `Bayesian network', `causal network', or `inuence diagram', inwhich every bit xk is the parent of t checks zn, and each check zn is the child oftr bits (�gure 4). We aim, given the observed checks, to compute the marginalposterior probabilities P (xk = 1jz;A) for each k. Algorithms for the computa-tion of such marginal probabilities in belief networks are found in [11]. These



computations are expected to be intractable for the belief net corresponding toour problem Ax = zmod2 because its topology contains many cycles. However,it is interesting to implement the decoding algorithm that would be appropriateif there were no cycles, on the assumption that the errors introduced might berelatively small (c.f. [1]). As the size N of the code is increased, it becomes in-creasingly easy to produce codes in which there are no cycles of any given length,so we expect that, asymptotically, this algorithm will be an e�ective algorithm.4.1 The algorithmIn the following algorithm quantities qnk and rnk associated with each 1 bit inthe Amatrix are iteratively updated. We denote the set of bits k that participatein check n by K(n) � fk : Ank = 1g. Similarly we de�ne the set of checks inwhich bit k participates, N (k) � fn : Ank = 1g.Initialization. Let p0k = P (xk = 0) (the prior probability that bit xk is 0), andlet p1k = P (xk = 1) = 1 � p0k. Normally, p1k will be either fs or fn, dependingon whether bit k is part of the message or the noise. For every (k; n) suchthat Ank = 1 the variables q0nk and q1nk are initialized to the values p0k and p1krespectively.Horizontal pass. In the horizontal step of the algorithm, we run through thechecks n and compute for each k 2 K(n) two probabilities: the probability of theobserved value of zn arising when xk = 0, given that the other bits fxk0 ; k0 6= kghave a separable distribution given by the probabilities fq0nk0; q1nk0g:r0nk = Xfxk0 : k0 6=kgP (zn j xk = 0; fxk0 : k0 6= kg) Yk0 6=k qxk0nk0 (9)and the probability of the observed value of zn arising when xk = 1, r1nk, de-�ned similarly. These probabilities can be computed e�ciently using forward andbackward passes (c.f. [5]), in which products of the di�erences �qnk � q0nk � q1nkare computed. We obtain �rnk � r0nk � r1nk from the identity:�rnk = (�1)zn Yk02K(n);k0 6=k �qnk0: (10)Vertical pass. The vertical step takes the computed values of r0nk and r1nk andupdates the values of the probabilities q0nk and q1nk. For each k we compute:q0nk = �nk p0k Yn02N (k);n0 6=n r0n0k; q1nk = �nk p1k Yn02N (k);n0 6=n r1n0k; (11)



where �nk is a constant such that q0nk + q1nk = 1. We can also compute the`pseudoposterior probabilities' q0k and q1k at this iteration, given by:q0k = �k p0k Yn2N (k) r0nk; q1k = �k p1k Yn2N (k) r1nk: (12)At this point, the algorithm repeats from the horizontal pass.Decoding. Our decoding procedure is to set x̂k to 1 if q1k > 0:5 and see if thechecks Ax̂ = z are all satis�ed, halting when they are, and declaring a failureif some maximum number of iterations (e.g., 1000) occurs without successfuldecoding.4.2 Relationship to Gallager's algorithmGallager [4] and Meier and Sta�elbach [9] implemented algorithms very similarto this belief net decoder, also studied by Mihaljevi�c and Goli�c [10]. The maindi�erence in their algorithms is that they did not distinguish between the prob-abilities q0nk and q1nk for di�erent values of n; rather, they computed q0k and q1k,as given above, and then proceeded with the horizontal pass with all q0nk set toq0k and all q1nk set to q1k.4.3 Empirical results: belief net decoderWe found the performance of the belief net decoder to be far better than thatof the free energy minimization decoder. We found that the results were best fort = 3 and became steadily worse as t increased.In �gure 5 we compare two MN codes with BCH codes, which are describedin [12] as \the best known constructive codes" for memoryless noisy channels,and with Reed-Muller (RM) codes (block sizes up to 1024). Figure 5 showsthe codes' probability of block error versus their rate. All relevant BCH codeslisted in [12] are included. To compute the probability of error for BCH codeswe evaluated the probability of more than t errors in n bits, as speci�ed inthe (n; k; t) description of the code. In principle, it may be possible in somecases to make a BCH decoder that corrects more than t errors, but according toBerlekamp [2], \little is known about: : :how to go about �nding the solutions"and \if there are more than t+1 errors then the situation gets very complicatedvery quickly." Similarly, for RM codes of minimum distance d, performance wascomputed assuming that more than bd=2c errors cannot be corrected.The mean number of iterations of the algorithm to obtain a successful decod-ing was about 20 for all the experiments reported here. In some cases as manyas 800 iterations took place before a successful decoding emerged.
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code scales as N3, the encoding time as N2, and the decoding time as N , whereN is the block size.5.1 Contrasts with convention in coding theoryIn a conventional linear (N;K) code, the codewords form a complete linearsubspace of f0; 1gN . MN codes are only linear in the sense that the transmittedvector t is a linear function of a source vector s. The source is sparse, so thecodewords that have high probability are only a small subset of a complete linearsubspace.We have obtained the biggest improvement over BCH codes and RM codesby going to high noise levels, e.g., fn = 0:15. Critics might assert that realchannels do not have such high noise levels. We would respond that perhapsthey ought to|if one increases the clock rate of a channel so that its noise levelalso increases, there might well be a net increase in capacity. Maybe the mainreason that channels with high noise levels are not used is that until now theavailable codes for error correction have not been good enough.5.2 Future workMN codes can also be de�ned over q-ary alphabets consisting of the elementsof GF (q). These codes would be suitable for the q-ary symmetric channel. Thedecoding algorithms presented here would also generalize. It remains to be es-tablished whether our decoders' performance would be any better or worse underthis generalization to q-ary alphabets.We conjecture that as we get closer to the Shannon limit, the decoding prob-lem gets harder. It would be interesting to obtain a convergence proof for thebelief net decoding algorithm and to develop ways of reducing the inaccuraciesintroduced by the approach of ignoring the cycles present in the belief network.The most interesting challenge is to understand whether R0(f) is indeed thefundamental limit for practical decoding of MN codes.AcknowledgementsDJCM (mackay@mrao.cam.ac.uk) is grateful to Roger Sewell and David Aldousfor helpful discussions and M.D. MacLeod and the Computer Laboratory, Cam-bridge for kind loans of books. DJCM also thanks Geo� Hinton for generouslysupporting his visits to the University of Toronto. DJCM was supported by theRoyal Society Smithson research fellowship. RMN (radford@stat.toronto.edu)was assisted by a grant from the Natural Sciences and Engineering ResearchCouncil of Canada.References1. S. Andreassen, M. Woldbye, B. Falck, and S. Andersen. MUNIN - a causal prob-abilistic network for the interpretation of electromyographic �ndings. In Proc. ofthe 10th National Conf. on AI, AAAI: Menlo Park CA., pages 121{123, 1987.
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