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Inhomogeneous Fluid Approach to Solvation Thermodynamics. 2. Applications to Simple
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In the previous paper expressions for the partial molar energy and entropy at infinite dilution have been
derived based on the inhomogeneous forms of the energy equation and the correlation expansion for the
entropy. These expressions are here applied to a series of solutes of varying size in dense hard-sphere and
Lennard-Jones solvents, some of which serve as reference systems for comparison with water. Numerical
results are obtained under the assumption that the inhomogeneous -ssbernt pair correlation function

in the mixture is equal to the bulk solvent radial distribution function (Kirkwood superposition approximation).
The correlation functions required are obtained by both integral equation theory (Péestisk approximation)

and Monte Carlo simulations. The thermodynamic results are compared with equation of state, integral
equation, and free energy simulation results for the same systems. For hard-sphere systems the excess entropies
are in good agreement with equation-of-state results but in many Lennard-Jones systems the calculated partial
molar energies and entropies are lower than the expected values. This is attributable to overestimation of the
structure of the bulk triplet correlation function by the superposition approximation. The decomposition of
the chemical potential shows that similar solvation free energies can have entirely different physical origins.
Specifically, in solvents of high cohesive energy density the chemical potential is dominated by the breakup
of solvent-solvent interactions locally around the solute. In solvents of low cohesive energy density it is
dominated by the pressurgolume term. Increase in solvergolvent interaction strength leads to increase

in the chemical potential of the solute due to the higher solvent reorganization energy, which is insufficiently
compensated by an increase in solvent reorganization entropy.

I. Introduction differences between large numbers. In the previous paper,
tractable expressions for the partial molar energies and entropies
in infinitely dilute mixtures were derived by viewing the solute

is the most important quantity in solvation thermodynamics, s an inhomogeneity in the solvent [ref 8, hereafter referred to
solvation energies and entropies are of extreme interest becausf geneity y )
as paper I]. The inhomogeneous form of the energy equation

they determine the temperature dependence of solvation freeand the correlation expansion for the entropy, first presented
energies and contain information on their physical origin. P Py, P

Whereas several approaches are available for the computationagglx%rt't;gpiﬁ'zrgéivéig uszﬁéoegfrgve e?%rejtﬂgpstggséhﬁ,\,o
determination of solvation free energiesalculation of solvation cquations Qr]ovi de a com rg%ensive ne\F/)vyé rgach tc’) solvation
energies and entropies is much more difficult. The entropy is q P P P

usually calculated as the temperature derivative of the chemicalthTrTﬁdynam'Cti' . luated b i
potential or as the difference between the free energy and the N tis paper these new expressions are évaluated by applica-

energy calculated directly from the simulati®rs. However, tion to infinitely dilute mixtures of solutes of varying size into
the convergence of the energy or the entropy is much slowerh.ard'SIOhere (HS) and Lenr_1ard-J_ones (L.J) solvents. Th(_e expres-
than that of the free energy. More importantly, the physical sions used are summarized in section I "’."0”9 .W'th the
interpretation of the entropies obtained is not straightforward. methqdology for Monte Carlo .(MC) simulations, integral
Insights into the entropy of fluids have been recently obtained equation and free energy ca_lculanons._ The results are presented
with the correlation expansion of the entrdpy. This approach in section IIl and a discussion in section IV.
has so far been applied to mostly pure fluids. In mixtures the
partial molar entropy contains contributions from introduction
of solute-solvent correlations and the change in solvesalvent Partial Molar Energy and Entropy Expressions. The
correlations upon solute insertion (solvent reorganization en- chemical potential of a solute s in a solvent w can be written as
tropy), just as the partial molar energy is equal to the selute a sum of energetic, entropic, and presswelume terms:
solvent interaction plus the change in solvestlvent interac-
tions (solvent reorganization energy). Whereas the selute _ (oG _ [oE 0S oV
solvent terms are readily calculated, the solvent reorganization Hs= (NJTP - (N)TP - T(aWJTP + P(aWJTP 1)
terms are difficult to obtain because they correspond to small

Although the solvation free energy (excess chemical potential)

[I. Theory and Methods

=& — Ts+ Py
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partial molar energy, entropy, and volume of the solute,
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Gsw) term in theS;,, term due to the Kirkwood Buff relation-

respectively. The properties of an ideal gas at the same shipl2
temperature and density are usually subtracted to obtain excess

guantities:

TS + (Po)™ 2

In paper | the following expressions for the excess partial
molar energy and entropy at infinite dilution were derived by
viewing an infinitely dilute mixture as an inhomogeneous fluid
with the solute fixed at the origin:

ug =~

& = E,, + AEL + AR, (3)
where
Eqw = 00,/ Gonblsw OF 4)
corr _ 1 02 nAith _ Lo '
AEGT = 105 [ Gaul) Gt )my — Gonad Uy O OF -
i o 8 {e]
AB = =P KT 5 lopo [ G 0] (6)
=9°+5,+ AST+ AP 7)
where
$°= k(1 — py0) ®)
Sw= _kp\i/f[Gswln Ggy = Gy, + 1] dr 9)
AS =

—1K05 f GGk ) o In Gy — Gy + 1} —
{gow NG — O + 131 dr dr’ (10)

AP —
o 8 o o o
—pWZKkT% [—YK0y, [ { Gon IN Gy — oy + 13 0] (1)

wherek is Boltzmann's constanp;, the pure solvent density,
Gsw the solute-solvent pair correlation function defined with
respect to the conditional solvent density far from the solute
(og(1 — «KTIV) =~ pg), Oy, the pure solvent pair correlation
function, g'v&'; the inhomogeneous solvergolvent pair cor-
relation function in the mixtureys,, the solute-solvent potential,
uww the solvent-solvent potentialyx the isothermal compress-
ibility, and z% the solute partial molar volumeEs, is the
solute-solvent energyAES, the solvent reorganization en-
ergy arising from solutesolvent correlations, andEUv‘fN the
solvent reorganization energy arising from the thermal motion
of the solute (“liberationt?). Sis the “volume entropy” term
arising from the change in ideal solvent entropy upon solute
insertion!! S,,, the entropy due to solutesolvent correlations,

AS the solvent reorganization entropy arising from correla-

00 =kkT+ [(1— G, dr (12)

The componentEsw, Ssw, ASww, andAE,, are calculated by
numerical evaluation of the integrals in eqsBL. Calculation
of Esw and S, requires a straightforward one-dimensional
integration. The integration foAS,, and AE.., was per-
formed as described in paper |. Because the integral of 1
Gsw is sensitive to the truncation point, its value for the HS
systems was calculated at the last few minima and maxima of
the radial distribution function (RDF) (around—8 solvent
diameters away) and the limiting value was estimated by
extrapolation. A similar calculation was done fa&S,,
which is also sensitive to the truncation point. Its value
correlates with the partial molar volume because they both
depend on the overall extent of solvent “clustering” around the
solute (the— /(1 — Gsy) term). Increased clustering means that
the presence of the solute leads to enhancement of selvent
solvent correlations and hence to less positivgy,. The
solute-solvent entropy S, converges much faster. For the
(Po)®* term we use our calculated valueszdf(eq 12) withP
and « obtained from the Carnahatstarling equation of state
(EOS) (kkT/o® = 0.08145,P¢%/kT = 3.997 15 forp* = 0.7).

When simulation RDFs are used, the partial molar volume
cannot be calculated reliably from eq 12 because the RDFs are
available up to only about 2.5 solvent diameters. In this case
the partial molar volume needs to be estimated by some
independent means, possibly longer NPT simulations or, if
relevant, use of experimental values. Here we used the values
obtained by the BMCSL EOS (see below). For the calculation
of AS,, the RDF was truncated at the last point that is
consistent with the partial molar volume of the solute (i.e., a
point that when used in eq 12 gives the correct partial molar
volume).

For the LJ systems the excluded volume (the integral in eq
12) was calculated as the average value from truncation at the
last two extrema of the RDF.ASy, was obtained with
truncation at the last extremum of the RDF. The pressure and
solvent compressibility was obtained from the LJ EOS. When
simulation results are used, as in the HS case, we need an
independent estimate of the partial molar volume. We use the
value obtained from the PY RDF. Fa&E, and AS, we
truncate the RDF at a point that gives the correct valuesof

The liberation contributions were calculated based on the
thermodynamic equatiofis

AP, = k(T — pikT)

The CarnahanStarling EOS for the HS flui and a recent
empirical EOS for the LJ fluitt were used forx (the thermal
expansion coefficient)x, and the pressure. The correlation
functions needed in eqs-3.1 were obtained by integral equation
theory and MC simulations.

Monte Carlo Simulations. NVT ensemble Monte Carlo

AE® = KkT(aT — «P) (13)

tions, andASy, the solvent reorganization entropy arising simulations were performed for pure HS and LJ fluids (267
from the thermal motion of the solute. Equation 3 assumes particles) and for mixtures of one solute of varying size in 266
pairwise additivity of the potential, and eq 7 assumes that the solvent molecules to obtain solversolvent and solutesolvent
higher order entropy terms can be neglected. In this paper weRDF. The BOSS program was used for the simulatiéns,
are going to assume thgﬁ,=g\‘,’vw. This is equivalent to the  slightly modified for the hard-sphere simulations. Usual
Kirkwood superposition approximation (KSA) for the homo- periodic boundary conditions were employed with preferential
geneous triplet solutesolvent-solvent correlation function. The  sampling close to the solute for the mixtures. 15 million
koy7s term in eq 8 cancels to a large extent with thg — configurations were averaged to obtain the pair correlation
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TABLE 1: Lennard-Jones Systems Studied and Their Thermodynamic Properties from the LJ EOS

Lazaridis

LJ88 LJ197 LJ592 LITIP4 LJCCL4 LIWAT

Ow 3.9212 3.9212 3.9212 3.15365 5.27 2.67
€w 0.6733 0.3 0.1 0.155 0.7378 0.541
o 0.014097 0.014097 0.014097 0.033 0.00624 0.033
Os 0.7842-7.8424 3.9212 3.9212 3.73 3.73 3.73
€s 0.6733 15111 4.5333 0.294 0.294 0.294
o* = poy 0.85 0.85 0.85 1.0457 0.9134 0.6338

* = KTle 0.88 1.9747 5.9242 3.8226 0.8031 1.0906
Pa¥kT 1.420 3.474 3.606 8.193 2.802 —0.0064
kKTlo® 0.05245 0.06238 0.08916 0.03001 0.03020 0.57802
oT 0.320 0.284 0.285 0.182 0.234 1411
a/kT —3.32 0.18 1.53 2.26 —3.90 —2.02
u®KT —2.64 3.27 4.77 9.10 —1.83 —3.03
KT —6.76 —251 —0.40 —0.73 —7.96 —4.02
s>k —3.44 —2.69 —1.93 —2.99 —4.06 —2.00

e gin A, €in kcal/mol, p in A=3. gy, ¢, refer to the solventgs, s refer to the solute. The geometric combining rule is used for both size and
energy parameters. The simulations were rufi at 298.15 K and with the same box pf= 0.014097. Ther parameters for the solvent and the
solute in LITIP4, LIJCCL4, and LIWAT were adjusted to reproduce the desired dimensionless desditye isothermal compressibilitg, the
thermal expansion coefficiena®™, u®*, e s are the excess Helmholtz free energy, Gibbs free energy, energy, and entropy, respectively.

functions with 5 million or more configurations for equilibration. V). ThereforeGsy is obtained by scaling the BOSS RDFs by
The RDFs were calculated at 0.1 A intervals. The cutoff for p,/p2 ~ pul/pS, = 266/267.
the LJ interactions was set to 10.5 A, switched off from 10 A. Integral Equations. Integral equation theories were used
All simulations started with an equilibrated box of methanol in this paper for two purposes: (a) to obtain RDFs and (b)
molecules with the hydrogen and the methyl group turned into estimate the solute chemical potential for comparison to our
dummy atoms. The number density of the methanol box was calculated values. The Pereti¢evick (PY) and the hypernet-
0.014 097. All simulations were run at 298.15 K. ted chain (HNC) closures were used to solve the Ornstein
Lennard-Jones simulations were performed at six thermody- Zernike equation for our HS and LJ fluids. A program written
namic states;p* = po® = 0.85 and temperatur& = kT/e = by Roux utilizing a simple iterative scheme with a logarithmic
0.88, 1.9747, and 5.9242 (LJ88, LJ197, LJ592, respectively); a spacing of grid points was usédFor the PY solution of the
model of CCL4 (LIJCCL4) witho = 5.27 A,e = 0.7378 kcal/ HS systems the analytical solutiSms implemented in a Fortran
mol'® at its experimental density (1.594 g/&nmor 0.006 24 program obtained from Henderg8mas used for solute/solvent
A=317); afluid with the LJ parameters of TIP4P water (LJTIP4) ratios from 0.2 to 7. The numerical solution was used for the
with 0 = 3.15365,¢ = 0.155 kcal/mol at the density of liquid  point solute.
water; and an LJ fluid with a size similar to water and an energy  Closed-formed expressions for the chemical potential for a
parameter increased in order to bring the fluid to atmospheric number of closures are availai3fe. At infinite dilution the
pressure (LJWAT) withv = 2.67 A, ¢ = 0.541 kcal/mol8 expression for the HNC closure is
For LJ88 the pure liquid and a series of infinitely dilute
mixtures were simulated. The solute/solvent size ratio varied 1= py, [, = g ey — Coud O (14)
from 0.2 to 2. Since BOSS uses the geometric combining rule
(0sw = (Jog,), 0dow varied from+/0.2 to/2. The energy ~ and for the PY closure
parameter of the solute was kept equal to that of the solvent.
For LJTIP4, LICCL4, and LJIWAT we simulated the pure fluid
and a solution of a methane-like solute<t 3.73 A, = 0.294
kcal/mol). The LJ size parameters of the solvent were adjusted ) ) .
to achieve the desired dimensionless density. The size parametepherehs, = gsw — 1 is the total correlation function and,
of the solute was adjusted accordingly. In LJ197 and LJ592 the direct correlation function. _
we simulated a solute of the same size as the solvent and an _Free Energy Simulation. The free energy perturbation
energy parameter such that the sokselvent parameter is the ~ (FEP) metho#?> was used to obtain the excess chemical
same as in the LJ88 fluidey = 0.6733 kcal/mol). The potential ofasplute of varying size in a LJ solvent. The basis
parameters for the LJ systems studied are listed in Table 1. ©f the method is the formula
The hard-sphere simulations were performed at a dimension- _
less density* = 0.7 (ow = 3.6756). In addition to the pure X _|T In@x _ Ul +A%) U(Ai)H_ (16)
fluid, a number of infinitely dilute mixtures were simulated Hs Z P KT !
(1 solute and 266 solvent molecules). The solute/solvent size '
ratio was varied from O (point solute) to 2. The usual arithmetic  The present calculations were performed with= 0.1 and
average combining rule was used for the schselvent 0.05 and “double-wide sampling” (simultaneous perturbations
interactions ¢sw = (0s + ow)/2). The simulations started from  to +A1 and—AAZ). The same 266 solvent moleculéd solute
the end of LJ simulations of similar size ratios. The contact system was used for this simulation. Thparameter remained
values of the RDF were obtained by fitting the first four the same, and the parameter was scaled from 0 € 0) to
calculated values of the RDF to a cubic spline and extrapolating 7.8424 ¢ = 1). ForAA = 0.1, 2.5 million configurations were
to contact. used for equilibration and 5 million for sampling at each value
The solute-solvent RDFs reported in BOSS are defined with of .. The A1 = 0.05 simulations started from the end of the
respect to the overall solvent density in the bpx € 266N). correspondingAl = 0.1 simulations and sampled 2.5 million
Gsw in egs 3-11 is defined with respect tg), = po(1 — «kT/ configurations at each value.

C
U= —puf— @ +hy,—c)dr - (15)
sw SwW
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Because the interactions are truncated at 10.5 A, it is
important to add the long-range soluteolvent interaction to
the calculated chemical potential. It is obtained by integration
of the LJ potential from the cutoff distance to infinity assuming
thatgsw = 1 beyond the cutoff distande:

12 6
Osw Osw )

%R’ R’

Eond = lﬁﬂpwesw( 7)

Equations of State. Pure HS fluids are accurately described
by the Carnahan-Starling ECS:

_ P _1+n+y -9
Z=——="—Tt
pKT 1-n)

wheren = 7p*/6 is the packing fraction. This equation gives
for the excess chemical potential and the excess enffpy:

(18)

o2 3
1&IKT = % (19)
-n
x (4 — 3n)
Se k= — (1_—77)2 (20)

The contact value of the RDF can be calculated from
Z=1+ 4ng(o)

For mixtures of hard spheres an extension of the Carrrahan
Starling equation due to Boubfkand to Mansoori et &@
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Figure 1. Solute-solvent radial distribution function in a HS solvent
at p* = 0.7 for solute-solvent size ratid®R = 2. The PY solution (solid
line) and the MC result (dashed line).

60 _ (1- 7])4
aos Ot — 4+ AP+ 4p + 1)

(L —n{@ -1l —n+ 3R+ 3(1+ nF — 'R + 7R’}
nt— a4+ a4+ ap+1

+ R+

(23)

whereR = odoy.

For pure LJ fluids the recent empirical EOS of Johnson et
al.** is reliable between the triple poinT{ ~ 0.69) and 4-5
times the critical temperatur@{= 1.316) and was used in the
present calculations.

(BMCSL equation) is commonly used and gives accurate results. ||| Results

For a binary mixture this equation is

P _l+n+n’ =3+t ny) 0y,
(1=’

KT (1)

_ XpXplog — )40, + o)

1

3 3
X071 + X,05

2 2
X0 — 0,)°0,0,(%,07 + X,07)

2 3 3\2
(%107 + %07)

2 23
(%071 t %07

3 3 3\2
(%07 + %,07)

wherex; andx; are mole fractions. Expressions for the contact
values of the RDFs are given by Boubfk.

A. Hard Spheres. MC Simulations. The pure solvent RDF
atp* = 0.7 agrees with the results of reported simulations. The
contact value of the RDF, obtained by extrapolation, was found
to be 3.215. This should be compared to 3Z3thd 3.157
obtained previously by simulation. The Peretevick value
is 2.9486 and the value deduced from the Carnat@&tarling
EOS is 3.213. The statistical uncertainty in the pure fluid RDF
determined by block averages over 5 million configurations is
about+0.02.

For infinitely dilute solutes simulation data are scarce. The
statistical uncertainty for solutesolvent RDFs obtained by these
simulations is substantially larger than that of the pure fluid
results (aboutt0.15) due to limited statistics. The simulation
RDFs are virtually identical to the PY RDFs, except for the
contact value. As is well-known, the contact value is systemati-
cally underestimated by the PY approximation. The deviations
become larger for the larger solutes (Figure 1). This is
consistent with results for a hard-sphere fluid next to a flat
wall.?® The contact values of the soluteolvent RDFs obtained
by simulation are listed in Table 2 and compared to the

Based on this equation, an expression can be derived for theanalytical PY results and those deduced from the BMCSL

chemical potential of an infinitely dilute HS solute in a HS
solveng®

ex

_ 277F\’3
KT (1-n° @-»7?

3R N 3nR(—1R2_+nR+ D,
(—2R*+ 3R — 1)In(1— 7) (22)

and for the partial molar volurié

equation. The BMCSL value is always within the statistical
uncertainty of the MC value, except for the largest simulated
solute, where it is lower. This is consistent with previous
observations that the BMCSL contact values ¢gy are too
low in dilute solutions for large solutes and in the limit of an
infinite solute3°

The results for the point solute are particularly interesting.
The MC simulations indicate that the contact value is not the
highest value of the RDF. This is probably due to the physical
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TABLE 2: Contact Values of the Solute-Solvent Radial TABLE 5: Calculated Properties for Hard-Sphere Solutes in
Distribution Functions (p* = 0.7 Hard-Sphere Solvent p* = 0.7) Using Contact-Corrected PY
040w Monte Carlo PY BMCSL RDFs*

0.0 1.46 1.578 1.578 olon oy S° Sw_ ASy (P9 w0 u
0.2 2.10 2.035 2.064 0.0 0.13 —-0.91 —0.48 0.09 —-047 1.05 0.57
0.4 2.44 2.361 2.448 0.2 0.19 —0.86 —-090 0.22 —-0.22 1.29 1.07
0.6 2.63 2.606 2.755 0.4 0.32 —-0.77 —1.50 0.42 0.29 1.60 1.89
0.8 3.06 2.796 3.005 0.6 0.55 —-0.61 —-230 0.71 121 194 3.15
1.0 (pure fluid) 3.215 2.949 3.213 0.8 0.87 —0.39 —3.32 1.04 247 241 4.89
1.2 3.45 3.073 3.388 1.0 1.35 —0.06 —457 1.48 439 2.89 7.28
1.4 3.50 3.177 3.536 1.2 1.97 0.38 —6.07 1.96 6.89 3.46 10.35
1.6 3.74 3.265 3.665 1.4 2.80 0.96 —7.83 254 10.18 4.08 14.26
1.8 3.74 3.340 3.777 1.6 3.84 1.68 —9.89 319 1433 476 19.90
2.0 4.07 3.405 3.875 1.8 5.11 258 —1225 391 1944 550 24.94
3.0 3.634 4.228 2.0 6.65 366 —1493 470 2560 6.30 31.90
4.0 3.771 4.447 3.0 19.23 1246 —33.76 9.79 75.87 11.25 87.12
5.0 3.862 4.596 4.0 4215 2850 —63.27 16.60 167.48 17.90 185.38
6.0 3.927 4.704 5.0 78.73 54.11 —-105.66 25.38 313.70 25.91 339.61
7.0 3.976 4.785 6.0 131.69 91.185-163.12 35.58 525.40 36.10 561.50
aUncertainty in the MC contact values 4s0.15 for mixtures and 7.0 204.98 142.49 —237.86 4835 81834 46.76 865.11

+0.02 for the pure fluid. 3 Entropies ink, energies inkT. ®Includes the liberation solvent

) ) reorganization entropy, 0.R6
TABLE 3: First Few Values of the RDF for the Point Solute

(MC Simulation) TABLE 6: Calculated Properties for Hard-Sphere Solutes in
How Gew How Gan a Hard-Sphere Solvent p* = 0.7) Using Simulation RDFs
0.5000 1.46 0.5713 150 00w Swk ASy Tk
0.5169 1.57 0.5988 1.48 0.0 2047 0.07
0.5441 157 0.2 —0.90 0.22
. . 0.4 —1.48 0.43
TABLE 4: Partial Molar Volume, Excess Chemical 0.6 —2.23 0.70
Potential, and Its Decomposition for Hard-Sphere Solutes in 0.8 -331 1.09
Hard-Sphere Solvent p* = 0.7) from the BMCSL Equation 1.0 —4.46 1.50
of State 1.2 ~6.00 2.03
00w o, uSKT —5ka (PD)XKT 1.4 —7.72 2.62
0.0 0.129 0.456 0.943 —0.486 16 A 3.29
0.2 0.200 0.944 1146  —0.201 Py Byye o8
0.4 0.341 1.780 1.417 0.362 ' ' ’
8'2 83;8 i'ggé %'Zgg %323 four terms (eq 7). The liberation solvent reorganization entropy
10 1.429 7359 2649 4710 depends only on the solvent. From eq 13 it is calculated to be
1.2 2.095 10.573 3.200 7.374 0.26k. It is almost negligible, but we include it here for
1.4 2.954 14.630 3.821 10.809 completeness.
1-2 g-ggé %g-géz ‘513%3 %g%g Comparison of the estimated values $f with the quasi-
50 6.937 32839 6112 26.727 exact values from the BMCSL EOS (Table 4) shows good
30 19.734 89.262 11.382 77.880 agreement. The best agreement is observed for sedateent
4.0 42.903 188.993 18.503 170.490 diameter ratioR = 2. At smallerR the estimated entropy is
5.0 79.526 344.396 27.519 316.877 more negative and at high&less negative than the BMCSL
6.0 132.682 567.837 38.488 529.349 result. This good agreement is in part due to cancellation of
7.0 205.455 871.681 51.447 820.234

error: underestimation of the magnitude of the entropy due to
ag*is calculated as the difference gf* and Pz)*. truncation of the correlation expansion at the two-particle level
and underestimation of the solvent reorganization entropy. For
constraint that not many solvent spheres can be in contact withexample, for the pure fluidR = 1) in Table 5,5 should be
a point solute at the same time. In contrast, PY and HNC exactly one-half ofS;, (—4.57/2= —2.285 k) smaller than
theories predict that the contact value is always the highest, the true<* from Table 4, andASyy, is 1.48+ 0.26 = 1.74Kk,
even for a point solute. The first few values of the MC RDF smaller than—1/, of Sy, as it should b&. When uncorrected
are shown in Table 3. PY RDFs were used (results not shown), the results were similar
Corrections to the PY RDFs have been proposed for pure for the small solutes but at large the underestimation of the
HS fluids® and mixtures? However, the GrundkeHenderson ~ magnitude of* was larger € = —37.35k forR = 7). This
approach is not applicable at infinite dilution. Here, to improve may be due to the lack of thermodynamic consistency of the
the PY RDF for the entropy calculations we merely replace the PY RDFs, which is improved by the correction of the contact
PY contact value by that predicted by the BMCSL equation of value. S,, andAS, values from simulation are very similar

state. to those from the PY RDF, which is expected since the RDFs
Partial Molar Entropy. The properties of the HS solutes in  are very similar (Table 6).
the p* = 0.7 HS solvent from the BMCSL EOS are given in B. Lennard-Jones. Reference ValuesLJ mixtures are not

Table 4. The results for the calculation of the excess partial as well characterized as HS mixtures in terms of thermodynamic
molar entropy with the present theory and the contact-correctedproperties. Therefore, it is more difficult to obtain accurate
PY RDFs are given in Table 5. The excess partial molar reference values for comparison with the present theory,
entropy, within the approximations of the present theory, has especially at liquidlike densities. A number of approaches will
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TABLE 7: Chemical Potential (in kT) of Solutes in LJ88

from Free Energy Perturbation? 3.2
odJow AL=0.1 AA=0.05 longrange A1 = 0.05+Lr.
02 -—119 -1.07 —0.007 —1.08 i
04 —2.60 —2.34 —0.054 ~2.39 2.4
0.6 —4.25 —-2.77 —0.18 —2.95
0.8 —3.93 —2.61 —0.43 —3.04 =
1.0 —-3.66+04 —-2.09+03 -0.84 —2.93 S 1.6
1.2 -3.00 -1.07 —1.45 —2.52
14 -1.71 0.70 —-2.31 —-1.61
16 0.15 2.46 —3.44 —0.98
1.8 2.14 4.79 —4.89 —0.10 0.8
2.0 479+ 0.7 7.79+05 —6.69 +1.10
2 The uncertainties are estimated by block averages. Judging from
the difference between the two sets of simulations, the true error is 0.0 —_—

larger than this estimate. 0.0 I 0.4 0.8 1.6 ' 2.0 K 2.4

1.2
. . r (A)

TABLE 8: Chemical Potential (in kT) from Integral
Equation Formulas Figure 2. Solute-solvent radial distribution function in LI8&R(=
2). The PY solution (solid line) and the MC result (dashed line).

HNC PY Y,(HNC + PY)

pure fluids
LJ88 0.39 -5.03 -2.32 3.2
LJ197 4.79 1.40 3.10
LJ592 5.62 3.80 4.71
LJTIP4 11.29 5.65 8.47 2.4 4
LJCCL4 2.41 -5.82 -1.70 .
LIWAT —-2.14 -3.31 —-2.72

solutes in =
LJ197 —-1.98 —5.29 —3.63 D 1.6 1
LJ592 —4.00 —6.03 —-5.02
LITIP4 15.84 6.62 11.23
LJCCL4 1.98 -1.01 0.48
LIWAT 0.59 —-1.71 —0.56 0.8 1

be taken here utilizing the pure fluid EGSintegral equation

theories, and free energy simulations. The thermodynamic 0.0
properties for the six pure LJ fluids calculated from this EOS 1.2
are given in Table 1. F(A)
The results of the FEP simulations of solutes of increasing Figure 3. As in Figure 2 forR = 0.2.
size in the LJ88 fluid are shown in Table 7 for two perturbation
incrementsA4 = 0.1 and 0.05. The two sets of results provide whereas the HNC formula gives a positive chemical potential
an indication of the uncertainty in FEP simulations, which is for all solutes with size equal or greater to the size of the solvent.
substantial even for simple LJ mixtures. The results with the The arithmetic average of the two shows a minimum at 0.6 and
smallerA4 should be more reliable. The long-range correction is in reasonable agreement with the FEP results, only somewhat
due to the truncation of the solutsolvent interaction is  t00 positive for all solutes.
significant and increases with solute size. It shows that when MC Simulations. The RDF for the pure LJ88 fluid is in
large solutes are created in FEP simulations the long rangeagreement with early calculatiofs.The PY solution has a first
dispersion energy corrections should be taken into account. Thepeak that is too high and a first minimum at too low values of
chemical potential exhibits a minimumB&t= 0.8. A minimum r. The same qualitative deviations are noted for larger solutes
in the chemical potential as a function of solute size has also (Figure 2). The agreement between the two RDFs is better for
been observed in other simulations of LJ mixtures at different smaller solutes (Figures 3 and 4). The HNC solution is very
thermodynamic condition®:34 similar for the small solute. For the larger solutes it tends to
Integral equation theories provide an alternative route to the give a first peak and a first minimum at too low valuesrof
chemical potential. Table 8 lists the value for the chemical (notshown). The magnitude of the first peak of the RDF from
potential obtained from the PY and the HNC formulas (egs 14 the simulation is shown in Table 9. It exhibits a maximum at
and 15). Both are inaccurate compared to the EOS result forR=0.6. Interestingly, this almost coincides with the minimum
the pure fluids (Table 1). The HNC chemical potential is in the calculated chemical potential.
systematically too high, and the PY value is systematically too  Partial Molar Energy and Entropy.Table 10 shows the
low. We also attempted to use the PY formula with correlation results from eqs-311 using the PY RDFs. For the pure fluids
functions obtained with HNC and vice versa, but the results the calculated properties can be compared with values obtained
were even worse. Empirically, the average of the PY and HNC from the EOS (Table 1). The excess energy and entropy are in
results (last column of Table 8) gives values in good agreementgood agreement with the EOS values for LJ592, more posi-
with the EOS values (deviation less than 15%). tive than the EOS value for LJ197, and more negative than the
The results of the integral equation theories for the various EOS values for the other three solvents, the largest discrepancy
solutes in LJ88 are given in Table 9. PY and HNC give similar being observed for LJCCL4. This is due to underestimation of
results for the small solutes but gradually diverge. The PY AE,. andAS.,. . In pure fluids the excess energy is equal to
formula predicts a monotonically decreasing chemical potential, one-half of Es,, which is in good agreement with the EOS

0.0 0.4 0.8 1.6 2.0 2.4
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- TABLE 10:
) (a) Calculated Excess Partial Molar Volumes and
Entropies (irk) for LJ Systems (PY RDFs)
24 ofow VNG Bddd Se Sw ASh e
solutes in LJ88
— 0.2 —0.104 -0.052 —1.044 —-054 -0.31 -1.62
\‘é{’ 16 0.4 -0.172 -0.120 —1.102 —-1.91 -0.43 -3.16
) 0.6 0.055 0.107 —0.909 —3.33 0.20 —3.76
0.8 0.477 0.529 —0.550 —4.90 1.17 —4.00
LJ88 1.068 1.120 —0.048 —6.56 232 —4.01
0.8 - 1.2 1.804 1.856 0.578 —8.23 3.63 —3.74
1.4 2.662 2.714 1.307 —9.94 499 —3.37
1.6 3.615 3.667 2117 -11.72 6.47 —2.86
1.8 4.654 4.706 3.000 —13.58 7.93 —2.37
0.0 T T : ‘ ‘ 2.0 5.777 5.829 3.955 —15.50 9.31 —1.95
0.0 0.4 0.8 1.2 1.6 2.0 2.4 Pure Fluids
r (A) LJ197 1.102  1.164 —0.011 —4.75 242 -2.11
Figure 4. As in Figure 2 forR = 0.4. LJ592 1.089 1178 0.001 —-3.14 0.96 —1.97
LJTIP4 0.925 0.955 —0.001 -—5.81 231 —-3.35
TABLE 9: Chemical Potential (in kT) of Solutes in LJ88 LIWAT 0771 1349 —0.145 -348 044 -214
from |n’[egra| Equation Formulas LJCCL4 1.037 1.067 —0.025 —8.24 2.89 —5.17
odow  HNC PY  U(HNC+PY)  1stRDF peak Solute in
LJ197 0.649 0.711 —0.396 —6.61 0.92 —-5.86
0.2 —-0.97 —1.00 —0.98 2.13 LJ592 0.382  0.471 —0.600 -6.03 0.08 —6.33
0.4 —221 222 —2.21 2.94 LITIP4 1.389 1419 0.484 —8.02 3.14 —4.25
0.6 —-219 313 —2.67 3.08 LJIWAT 4780 5358 2.396 —4.62 3.75 +257
08 -121 -4.10 —2.65 2.86 LJCCL4 0.490 0.520 —0.525 —4.18 1.72 —2.77
1.0 0.39 —5.03 —2.32 2.79
1.2 248 —5.93 —-1.69 2.70 (b) Calculated Excess Partial Molar Energies and
14 493 —6.83 —0.95 2.68 Free Energies (ikT) for LJ Systems (PY RDFs)
1.6 766 —7.73 —0.03 2.67 — _ =
1.8 1064 —8.64 1.00 2.56 ofow  Ew ARw ®T (P b
2.0 13.82 —9.56 2.13 2.59 Solutes in LJ88
af MC simulati 0.2 -140 -0.77 —-191 -1.07 -—-298 -1.36
rom MC simulation. 0.4 ~404 -146 -525 -1.17 —6.42 -3.26
1 . N 0.6 -6.86 —0.11 —6.73 —0.85 —7.58 —3.82
values. */2S, which is an approximation to the excess entropy, g —994 206 -763 -025 -—7.88 -388
is also in good agreement with the EOS value for the excess Ljgs ~13.19 486 —8.08 059 —7.49 —3.48
entropy. The calculated values AE., (AESy + AE,,) and 1.2 —-1662 815 -821 164 -6.57 —2.83
ASuw (A%r + A%) are smaller than-/,Eg, and —Y,S,, 14 —20.23 1164 -834 285 —548 -—-211
. o L 1.6 —24.02 1539 -8.38 421 —4.17 -131
respectively. This is probably due to overestimation of the ;g _2800 1911 —-8.64 568 -295 —058
structure of the triplet correlation function by the KSA and 5 —32.14 2273 -9.16 728 —1.88 0.07
inclusion of the long-range integral @f® In 6g® in ASy,.2 Pure Fluids
As a result of partial energyentropy compensation, the | j197 502 333 —162 3.04 142 353
discrepancy in the values of the chemical potential is smaller L3592 -0.87 0.43 —0.48 3.25 277 474
than the discrepancy in energy and entropy. The calculated LJTIP4 ~ —1.83 0.84 —1.04  6.82 578  9.13

chemical potential is accurate for LJ592 and LJTIP4, more LJWAT — —7.97 188 —4.68 -101 —569 -3.55
positive for LJ197, and more negative for the other fluids. LJCCL4 —1544 506 -1024 199 -8.25 -3.08

For the solutes of different size in LJ88 the results are in Solute in
qualitative agreement with FEP, showing the minimuriRat b]ég; :ig-gi ég jg;’é é-;ﬂ :ig-gg :g-?g
0.8, but consistently more negative. Again, thisis attributed to | '51p4  Z4.03 132 277 1063 786 1211
underestimation of the solvent reorganization energy and _jwAT —8.48 10.79 373 —1.03 270 0413

entropy. Table 10 also shows the results for the solution of a LJICCL4 —5.80 271 —294 046 —2.48 0.29
methane-like ”.”O'ecu'e In thre? simple SOlvent.S' The val_ue_s aIncludes the liberation solvent reorganization entropy, 1028
calculated are in rough qualitative agreement with the heuristic | 388 0.2% for LJ197, 0.2k for LJ592, 0.1% for LITIP4, 0.2k for
H5(PY + HNC) rule (Table 8). LICCL4, 1.0& for LJWAT. ? Includes the liberation solvent reorga-

The results for LJCCL4 can also be compared with experi- nization energy, 0.2l for LJ88, 0.07 for LJ197~0.04 for LJ592,
mental data for the dissolution of methane in CCl4 although —0.06 for LJTIP4, 0.15 for LICCL4, 1.47 for LIWAT.

LJCCL4 does not correspond exactly to CCl4 because its .
pressure is too high«770 atm). In any case, the experimental is very good, but the values for the energy and enthalpy are too

numbers at 253C are6 negativg, probably due to underes’Fimation of the solvgnt
reorganization energy and entropy as in the pure LIJCCL4 fluid.
£ = —3.03 cal/mol K 1.5X) The results for pure LJ88 and solute in LJ197 and LJ592
show how the thermodynamic properties of solvation are
h®* = —0.714 kcal/mol £1.T) affected by an increase in solvergolvent interactions with the
solute-solvent potential remaining the same. The arithmetic
4= 0.19 kcal/mol (0.3RT) average of HNC and PY chemical potential increases as the

solvent-solvent interactions increase from LJ592 to LJ88 (Table
The calculated value for the excess chemical potential kI)29  8). The solute-solvent energy becomes slightly more negative
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TABLE 11: Calculated Properties for LJ Systems (Simulation RDFs}

J. Phys. Chem. B, Vol.
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odow Esw® AES [ hex S AS S U
Solutes in LJ88
0.2 —-1.37 —0.64 -1.77 —2.84 —0.49 —0.26 —-1.52 —-1.32
0.4 —4.03 —-1.28 -5.07 —6.24 —-1.82 -0.34 —2.98 —3.26
0.6 —6.98 —0.06 —6.79 —7.64 —3.37 0.24 —3.76 —3.88
0.8 —10.08 1.96 -7.87 —-8.12 —4.68 1.10 —-3.85 —4.27
LJ88 —13.47 5.06 —8.16 —7.57 —5.85 2.12 —3.50 —4.07
1.2 -17.10 8.14 —-8.71 -7.07 -7.15 3.25 —3.04 —4.03
1.4 —20.91 11.28 —9.38 —6.52 —8.81 4.48 —2.75 —-3.77
1.6 —25.07 14.73 -10.10 —5.89 -10.14 5.72 —2.02 —-3.87
1.8 —29.31 17.74 —-11.32 —5.63 —11.66 6.86 —-1.52 —4.11
2.0 —33.89 21.28 —12.37 —5.09 —13.40 8.15 —-1.02 —4.07
Pure Fluids
LJTIP4 —1.49 0.48 —1.08 5.74 —4.91 1.84 —2.92 8.66
LIJWAT —8.02 1.74 —4.87 —5.88 —3.33 0.37 —2.07 —-3.81
LJCCL4 —15.78 6.06 —-9.57 —7.58 -7.03 2.78 —4.06 —-3.52
Solute in
LJTIP4 —3.55 0.81 —-2.81 7.82 —6.58 2.45 —3.50 11.32
LIWAT —8.68 9.59 2.35 1.32 —4.39 3.38 2.43 -1.11
LJCCL4 —-5.81 3.08 —2.58 —-2.12 —3.90 1.61 —2.61 0.49

2 Energies and free energieskil, entropies irk.  Includes the long range correction (eq 17).

asey, decreases due to differences in the RDF. $hign LJ592 energy more negative than it should be under true constant
is somewhat smaller in magnitude than in the other two cases.pressure conditions.

The partial molar volume is largest for the largesand because

P decreases as, increases, thePp)®* term exhibits a maximum

at LJ197. The solvent reorganization energy and entropy
become more positive &g, increases. This is expected, since
the breaking of the solventsolvent interactions and correlations
by the solute is more severe the more strongly the solven
molecules interact with each other. The to&l and &> are
predicted to be less negative @sincreases.u®* also becomes
less negative as, increases because the unfavorable change
in & is insufficiently compensated by the favorable change in
X This trend foru® is in agreement with the HNG- PY
result, but the calculated®* values are systematically more

IV. Discussion

The goal of this paper is to obtain qualitative insights into
solvation thermodynamics (especially solvation entropy) and
t provide reference data for comparison with water, which will
be the subject of a future publication. This is accomplished by
a detailed decomposition of the chemical potential of the solute
first into the partial molar energy, entropy, and PV term and
subsequent decomposition of the energy and entropy into
solute-solvent and solvent reorganization terms. This allows
the entropy of solvation to be analyzed and comprehended in a
way similar to the energy of solvation. Further, the solvent

negative, as in the rest of Table 10. . - o .
. i ) . reorganization properties are split into local (correlation) terms
The case of methane-like solute in LIWAT is quite unusual iising from the immediate vicinity of the solute and global

since it is the only one characterized by positive excess energyiarms (“liberation” terms and the PV work) affecting the whole
and entropy. This is so because the positive solvent reorganizabody of the fluid.

tion energy and entropy dominate over the negative selute

solvent energy and entropy. The liberation terms are large in o can pe performed by viewing the chemical potential as the
this solvent due to its high compressibility (see Table 1). change in Helmholtz free energy upon solute insertion at
The results based on the simulation RDFs are shown in Tableconstant volume. In that case, the energy and entropy compo-
11. Due to the differences in the shape of the PY and MC nents contain contributions from global solvent compres-
RDFs, the solutesolvent energy tends to be more negative and sjon337.38 Other decompositions are possible in other theoretical
the solute-solvent entropy less negative than the PY results, formulations, for example, the test particle approach. The utility
especially for the large solutes. For the larger solutes, the of each depends on whether the components have a clear
solvent reorganization energy tends to be smaller and the solveniphysical meaning. The decomposition of the solvation energy
reorganization entropy larger than the PY results. The final into a solute-solvent and a solventsolvent term is a very
results foru® are more negative (and in worse agreement with natural and common one. The decomposition we employ for
EOS) due to an improvement in the values%f These results  the entropy has the advantage of being exactly analogous to
are less smooth than those based on PY RDFs due to thethat for the energy and is anticipated to aid significantly in our
introduction of statistical uncertainty and inaccuracies due to better understanding of solvation entropy. In general, thorough
truncation of the RDFs at shorter distances. The minimum in understanding of solvation thermodynamics will be accom-
u®™ at R = 0.8 is reproduced, but the®* for large solutes plished when the physical meaning of the terms appearing in
stabilizes at about4kT instead of increasing as in the PY and various theories and their relationship becomes clear.
FE simulation results. One possible source of this behavior is  One important observation from the present work is that the
the slight compression of the solvent that occurs for the larger chemical potential can have very similar values for entirely
solutes. For example, the partial molar volume of the solute different physical reasons. For example, the solution of a
with R = 2 is about 5 times the molar volume of the LJ88 methane-like solute in LJCCL4 and LJWAT is characterized
solvent. Since only one solvent molecule is removed when the by a similaru®. However, the excess energy and entropy have
solute is added, some compression of the solvent takes placedifferent signs in LJWAT and LJCCL4. The strong interactions
This may affect the solutesolvent RDF, making the excess among solvent molecules in LJWAT (high cohesive energy

This decomposition is not unique. An alternative decomposi-



3550 J. Phys. Chem. B, Vol. 102, No. 18, 1998 Lazaridis

density) make the solvent reorganization energy and entropy  (2) Brooks, C. L. 1.J. Phys. Cheml986 90, 6680.
large and positive and dominant over the negative selute (3) Yu, H.-A; Roux, B.; Karplus, MJ. Chem. Phys199Q 92, 5020.
solvent energy and entropy. Also, the low pressure of LJWAT  (4) Smith, D. E;; Haymet, A. D. JJ. Chem. Phys1993 98, 6445.
makes the excess PV term negative. For LITIP4, the large value ~ (5) Guillot, B.; Guissani, Y.J. Chem. Phys1993 99, 8875.
of u® is primarily due to the PV term. (3) \éva”ace'_ DA' Cé Che'g' I;thyslggz 8/:'129282;10 2817

A second interesting observation has to do with the effect of E8§ L:;Z%?S': T, F\fﬁ;ss Cr']er'n.gféviqu pape? is this issue.
§o|vent—solvent interactions on the chemlcal potential. Increase (9) Morita, T.; Hiroike, K. Prog. Theor. Phys1961 25, 537.
in solvent-solvent interactions keeping the soldtelvent (10) Ben-Naim, AJ. Phys. Chem1978 82, 792-803.
potential the same leads to increase in the chemical potential (11) sharp, K.; Nicholls, A.; Friedman, R.; Honig, Biochemistryl991,
(solvation more unfavorable). This is largely due to the increase 30, 9686.
in the solvent reorganization energy. Although it is partly  (12) Kirkwood, J. G.; Buff, F. PJ. Chem. Phys195], 19, 774.
cancelled by an increase in the solvent reorganization entropy, (13) Carnahan, N. F.; Starling, K. B. Chem. Phys1969 51, 635.
a net effect on the chemical potential remains. 78%3)1 Johnson, J. K.; Zollweg, J. A.; Gubbins, K. Eol. Phys.1993

In th.e quantltgtlve ?‘9°”r?‘°y of the. calculated energies and ’(15) .Jorgensen, W. IBOSSyersion 2.8 Yale University, New Haven,
entropies, certain deficiencies are evident. For HS solutes thecT 1939,
results for the excess entropy are quite good, in part due to (16) Tobias, D. J.; Brooks, C. L., Ill. Chem. Phys199Q 92, 2582.
cancellation of error. Deviations for very large solutes may be  (17) CRC HandbookCRC Press: Boca Raton, FL, 19884.
due to inaccuracies in the RDF. For LJ systems results tend to  (18) Pratt, L. R.; Pohorille, AProc. Natl. Acad. Sci. U.S.A992 89,
be better at high temperature, as usual. A common discrepancy?99>: ,
is that the energy and entropy are calculated to be too negative (19) Lebowitz, J. LPhys. Re. A 1964 13, 895.
due to underestimation of the solvent reorganization terms. This 10%?0) Leonard, P. J.; Henderson, D.; Barker, JMal. Phys.1971, 21,
is probably due to overestimation of the structure of the solvent 1) kiellander, R.; Sarman, 9. Chem. Phys1989 90, 2768.
around the solute by the KSA. As a result, the chemical  (22) Jorgensen, W. L.; Ravimohan, €.Chem. Phys1985 83, 3050.
potential is not always quantitatively accurate. Still, this (23) Hansen, J. P.; McDonald, I. Rheory of simple liquidsAcademic
approach may provide a practical means of estimating the Press: London, 1986.
chemical potential for very large solutes. Quantitative improve- ~ (24) Boublik, T.J. Chem. Physl97Q 53, 471.
ments will come from improved approximations for the inho- __(25) Mansoori, G. A,; Carnahan, N. F.; Starling, K. E.; Leland, T. W.,

. h . . . Jr.J. Chem. Phys1971, 54, 1523.

mogeneous pair correlation function. In a forthcoming publi-

; . (26) Ben-Amotz, DJ. Phys. Chem1993 97, 2314.
cation the results presented here will be compared to those for (27) Groot, R. D.; van der Eerden, J. P.; Faber, N.JMChem. Phys.

methane in water. 1987, 87, 2263.
(28) Barker, J. A.; Henderson, DMol. Phys.1971, 21, 187.
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