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In the previous paper expressions for the partial molar energy and entropy at infinite dilution have been
derived based on the inhomogeneous forms of the energy equation and the correlation expansion for the
entropy. These expressions are here applied to a series of solutes of varying size in dense hard-sphere and
Lennard-Jones solvents, some of which serve as reference systems for comparison with water. Numerical
results are obtained under the assumption that the inhomogeneous solvent-solvent pair correlation function
in the mixture is equal to the bulk solvent radial distribution function (Kirkwood superposition approximation).
The correlation functions required are obtained by both integral equation theory (Percus-Yevick approximation)
and Monte Carlo simulations. The thermodynamic results are compared with equation of state, integral
equation, and free energy simulation results for the same systems. For hard-sphere systems the excess entropies
are in good agreement with equation-of-state results but in many Lennard-Jones systems the calculated partial
molar energies and entropies are lower than the expected values. This is attributable to overestimation of the
structure of the bulk triplet correlation function by the superposition approximation. The decomposition of
the chemical potential shows that similar solvation free energies can have entirely different physical origins.
Specifically, in solvents of high cohesive energy density the chemical potential is dominated by the breakup
of solvent-solvent interactions locally around the solute. In solvents of low cohesive energy density it is
dominated by the pressure-volume term. Increase in solvent-solvent interaction strength leads to increase
in the chemical potential of the solute due to the higher solvent reorganization energy, which is insufficiently
compensated by an increase in solvent reorganization entropy.

I. Introduction

Although the solvation free energy (excess chemical potential)
is the most important quantity in solvation thermodynamics,
solvation energies and entropies are of extreme interest because
they determine the temperature dependence of solvation free
energies and contain information on their physical origin.
Whereas several approaches are available for the computational
determination of solvation free energies,1 calculation of solvation
energies and entropies is much more difficult. The entropy is
usually calculated as the temperature derivative of the chemical
potential or as the difference between the free energy and the
energy calculated directly from the simulation.2-5 However,
the convergence of the energy or the entropy is much slower
than that of the free energy. More importantly, the physical
interpretation of the entropies obtained is not straightforward.
Insights into the entropy of fluids have been recently obtained

with the correlation expansion of the entropy.6-7 This approach
has so far been applied to mostly pure fluids. In mixtures the
partial molar entropy contains contributions from introduction
of solute-solvent correlations and the change in solvent-solvent
correlations upon solute insertion (solvent reorganization en-
tropy), just as the partial molar energy is equal to the solute-
solvent interaction plus the change in solvent-solvent interac-
tions (solvent reorganization energy). Whereas the solute-
solvent terms are readily calculated, the solvent reorganization
terms are difficult to obtain because they correspond to small

differences between large numbers. In the previous paper,
tractable expressions for the partial molar energies and entropies
in infinitely dilute mixtures were derived by viewing the solute
as an inhomogeneity in the solvent [ref 8, hereafter referred to
as paper I]. The inhomogeneous form of the energy equation
and the correlation expansion for the entropy, first presented
by Morita and Hiroike9 were used to derive expressions for the
solvent reorganization energy and entropy. Together, these two
equations provide a comprehensive new approach to solvation
thermodynamics.
In this paper these new expressions are evaluated by applica-

tion to infinitely dilute mixtures of solutes of varying size into
hard-sphere (HS) and Lennard-Jones (LJ) solvents. The expres-
sions used are summarized in section II along with the
methodology for Monte Carlo (MC) simulations, integral
equation and free energy calculations. The results are presented
in section III and a discussion in section IV.

II. Theory and Methods

Partial Molar Energy and Entropy Expressions. The
chemical potential of a solute s in a solvent w can be written as
a sum of energetic, entropic, and pressure-volume terms:

whereNs is the number of solute particles,ej, sj, andVjs are the
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partial molar energy, entropy, and volume of the solute,
respectively. The properties of an ideal gas at the same
temperature and density are usually subtracted to obtain excess
quantities:

In paper I the following expressions for the excess partial
molar energy and entropy at infinite dilution were derived by
viewing an infinitely dilute mixture as an inhomogeneous fluid
with the solute fixed at the origin:

where

where

wherek is Boltzmann's constant,F°w the pure solvent density,
Gsw the solute-solvent pair correlation function defined with
respect to the conditional solvent density far from the solute
(F°w(1 - κkT/V) ≈ F°w), g°ww the pure solvent pair correlation
function, gww

inh the inhomogeneous solvent-solvent pair cor-
relation function in the mixture,usw the solute-solvent potential,
uww the solvent-solvent potential,κ the isothermal compress-
ibility, and Vjs

∞ the solute partial molar volume.Esw is the
solute-solvent energy,∆Eww

corr the solvent reorganization en-
ergy arising from solute-solvent correlations, and∆Eww

lib the
solvent reorganization energy arising from the thermal motion
of the solute (“liberation”10). Sve is the “volume entropy” term
arising from the change in ideal solvent entropy upon solute
insertion,11 Ssw the entropy due to solute-solvent correlations,
∆Sww

corr the solvent reorganization entropy arising from correla-
tions, and∆Sww

lib the solvent reorganization entropy arising
from the thermal motion of the solute. Equation 3 assumes
pairwise additivity of the potential, and eq 7 assumes that the
higher order entropy terms can be neglected. In this paper we
are going to assume thatgww

inh ) g°ww. This is equivalent to the
Kirkwood superposition approximation (KSA) for the homo-
geneous triplet solute-solvent-solvent correlation function. The
kF°wVjs term in eq 8 cancels to a large extent with the∫(1 -

Gsw) term in theSsw term due to the Kirkwood-Buff relation-
ship:12

The componentsEsw, Ssw, ∆Sww, and∆Eww are calculated by
numerical evaluation of the integrals in eqs 3-11. Calculation
of Esw and Ssw requires a straightforward one-dimensional
integration. The integration for∆Sww

corr and ∆Eww
corr was per-

formed as described in paper I. Because the integral of 1-
Gsw is sensitive to the truncation point, its value for the HS
systems was calculated at the last few minima and maxima of
the radial distribution function (RDF) (around 8-9 solvent
diameters away) and the limiting value was estimated by
extrapolation. A similar calculation was done for∆Sww

corr,
which is also sensitive to the truncation point. Its value
correlates with the partial molar volume because they both
depend on the overall extent of solvent “clustering” around the
solute (the-∫(1- Gsw) term). Increased clustering means that
the presence of the solute leads to enhancement of solvent-
solvent correlations and hence to less positive∆Sww

corr. The
solute-solvent entropy,Ssw, converges much faster. For the
(PVj)ex term we use our calculated values ofVjs

∞ (eq 12) withP
andκ obtained from the Carnahan-Starling equation of state
(EOS)13 (κkT/σ3 ) 0.08145,Pσ3/kT) 3.997 15 forF* ) 0.7).
When simulation RDFs are used, the partial molar volume

cannot be calculated reliably from eq 12 because the RDFs are
available up to only about 2.5 solvent diameters. In this case
the partial molar volume needs to be estimated by some
independent means, possibly longer NPT simulations or, if
relevant, use of experimental values. Here we used the values
obtained by the BMCSL EOS (see below). For the calculation
of ∆Sww

corr, the RDF was truncated at the last point that is
consistent with the partial molar volume of the solute (i.e., a
point that when used in eq 12 gives the correct partial molar
volume).
For the LJ systems the excluded volume (the integral in eq

12) was calculated as the average value from truncation at the
last two extrema of the RDF.∆Sww

corr was obtained with
truncation at the last extremum of the RDF. The pressure and
solvent compressibility was obtained from the LJ EOS. When
simulation results are used, as in the HS case, we need an
independent estimate of the partial molar volume. We use the
value obtained from the PY RDF. For∆Eww

corr and∆Sww
corr we

truncate the RDF at a point that gives the correct value ofVjs.
The liberation contributions were calculated based on the

thermodynamic equations8

The Carnahan-Starling EOS for the HS fluid13 and a recent
empirical EOS for the LJ fluid14 were used forR (the thermal
expansion coefficient),κ, and the pressure. The correlation
functions needed in eqs 3-11 were obtained by integral equation
theory and MC simulations.
Monte Carlo Simulations. NVT ensemble Monte Carlo

simulations were performed for pure HS and LJ fluids (267
particles) and for mixtures of one solute of varying size in 266
solvent molecules to obtain solvent-solvent and solute-solvent
RDF. The BOSS program was used for the simulations,15

slightly modified for the hard-sphere simulations. Usual
periodic boundary conditions were employed with preferential
sampling close to the solute for the mixtures. 15 million
configurations were averaged to obtain the pair correlation

µs
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functions with 5 million or more configurations for equilibration.
The RDFs were calculated at 0.1 Å intervals. The cutoff for
the LJ interactions was set to 10.5 Å, switched off from 10 Å.
All simulations started with an equilibrated box of methanol
molecules with the hydrogen and the methyl group turned into
dummy atoms. The number density of the methanol box was
0.014 097. All simulations were run at 298.15 K.
Lennard-Jones simulations were performed at six thermody-

namic states:F* ) Fσ3 ) 0.85 and temperatureT* ) kT/ε )
0.88, 1.9747, and 5.9242 (LJ88, LJ197, LJ592, respectively); a
model of CCL4 (LJCCL4) withσ ) 5.27 Å, ε ) 0.7378 kcal/
mol16 at its experimental density (1.594 g/cm3, or 0.006 24
Å-3 17); a fluid with the LJ parameters of TIP4P water (LJTIP4)
with σ ) 3.15365,ε ) 0.155 kcal/mol at the density of liquid
water; and an LJ fluid with a size similar to water and an energy
parameter increased in order to bring the fluid to atmospheric
pressure (LJWAT) withσ ) 2.67 Å, ε ) 0.541 kcal/mol.18

For LJ88 the pure liquid and a series of infinitely dilute
mixtures were simulated. The solute/solvent size ratio varied
from 0.2 to 2. Since BOSS uses the geometric combining rule
(σsw ) (xσsσw), σs/σw varied fromx0.2 tox2. The energy
parameter of the solute was kept equal to that of the solvent.
For LJTIP4, LJCCL4, and LJWAT we simulated the pure fluid
and a solution of a methane-like solute (σ ) 3.73 Å,ε ) 0.294
kcal/mol). The LJ size parameters of the solvent were adjusted
to achieve the desired dimensionless density. The size parameter
of the solute was adjusted accordingly. In LJ197 and LJ592
we simulated a solute of the same size as the solvent and an
energy parameter such that the solute-solvent parameter is the
same as in the LJ88 fluid (εsw ) 0.6733 kcal/mol). The
parameters for the LJ systems studied are listed in Table 1.
The hard-sphere simulations were performed at a dimension-

less densityF* ) 0.7 (σw ) 3.6756). In addition to the pure
fluid, a number of infinitely dilute mixtures were simulated
(1 solute and 266 solvent molecules). The solute/solvent size
ratio was varied from 0 (point solute) to 2. The usual arithmetic
average combining rule was used for the solute-solvent
interactions (σsw ) (σs + σw)/2). The simulations started from
the end of LJ simulations of similar size ratios. The contact
values of the RDF were obtained by fitting the first four
calculated values of the RDF to a cubic spline and extrapolating
to contact.
The solute-solvent RDFs reported in BOSS are defined with

respect to the overall solvent density in the box (Fw ) 266/V).
Gsw in eqs 3-11 is defined with respect toFw

∞ ) F°w(1 - κkT/

V). Therefore,Gsw is obtained by scaling the BOSS RDFs by
Fw/Fw

∞ ≈ Fw/F°w ) 266/267.
Integral Equations. Integral equation theories were used

in this paper for two purposes: (a) to obtain RDFs and (b)
estimate the solute chemical potential for comparison to our
calculated values. The Percus-Yevick (PY) and the hypernet-
ted chain (HNC) closures were used to solve the Ornstein-
Zernike equation for our HS and LJ fluids. A program written
by Roux utilizing a simple iterative scheme with a logarithmic
spacing of grid points was used.3 For the PY solution of the
HS systems the analytical solution19 as implemented in a Fortran
program obtained from Henderson20was used for solute/solvent
ratios from 0.2 to 7. The numerical solution was used for the
point solute.
Closed-formed expressions for the chemical potential for a

number of closures are available.21 At infinite dilution the
expression for the HNC closure is

and for the PY closure

wherehsw ) gsw - 1 is the total correlation function andcsw
the direct correlation function.
Free Energy Simulation. The free energy perturbation

(FEP) method1,22 was used to obtain the excess chemical
potential of a solute of varying size in a LJ solvent. The basis
of the method is the formula

The present calculations were performed with∆λ ) 0.1 and
0.05 and “double-wide sampling” (simultaneous perturbations
to+∆λ and-∆λ). The same 266 solvent molecules+1 solute
system was used for this simulation. Theε parameter remained
the same, and theσ parameter was scaled from 0 (λ ) 0) to
7.8424 (λ ) 1). For∆λ ) 0.1, 2.5 million configurations were
used for equilibration and 5 million for sampling at each value
of λ. The∆λ ) 0.05 simulations started from the end of the
corresponding∆λ ) 0.1 simulations and sampled 2.5 million
configurations at eachλ value.

TABLE 1: Lennard-Jones Systems Studied and Their Thermodynamic Properties from the LJ EOSa

LJ88 LJ197 LJ592 LJTIP4 LJCCL4 LJWAT

σw 3.9212 3.9212 3.9212 3.15365 5.27 2.67
εw 0.6733 0.3 0.1 0.155 0.7378 0.541
F 0.014097 0.014097 0.014097 0.033 0.00624 0.033
σs 0.7842-7.8424 3.9212 3.9212 3.73 3.73 3.73
εs 0.6733 1.5111 4.5333 0.294 0.294 0.294
F* ) Fσw

3 0.85 0.85 0.85 1.0457 0.9134 0.6338
T* ) kT/ε 0.88 1.9747 5.9242 3.8226 0.8031 1.0906
Pσ3/kT 1.420 3.474 3.606 8.193 2.802 -0.0064
κkT/σ3 0.05245 0.06238 0.08916 0.03001 0.03020 0.57802
RT 0.320 0.284 0.285 0.182 0.234 1.411
aex/kT -3.32 0.18 1.53 2.26 -3.90 -2.02
µex/kT -2.64 3.27 4.77 9.10 -1.83 -3.03
eex/kT -6.76 -2.51 -0.40 -0.73 -7.96 -4.02
sex/k -3.44 -2.69 -1.93 -2.99 -4.06 -2.00

R σ in Å, ε in kcal/mol,F in Å-3. σw, εw refer to the solvent,σs, εs refer to the solute. The geometric combining rule is used for both size and
energy parameters. The simulations were run atT ) 298.15 K and with the same box ofF ) 0.014097. Theσ parameters for the solvent and the
solute in LJTIP4, LJCCL4, and LJWAT were adjusted to reproduce the desired dimensionless density.κ is the isothermal compressibility,R the
thermal expansion coefficient.aex, µex, eex, sex are the excess Helmholtz free energy, Gibbs free energy, energy, and entropy, respectively.

µs
ex ) Fw∫{1/2hsw

2 - 1/2hswcsw - csw} dr (14)

µs
ex ) -Fw∫ csw

hsw - csw
ln(1+ hsw - csw) dr (15)

µs
ex ) -kT∑

i

ln〈exp-
U(λi + ∆λ) - U(λi)

kT 〉λi (16)
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Because the interactions are truncated at 10.5 Å, it is
important to add the long-range solute-solvent interaction to
the calculated chemical potential. It is obtained by integration
of the LJ potential from the cutoff distance to infinity assuming
thatgsw ) 1 beyond the cutoff distanceRc:

Equations of State. Pure HS fluids are accurately described
by the Carnahan-Starling EOS:13

whereη ) πF*/6 is the packing fraction. This equation gives
for the excess chemical potential and the excess entropy:23

The contact value of the RDF can be calculated from

For mixtures of hard spheres an extension of the Carnahan-
Starling equation due to Boublik24 and to Mansoori et al.25

(BMCSL equation) is commonly used and gives accurate results.
For a binary mixture this equation is

wherex1 andx2 are mole fractions. Expressions for the contact
values of the RDFs are given by Boublik.24

Based on this equation, an expression can be derived for the
chemical potential of an infinitely dilute HS solute in a HS
solvent26

and for the partial molar volume26

whereR ) σs/σw.
For pure LJ fluids the recent empirical EOS of Johnson et

al.14 is reliable between the triple point (T* ∼ 0.69) and 4-5
times the critical temperature (T*c ) 1.316) and was used in the
present calculations.

III. Results

A. Hard Spheres. MC Simulations.The pure solvent RDF
atF* ) 0.7 agrees with the results of reported simulations. The
contact value of the RDF, obtained by extrapolation, was found
to be 3.215. This should be compared to 3.23927 and 3.15728

obtained previously by simulation. The Percus-Yevick value
is 2.9486 and the value deduced from the Carnahan-Starling
EOS is 3.213. The statistical uncertainty in the pure fluid RDF
determined by block averages over 5 million configurations is
about(0.02.
For infinitely dilute solutes simulation data are scarce. The

statistical uncertainty for solute-solvent RDFs obtained by these
simulations is substantially larger than that of the pure fluid
results (about(0.15) due to limited statistics. The simulation
RDFs are virtually identical to the PY RDFs, except for the
contact value. As is well-known, the contact value is systemati-
cally underestimated by the PY approximation. The deviations
become larger for the larger solutes (Figure 1). This is
consistent with results for a hard-sphere fluid next to a flat
wall.29 The contact values of the solute-solvent RDFs obtained
by simulation are listed in Table 2 and compared to the
analytical PY results and those deduced from the BMCSL
equation. The BMCSL value is always within the statistical
uncertainty of the MC value, except for the largest simulated
solute, where it is lower. This is consistent with previous
observations that the BMCSL contact values forgsw are too
low in dilute solutions for large solutes and in the limit of an
infinite solute.30

The results for the point solute are particularly interesting.
The MC simulations indicate that the contact value is not the
highest value of the RDF. This is probably due to the physical

Elongsw ) 16πFwεsw(σsw
12

9Rc
9

-
σsw

6

3Rc
3) (17)

Z) P
FkT

) 1+ η + η2 - η3

(1- η)3
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Z) 1+ 4ηg(σ)

Z) P
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)
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(21)

y1 )
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2σ1σ2(x1σ1
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+ 3ηR2

(1- η)2
+
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Figure 1. Solute-solvent radial distribution function in a HS solvent
atF* ) 0.7 for solute-solvent size ratioR) 2. The PY solution (solid
line) and the MC result (dashed line).

6Vjs
πσw

3
)

(1- η)4

η(η4 - 4η3 + 4η2 + 4η + 1)
+ R3 +

(1- η){(1- η)[1 - η + 3R+ 3(1+ η)R2 - η2R3] + 6ηR2}
η4 - 4η3 + 4η2 + 4η + 1

(23)
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constraint that not many solvent spheres can be in contact with
a point solute at the same time. In contrast, PY and HNC
theories predict that the contact value is always the highest,
even for a point solute. The first few values of the MC RDF
are shown in Table 3.
Corrections to the PY RDFs have been proposed for pure

HS fluids31 and mixtures.32 However, the Grundke-Henderson
approach is not applicable at infinite dilution. Here, to improve
the PY RDF for the entropy calculations we merely replace the
PY contact value by that predicted by the BMCSL equation of
state.
Partial Molar Entropy. The properties of the HS solutes in

the F* ) 0.7 HS solvent from the BMCSL EOS are given in
Table 4. The results for the calculation of the excess partial
molar entropy with the present theory and the contact-corrected
PY RDFs are given in Table 5. The excess partial molar
entropy, within the approximations of the present theory, has

four terms (eq 7). The liberation solvent reorganization entropy
depends only on the solvent. From eq 13 it is calculated to be
0.26k. It is almost negligible, but we include it here for
completeness.
Comparison of the estimated values ofsjs

ex with the quasi-
exact values from the BMCSL EOS (Table 4) shows good
agreement. The best agreement is observed for solute-solvent
diameter ratioR ) 2. At smallerR the estimated entropy is
more negative and at higherR less negative than the BMCSL
result. This good agreement is in part due to cancellation of
error: underestimation of the magnitude of the entropy due to
truncation of the correlation expansion at the two-particle level
and underestimation of the solvent reorganization entropy. For
example, for the pure fluid (R ) 1) in Table 5,sjs

ex should be
exactly one-half ofSsw (-4.57/2) -2.285 k),8 smaller than
the truesjs

ex from Table 4, and∆Sww is 1.48+ 0.26) 1.74k,
smaller than-1/2 of Ssw, as it should be.8 When uncorrected
PY RDFs were used (results not shown), the results were similar
for the small solutes but at largeR the underestimation of the
magnitude ofsjs

ex was larger (sjs
ex ) -37.35k forR ) 7). This

may be due to the lack of thermodynamic consistency of the
PY RDFs, which is improved by the correction of the contact
value. Ssw and∆Sww

corr values from simulation are very similar
to those from the PY RDF, which is expected since the RDFs
are very similar (Table 6).
B. Lennard-Jones. Reference Values.LJ mixtures are not

as well characterized as HS mixtures in terms of thermodynamic
properties. Therefore, it is more difficult to obtain accurate
reference values for comparison with the present theory,
especially at liquidlike densities. A number of approaches will

TABLE 2: Contact Values of the Solute-Solvent Radial
Distribution Functions (G* ) 0.7)a

σs/σw Monte Carlo PY BMCSL

0.0 1.46 1.578 1.578
0.2 2.10 2.035 2.064
0.4 2.44 2.361 2.448
0.6 2.63 2.606 2.755
0.8 3.06 2.796 3.005
1.0 (pure fluid) 3.215 2.949 3.213
1.2 3.45 3.073 3.388
1.4 3.50 3.177 3.536
1.6 3.74 3.265 3.665
1.8 3.74 3.340 3.777
2.0 4.07 3.405 3.875
3.0 3.634 4.228
4.0 3.771 4.447
5.0 3.862 4.596
6.0 3.927 4.704
7.0 3.976 4.785

aUncertainty in the MC contact values is(0.15 for mixtures and
(0.02 for the pure fluid.

TABLE 3: First Few Values of the RDF for the Point Solute
(MC Simulation)

r/σw Gsw r/σw Gsw

0.5000 1.46 0.5713 1.50
0.5169 1.57 0.5988 1.48
0.5441 1.57

TABLE 4: Partial Molar Volume, Excess Chemical
Potential, and Its Decomposition for Hard-Sphere Solutes in
Hard-Sphere Solvent (G* ) 0.7) from the BMCSL Equation
of State

σs/σw Vj/σ3
w µex/kT -sjex/ka (PVj)ex/kT

0.0 0.129 0.456 0.943 -0.486
0.2 0.200 0.944 1.146 -0.201
0.4 0.341 1.780 1.417 0.362
0.6 0.576 3.061 1.758 1.303
0.8 0.930 4.888 2.169 2.719
1.0 1.429 7.359 2.649 4.710
1.2 2.095 10.573 3.200 7.374
1.4 2.954 14.630 3.821 10.809
1.6 4.031 19.627 4.513 15.113
1.8 5.350 25.664 5.277 20.387
2.0 6.937 32.839 6.112 26.727
3.0 19.734 89.262 11.382 77.880
4.0 42.903 188.993 18.503 170.490
5.0 79.526 344.396 27.519 316.877
6.0 132.682 567.837 38.488 529.349
7.0 205.455 871.681 51.447 820.234

a sjs
ex is calculated as the difference ofµs

ex and (PVj)ex.

TABLE 5: Calculated Properties for Hard-Sphere Solutes in
Hard-Sphere Solvent (G* ) 0.7) Using Contact-Corrected PY
RDFsa

σ2/σ1 Vj/σ1
3 Sve Ssw ∆Sww

corr (PVj)ex -sjex b µex

0.0 0.13 -0.91 -0.48 0.09 -0.47 1.05 0.57
0.2 0.19 -0.86 -0.90 0.22 -0.22 1.29 1.07
0.4 0.32 -0.77 -1.50 0.42 0.29 1.60 1.89
0.6 0.55 -0.61 -2.30 0.71 1.21 1.94 3.15
0.8 0.87 -0.39 -3.32 1.04 2.47 2.41 4.89
1.0 1.35 -0.06 -4.57 1.48 4.39 2.89 7.28
1.2 1.97 0.38 -6.07 1.96 6.89 3.46 10.35
1.4 2.80 0.96 -7.83 2.54 10.18 4.08 14.26
1.6 3.84 1.68 -9.89 3.19 14.33 4.76 19.90
1.8 5.11 2.58 -12.25 3.91 19.44 5.50 24.94
2.0 6.65 3.66 -14.93 4.70 25.60 6.30 31.90
3.0 19.23 12.46 -33.76 9.79 75.87 11.25 87.12
4.0 42.15 28.50 -63.27 16.60 167.48 17.90 185.38
5.0 78.73 54.11 -105.66 25.38 313.70 25.91 339.61
6.0 131.69 91.185-163.12 35.58 525.40 36.10 561.50
7.0 204.98 142.49 -237.86 48.35 818.34 46.76 865.11

a Entropies ink, energies inkT. b Includes the liberation solvent
reorganization entropy, 0.26k.

TABLE 6: Calculated Properties for Hard-Sphere Solutes in
a Hard-Sphere Solvent (G* ) 0.7) Using Simulation RDFs

σs/σw Ssw/k ∆Sww
corr /k

0.0 -0.47 0.07
0.2 -0.90 0.22
0.4 -1.48 0.43
0.6 -2.23 0.70
0.8 -3.31 1.09
1.0 -4.46 1.50
1.2 -6.00 2.03
1.4 -7.72 2.62
1.6 -9.75 3.29
1.8 -11.96 3.94
2.0 -14.98 4.96
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be taken here utilizing the pure fluid EOS,14 integral equation
theories, and free energy simulations. The thermodynamic
properties for the six pure LJ fluids calculated from this EOS
are given in Table 1.
The results of the FEP simulations of solutes of increasing

size in the LJ88 fluid are shown in Table 7 for two perturbation
increments,∆λ ) 0.1 and 0.05. The two sets of results provide
an indication of the uncertainty in FEP simulations, which is
substantial even for simple LJ mixtures. The results with the
smaller∆λ should be more reliable. The long-range correction
due to the truncation of the solute-solvent interaction is
significant and increases with solute size. It shows that when
large solutes are created in FEP simulations the long range
dispersion energy corrections should be taken into account. The
chemical potential exhibits a minimum atR) 0.8. A minimum
in the chemical potential as a function of solute size has also
been observed in other simulations of LJ mixtures at different
thermodynamic conditions.33,34

Integral equation theories provide an alternative route to the
chemical potential. Table 8 lists the value for the chemical
potential obtained from the PY and the HNC formulas (eqs 14
and 15). Both are inaccurate compared to the EOS result for
the pure fluids (Table 1). The HNC chemical potential is
systematically too high, and the PY value is systematically too
low. We also attempted to use the PY formula with correlation
functions obtained with HNC and vice versa, but the results
were even worse. Empirically, the average of the PY and HNC
results (last column of Table 8) gives values in good agreement
with the EOS values (deviation less than 15%).
The results of the integral equation theories for the various

solutes in LJ88 are given in Table 9. PY and HNC give similar
results for the small solutes but gradually diverge. The PY
formula predicts a monotonically decreasing chemical potential,

whereas the HNC formula gives a positive chemical potential
for all solutes with size equal or greater to the size of the solvent.
The arithmetic average of the two shows a minimum at 0.6 and
is in reasonable agreement with the FEP results, only somewhat
too positive for all solutes.
MC Simulations. The RDF for the pure LJ88 fluid is in

agreement with early calculations.35 The PY solution has a first
peak that is too high and a first minimum at too low values of
r. The same qualitative deviations are noted for larger solutes
(Figure 2). The agreement between the two RDFs is better for
smaller solutes (Figures 3 and 4). The HNC solution is very
similar for the small solute. For the larger solutes it tends to
give a first peak and a first minimum at too low values ofr
(not shown). The magnitude of the first peak of the RDF from
the simulation is shown in Table 9. It exhibits a maximum at
R) 0.6. Interestingly, this almost coincides with the minimum
in the calculated chemical potential.
Partial Molar Energy and Entropy.Table 10 shows the

results from eqs 3-11 using the PY RDFs. For the pure fluids
the calculated properties can be compared with values obtained
from the EOS (Table 1). The excess energy and entropy are in
good agreement with the EOS values for LJ592, more posi-
tive than the EOS value for LJ197, and more negative than the
EOS values for the other three solvents, the largest discrepancy
being observed for LJCCL4. This is due to underestimation of
∆Eww

corr and∆Sww
corr. In pure fluids the excess energy is equal to

one-half ofEsw, which is in good agreement with the EOS

TABLE 7: Chemical Potential (in kT) of Solutes in LJ88
from Free Energy Perturbationa

σs/σw ∆λ ) 0.1 ∆λ ) 0.05 long range ∆λ ) 0.05+ l.r.

0.2 -1.19 -1.07 -0.007 -1.08
0.4 -2.60 -2.34 -0.054 -2.39
0.6 -4.25 -2.77 -0.18 -2.95
0.8 -3.93 -2.61 -0.43 -3.04
1.0 -3.66( 0.4 -2.09( 0.3 -0.84 -2.93
1.2 -3.00 -1.07 -1.45 -2.52
1.4 -1.71 0.70 -2.31 -1.61
1.6 0.15 2.46 -3.44 -0.98
1.8 2.14 4.79 -4.89 -0.10
2.0 4.79( 0.7 7.79( 0.5 -6.69 +1.10
a The uncertainties are estimated by block averages. Judging from

the difference between the two sets of simulations, the true error is
larger than this estimate.

TABLE 8: Chemical Potential (in kT) from Integral
Equation Formulas

HNC PY 1/2(HNC+ PY)

pure fluids
LJ88 0.39 -5.03 -2.32
LJ197 4.79 1.40 3.10
LJ592 5.62 3.80 4.71
LJTIP4 11.29 5.65 8.47
LJCCL4 2.41 -5.82 -1.70
LJWAT -2.14 -3.31 -2.72

solutes in
LJ197 -1.98 -5.29 -3.63
LJ592 -4.00 -6.03 -5.02
LJTIP4 15.84 6.62 11.23
LJCCL4 1.98 -1.01 0.48
LJWAT 0.59 -1.71 -0.56

Figure 2. Solute-solvent radial distribution function in LJ88 (R )
2). The PY solution (solid line) and the MC result (dashed line).

Figure 3. As in Figure 2 forR ) 0.2.
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values. 1/2Ssw, which is an approximation to the excess entropy,
is also in good agreement with the EOS value for the excess
entropy. The calculated values of∆Eww (∆Eww

corr + ∆Eww
lib ) and

∆Sww (∆Sww
corr + ∆Sww

lib ) are smaller than-1/2Esw and-1/2Ssw,
respectively. This is probably due to overestimation of the
structure of the triplet correlation function by the KSA and
inclusion of the long-range integral ofg(3) ln δg(3) in ∆Sww.8
As a result of partial energy-entropy compensation, the
discrepancy in the values of the chemical potential is smaller
than the discrepancy in energy and entropy. The calculated
chemical potential is accurate for LJ592 and LJTIP4, more
positive for LJ197, and more negative for the other fluids.
For the solutes of different size in LJ88 the results are in

qualitative agreement with FEP, showing the minimum atR)
0.8, but consistently more negative. Again, this is attributed to
underestimation of the solvent reorganization energy and
entropy. Table 10 also shows the results for the solution of a
methane-like molecule in three simple solvents. The values
calculated are in rough qualitative agreement with the heuristic
1/2(PY + HNC) rule (Table 8).
The results for LJCCL4 can also be compared with experi-

mental data for the dissolution of methane in CCl4 although
LJCCL4 does not correspond exactly to CCl4 because its
pressure is too high (∼770 atm). In any case, the experimental
numbers at 25°C are36

The calculated value for the excess chemical potential (0.29kT)

is very good, but the values for the energy and enthalpy are too
negative, probably due to underestimation of the solvent
reorganization energy and entropy as in the pure LJCCL4 fluid.
The results for pure LJ88 and solute in LJ197 and LJ592

show how the thermodynamic properties of solvation are
affected by an increase in solvent-solvent interactions with the
solute-solvent potential remaining the same. The arithmetic
average of HNC and PY chemical potential increases as the
solvent-solvent interactions increase from LJ592 to LJ88 (Table
8). The solute-solvent energy becomes slightly more negative

Figure 4. As in Figure 2 forR ) 0.4.

TABLE 9: Chemical Potential (in kT) of Solutes in LJ88
from Integral Equation Formulas

σs/σw HNC PY 1/2(HNC+ PY) 1st RDF peaka

0.2 -0.97 -1.00 -0.98 2.13
0.4 -2.21 -2.22 -2.21 2.94
0.6 -2.19 -3.13 -2.67 3.08
0.8 -1.21 -4.10 -2.65 2.86
1.0 0.39 -5.03 -2.32 2.79
1.2 2.48 -5.93 -1.69 2.70
1.4 4.93 -6.83 -0.95 2.68
1.6 7.66 -7.73 -0.03 2.67
1.8 10.64 -8.64 1.00 2.56
2.0 13.82 -9.56 2.13 2.59

a From MC simulation.

sjex ) -3.03 cal/mol K (-1.52k)

hhex ) -0.714 kcal/mol (-1.2kT)

µex ) 0.19 kcal/mol (0.32kT)

TABLE 10:

(a) Calculated Excess Partial Molar Volumes and
Entropies (ink) for LJ Systems (PY RDFs)

σs/σw Vex/σw
3 Vjs/σw

3 Sve Ssw ∆Sww
corr sjex a

solutes in LJ88
0.2 -0.104 -0.052 -1.044 -0.54 -0.31 -1.62
0.4 -0.172 -0.120 -1.102 -1.91 -0.43 -3.16
0.6 0.055 0.107 -0.909 -3.33 0.20 -3.76
0.8 0.477 0.529 -0.550 -4.90 1.17 -4.00
LJ88 1.068 1.120 -0.048 -6.56 2.32 -4.01
1.2 1.804 1.856 0.578 -8.23 3.63 -3.74
1.4 2.662 2.714 1.307 -9.94 4.99 -3.37
1.6 3.615 3.667 2.117 -11.72 6.47 -2.86
1.8 4.654 4.706 3.000 -13.58 7.93 -2.37
2.0 5.777 5.829 3.955 -15.50 9.31 -1.95

Pure Fluids
LJ197 1.102 1.164 -0.011 -4.75 2.42 -2.11
LJ592 1.089 1.178 0.001 -3.14 0.96 -1.97
LJTIP4 0.925 0.955 -0.001 -5.81 2.31 -3.35
LJWAT 0.771 1.349 -0.145 -3.48 0.44 -2.14
LJCCL4 1.037 1.067 -0.025 -8.24 2.89 -5.17

Solute in
LJ197 0.649 0.711 -0.396 -6.61 0.92 -5.86
LJ592 0.382 0.471 -0.600 -6.03 0.08 -6.33
LJTIP4 1.389 1.419 0.484 -8.02 3.14 -4.25
LJWAT 4.780 5.358 2.396 -4.62 3.75 +2.57
LJCCL4 0.490 0.520 -0.525 -4.18 1.72 -2.77

(b) Calculated Excess Partial Molar Energies and
Free Energies (inkT) for LJ Systems (PY RDFs)

σs/σw Esw ∆Eww
corr ejex b (PVj)ex hhex µex

Solutes in LJ88
0.2 -1.40 -0.77 -1.91 -1.07 -2.98 -1.36
0.4 -4.04 -1.46 -5.25 -1.17 -6.42 -3.26
0.6 -6.86 -0.11 -6.73 -0.85 -7.58 -3.82
0.8 -9.94 2.06 -7.63 -0.25 -7.88 -3.88
LJ88 -13.19 4.86 -8.08 0.59 -7.49 -3.48
1.2 -16.62 8.15 -8.21 1.64 -6.57 -2.83
1.4 -20.23 11.64 -8.34 2.85 -5.48 -2.11
1.6 -24.02 15.39 -8.38 4.21 -4.17 -1.31
1.8 -28.00 19.11 -8.64 5.68 -2.95 -0.58
2.0 -32.14 22.73 -9.16 7.28 -1.88 0.07

Pure Fluids
LJ197 -5.02 3.33 -1.62 3.04 1.42 3.53
LJ592 -0.87 0.43 -0.48 3.25 2.77 4.74
LJTIP4 -1.83 0.84 -1.04 6.82 5.78 9.13
LJWAT -7.97 1.88 -4.68 -1.01 -5.69 -3.55
LJCCL4 -15.44 5.06 -10.24 1.99 -8.25 -3.08

Solute in
LJ197 -13.52 1.13 -12.32 1.47 -10.85 -4.99
LJ592 -13.84 0.13 -13.75 0.7 -13.05 -6.72
LJTIP4 -4.03 1.32 -2.77 10.63 7.86 12.11
LJWAT -8.48 10.79 3.73 -1.03 2.70 0.13
LJCCL4 -5.80 2.71 -2.94 0.46 -2.48 0.29

a Includes the liberation solvent reorganization entropy, 0.28k for
LJ88, 0.23k for LJ197, 0.21k for LJ592, 0.15k for LJTIP4, 0.21k for
LJCCL4, 1.04k for LJWAT. b Includes the liberation solvent reorga-
nization energy, 0.25kT for LJ88, 0.07 for LJ197,-0.04 for LJ592,
-0.06 for LJTIP4, 0.15 for LJCCL4, 1.42kT for LJWAT.
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asεw decreases due to differences in the RDF. TheSsw in LJ592
is somewhat smaller in magnitude than in the other two cases.
The partial molar volume is largest for the largestεw and because
P decreases asεw increases, the (PVj)ex term exhibits a maximum
at LJ197. The solvent reorganization energy and entropy
become more positive asεw increases. This is expected, since
the breaking of the solvent-solvent interactions and correlations
by the solute is more severe the more strongly the solvent
molecules interact with each other. The totalsjex andejex are
predicted to be less negative asεw increases.µex also becomes
less negative asεw increases because the unfavorable change
in ejex is insufficiently compensated by the favorable change in
sjex. This trend forµex is in agreement with the HNC+ PY
result, but the calculatedµex values are systematically more
negative, as in the rest of Table 10.
The case of methane-like solute in LJWAT is quite unusual

since it is the only one characterized by positive excess energy
and entropy. This is so because the positive solvent reorganiza-
tion energy and entropy dominate over the negative solute-
solvent energy and entropy. The liberation terms are large in
this solvent due to its high compressibility (see Table 1).
The results based on the simulation RDFs are shown in Table

11. Due to the differences in the shape of the PY and MC
RDFs, the solute-solvent energy tends to be more negative and
the solute-solvent entropy less negative than the PY results,
especially for the large solutes. For the larger solutes, the
solvent reorganization energy tends to be smaller and the solvent
reorganization entropy larger than the PY results. The final
results forµex are more negative (and in worse agreement with
EOS) due to an improvement in the values ofsjex. These results
are less smooth than those based on PY RDFs due to the
introduction of statistical uncertainty and inaccuracies due to
truncation of the RDFs at shorter distances. The minimum in
µex at R ) 0.8 is reproduced, but theµex for large solutes
stabilizes at about-4kT instead of increasing as in the PY and
FE simulation results. One possible source of this behavior is
the slight compression of the solvent that occurs for the larger
solutes. For example, the partial molar volume of the solute
with R ) 2 is about 5 times the molar volume of the LJ88
solvent. Since only one solvent molecule is removed when the
solute is added, some compression of the solvent takes place.
This may affect the solute-solvent RDF, making the excess

energy more negative than it should be under true constant
pressure conditions.

IV. Discussion

The goal of this paper is to obtain qualitative insights into
solvation thermodynamics (especially solvation entropy) and
provide reference data for comparison with water, which will
be the subject of a future publication. This is accomplished by
a detailed decomposition of the chemical potential of the solute
first into the partial molar energy, entropy, and PV term and
subsequent decomposition of the energy and entropy into
solute-solvent and solvent reorganization terms. This allows
the entropy of solvation to be analyzed and comprehended in a
way similar to the energy of solvation. Further, the solvent
reorganization properties are split into local (correlation) terms
arising from the immediate vicinity of the solute and global
terms (“liberation” terms and the PV work) affecting the whole
body of the fluid.
This decomposition is not unique. An alternative decomposi-

tion can be performed by viewing the chemical potential as the
change in Helmholtz free energy upon solute insertion at
constant volume. In that case, the energy and entropy compo-
nents contain contributions from global solvent compres-
sion.3,37,38 Other decompositions are possible in other theoretical
formulations, for example, the test particle approach. The utility
of each depends on whether the components have a clear
physical meaning. The decomposition of the solvation energy
into a solute-solvent and a solvent-solvent term is a very
natural and common one. The decomposition we employ for
the entropy has the advantage of being exactly analogous to
that for the energy and is anticipated to aid significantly in our
better understanding of solvation entropy. In general, thorough
understanding of solvation thermodynamics will be accom-
plished when the physical meaning of the terms appearing in
various theories and their relationship becomes clear.
One important observation from the present work is that the

chemical potential can have very similar values for entirely
different physical reasons. For example, the solution of a
methane-like solute in LJCCL4 and LJWAT is characterized
by a similarµex. However, the excess energy and entropy have
different signs in LJWAT and LJCCL4. The strong interactions
among solvent molecules in LJWAT (high cohesive energy

TABLE 11: Calculated Properties for LJ Systems (Simulation RDFs)a

σs/σw Esw b ∆Eww
corr ejex hhex Ssw ∆Sww

corr sjex µex

Solutes in LJ88
0.2 -1.37 -0.64 -1.77 -2.84 -0.49 -0.26 -1.52 -1.32
0.4 -4.03 -1.28 -5.07 -6.24 -1.82 -0.34 -2.98 -3.26
0.6 -6.98 -0.06 -6.79 -7.64 -3.37 0.24 -3.76 -3.88
0.8 -10.08 1.96 -7.87 -8.12 -4.68 1.10 -3.85 -4.27
LJ88 -13.47 5.06 -8.16 -7.57 -5.85 2.12 -3.50 -4.07
1.2 -17.10 8.14 -8.71 -7.07 -7.15 3.25 -3.04 -4.03
1.4 -20.91 11.28 -9.38 -6.52 -8.81 4.48 -2.75 -3.77
1.6 -25.07 14.73 -10.10 -5.89 -10.14 5.72 -2.02 -3.87
1.8 -29.31 17.74 -11.32 -5.63 -11.66 6.86 -1.52 -4.11
2.0 -33.89 21.28 -12.37 -5.09 -13.40 8.15 -1.02 -4.07

Pure Fluids
LJTIP4 -1.49 0.48 -1.08 5.74 -4.91 1.84 -2.92 8.66
LJWAT -8.02 1.74 -4.87 -5.88 -3.33 0.37 -2.07 -3.81
LJCCL4 -15.78 6.06 -9.57 -7.58 -7.03 2.78 -4.06 -3.52

Solute in
LJTIP4 -3.55 0.81 -2.81 7.82 -6.58 2.45 -3.50 11.32
LJWAT -8.68 9.59 2.35 1.32 -4.39 3.38 2.43 -1.11
LJCCL4 -5.81 3.08 -2.58 -2.12 -3.90 1.61 -2.61 0.49

a Energies and free energies inkT, entropies ink. b Includes the long range correction (eq 17).
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density) make the solvent reorganization energy and entropy
large and positive and dominant over the negative solute-
solvent energy and entropy. Also, the low pressure of LJWAT
makes the excess PV term negative. For LJTIP4, the large value
of µex is primarily due to the PV term.
A second interesting observation has to do with the effect of

solvent-solvent interactions on the chemical potential. Increase
in solvent-solvent interactions keeping the solute-solvent
potential the same leads to increase in the chemical potential
(solvation more unfavorable). This is largely due to the increase
in the solvent reorganization energy. Although it is partly
cancelled by an increase in the solvent reorganization entropy,
a net effect on the chemical potential remains.
In the quantitative accuracy of the calculated energies and

entropies, certain deficiencies are evident. For HS solutes the
results for the excess entropy are quite good, in part due to
cancellation of error. Deviations for very large solutes may be
due to inaccuracies in the RDF. For LJ systems results tend to
be better at high temperature, as usual. A common discrepancy
is that the energy and entropy are calculated to be too negative
due to underestimation of the solvent reorganization terms. This
is probably due to overestimation of the structure of the solvent
around the solute by the KSA. As a result, the chemical
potential is not always quantitatively accurate. Still, this
approach may provide a practical means of estimating the
chemical potential for very large solutes. Quantitative improve-
ments will come from improved approximations for the inho-
mogeneous pair correlation function. In a forthcoming publi-
cation the results presented here will be compared to those for
methane in water.
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