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Excitation of Guided Waves in 
Generally Anisotropic Layers Using 
Finite Sources 
The excitation of guided wave modes in generally anisotropic layers by finite sized 
strip sources placed on the surfaces of the layer is examined. The general problem 
of arbitrarily applied harmonic surface tractions is first solved using the normal 
mode expansion technique in conjunction with the complex reciprocity relation of 
elastodynamics. This general solution is then specialized to loading situations mo
delling those commonly used to excite guided waves in layers for use in nondestructive 
evaluation. The amplitudes of the generated modes are written as the product of 
an "excitation function" which depends only on the distribution of the applied 
tractions and an "excitability function" which depends only on the properties of 
the specific mode(s) being excited and which determines how receptive the modes 
are to the applied tractions. Expressions are obtained for the -9 dB wave number 
and phase velocity bandwidths (o^ and aVJ respectively) which determine the widths 
of the wavenumber or phase velocity excitation spectra at the -9 dB generation 
point. Finally, the problem of transient loading is addressed by superimposing time 
harmonic solutions via an integration over the dispersion curves of the layer. 

Introduction 
Guided waves are finding an increased usage among the 

nondestructive evaluation (NDE) community for both defect 
detection and material characterization (Spetzler and Datta, 
1990; Rokhlin et al., 1990; Karim et al. 1990; Guo and Cawley, 
1992; Mai et al., 1992 and Pilarski and Rose, 1992). The unique 
properties of the individual guided wave modes which exist in 
the layer offer a host of possibilities for nondestructively prob
ing the material of which the layer is composed. Because of 
the different field distributions of the different modes, they 
each interact differently with the material composing the layer, 
and hence each carries useful information about the consti
tution and/or state of the layer. 

Before one can fully utilize the diverse nature of the different 
modes, however, it is necessary to understand fully the manner 
in which the individual guided wave modes can be introduced 
into the layer by applied surface tractions. The goal of this 
paper is to determine the amplitude of each of the propagating 
modes generated in an anisotropic layer due to arbitrarily ap
plied surface tractions, and to relate the amplitudes of trie 
generated modes to the properties of the tractions used to excite 
them. After the results are obtained for arbitrary loading, 
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specific loading conditions, typical of those used in nondes
tructive evaluation techniques for generating waveguide modes, 
are examined in detail. 

The problem of the excitation of an arbitrarily anisotropic 
layer due to arbitrarily applied time-harmonic surface tractions 
is solved by utilizing the Normal Mode Expansion Technique 
(Auld and Kino, 1971; Kino, 1987; Auld, 1990b). In this tech
nique, the fields in the loaded layer are expanded in terms of 
the "normal modes" of the layer (i.e., the mode fields in the 
free layer) multiplied by unknown complex amplitudes. The 
goal is then to determine, from the applied tractions, the ex
pansion amplitudes necessary for evaluation of the fields in 
the loaded waveguide. Such expansion techniques have been 
successfully used to solve edge load problems for plates (Folk 
and Herczynski, 1986) and solid circular cylinders (Herczynski 
and Folk, 1989), as well as side excitation problems for hollow 
circular cylinders (Ditri and Rose, 1992). The key to the success 
of the technique is the establishment and use of an orthogo
nality condition between the free waveguide modes, analogous 
to the orthogonality of the trigonometric functions used in 
Fourier Series expansions. 

Starting with the expansion amplitudes for the harmonic 
excitation case, the more general problem of arbitrary time-
dependence loading can be treated by linear superposition of 
harmonic solutions. This type,,of approach leads to solutions 
(expansion amplitudes) which are identical in form for iso
tropic or generally anisotropic layers. The difference is ac
counted for when evaluating the quantities appearing in the 
solutions. Because of this, the true physical nature of the ex
citation process becomes clear, unobstructed by the peculiar
ities of a particular material. 
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Normal Modes 
The governing equations for wave propagation in flat, lin

early elastic, nonpiezoelectric and generally anisotropic layers, 
for zero body forces, can be written as 

dTu 

T- ^ijkl 

d2U, 

dUk 

dxi 

(la) 

(lb) 

where T denotes the Cauchy stress tensor, u denotes the particle 
displacement vector, C denotes the stiffness tensor, and p de
notes the mass density. Summation convention over repeated 
subscripts is assumed. 

Along with the governing equations, Eqs. (la-b), the normal 
modes of the layer are required to satisfy traction-free bound
ary conditions 

f,= 7Vv = 0 (2) 
at both the upper and lower surfaces of the layer. «, denotes 
the components of a unit vector normal to the surfaces of the 
layer. Solutions to the boundary value problem, Eqs. (1) and 
(2), can be found in the literature for layers of various classes 
of anisotropy (Solie and Auld, 1972; Nayfeh et al., 1988; Li 
and Thompson, 1990). 

When propagating in an anisotropic layer, the characteristics 
of the normal modes (i.e., phase and group velocities, field 
distributions, etc.) are in general very dependent on the ori
entation between the wave vector of the mode and the natural 
or crystallographic coordinate system of the media, when such 
preferred axes exist (see for instance Datta et al., 1988). In all 
of the derivations to follow, it is assumed that the "z" co
ordinate is aligned with the wave vector of the generated mode 
and that the "y" axis is transverse to the layer (i.e., in the 
thickness direction). For anisotropic layers, this will generally 
necessitate a coordinate transformation of the elastic stiffness 
tensor since, in general, the principal axes of the anisotropic 
medium will not coincide with the chosen coordinate axes. 
With this choice of coordinate system (and the subsequent 
transformation of the elastic stiffness tensor), the fields as
sociated with any given mode are uniform in the "x" coor
dinate direction. This serves to make the problem one of plane 
strain in the y - z plane (i.e., exx = exy = exz = 0 and ey = 
euiy, z, t) where /, j € {y,z}). 

The fields caused by the waveguide modes can then be written 
in the general form 

H?,z, t)=l(y)e^*-™ (3) 

where f 0>) represents the "modal distribution" or "y" var
iation of the field, £. ft is the wave number of the mode which, 
for a given frequency co, is determined by a generalized Ray-
leigh-Lamb type of equation whose form depends on the type 
of anisotropy exhibited by the layer (Li and Thompson, 1990). 
Just as in the isotropic case, the wave number 13 can be real, 
imaginary, or complex for a given real and positive frequency 

Problem Statement and Solution 
The problem to be addressed is shown in Fig. 1. A linearly 

elastic, generally anisotropic layer (i.e., having up to 21 in
dependent elastic moduli) is loaded over a finite portion of its 
top surface by a traction force 

t(z)eiu'=[tz(z)ez + ty(z)ey]e^', (4) 

where e,- denotes a unit vector in the x,- coordinate direction. 
The tractions are assumed to be independent of the x-coor-
dinate and therefore actually represent loading along a strip 
of infinite width in the x-direction. 

We start the analysis from the purely acoustic form of the 

Fig. 1 Loading of an anisotropic layer by harmonic surface tractions 

complex reciprocity relation (Auld, 1990b, pp. 154-155), re
lating any two solutions, 1 and 2, to the governing field equa
tions (Eq. (1)). This relation can be written in differential form 
as 

V-(v2 + T, + v,.f2) = 0 (5) 

where v represents the particle velocity field and the tilde rep
resents complex conjugation. In Eq. (5) both solutions, 1 and 
2, are assumed to have the same frequency, co, and the e""' 
dependence of all field variables will be dropped for brevity. 

The fields in the loaded waveguide are then expressed as a 
summation over all of the normal modes of the free layer, 
specified by index /x, multiplied by unknown, generally com
plex and z-dependent amplitudes, A^(z). For the field vari
ables appearing in Eq. (5), these expansions are of the form 

and 

y(y, z) = YjA^(z)yll(y) 

T(y, z) = J]A„(z)J,(y). 

(6a) 

(6b) 

To determine the unknown mode amplitudes A^ (z), in Eqs. 
(6a-b), the reciprocity relation, Eq. (5), is invoked with so
lution " 1 " being v and T appearing in Eqs. (6a) and (6b), and 
solution "2" being the eth mode of the free layer. That is 

- i /V v2 = v„0)e~ 

T2 = T„0)e-
' / 3 ^ 

(7a) 

(lb) 
Substituting Eqs. (6a-b) and (la-b) into the reciprocity equa

tion, Eq. (5), integrating the resulting equation across the wave
guide thickness - b/2 < y < b/2 and making use of the fact 
that the normal modes satisfy traction-free boundary condi
tions results in a first-order ordinary differential equation which 
governs the amplitudes of the generated modes. For propa
gating modes, the wave number $„ is real, and it can be shown 
by specializing a general equation in (Auld, 1990b, pg. 162) 
that, for the case considered here, the equation governing the 
amplitude of the generated modes reduces to the form 

APvp\- + i^\Ap(z)=yr(bnXz) 

where the quantity Pvv has been defined as 

P„ >=(R*(-f5 W M n 

(8) 

(9) 

and (Re( ) denotes real part of the quantity in brackets. From 
the definition of the acoustic Poynting vector (Auld, 1990a, 
pg. 155), this is recognized as the time-averaged power flow 
carried by the vth mode in the z-direction per unit waveguide 
width (in the x-direction) and has typical units of [Watts/m]. 
It should be remembered that, since the amplitudes of the 
modal fields themselves (v„ and T„) can be arbitrarily assigned 
(within the restrictions of infinitesimal elasticity theory), the 
power carried by the modes, Eq. (9), is also arbitrary, de
pending on the assigned amplitude. We will see that this in
determinacy will disappear in the final result, which will be 
independent of the arbitrary amplitude which may be assigned 
to v, and T„. 
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Equation (8) is a first-order ordinary differential equation 
and can therefore be integrated using standard techniques. The 
solution can be written 

A u ( z ) -
,-ifiyZ pz 

AP 
e^y.ib/Tj-ti^dri, (10) 

where c is a constant used to satisfy the boundary condition 
on Av(z). Supposing that the external tractions, t, are only 
nonzero in the interval —L < z < L, and using the boundary 
condition 

Av(z) = 0 z<-L (11) 
gives, for the ampl i tude of the r ightward travelling modes , 

AAz)-
AP 

e^v^b/iyiiridT) z>L. (12) 

The corresponding expression for the leftward propagating 
modes can be obtained from Eq. (12) by replacingPmby -P„„, 
v„ by v_„, the wave number j3„ by -|3„ and finally by using 
the boundary condition A _ „ = 0 for z > L. The result is 

P'V CL 

A.v(z)=-s-\ e-'^v„Xb/2)-t(r,)dr, z<~L. (13) 

Since the applied tractions vanish outside the interval Izl 
> L, the integration limits in Eqs. (12) and (13) can be extended 
indefinitely, i.e., to plus and minus infinity. The two equations 
can also be combined into 

A±Az) = e-—^y±Xb/2)-\ e^'tO?)*?. (14) 

Having determined the expansion amplitudes, A±v(z), of 
the propagating modes (real /3„), the fields in the loaded layer 
due to the propagating modes follow from the original ex
pansions Eqs. (6a, b). For instance, the particle velocity field 
in the loaded layer can be written 

(V«*„* c00 ") 

+ J]Ae
±Az)v±,(y). (15) 

For z £ L, only the summation over the positive travelling 
(or decaying) modes (+) contribute whereas for z ^ —L, only 
the summation over the negative travelling (or decaying) modes 
( - ) contribute. The first summation represents the contri
bution of the propagating modes (real wave number, /3„) and 
the second represents the contribution of the evanescent modes 
(imaginary and/or complex wave numbers) with expansion 
amplitudes Ae

±v(z)- Since the evanescent modes decay expo
nentially away from the source which excites them, the con
tribution from the second summation becomes smaller as z 
becomes larger. The actual distance from the source at which 
the amplitude of an evanescent mode becomes negligible de
pends on the magnitude of the imaginary part of its wave 
number. 

Once the applied tractions, t(z), are specified, Eq. (14) can 
be used to determine the amplitudes of the forward and back
ward traveling modes which, when substituted into the original 
normal mode expansion, Eqs. (6a, b), gives that part of the 
total field in the loaded layer due to the propagating modes. 
The part of the total field due to the nonpropagating modes 
can also be determined by this procedure but their contribution 
is of less importance in nondestructive evaluation purposes 
since they decay exponentially from the source which excites 
them. Their amplitudes are not, however, given by Eq. (14), 
which is valid only for propagating modes. For the evanescent 
modes, the differential equation governing the amplitudes, Eq. 
(8), must be modified. 

S \ \ \ \ \ \ \ \ \ \ \ ^ v v v v v ^ v v v v v ^ v v v v v 

Fig. 2 Model of the ".wedge method" of exciting guided waves. The 
transducer, of length, D, is mounted to a wedge and produces a plane 
wave with arbitrary pressure distribution, p(a), which impinges on the 
layer. 

Specific Cases 
It is now assumed that the tractions produced at the upper 

surface of the layer are due to loading by an ultrasonic trans
ducer mounted to an angle beam "wedge" as shown in Fig. 
2. The ultrasonic transducer is assumed to produce a time-
harmonic plane stress wave which travels within the wedge and 
strikes the layer at a given angle 0,. Beam spreading and beam 
shifting upon striking the layer are neglected, and the wedge 
is assumed to be coupled to the layer by a thin layer of non-
viscous liquid. As a result, only normal tractions, ty(z), are 
assumed to be transferred, the shear tractions, tz(z), vanishing. 
Finally, the transducer is allowed to have an arbitrary pressure 
distribution,/7(a), across its face. A similar problem, for iso
tropic layers and piston-like transducer, was solved using Four
ier Integrals by Viktorov (1967). 

Projecting p(a) on the the layer surface, the traction pro
duced on the top of the layer is assumed to be of the form 
(neglecting an unnecessary phase factor and the e""' depend
ence) 

, r s6l,)l/?(6l,)le~'^sine''zev, if \z\ <L 
* ( « ) = ; ' . , , . . (i6) 

if \z\ >L 
0, 

where li?(0,-)l is a numerical factor introduced to account for 
the fact that the actual traction at the wedge-layer interface 
will in general be different than that due solely to the incident 
wave. It is assumed, however, that this factor is frequency 
independent and a discussion of this result, along with limited 
experimental verification, can be found in Ditri (1992). In Eq. 
(16), kw represents the wave number of the incident wave in 
the wedge, numerically equal to oi/Vw, Vw representing the 
velocity of longitudinal waves in the wedge material. 

Substituting this assumed form of surface traction into the 
general result, Eq. (14), gives, after some manipulation, 

A±v(z)= "r — \ p(a)e x ada 
4 

where 

X + = " 

x - = -

_ |8„ - fcw sin dj 
cos dj 

„ + kw sin dj 
COS dj 

(17) 

(18a) 

(186) 

and v±ry represents the complex conjugate of the.y-component 
of the particle velocity field of positive (+) and negative ( - ) 
propagating modes. 

The appearance of the factor Pvv in the denominator of Eq. 
(17) for the amplitudes ensures that the final result is inde
pendent of the arbitrarily chosen amplitude of v„. This is so 
because when A„ of Eq. (17) is substituted into the normal 
mode expansions, Eqs. (6a, b), they contain products of the 
form vvy(b/2)yr(y)/Pw and vvy(b/2)Tv(y)/PVv If v„ is re
placed by orv„ where a is an arbitrary complex constant, then 
owing to the linearity of the governing elasticity equations, T„ 

332/Vol . 61, JUNE 1994 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



is also multiplied by the same factor. It follows that the terms 
vvy(b/2)\v(y) and vvy(b/2)T„(y) are multiplied by a2. How
ever, reference to Eq. (9) shows that Pvv is also proportional 
to the product \„(y)'T„(y) and is therefore also multiplied 
by a2. This ensures that the ratios vvy(b/2)vv(y)/Pvv and 
vvy(b/2)Tv(y)/Pvv remain the same. Therefore, the final fields 
caused in the layer by the individual modes, Eqs. (6a, b), are 
independent of the arbitrarily assigned amplitudes of the modal 
fields which appear in their definitions. One could have started 
the normal mode expansion technique by expanding the fields 
in the loaded layer in terms of the power normalized normal 
modes, vv/\Jp~Za.n& T / V P ^ , which are already independent 
of the arbitrarily chosen multiplicative amplitudes for v„ and 
T„. In this case, A ±v would have a -JP^, factor instead of Pvv 

in its denominator. 
The integral appearing in Eq. (17) can be interpreted as the 

Fourier transform of the pressure distribution function p(a) 
with transform parameter x given by Eqs. (18a) or (186). It 
clearly exhibits the influence of the transducers pressure dis
tribution on its guided wave generation characteristics. 

In order to manifest clearly the physics of the excitation 
phenomenon, Eq. (17) is written in the form 

A±Az)=Q^+)E±„eTi^ (19) 

where 

SF < ± ) = . 

8 = 

E±v = 

1 

\R(B,)\ 

v±vJb/2) 

cos(0, { 0 0 

(«)«" "da. 

(20a) 

(20b) 

(20c) 

The function g represents a numerical factor which depends 
solely on the output power of the transducer. The function 
E±„, termed the "excitability" function of mode v is seen to 
depend only on properties of the mode which is being excited 
and not on the properties of the source used for excitation. 
The function J1*' is seen to depend only on properties of the 
transducer and wedge used to excite the layer. The product 
function, fFQ, which is also dependent only on transducer pa
rameters, is termed the "excitation" function of the source. 
The amplitude with which guided waves are generated is there
fore seen to be proportional to the product of the excitation 
function, SF9, determined by transducer and wedge parame
ters, and the excitability function, E±v, which depends on 
which mode is excited and where on its dispersion curve it is 
excited. 

The actual pressure distribution of a transducer, p(a), de
pends essentially on how the transducer is manufactured. The 
simplest approximation to an actual pressure variation is the 
piston source defined by 

p(a) = 

• r i i D 

a0, if l a l < — 

0, if lorl > 
D 

(21) 

If this pressure variation is substituted into Eq. (17), the 
resulting expression for the excitation amplitudes is found to 
be 

sin 
A , . , q0l*(fl/)l < W & / 2 ) „ 

A±v\Z) — L • 

(P„Tkw sin 6,)D 

2 cos dj 

03„T&,V sin 0,) 
. T f a 

(22) 

where the positive amplitudes are valid for z > L and the 
negative amplitudes for z < —L. Comparing Eq. (22) with 

Eq. (19) shows that for a piston source transducer, g = 
a0\R(6i)\/4, E±v = v±1,y(b/2)/Pmmd 

sin 

< r ( ± ) - 2 -
^ Piston ~~ ^ 

Q3„ T k„ sin 6,)D 

2 cos 6, 
(23) 

(P>Tkw sin 6i) 

which is, except for notation, identical to the result found by 
(Viktorov, 1967, pp. 83-93) when treating the problem of the 
excitation of isotropic layers using piston sources by Fourier 
integral techniques. It is interesting to note from Eq. (22) that, 
unlike the case of infinite plane wave excitation, Snell's law 
is not rigorously applicable in describing the generation process 
of Lamb waves when using finite sources since the amplitude 
function is nonzero for a range of wave numbers (or phase 
velocities) instead of being nonzero for just the single wave 
number determined by Snell's law (Eq. (25)). The most com
mon method found in the literature of determining the ap
propriate shoe angle to use when trying to generate a Lamb 
wave mode of phase velocity Kph is the use of Snell's law, 

0, = sm Vr Ph, 

(24) 

where Vw is the longitudinal wave velocity in the shoe material 
(or coupling fluid if immersion is used). In terms of wave 
numbers, this relation can be written 

P = kwsin0h (25) 

that is, it is usually assumed that, given an incident angle, 0,-, 
and incident wave number, kw, only a single wave number, 
given by Snell's law, can be generated, or will at least be the 
dominant wave number of the generated waves. 

Although the function S^ttL is strictly not defined when 
Eq. (25) is satisfied, it can be defined as the limit, 

<F< + > 1 , > rPiston'/3 = t>v 
.= lim 

D 
(26) 

in which case Sutton will t>e continuous for all (3 and have a 
maximum at the Snell's law wave number /3 = ks sin (0,). 
Equation (22) then shows that for /3„ ^ kw sin 0,-, 3fe2,n and 
^Piston do not vanish identically, even though they decrease as 
fl„ becomes different than kw sin (0/). Therefore, even if the 
Snell's Law angle is not used, the mode can still be generated, 
albeit less efficiently. 

We can define a "wave number bandwidth," o$, associated 
with the piston transducer as the value of /3 - ks sin 0,- where 
the function JpittL decreases to say \/e (~ -9dB) its maxi
mum, that is, JFP,tton03 - &ssin0,- = ±op) = ffp^LW/e. This 
value is given, approximately, by 

4.398 cos dj 

D 
(27) 

As can be seen from Eq. (27), as D — oo, op — 0, i.e., for 
plane wave incidence (infinite diameter transducer) the wave 
number bandwidth is zero, so only one value of wave number 
can be excited as given by Snell's Law, Eq. (25). For a finite-
sized piston source transducer, we see that the wave number 
bandwidth is inversely proportional to the diameter D. The 
bandwidth is directly proportional to cos 0, which in the interval 
0 < 0, < 90 deg decreases monotonically from 1.0 to 0.0. 
Recognizing D/cos 0; as the length of the loaded region (see 
Fig. 2), we can conclude that the wave number bandwidth 
decreases as the size of the insonification region increases. 

Figure 3 is a parametric plot of EFpitton with the size of the 
loading region, .D/cos 0,- as the parameter (in all plots, a> = 2 
[rad/^isec]). As can be seen, as the insonification region be
comes larger, the transducer-wedge source becomes more and 
more selective to the Snell's Law wave number kw sin (0,). 

A somewhat more realistic model of an actual ultrasonic 
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20.0 mm 

^Vft/e 

(Usec/mm) 

Fig. 3 Parametric plots of the 5lfe\0„ with the size of the loading region 
as the parameter (u = 2 rad/jisec) 

• ( • ) 

F (Vph) 

Fig. 4 Definitions of the lower, l^h(-), and upper, l£h(+)> phase velocities 
where ffl+) drops by approximately 9 dB 

the value of /3 - ks sin 0,- where the function ${+) drops to 
l/e (~ -9dB) its maximum value (at P = kw sin 0,), we have 

transducer is a parabolic pressure distribution. In this case, 
the pressure distribution function p( a) can be written 

p(a)-

1 -
D 

(P/2)V i f l a ' ^ 2 

' 0 , if l a l > 
D 

(28) 

where a0 now represents the maximum pressure which occurs 
at the center of the transducer face, a = 0. 

Substituting Eq. (28) into Eq. (17) and comparing the result 
with Eq. (19) shows that 

J Parabolic(X + ) — „ ,ns 2 
D cos(0,)Xt 

2 sin x+ 
D 

Dx, 
COS X t 

D 

(29) 

where x + is defined in Eq. (18a). 
Again, we can define the wave number bandwidth of the 

parabolic source transducer, o$, to be the value of /3 - ks sin 
61 at which fFparaboik drops to l /e its maximum value (at x+ = 
0). Performing the calculations results in, approximately, 

O0' 
5.852 cosg,-

D 

Comparing this bandwidth with that obtained for the Piston 
source, Eq. (27), shows that the parabolic source has a some
what wider wave number bandwidth. The dependence of o$ 
on the transducer diameter, D, and the incident angle, 0„ is 
the same as for the piston transducer. 

It is important to know how the transducer parameters (or 
equivalently the wave number bandwidth) influences the range 
of phase velocities which may be generated by the applied 
source. Due to the finite size of the loading region, there is 
actually a range of phase velocities within which the magnitude 
of EF<+) (for both piston and parabolic sources) remains above, 
say -9dB of its maximum value. As a result, it should be 
expected that any mode who's dispersion curve passes through 
this phase velocity region (for the given frequency co) may be 
excited by the source while modes whose dispersion curves are 
far from this region should contribute less to the total generated 
field. How strongly each mode is generated also depends on 
the value of its excitability function Ev at this frequency. 

To get an estimate of the range of phase velocities within 
which significant excitation may occur, we can use the defi
nition of the wave number bandwidth o$. Recalling that op is 

&+)(B-ks sin d,) = &+)(P)/e*l3-kw sin 0,-= ±< 

=*to •77F = ± * f l (3D J_ J_ 

where Vph is the phase velocity at which ff(+) drops by 9 dB 
of its maximum value and Vph - Fw/sin 0,-. Considering the 
plus and minus signs in the above equality we can solve for 
two values of V^ which we denote by Kph(-) and Vm+). These 
are given by 

V, 
co VI 

Ph(-) = 
Ph 

" + ff/3^h 

and 

VT 
0>V\ 

ph( + ) -
ph_ 

-<7/3 ^ p h 

(32) 

(33) 

These velocities, under certain conditions to be developed 
shortly, represent the values of phase velocity at which the 
function fF<+) (considered as a function of phase velocity) drops 
by 9 dB of its maximum value which occurs at Vph = V^ 
Vt,hi-) represents the velocity smaller than VL at which fF1 +) 

drops by 9 dB and Fph(+) represents the velocity larger than 
V°fh at which EF(+) drops by 9 dB (Fig. 4). 

Having K*Ph(~) and F^pht+j, we can calculate the range of 
phase velocities over which significant excitation may occur, 
Kph(+) - I/ph(_). As a percent of the SnelPs Law velocity, Kph 

p(+) (30) (at which $i+' is maximum), this range is given by 

2<7fl 

frph( + ) - ^ph(- ) 

V^ 

•aSl^S 
(34) 

The quantity av will hereafter be called the " - 9 dB Phase 
Velocity Bandwidth" or ( - 9 dB PVB) of the transducer-wedge 
combination. Equation (34) for the - 9 dB PVB is only valid 
in the range 0 < op < co/Kph. This is due to the fact that, 
while ^h(-) remains valid for 0 < o$ < <x (i.e., for any value 
of an it represents the value of phase velocity, smaller than 
Fph, at which fF(+) drops by 9 dB), Vph{+) is only defined for 
0 < op < co/Fph. As op approaches co/Kph, the upper velocity 
at which EF(+) drops by 9 dB (i.e., Kph(+)) quickly approaches 
infinity. For aB > oi/Vph, Kph(+) becomes negative and there 
is no longer an upper value of phase velocity at which 3 r ( + ) 

will drop by 9 dB. Instead, it asymptotically approaches some 
finite value above the - 9 dB values as Vph — co. Therefore, 
the - 9 dB phase velocity bandwidth approaches infinity as op 
— co/Kp ,̂ and we will say that it is infinite for o$ > o>/Vph 
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with the understanding that this means that there is no upper 
velocity at which JF(+) drops by 9 dB of its maximum value. 

Making use of the relation V\\/u> = X°/2ir and the fact that 
the wave number bandwidths of both the piston and parabolic 
sources can be written as op = K cos(0,)/D (see Eqs. (27) and 
(30)), the - 9 dB phase velocity bandwidth can be written 

1 -
A V A V 

2W \D 
where D = D/cos(d,) represents the length of the insonification 
region, X° = lirV^/o), and K = 4.398 for piston sources or 
5.852 for parabolic sources. 

Equation (35) shows that, for a given source, the - 9 dB 
PVB depends only on the ratio of the length of the insonifi
cation region to the wavelength at the chosen phase velocity 
and frequency and that the - 9 dB PVB approaches zero as 
this ratio approaches infinity. 

Physically, this is a manifestation of the fact that if the 
wavelength is very small compared to the size of the insoni
fication region, the waveguide modes generated in the layer 
can properly "phase match" to the incident wave field and 
hence, due to destructive interference, will have a narrow phase 
velocity spectrum. On the other hand, for large wavelengths 
compared to the size of the insonification region, the generated 
wave modes cannot properly phase match to the incident field 
and the generated modes may be excited over a significant 
range of phase velocities. Because the guided wave modes are 
more or less excitable at different points of their dispersion 
curves (determined by their excitability functions), this means 
that the modes may actually be generated more strongly at 
phase velocities other than that given by Snell's Law even 
though the excitation function fF(+' is maxin 
Law phase velocity. 

maximum at the Snell's 

Transient Loading 
The results presented thus far were for harmonic excitation 

at a single but arbitrary frequency w. The excitation ampli
tudes, A±v, are therefore frequency dependent. If the trans

ducer mounted to the wedge actually has a frequency spectrum, 
say g(co), then, by linear superposition, the total fields in the 
loaded waveguide can be expressed as integrals over frequency 
(times thickness product) 0 = fd. For instance, the velocity 
field in front of (+) or behind ( - ) the transducer due to the 
propagating modes, \p, can be written (Ewing et al., 1957) as 

vf'(y,z,t) 

(35) = j (y^A^iz, Q, Kph)v±/iCv, Q, Vph)e « ' j dn (36) 

where now g which appears in the definition of A ±„ is given 
by 8 = g(Q)\R(6i)\/4 and since we are considering only 
propagating modes, the limits of the integration extend from 
the cutoff fd of the given mode to infinity. Also, the index n 
is taken to include only the propagating modes of the structure 
at a given frequency thickness product fi. 

Since there are only a finite number of propagating modes 
at any frequency thickness product, the summation in Eq. (36) 
contains a finite number of terms. We can therefore inter
change the summation and integration, in which case, Eq. (36) 
can be written 

.2irn 

„<±v C, z, 0 = 2 A±ll(z, 0, Kph)v±M(y, 0, Vph)e 

[ 
.(1M 

= 2 J QW^KVfr, Q)v±MC, 0, ^Ph)e 
'2TTS! \ 

dQ 

(37) 

Since the phase velocity Vph and frequency thickness Q of a 
given mode /t are restricted to lie on that modes' dispersion 
curve, each of the integrals in Eq. (37) are actually along the 
dispersion curves of the individual modes. It is interesting to 
note that even when integral transform techniques are used to 
solve waveguide loading problems, a similar form (i.e., sum
mation of dispersion curve integrals) results for the excited 
fields (Achenbach, 1973; Miklowitz, 1978). However, the pres
ent technique gives a direct physical interpretation to the in
tegrand whereas the integral transform technique does not. 
Some limited experimental verification of Eq. (37), comparing 

Fig. 5 Plot of the magnitude of the excitation function, ISStt'i™ I ' ° r a 
transducer of length 1 • 105 mm (3,937 in.), central frequency of 3.5 MHz, 
- 9 dB frequency bandwidth of .5 MHz, mounted to a wedge of angle 
45 deg with longitudinal velocity 2.7 mm//tsec 
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Fig. 6 Same as Fig. 5, except for a transducer length of 6.35 mm (1/4 
in.) 

Fig. 7 Same as Fig. 5, except for a transducer length of 0.77 mm (1/33 
in.) 

experimentally obtained RF signals with the numerical eval
uation of Eq. (37) for specific y and z can be found in Ditri, 
(1992). 

The two functions 9(fi) and JF ( Fph, Q) determine the region 
in the phase velocity-frequency thickness plane in which the 
transducer-wedge combination is most capable of exciting 
waveguide modes. 

Figures 5 through 7 illustrate the effect of the transducer 
diameter, D, on the excitation function QC^)^(Vph, Q), and 
hence, on the selectivity of the transducer-wedge combination 
to a particular phase velocity and frequency. The transducer 
is assumed to have a Gaussian frequency spectrum 

£(Q)=Ae (38) 75 
where the central frequency is taken as 3.5 MHz and the fre
quency bandwidth, o>, is taken as 0.5 MHz (for a 1 mm thick 
layer). The transducer is also assumed to generate a piston 

pressure profile and therefore ^+) represents &ktsum given by 
Eq. (23). The figures are surface plots of the magnitude of the 
excitation function, 18(0)5 (Kph, Q) I, over the phase velocity 
—fd plane. The figures show the effect of varying the diameter 
of the transducer for fixed incident angle, frequency, and fre
quency bandwidth, and hence, varying the ratio Dfk". The 
constant parameters in all the plots are a center frequency of 
3.5 MHz, a frequency bandwidth (a,) of 0.5 MHz, an incident 
angle of 45 deg, and a shoe with longitudinal velocity, V„, of 
2.7 mm/^sec (Plexiglass). This gives a wavelength, A0, at the 
peak frequency, 3.5 MHz, of 1.09 mm. The parameter which 
is varied is the diameter of the transducer (D) and hence the 
size of the loading region on the layer, D = D/cos 0,-. Since 
the wavelength, X°, remains the same for each plot, decreasing 
D decreases the ratio Dfh°. The diameters used in Figs. 5-7, 
as well as the calculated wave number and phase velocity band-
widths are given in Table 1. 

In each of the plots, one should imagine the dispersion curves 

336/Vol . 61, JUNE 1994 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



of the particular layer under consideration as being superim
posed on the underlying grid of phase velocity versus fd. Then, 
the amplitude with which each mode, n, is generated at each 
particular point of its dispersion curve is given by the product 
of the excitability of the mode at that point, E^U, Vph), with 
the amplitude of the QEF surface at that point. Therefore, the 
sharper the peak of the 9^ surface, the more selective the 
transducer-shoe combination is to a particular mode at a par
ticular point on its dispersion curve. 

As can be seen from Figs. 5-7 and Table 1, the selectivity 
of the transducer-wedge combination to a particular phase 
velocity becomes worse and worse as the ratio of the insojii-
fication region to the wavelength at the central frequency, D/ 
\° is decreased. Figure 5 is used to illustrate the fact that if a 
plane wave is incident (extremely large D), then there is es
sentially only one value of phase velocity which can be gen
erated with any appreciable intensity and it is given by Snell's 
Law once the material properties of the wedge and the incident 
angle are known. Figure 6 illustrates that when D/\° ~ 10 the 
selectivity of the transducer-wedge combination is still highly 
peaked at the Snell's Law phase velocity but that the width of 
the peak (in the phase velocity direction) at the - 9 dB point 
is now around 17 percent of the Snell's Law velocity. Finally, 
Fig. 7 shows that when D/\° ~ 1, the transducer-wedge com
bination has virtually no selectivity to phase velocity since the 
excitation function remains over - 9 dB of its maximum over 
a 275 percent velocity range. _ 

An illustration of the fact that it is the ratio D/\° and not 
merely the size of the transducer, which determines the selec
tivity of the transducer to a particular phase velocity, Fig. 8 
and 9, are parametric plots where the diameter and all fre
quency parameters are kept the same as in the previous figures 
while the incident angle is varied. This has the effect of varying 
the Snell's Law phase velocity, K£h, and hence the wavelength 
X° = 2irV^h/o>. For a given diameter transducer, the insonified 

region, D, increases as the incident angle does. The net result 
is that although the transducer diameter, D, is kept constant 
in all plots, the ratio of loading length to wavelength, D/\" is 
being varied. The incident angles used in Figs. 8-9 are given 
in Table 2 along with the calculated Snell's Law phase veloc
ities, and wave number and phase velocity bandwidths. 

It can be seen from Figs. 8-9 that a given diameter trans
ducer, with a given central frequency and frequency band
width, can be more or less selective in phase velocity depending 
on the incident'angle 9/. This is actually a manifestation of the 
fact that the ratio of loading region to wavelength D/\° in
creases with increasing incident angle. 

Conclusions 
The problem of the excitation of generally anisotropic layers 

by applied surface tractions has been analyzed using the normal 
mode expansion technique. Two loading configurations, typ
ical of those used in nondestructive evaluation for generating 
waveguide modes, have been examined in detail. It has been 
shown how the relevant parameter in determining the selectivity 
of the source to a specific phase velocity is the ratio of the 
length of the loaded region, D, to the wavelength in the phase 
velocity-frequency thickness plane, A". It was demonstrated 
that for D/\° greater than approximately 10, the significant 
excitation (above - 9 dB of the maximum) may occur over an 
approximately 17 percent range, whereas for D/\° ~ 1 there 
is virtually no selectivity to a particular phase velocity. 
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Figure 
5 
6 
7 

Table 1 
D (mm) (in.) 

1.0 • 105 (3937) 
6.35 (1/4) 
0.77 (1/33) 

Parameters used in Figs. 5 through 7 
D/\° ag (1/mm) 

3.29 • 106 1.22 • 10~6 

8.24 0.490 
1.00 4.035 

<T„ • 100 percent 
4.233 • 10"5 

17.13 
274.57 

Fig. 8 Plot of the magnitude of the excitation function, IgS îsioJ for a 
transducer of length 25.4 mm (1 in.), central frequency of 3.5 MHz, - 9 
dB frequency bandwidth of .5 MHz, mounted to a wedge of angle 80 deg 
with longitudinal velocity 2.7 mm/fisec 
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Fig. 9 Same as Fig. 8, except for an incident angle of 25 deg 

Table 2 
Figure D (mm) 0, 

8 
9 

25.40 
25.40 

Parameters used 
(Deg) 

80 
25 

K* 
2.74 
6.38 

D/\° 

186.73 
15.35 

in Figs. 8 and 9 
op (1/mm) o 

0.024 
0.286 

, • 100 percent 

0.59 
16.76 
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