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Note: the following paper was completed 6th October 1995 and was published
in “Cryptography and Coding. 5th IMA Conference” | ed. Colin Boyd, Lecture
Notes in Computer Science number 1025, pp. 100-111 (1995) Springer, Berlin.

Unfortunately this paper contains two errors with respect to Gallager’s work
on low density parity check codes. We gained the impression from the literature
that “the sparse parity check codes studied by Gallager are bad,” but this is in
fact not the case. We also had the impression that Gallager’s decoding algorithm
was the same as Meier and Staffelbach’s; and that our use of belief propagation
was a new innovation. However, Gallager in fact proposed and used the identical
belief propagation algorithm in 1962.

We became aware of these errors shortly before the IMA conference on Cryp-
tography and Coding (December 1995). We established that Gallager’s low den-
sity parity check codes share all the ‘goodness’ properties of the ‘MN’ codes
presented in this paper, and that their empirical performance is superior, as
described in our more recent papers.
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Abstract. We present a new family of error-correcting codes for the
binary symmetric channel. These codes are designed to encode a sparse
source, and are defined in terms of very sparse invertible matrices, in such
a way that the decoder can treat the signal and the noise symmetrically.
The decoding problem involves only very sparse matrices and sparse
vectors, and so is a promising candidate for practical decoding.

It can be proved that these codes are ‘very good’, in that sequences of
codes exist which, when optimally decoded, achieve information rates up
to the Shannon limit.

We give experimental results using a free energy minimization algorithm
and a belief propagation algorithm for decoding, demonstrating practi-
cal performance superior to that of both Bose-Chaudhury-Hocquenghem
codes and Reed-Muller codes over a wide range of noise levels.

We regret that lack of space prevents presentation of all our theoretical and
experimental results. The full text of this paper may be found elsewhere [6].

1 Background

In 1948, Shannon [14] proved that there exist block codes, for a given memoryless
channel, that achieve arbitrarily small probability of error ¢ at any communi-
cation rate R up to the capacity C' of the channel. We will refer to such code
families as ‘very good’ codes. By ‘good’ codes we mean code families that achieve
arbitrarily small probability of error € at non-zero communication rates R up to
some Ry, .x that may be less than the capacity C' of the given channel. By ‘bad’
codes we mean code families which can only achieve arbitrarily small probabil-
ity of error € by decreasing the information rate R to zero. (This does not mean
that they are useless for practical purposes.) By ‘practical’ codes we mean code
families which can be encoded and decoded in time and space polynomial in the
block length.

Since 1948, few constructive and practical codes that are good have been
found, fewer still that are practical, and none at all that are both practical
and very good [8]. Goppa’s recent algebraic geometry codes (reviewed in [15])
appear to be both practical and good, but we believe that the literature has not
established whether they are very good.

In this paper we present a new code family that we call ‘MN codes’. These
codes have a very sparse structure that shows promise for practical decoding.



At the same time it can be proved that these codes are very good, in that se-
quences of codes exist which, when optimally decoded, achieve information rates
up to the Shannon limit of the binary symmetric channel [6]. In sections 3 and
4 we describe empirical results of computer experiments using first a free energy
minimization algorithm [5] and second a ‘belief propagation’ algorithm for de-
coding. Our experiments show that practical performance significantly superior
to that of BCH and Reed-Muller codes (in terms of information rate for a given
probability of decoder error) can be achieved by MN codes.

2 Description of MN codes

We will denote the error probability of the binary symmetric channel (BSC) by
fo, where f < 0.5, and the binary entropy function by Hs(f) = flog,(1/f) +
(1—=f)log,(1/(1=f)). The weight of a vector or matrix is the number of 1s in it.
We denote the weight of a vector x by w(x). The density of a source of random
bits is the expected fraction of 1 bits. A source is sparse if its density 1s less than
0.5. A vector v is very sparse if its density vanishes as its length increases, for
example, if a constant number ¢ of its bits are 1s. The capacity C'(fy) of a BSC
with noise density fy is, in bits per cycle, C(fy) = 1 — Ha(fn). The rate Ro(fn)

Ro(fy) = 1 - log, [142y/F (1= fu)|. (1)

This is the computational cutoff of sequential decoding for convolutional codes—
the rate beyond which the expected cost of achieving vanishing error probability
using sequential decoding becomes infinite.

The Gilbert bound GV (fy) is

Gvif) = {7 R B )

This is the rate at which one can communicate with a code whose codewords
satisfy the Gilbert-Varshamov minimum distance bound, assuming bounded dis-
tance decoding [7].

2.1 Conventional linear codes, and the ideas behind MN codes

A linear error correcting code can be represented by a N by K binary matrix G
(the generator matrix), such that a binary message s is encoded as the vector
t = Gsmod?2 (figure la). (Note that our generator matrices act to the right
rather than the left.) The channel adds noise n to this vector with the resulting
received signal r being given by:

(Gs+n)mod2 =r. (3)

The decoder’s task is to infer s given the received message r, and the assumed
noise properties of the channel. The optimal decoder returns the message s that
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Fig.1. a) A conventional code. The source vector s, of length K, is dense. The trans-
mitted vector t is of length N > K. Here N = 2K, so the symbol rate and information
rate are both K /N = 0.5 bits. b) Square code for a sparse source. The symbol rate is 1,
but if the density of the source, f;, is 0.1 then the information rate is H2(0.1) = 0.47,
about the same as that of the conventional code.

maximizes the posterior probability

P(r|s,G)P(s)

P(s|lr,G) = POlG) (4)

It is often not practical to implement the optimal decoder.

It is conventional to define the error correcting code to have N > K, and
to use signals s of density fs = 0.5. The (N — K) extra bits are parity check
bits, which produce redundancy in the transmitted vector t. This redundancy is
exploited by the decoding algorithm to infer the noise vector n.

MN codes take a different approach. Instead of adding redundancy in the
form of parity check bits, we assume that the source itself is redundant, having
fs, the density of s, less than 0.5. Consecutive source symbols are independent
and identically distributed. Redundant sources of this type can be produced
from other sources by using a variation on arithmetic coding [16, 13]; one simply
reverses the role of encoder and decoder in a standard arithmetic coder based
on a model corresponding to the sparse messages [6]. Given that the source is
already redundant, we are no longer constrained to have N > K. In MN codes,
N may be less than K, equal to K or greater than K. We distinguish between
the ‘symbol rate’ of the code, K/N, and the ‘information rate’ of the code,
Hy(fs)K/N. Error-free communication may be possible if the information rate
is less than the capacity of the channel. For example, consider a BSC having
fo = 0.1, and assume that we have a source with density fs; = 0.1. Then we
might construct a code with N = K, i.e.; a square linear code with symbol
rate 1 (figure 1b). The information rate, 0.47, is less than the channel capacity,
0.53, so it is plausible that we might construct a sequence of codes of this form
achieving vanishing probability of error.

The ideas behind MN codes are (1) that we use a sparse source and (2) that
we construct the generator matrix in terms of invertible matrices, such that the
sparse source and the sparse noise can be treated symmetrically in the decoding
problem.
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Fig. 2. Pictorial representation of MN Code with p = 1. a) Encoding, transmission
and reception. b) Decoding. The matrices C, and C, are very sparse. The vectors s
and n are sparse. The vector z is given by z = Cyr.

2.2 Construction of MN codes

The encoder is a linear block code constructed from very sparse matrices as
follows. A transmitted block length N and a source block length K = pN are
selected. Figures 1 and 2 illustrate the case p = 1. The symbol rate of the code is
p and the information rate is pH2(fs). We select a column weight t, which is an
integer greater than or equal to 3. We create two matrices C, and Cg as follows.

The matrix C, is a square N X N matrix that is very sparse and invertible. It
is created randomly with exactly weight ¢ per column and weight ¢ per row. [Such
a random sparse matrix 1s not necessarily invertible, but there is a probability
(for large N) of about 0.29 that it is.] The inverse C ! of this matrix is computed.
This inverse is likely to be a dense matrix. The inversion takes N3 time and is
performed once only.

The matrix Cs is a rectangular N x K matrix that is very sparse. [N rows
and K columns.] It is created randomly with exactly weight ¢ per column and a
weight per row as uniform as possible. If p is chosen to be an appropriate ratio
of integers then the number per row can be constrained to be exactly pt.

We mention three variations on this construction.

1. By slightly relaxing the constraint of weight ¢ per column (by allowing one
or two columns to have weight ¢ + 1), a random very sparse C, may easily
be made invertible, by flipping one or two bits.

2. When generating the matrices Cs and Cy, one can constrain all pairs of
columns in the matrix [CsC,] to have an overlap (the number of 1s in com-
mon between the two vectors) < 1. This is expected to improve the properties
of the ensemble of codes, for reasons explained in [6].

3. One can further constrain the matrix [C;Cy] so that the topology of the
corresponding belief network does not contain short cycles. This 1s discussed
further in section 3.



2.3 Encoding

A source vector s of length pN is encoded into a transmitted vector t defined
by (figure 2a):
t =C;'Cismod?2. (5)

This encoding operation takes time of order min [pNt + N2, pNZ].

2.4 The decoding problem

The received vector is
r=t+nmod2, (6)

where the noise, n, is assumed to be a sparse random vector with independent
identically distributed bits, density f,,. The first step of the decoding is to com-
pute:

z = Cyr, (7)

which takes time of order Nt. Because z = C,(t+n) = Css+ Cyn, the decoding

task is then to solve for x = [Isl] the equation:

Ax =z, (8)

where A is the N by (K4+N) matrix [CsCy] (see figure 2b). The optimal decoder,
when fg = fu, is an algorithm that finds the sparsest vector x that satisfies
Ax = z.

We emphasize two properties of equation (8):

1. There is a pleasing symmetry between the sparse source vector s and the
sparse noise vector n, especially if fs = fi.

2. Both the matrix A and the unknown vector x are sparse. The vector x
has density fs or f,, and the matrix A is very sparse, having only ¢ 1s per
column, where ¢ may be much less than N. One might therefore hope that it
is practical to solve this decoding problem. The decoding problem is of the
type studied by Gallager [4]. However, the sparse parity check codes studied
by Gallager are bad. The trick that makes MN codes good is the construction
in terms of an invertible matrix.

We now describe theoretical properties that we have proved for MN codes. We
then describe empirical results with a practical decoding algorithm.

2.5 Theoretical properties proven for MN codes

In [6] we prove properties of these codes by studying properties of a ‘typical set
decoder’ [3] for the decoding problem Ax = z, averaging over an ensemble of
random matrices A. We prove two theorems (our proofs are computer-aided),
whose implications are as follows.



T
Capacity —
=6 -

08 T
0.6 - SRR 4
04l 7 i

02 NN

0.001 0.01 0.1

Fig. 3. Main theoretical result. Lower bounds R*(f, ) on achievable information
rate versus noise level f for MN codes with ¢ from 3 to 6. In bits, compared with
the channel capacity. The lines are lower bounds on rates achievable by MN
codes. As the weight per column ¢ increases the achieveable region rises towards
the fundamental limit, the capacity.

1. MN codes with weight per column ¢ > 3 are good, i.e., can achieve error-
free transmission up to a non-zero information rate R*(f,t), if N is made
sufficiently large. This rate i1s plotted numerically in figure 3. This rate is
less than the capacity C'(f), but for useful values of f, even for ¢ as small as
4, 1t is not much below the capacity.

2. MN codes are very good—if we are allowed to choose ¢, then we can get arbi-
trarily close to capacity, still using very sparse matrices with ¢/N arbitrarily
small. The second theorem states:

Given a density f < 0.5, a desired information rate R < C'(f), and
a desired block error probability € > 0, there exists an integer ¢ > 3,
a symbol rate p and an Ny, such that for any N > Ny, there is a
matrix A having N rows and K’ = N+ K = (p+1)N columns with
weight ¢ or less per column, with the following property: if x has
density f then the optimal decoder from z = Ax back to x achieves
a probability of error less than ¢, and the information rate that is
achieved is > R.

3 Practical decoding by free energy minimization

We generated random matrices A corresponding to symbol rate p = 1, with
uniform weight ¢ = 4 per column and ¢, = 8 per row. We first attempted to solve
the decoding problem using a variational free energy minimization algorithm [5].
We found that as the block size N was increased at a constant information rate,
the performance improved.

We examined the errors made by the free energy minimization decoder and
found that they tended to occur when the vector x was such that another slightly



different typical vector x’ had a similar (but not identical) encoding z’. These
errors were attributable to rare topologies in the network corresponding to the
A matrix such as the topology illustrated in figure 4c. We can eliminate the
possibility of these errors by modifying the ensemble of random matrices A so
that the corresponding network does not have short cycles in it.

The topological modifications gave codes which were able to communicate at
higher rates with a smaller probability of error. The conclusion of these exper-
iments was that MN codes, when decoded by free energy minimization, can be
superior to Reed-Muller codes, but not to BCH codes. Significantly better results
were obtained when we used the belief net decoder which we now describe.
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Fig. 4. The vectors x and z viewed as nodes in a belief network. White circles denote
bits z. Black dots denote checks z,. We illustrate the case t = 4,t, = 8. (a) This
figure emphasizes with bold lines the 8 connections to one check and the 4 connections
from one bit. Every bit zj is the parent of 4 checks z,, and each check z, is the child
of 8 bits. (b-e) Certain topological structures are undesirable in the network defined by
the matrix A: in (b) there is a cycle of length 4 in the network; we forbid this topology
by saying, equivalently, that the overlap between two columns of A must not exceed 1;
in (c, d, €) more complex topologies are illustrated. Our most successful experiments
have used matrices A in which these topologies are also forbidden [we eliminate bits
that are involved in structures like the ‘doublet’ (e), of which (c) and (d) are hazardous
special cases]. This means that every bit’s ‘friends’ (other bits that are parents of its
children) consist of ¢ non-overlapping sets of bits as shown in (f).

4 Belief network decoding

We have developed a ‘belief net decoder’ for the problem Ax = zmod 2, which
generalizes the methods of Gallager [4] and Meier and Staffelbach [9] by using
methods of beliel propagation over networks [11].

We refer to the elements z, corresponding to each row n =1...N of A as
checks. We think of the set of bits x and checks z as making up a ‘belief network’,
also known as a ‘Bayesian network’, ‘causal network’; or ‘influence diagram’, in
which every bit xj is the parent of ¢t checks z,, and each check z, is the child of
t, bits (figure 4). We aim, given the observed checks, to compute the marginal
posterior probabilities P(z; = 1]z, A) for each k. Algorithms for the computa-
tion of such marginal probabilities in belief networks are found in [11]. These



computations are expected to be intractable for the belief net corresponding to
our problem Ax = zmod?2 because its topology contains many cycles. However,
it is interesting to implement the decoding algorithm that would be appropriate
if there were no cycles, on the assumption that the errors introduced might be
relatively small (c.f. [1]). As the size N of the code is increased, it becomes in-
creasingly easy to produce codes in which there are no cycles of any given length,
so we expect that, asymptotically, this algorithm will be an effective algorithm.

4.1 The algorithm

In the following algorithm quantities ¢, and r,; associated with each 1 bit in
the A matrix are iteratively updated. We denote the set of bits k that participate
in check n by K(n) = {k : Asr = 1}. Similarly we define the set of checks in
which bit k participates, N'(k) = {n : A, = 1}.

Initialization. Let p) = P(x; = 0) (the prior probability that bit z is 0), and
let p; = P(zx = 1) = 1 — p2. Normally, pi will be either f; or f,, depending
on whether bit k is part of the message or the noise. For every (k,n) such
that A, = 1 the variables ¢°, and ¢, are initialized to the values p) and p}
respectively.

Horizontal pass. In the horizontal step of the algorithm, we run through the
checks n and compute for each k& € K(n) two probabilities: the probability of the
observed value of z, arising when 5 = 0, given that the other bits {wy/, k' # k}
have a separable distribution given by the probabilities {¢°,, ¢!,/ }:

rgk = Z Plzp | g =0, {ap : K £ k}) H qZZ', (9)

{zg : k'#k} k'#k

and the probability of the observed value of z, arising when xx = 1, 7}, de-
fined similarly. These probabilities can be computed efficiently using forward and
backward passes (c.f. [5]), in which products of the differences dq,x = ¢%, — ¢},
are computed. We obtain ér,z = 72, — rl, from the identity:

Srap = (=1 J]  Sqnn- (10)
k'eK(n),k'£k

Vertical pass. The vertical step takes the computed values of 2, and r}, and
updates the values of the probabilities ¢°, and ¢!,. For each k we compute:

ok = Qnk Ph H Pk dnk = Onk Dy H Pk (11)
n'eN(k),n'#n n'eN(k),n'#n



where ay,i is a constant such that ¢2, + ¢1, = 1. We can also compute the
‘pseudoposterior probabilities’ ¢2 and g¢; at this iteration, given by:

a=ceph [[ v ah=cwpk [] s (12)
neN (k) neN (k)

At this point, the algorithm repeats from the horizontal pass.

Decoding. Our decoding procedure is to set @5 to 1if ¢} > 0.5 and see if the
checks Ax = z are all satisfied, halting when they are, and declaring a failure
if some maximum number of iterations (e.g., 1000) occurs without successful
decoding.

4.2 Relationship to Gallager’s algorithm

Gallager [4] and Meier and Staffelbach [9] implemented algorithms very similar
to this belief net decoder, also studied by Mihaljevi¢ and Goli¢ [10]. The main
difference in their algorithms is that they did not distinguish between the prob-
abilities ¢°, and ¢}, for different values of n; rather, they computed ¢ and ¢,
as given above, and then proceeded with the horizontal pass with all ¢2, set to
qn and all ¢}, set to q}.

4.3 Empirical results: belief net decoder

We found the performance of the belief net decoder to be far better than that
of the free energy minimization decoder. We found that the results were best for
t = 3 and became steadily worse as ¢ increased.

In figure 5 we compare two MN codes with BCH codes, which are described
in [12] as “the best known constructive codes” for memoryless noisy channels,
and with Reed-Muller (RM) codes (block sizes up to 1024). Figure 5 shows
the codes’ probability of block error versus their rate. All relevant BCH codes
listed in [12] are included. To compute the probability of error for BCH codes
we evaluated the probability of more than ¢ errors in n bits, as specified in
the (n,k,t) description of the code. In principle, it may be possible in some
cases to make a BCH decoder that corrects more than ¢ errors, but according to
Berlekamp [2], “little is known about. . .how to go about finding the solutions”
and “if there are more than ¢+ 1 errors then the situation gets very complicated
very quickly.” Similarly, for RM codes of minimum distance d, performance was
computed assuming that more than [d/2]| errors cannot be corrected.

The mean number of iterations of the algorithm to obtain a successful decod-
ing was about 20 for all the experiments reported here. In some cases as many
as 800 iterations took place before a successful decoding emerged.
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Fig.5. Comparison of empirical decoding results for MN codes using belief network
decoder with calculated performance of Reed-Muller codes and BCH codes, and the
Shannon limit. A BSC with (a) fn = 0.076-7 (b) fun = 0.152-4 is assumed. Horizontal
axis: information rate R. Vertical axis: block error probability. The best codes are
towards the bottom (low error probability) and the right (large rate). Curve: Shannon
limit on achievable (rate, bit error probability) values. Arrows show the values of Rq and
GV(fn) for this channel. Diamonds: Reed-Muller codes. Boxes: BCH codes. MN codes:
Empirical results shown are for two topologically modified matrices with N = 10000
rows and N+K columns where K = (a) 9839 (b) 3296. The weight per column was ¢ = 3.
In the case where the error bars extend down to the bottom of the error probability
axis, no decoding errors occurred in more than 100,000 trials.

5 Discussion

Our experiments have demonstrated excellent error correction at rates well above
the Gilbert bound. In [6] we give an analysis of two practical decoding algorithms.
This analysis, and the empirical results we have described, lead us to conjecture
that given a BSC with noise density f, there exist practical decoders for MN
codes with any rate R up to Ro(f) which can achieve negligible probability of
error, for sufficiently large N .

The properties of MN codes that we have demonstrated appear to constitute
a significant step forward in information theory and coding theory.

The descriptive complexity of these codes is t(N 4+ K)log N, which is much
smaller than the complexity of arbitrary linear codes. The set-up time for the



code scales as N3, the encoding time as N?, and the decoding time as N, where
N is the block size.

5.1 Contrasts with convention in coding theory

In a conventional linear (N, K) code, the codewords form a complete linear
subspace of {0, 1}". MN codes are only linear in the sense that the transmitted
vector t is a linear function of a source vector s. The source is sparse, so the
codewords that have high probability are only a small subset of a complete linear
subspace.

We have obtained the biggest improvement over BCH codes and RM codes
by going to high noise levels, e.g., fn = 0.15. Critics might assert that real
channels do not have such high noise levels. We would respond that perhaps
they ought to—if one increases the clock rate of a channel so that its noise level
also increases, there might well be a net increase in capacity. Maybe the main
reason that channels with high noise levels are not used is that until now the
available codes for error correction have not been good enough.

5.2 Future work

MN codes can also be defined over g-ary alphabets consisting of the elements
of GF(q). These codes would be suitable for the g-ary symmetric channel. The
decoding algorithms presented here would also generalize. It remains to be es-
tablished whether our decoders’ performance would be any better or worse under
this generalization to g-ary alphabets.

We conjecture that as we get closer to the Shannon limit, the decoding prob-
lem gets harder. It would be interesting to obtain a convergence proof for the
belief net decoding algorithm and to develop ways of reducing the inaccuracies
introduced by the approach of ignoring the cycles present in the belief network.
The most interesting challenge is to understand whether Rg(f) is indeed the
fundamental limit for practical decoding of MN codes.
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