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ABSTRACT
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Nowadays, there is an increasing demand to monitor, analyze, and control large scale distributed systems.
Events detected during monitoring are temporally correlated, which is helpful to resource allocation, job
scheduling, and failure prediction. To discover the correlations among detected events, many existing
approaches concentrate detected events into an event database and perform data mining on it. We argue
that these approaches are not scalable to large scale distributed systems as monitored events grow so fast
that event correlation discovering can hardly be done with the power of a single computer. In this paper,
we present a decentralized approach to efficiently detect events, filter irrelative events, and discover their
temporal correlations. We propose a MapReduce-based algorithm, MapReduce-Apriori, to data mining
event association rules, which utilizes the computational resource of multiple dedicated nodes of the
system. Experimental results show that our decentralized event correlation mining algorithm achieves

Event correlations

nearly ideal speedup compared to centralized mining approaches.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

With the growth of large scale distributed systems such as
cluster systems and cloud computing systems [24], the key to
building an efficient and reliable distributed environment is to
monitor and control nodes, services, and applications. Monitoring
such a large system requires continuous collecting of performance
attribute values (i.e.,, CPU-usage, memory-usage) with a fixed
frequency. As the system scales, the overhead of monitoring can
become prohibitive [29].

Events detected during monitoring can help administrators to
quickly pinpoint and troubleshoot bottlenecks, failures and other
problems. For example, Fisichella et al. in [15] proposed a three
stage process to detect unsupervised public health events. By the
term event, we mean that a performance attribute whose observed
value exceeds a given threshold, and failure events can be regarded
as a special case. However, as the system complexity continues
to grow, failures become norms instead of exceptions [44].
Conventional approaches such as checkpointing often prove
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counter-effective [16]. Thus, research on failure management has
shifted onto failure prediction and related proactive management
technologies [25,30].

It has been long recognized that events are not independent but
correlated. Past studies [40] on failure analysis revealed important
patterns in failure distribution. In particular, the events are
temporally correlated in long time spans [37]. Previous research
efforts have shown event correlation is helpful for resource
allocation, job scheduling, and failure prediction [43,16,17].

Event correlation patterns, which describe the co-occurrence
among different events, can be discovered through data mining
approaches. However, classic data mining algorithms such as
Apriori [33] suffer from exponential exploring space to mine
frequent patterns. As data mining is both computationally
intensive and data intensive, when data sets are large, scaling up
the performance of data mining is a crucial challenge. Besides,
Apriori based approaches are incapable of discovering temporal
relationship among detected events. Previous works [5,36] mine
temporal event correlations in sensor networks. However, in these
approaches, all data is stored in a centralized database. As the scale
of the system increases, aggregating events into one centralized
database will be less efficient.

Centralized data mining approaches are not applicable in
several cases. First, in some scientific fields where monitoring
may last over years, the detected events would be too huge to be
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Table 1

Notations for monitoring and mining framework.
Symbol Description
A The monitoring time interval
o The duration for monitoring
Elow The lower threshold of a given attribute
Ewp The upper threshold of a given attribute
TID The unique ID for a transaction
lifetime The temporal duration of a given item
sup The temporal support of a given item
conf The confidence of a given association rule
min_sup The minimal temporal support threshold
min_conf The minimal confidence threshold

centralized. Second, in some time critical fields, event correlation
mining can hardly be done with the power of a single computer
in acceptable time. In contrast, decentralized data mining is
particularly suitable for applications that typically deal with very
large amounts of data (e.g., transaction data, scientific simulation,
and telecom data) that cannot be analyzed through a traditional
paradigm within an acceptable time. We also argue that events
do not exist throughout the monitoring period. Therefore, the
temporality of event correlations must be addressed.

In this paper, we focus on discovering temporal event
correlations efficiently. To speed up the process of mining event
correlations, we suggest that events should be aggregated to a set
of databases rather than a centralized database, where the event
correlation mining can be done in parallel. Moreover, to reduce the
aggregating overhead, events are supposed to be locally filtered in
each node before being passed. Finally, a Map-Reduce based event
correlation mining is performed on the set of databases to discover
event correlations in parallel. Event correlations are regarded as
event association rules, which indicate the temporal relations
among events based on common intervals of activities. The event
association rules facilitate to predict the failure occurrence of the
system as well as to improve the system’s quality-of-service. For
example, we are expected to receive an event from a certain node
within a certain time interval, but it does not appear actually. Then
we may infer that a failure is likely to occur on that node.

The contributions of this paper are summarized as follows:

1. We improve the event-correlation-mining approach by taking
into account the temporality of detected events.

2. We propose an approach to efficiently filtering irrelative events
locally to reduce the number of events to be aggregated.

3. We present a MapReduce-based algorithm to mine event
correlations among a set of dedicated nodes in parallel.

The remainder of this paper is organized as follows: Section 2
describes the model and concepts. Section 3 gives an example
to illustrate our approach. Section 4 introduces the detailed
algorithms. Experiments are given in Section 5. Section 6 reviews
the related work. Section 7 concludes the paper as well as
discussing the future work.

2. Models and concepts

In this section, we first introduce the monitoring and event
detection framework, and then give the model for mining
monitoring association rules. Table 1 summarizes the notation we
used.

2.1. Monitoring framework

The structure of the distributed system is considered as a
hierarchical monitoring tree, where the nodes are divided into
Super Node (SN), Admin Node (AN) and Working Node (WN). SN is
the root node of the entire monitoring tree, which has a global

control of the system. AN is a middle (non-leaf) node, which is in
charge of a set of WNs. Each WN is a leaf node in the monitoring
tree. The task of detecting events is distributed among dedicated
monitoring agents on each WN. An agent is an application-level
monitoring program that runs independently of other applications
in the system and communicates with the outside world via
message-passing [4]. For each WN, it has a local storage to keep
the detected events during monitoring. All the nodes share a
Global Distributed File System (GDFS), which is built upon their local
storage. Each node has the ability to download files from GDFES to
its local storage, as well as upload files to GDFS.

A monitoring request contains long running activities used for
observation, analysis, and control of large scale distributed systems
and applications they host. Each agent periodically collects values
of certain attributes and compares them with given thresholds.
Formally, we define a monitoring request as follows:

Definition 2.1. A monitoring requestreq = (A, o, {(a, &3, 3p) |
a € A, &jg,,» §4p € P}), where 1 is the monitoring time interval and
o is the duration for monitoring. It also contains a set of tuples,
each consists of a monitoring attribute a in attribute set A and
its correspondent lower threshold &, and upper threshold &j, in
threshold set @.

The monitoring request is initiated by SN, and then it
propagates to all WNs through ANs. Finally, it activates the agent
to start monitoring. The goal of monitoring is to check whether a
set of system performance attributes, i.e., CPU utilization, memory
utilization, network bandwidth, and any kind of custom attributes
at application level, have exceeded a correspondent threshold. If
the threshold is exceeded at a certain time slot in a certain place,
an event is detected. Note that we are only interested in whether
an event is detected, rather than the corresponding attribute value.
Formally, we give the definition of event as follows:

Definition 2.2. Let A be a set of attributes we observe, define event
e = (la > Sl‘}p or |a| < &2,), where a € A is the attribute whose
value is larger than the upper threshold El‘l‘p or is smaller than the
lower threshold &7 ..

2.2. Event correlation mining framework

Based on the association rule definition in a traditional
database, we define item, transaction and transaction database in
our domain.

Let N = {ny,ny,...,ny} be a set of nodes in a distributed
system. Assume that time is divided into equal-sized slots
{t1,t5, ..., ty} such that t; 1 — t; = A forall1 < i < n, where
X is the size of each slot.

Definition 2.3. An item i = (e, n) is a couple of event and node,
where n € N and e is an event detected on node n.

Definition 2.4. A transaction T; = {iy, iy, . .
collected at time slot t.

., Ip} is a set of items

Definition 2.5. A transaction database DB = {Ty,T5,...,T,}
consists of a set of transactions, each of which is associated with
a unique identifier, called its TID. We say that a transaction T
contains X, a set of certain items, if X C T.

For example, let a be the CPU utilization and &, = 10%, &, =
50%. Assume that at time slot ty, it is observed that CPU utilization
is 60% on node n; and is 55% on node n,. Thus an event e = (|a| >
50%) is detected both on nodes n; and n,. Hence, a transaction at
time slot ty contains two items, iy = (e, ny) and i, = (e, ny), which
is denoted by T;, = {iy, ix}.

Eachitem has its life cycle in DB, which explicitly represents the
temporal duration of it. Below we define lifetime of an item.
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Definition 2.6. Let i be an item, define the lifetime of i, [t;, tj], as a
time interval within which the associated event has been detected,
where 1 <i < j < n.lItis denoted by: lifetime(i) = I(i) = [t;, §].

For instance, if event e is detected at time slot 1, 2, and 3 on node
n, then lifetime((e, n)) = [1, 3].

Definition 2.7. Let D be a set of items. If the cardinality of D is
k, D is called k-itemset, denoted by Dy. The lifetime of a k-itemset
(k > 1) is defined as follows:

lifetime(Dy) = ﬂ lifetime(D;), D; € Dy. (1)
i=1

As an example, let k = 2, item iy = (eq,ny), item i, =
(e, ny), lifetime(i;) = [1, 3], lifetime(i;) = [2, 4], thus
lifetime({iq, i,}) = lifetime(iy) N lifetime(iy) = [2, 3].

Subsequently, we extend the existing association rule model to
give the definition of temporal support and confidence.

Definition 2.8. Let D be a set of items, the temporal support of
D, denoted by sup(D, lifetime(D)) or sup(D, I(D)), is the number
of transaction that contains D over its lifetime. Support is also
referred to as frequency.

A k-itemset D is called frequent (or large) k-th item set if its
frequency is greater than or equal to a given minimum temporal
support threshold. Note that frequency and support are used
interchangeably here. The add operation of temporal support is
defined as follows:

sup(iy, 1(i1)) + sup(iz, I(i2)) = sup(iy U iz, I(iy) N 1(i2)). (2)

Definition 2.9. The event association rule is defined in the form of
(D1 = Do, lifetime(D; U D,), conf), where Dy, D, are both a set of
itemsand D;ND, = @.Therule(D; = D,, ) holds with confidence
conf if conf% of transactions in DB that contain D; also contain D,
within lifetime(D; UD5). It is the conditional probability, which can
be denoted as follows:

SUp(D] U Dz, l(D] U Dz))

conf (D1 = Dy, (D1 U Dy)) = sup(D;. 1D, UDy) (3)

We now formally define the event correlation mining problem
in distributed system monitoring as follows:

Problem Statement 1: Given an set of events E, a set of nodes N, a
setofitems = {(e, n)|e € E, n € N}, a minimal temporal support
min_sup, and a minimal confidence min_conf, find all frequent
itemsets Uy Fy, such that VD € Uy F, sup(D, I(D)) > min_sup. Find
all event association rules R, such that Vr = (D; = Dy, (D1 U
D,), conf) € R, conf > min_conf, where D1, D, € Uy F, D1ND; =
@,and D1 U D, € U Fy.

3. Motivational examples

In this section, we use an illustrative example to show how
we are able to mine frequent event correlations in our scenario.
Let N = {nq, ny, n3} be the nodes in a particular distributed
system. Let a; = cpu_utilization, a, = memory_utilization, a3 =
network_utilization, &g = 50%, &4 = 60%, £yp = 55%, &gl =

2 = g2 = 0% which implies event e; = (Ja1| > &), €2 =
(laz| > &), e3 = (las| > &y3). Assume that the time slot size is
equal to 5 min and the monitoring process is initiated at 00:00 and
lasts 30 min.

Table 2 shows the detected events within 30 min. For example,

at the end of 00:00, node n; detects event e, node n, detects

Table 2

Events detected on different nodes.
Time slot ny ny ns ny ns
00:00 e e, €3 [ / es
00:05 e e, e; / / /
00:10 e es e e /
00:15 / e3 / e 3
00:20 e / e ey, e €
00:25 e / e ey, e e
00:30 / el / / el

Table 3

Monitoring data in the form of transactions.

TID Time slot Transaction
001 00:00 (n1, e1), (na, €2), (2, e3), (13, e3), (ns, e3)
002 00:05 (n1, e1), (na, €2), (N2, €3)
003 00:10 (n1, e1), (n2, €3), (n3, €2), (N4, €1)
004 00:15 (2, e3), (n4, €1), (ns, €3)
005 00:20 (n1, €2), (n3, €1), (N4, €1), (N4, €2), (115, €2)
006 00:25 (n1, €2), (n3, €1), (ng, €1), (N4, €2), (ns, €1)
007 00:30 (n2, e1), (ns, €1)

Table 4

Candidate 1-itemset and frequent 1-itemset (min_sup = 3).

Candidate 1-itemset Support Lifetime Frequent 1-itemset
(m, e1) 3 [00:00, 00:10] v
(ny, €2) 2 [00:20, 00:25]

(n2, e3) 4 [00:00, 00:15] i
(n2, €2) 2 [00:00, 00:05]

(na, €1) 1 [00:30, 00:30]

(n3, e3) 1 [00:00, 00:00]

(n3, €2) 1 [00:10, 00:10]

(n3, e1) 2 [00:20, 00:25]

(na, 1) 4 [00:10, 00:25] Vi
(ng, €2) 2 [00:20, 00:25]

(ns, e3) 2 [00:00, 00:15]

(ns, e3) 1 [00:20, 00:20]

(ns, e1) 2 [00:25, 00:30]

Table 5

Candidate 2-itemset and frequent 2-itemset (min_sup = 3).

Candidate 2-itemset Support Lifetime Frequent 2-itemset
{(m1, 1), (n2, €3)} 3 [00:00, 00:10] Vi

{(n1,e1), (n4, e1)} 1 [00:10, 00:10]

{(n2, e3), (n4, 1)} 2 [00:10, 00:15]

both events e, and es3, both nodes ns; and ns detect event es3, and
nothing is detected in node n4. The monitoring process is repeated
periodically at the end of each time slot until the end of the
monitoring period.

To apply our algorithm, we first transform the collected events
into a form of transactions. Table 3 shows the monitoring data
in the form of transactions. Note that the transactions may be
distributed in different nodes.

Our objective is to find the frequently occurred correlations
between different items. In general, an Apriori-like iterative
process is conducted. Each pass finds a frequent itemset in parallel
on multiple nodes. Table 4 shows the temporal support for each
item and finds frequent 1-itemset with given minimal temporal
support min_sup = 3. Only 3 items are identified as frequent
1-itemset after this pass.

Table 5 shows candidate 2-itemset based on frequent 1-
itemset as well as frequent 2-itemset. As a result, only 1 frequent
2-itemset is identified. Our process terminates here because no
further candidate itemset is found.

The result reveals useful information that item (n;, e;) and
(n,, e3) are frequently co-occurred, which can be concluded as an
association rule:

((n1, 1) = (n3, e3), 10 min, 100%).
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If event e; is detected on node n;, then there is a 100% chance
of detecting event e3 on node n, within 10 min.

Recall that given a database of transactions, together with a
minimum support min_sup and a minimum confidence min_conf,
the problem of data mining is to generate all the association rules
with their confidence greater than or equal to the given threshold.
Itis widely recognized that the association rule mining process can
be decomposed into two phases:

1. Find frequent patterns whose support counts are greater than
or equal to min_sup.

2. Generate association rules whose confidence are greater than
or equal to min_conf.

As the first phase performs in an iterative way to generate
frequent patterns, this phase dominates the overall cost of mining
association rules. Therefore, the key to success is how to efficiently
reduce the cost brought by the first sub-problem.

In the next section, we will propose a decentralized approach
to significantly reduce the cost and speed up the mining process.

Algorithm 1: Local Event Detection

Input: Node n, total time T, time interval A

Output: R: A set of records containing detected events
1 R < @, start_time < get_current_time() ;
2 t < get_current_time() ;
3 while (t + 1) < (start_time + T) do
4 foreach Attribute a do
5 value < get_attribute_value(a, t);
6 ifvalue > &/ thene < (la| > &) ;
7 else if value < & thene < (la| < &7 );
8
9

else continue ;
R < RU{(t,n,e)};

10 end
1 t < get_current_time() ;
12 end

13 output(R);

4. The algorithms

In this section, we first introduce the local event detection
algorithm. Then we propose MapReduce-Apriori, a MapReduce
based association rule mining algorithm, on the detected events to
efficiently filter certain events before being passed and then detect
their correlations in parallel.

4.1. Local event detection

At the end of each time slot, each agent in its WN checks if any
threshold of attribute is exceeded. If there is, the agent will store a
record r = (t, (n, e)) into its local storage, indicating that an event
e is detected on node n at time slot t. If no attribute exceeds its
threshold, then nothing is recorded. Algorithm 1 shows a formal
description of local event detection.

4.2. MapReduce-Apriori

MapReduce [13] is a programming model and an associated
implementation for processing massive data sets. Users specify a
map function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges
all intermediate values associated with the same intermediate
key. As component failures become norms instead of exceptions,
MapReduce offers ease of programming and fault tolerance.

o .

o] [5] - [x]

Fig. 1. Overall framework of MapReduce-Apriori.

The MapReduce-Apriori approach consists of four phases: local
event filtering, merging events into transaction, global frequent set
mining, and global monitoring association rule generation.

Fig. 1 depicts the four phases of MapReduce-Apriori:

1. Local event filtering: Filter items whose temporal support is less
than min_sup as well as the records that contain these items.

2. Merge events into transaction: A MapReduce approach to
combine events occurs within same time slot into a transaction.

3. Global frequent itemset mining: A multi-pass MapReduce
approach to discover frequent itemsets.

4. Global association rule generation: A MapReduce approach to
generate event association rules.

MapReduce-Apriori starts with several input parameters, includ-
ing a minimal support min_sup and a minimal confidence min_conf.
At this time, each node has stored the detected events in its local
storage and nothing is currently shared in GDFS.

4.2.1. Local filtering

In this phase, we aim at reducing the communication cost when
uploading records into GDFS. The idea behind is to filter out the
items whose temporal support are less than min_sup. We do this
because if an item is not locally frequent, it cannot be globally
frequent. Once the monitoring phase is over, a scan on each WN
is performed, which traverses all the records in the local storage
to calculate the lifetime and temporal support for each item. If
the temporal support of a certain time is greater than or equal to
min_sup, all the records that contain the item will be retained. Once
the filtering phase is over, all the retained records are uploaded
to GDFS. Note that the records may be stored in different nodes.
Algorithm 2 depicts the details for local filtering.

For example, let us reconsider the events presented in Table 2.
Given min_sup = 3, only item (n,, e3) will be retained in node
n,, as lifetime((ny, e3)) = [00 : 00,00 : 15] and sup((ny, e3),
[00 : 00,00 : 15]) = 4 > 3. Therefore, after local event filtering,
only 4 records out of 7 will be retained, which significantly reduces
the number of records being passed. Note that no record will be
passed in node n3 and ns because no item is supported by at least
3 records.
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Algorithm 2: Local Filtering

Input: A item set I, A record set R, min_sup
Output: I' C [, Vie ', sup(i, I(i)) > min_sup,R" CR,Vr erR’
contains at least one itemi eI’
1"« O,R «— o;
2 foreachitemi el do

3 support_count <— 0 ;

4 foreach record r € Rdo

5 if r contains i then

6 support_count <— support_count +1;
7 end

8 end

9 if support_count > min_sup then

10 foreach record r € Rdo

1 lifetime(i) < [0, 0] ;

12 if r contains i then

13 R <R U({r};

14 lifetime(i) < lifetime(i) N r.timeslot ;
15 end

16 end

17 I' < I"' U {(i, support_count, lifetime(i))} ;
18 end

19 end
20 output(I’) ; output(R’) ;

4.2.2. Merging records into transaction

The events in GDFS need to be grouped by time slot before
discovering their correlations. This process can be conducted in
parallel. Here a MapReduce pass is employed to merge records
into transactions. Each mapper takes in an input pair in the form
of (key = recordID, value = record), where record = (t, (n, e))
is a record that generated previously. It splits record into a time
slot t and an item (n, e), and outputs a key-value pair (key =
t,value = (n,e)). After all mapper instances have completed,
for each distinct key t, the MapReduce infrastructure collects its
corresponding values as items, and feeds reducers by key-value
pair (key = t,value = items), where items is a set of items
with the same time slot. The reducer receives the key-value pair,
merges all items with the same time slot into a transaction T,
and associates its TID with t. Finally, it outputs the key-value pair
(key = TID, value = T). Algorithm 3 presents the pseudo code of
this step.

Algorithm 3: Merging records into transaction

Input: A set of records in GDFS

Output: A set of transactions in GDFS
1 Procedure Mapper(key=recordID, value=record): ;
2 begin
3 ts < record.t ;
4 item < record.item ;
5 output(key=ts, value=item)
6 end
7
8
9

Procedure Reducer(key=ts, value=items): ;
begin

Transaction T.TID < ts ;

10 foreach itemi € items do

1 T < TU({i};

12 end

13 output(key=TID, value=T)
14 end

4.2.3. Global frequent itemset mining

As transactions are distributed in GDFS, the MapReduce model
is well fitted for our scenario to parallel the global frequent
itemset mining phase. Here several iterative MapReduce passes
are introduced. During the k-th MapReduce pass, the frequent k-
itemsets are generated. It loops until no larger frequent itemset is
found.

Recall that the frequent itemset mining has two sub-steps:

1. Generate candidate k-itemset C; according to the frequent (k —
1)-itemset Fy_1.

2. Generate frequent k-itemset Fy from C, by eliminating itemsets
whose support is less than min_sup.

The first sub-step, known as Candidate Generation, takes two
steps to produce the result. First, in the join step, Vp, q € Fy—1, p #
q, it joins p with q to get C, where p and q has the same k — 2 items.
Second, in the prune step, it deletes all itemset ¢ € G, such that
some (k — 1)-itemset of c is not in F;_; [33]. In the join step, we
identify a key property in our scenario to efficiently speed up the
Ci generation, which is based on the following property:

Lemma 4.1. V frequent k-itemset i, and frequent j-itemset i;, given
minimum support min_sup and time interval A # 0, let lifetime (i, U
ij) = [t1, 6] if @ < min_sup, then i, U ij is not a frequent item
set.

Proof. Assume that i, U i is a frequent item set, with sup(i, U

ij, (i U ij)) = sup’ > min_sup, where I(iy U i) = [t, t;]. Since

(i Vi) |1 Vi)
P )

It —t1]
)

> sup’, we can conclude
contradicts the given condition

> sup’ > min_sup, which
< min_sup. O
For example, consider the data in Table 4, given min_sup =

3, when generating candidate 2-itemset from frequent 1-itemset,
itemset i; = {(ny, e1), (N4, e1)} and iy = {(ny, e3), (n4, €1)} can be

pruned from candidate 2-itemsets, as ‘“fm’;w(i”‘ = |oo:1ogoo:10| =
0 < 3and '“fm"f(im = 10045200:10] — 1 — 3, Algorithm 4 shows

5
the extended candidate generation algorithm.

Algorithm 4: Extended Candidate Generation
Input: F,_: Frequent (k-1)-itemsets
Output: C;: Candidate k-itemsets
Cp <~ a;
foreachp, q € F,_; do
if w > min_sup then
Ck < G join(p, q) ;
end
end
foreach c € C, do
foreach (k-1)-subsets s € c do
if s ¢ F,_, then
delete ¢ from Gy ;
end
end
end
output(Cy) ;

© 0N AW N =

— e
B W N = O

In the second sub-step, multiple MapReduce passes are
introduced, each would generate all frequent k-itemsets from
candidate k-itemsets by counting the support for each candidate
itemset C. Each mapper loads all G, generated in the first sub-
step before it receives a key-value pair (key = TID, value = T).
Then, for each candidate k-itemset C,i € C, the map function
decides whether T contains C,i, if so, it outputs a key-value pair
(key = C,i, value = 1). The reducers aggregate the values with the
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same key, re-calculate lifetime(C,i), and judge if the total support
count is no less than min_sup. It outputs a key-value pair (key =
Ci,value = sup(i, lifetime(i))), where C, € F is a frequent
k-itemset. Algorithm 5 gives the pseudo code for the frequent
itemset mining.

4.2.4. Global association rule generation

To generate association rules from frequent itemsets, it is
necessary to find all the subsets for every frequent itemset. Given
a frequent itemset D, we must find, for each proper subset D; C D,
the event association rule (D = (D—D,), [t1, t2], conf), such that
conf > min_conf. A problem here proposed by Ale and Rossi [3] is
that given a frequent itemset i, an exponential re-calculation over
allits subset is needed in order to get the temporal support for each
subset. Theoretically, we have

sup(D, lifetime(D))
sup(Dy, lifetime(D))

However, in the frequent item set mining phase, we only
calculate sup(Dq, lifetime(D1)) rather than sup(Dq, lifetime(D)).
As lifetime(D) < lifetime(D,), if we replace lifetime(D) with
lifetime(D,), the actual value would be no larger than the
theoretical value.

To avoid it, Ale and Rossi [3] assume that an itemset uniformly
occurrs over its lifetime, thus the chance of an appearance in any
subset will be the same. We argue that this assumption is not valid
because in our situation, the events do not uniformly occur during
its lifetime.

conf(D; = (D — Dy), lifetime(D)) = (4)

Algorithm 5: MapReduce Frequent Itemset Mining
Input: F;: Frequent 1-itemset, DB, min_sup
Output: UyF;: all frequent itemsets

1 Procedure Mapper(key=TID, value=T): ;

2 begin

3 Cy < load_candidate_itemset() ;

4 foreach candidate itemset C} € G, do

5 if T contains C} then

6 Iy < [T.TID, T.TID] ;

7

8

9

sup(Cl, Ir) < 1;
output(key=C}, value=sup(C}, Ir)) ;
end
10 end
11 end
12 Procedure Reducer(key=C,i, value=supports): ;
13 begin
14 sup(Cl,I(C))) < 0;
15 foreach sup( C,’;, Iy) in supports do

16 sup(CL, I(C})) < sup(Cl, I(C})) + sup(C}, Ir) ;
17 end

18 if sup(Cj, I(C})) > min_sup then

19 output(key=C}, value=sup(C., I(C}))) ;

20 end

21 end

22 Procedure FrequentltemsetMining(): ;

23 begin

24 fork < 1;F, # o;k < k+1do

25 F, <— o;

26 Cy < ExtendedCandidateGeneration(Fy_1) ;
27 F;, < F,U MapReduce(Cy, Ts) ;

28 end

29 output(UiFy) ;

30 end

To overcome this problem, we propose an enhanced lifetime
format for an itemset, which records all the time slots that the
itemset occurs instead of recording only the minimal and maximal
time slot. Based on the enhanced format, we can directly count
sup(Dy, lifetime(D)) without rescanning the database. For example,
the lifetime of 2-itemset {(ni, e1), (ny, e3)} in Table 5 can be
recorded as [00:00, 00:05, 00:10] rather than [00:00, 00:10].

To parallelize this phase into a MapReduce pass, each mapper
reads from a frequent itemset F as well as its temporal support
sup(F, I(F)), and outputs key-value pairs (key = F, value = Fy),
where F; C F. Each reducer calculates confidence conf (F; = (F —
F1), I(F)). Algorithm 6 describes the MapReduce-based association
rule generation. Note that the get_temporal_support function will
calculate sup(F;, I(F)) based on the enhanced lifetime format. The
association rules mined are ranked by their confidence, which
makes it very straightforward to pick up the top-K strong rules.

Algorithm 6: MapReduce Association Rule Generation

Input: Uf‘:l Fy.: frequent (1~k)-itemsets, min_conf
Output: R: A set of association rules, whose confidence is no
less than min_conf.
Procedure Mapper(key=F, value=sup(F, I(F))): ;
foreach subset F; C F do
sup(F;, I(F)) < get_temporal_support(F;, I(F)) ;
V, < (F; sup(Fs, I(F))) ;
output(key=(F, sup(F, I(F))), value=Vg,) ;
end
Procedure Reducer(key=(F, sup(F, I(F))), value=values): ;
foreach Vi, = (F;, sup(F;, I(F))) € values do
conf < sup(F, I(F)) [ sup(F;, I(F));
10 if conf > min_conf then
1 rule <— (F; = (F — Fy), I(F), conf) ;
12 output(key=conf, value=rule) ;
13 end
14 end

© 0N A W N -

In summary, the benefits of our proposed algorithm are as
follows: (1) There is no need to centralize all data into one database.
Instead, all the events are collected into multiple nodes. (2) The
time of mining is dramatically reduced, especially in some time-
critical areas. (3) The events are locally filtered, thus the number
of events being passed is reduced. (4) MapReduce is the most
suitable approach to deal with today’s large scale distributed
systems and large amount of data. (5) We design the Extended
Candidate Generation algorithm to efficiently reduce the number
of candidates being generated.

5. Experimental results

We implemented the proposed algorithms on Apache Hadoop,!
an open source implementation of Google’s MapReduce frame-
work. Apache Hadoop is a Java software framework that sup-
ports data-intensive distributed applications under a free license.
Hadoop enables applications to work with thousands of nodes
and petabytes of data. Besides, the Hadoop Distributed File System
(HDEFS) is a suitable implementation of GDFS for our scenario.

We first built a synthetic distributed system and mimicked the
monitoring environment to generate synthetic events. Then we ap-
plied MapReduce-Apriori on the synthetic events to discover event

1 http://hadoop.apache.org
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Table 6

Parameters for synthetic event generation.
Parameter Description
T The total number of monitoring time slots
N The number of nodes
A The number of attributes that need to monitor
Emin The minimal attribute upper threshold
Emax The maximum attribute upper threshold
min_sup_rate The minimal temporal support rate for mining

Table 7

Synthetic datasets (0.7 < & < 1.0).
Dataset #ofnodes  #oftimeslots  # of attributes  Total items
N50A10T5k 50 5000 10 500
N50A10T10k 50 10,000 10 500
N50A10T20k 50 20,000 10 500
N50A10T40k 50 40,000 10 500
N50A10T70k 50 70,000 10 500
N50A10T100k 50 100,000 10 500
N100A10T10k 100 10,000 10 1000
N150A10T10k 150 10,000 10 1500
N200A10T10k 200 10,000 10 2000
N50A15T10k 50 10,000 15 750
N50A20T10k 50 10,000 20 1000
N50A25T10k 50 10,000 25 1250

correlations. To demonstrate the effectiveness of MapReduce-
Apriori, we also implemented the classic Apriori algorithm and ap-
plied it on a centralized database. We compared the execution time
of mining event correlations for both algorithms.

5.1. Synthetic event generation

The simulator generates events with several input parameters,
which are described in Table 6. Upon receiving such parameters,
the simulator first generates |A| attribute upper thresholds
between &, and &m.x randomly (lower threshold set to 0
by default). At each time slot, the simulator will generate |A|
distinct attribute values on each node, and judge whether a value
exceeds its corresponding upper threshold. Note that each dataset
generation is independent, and the generation of attribute value
satisfies a uniform distribution U (0, 1) over the possible number
of time slots. The synthetic event generation program is run on a
desktop PC with Pentium Dual-Core CPU E5300 at 2.6 GHz and 2 GB
memory.

Our simulation is done on the following scenarios:

e Given N = 50,A = 10,&nin = 0.7, Emax = 1.0, with the
increase of T, collect detected events that are distributed in
different nodes within T.

e Given T = 10000,A = 10,&min = 0.7, &max = 1.0, with
the increase of N, collect detected events that are distributed
in different nodes within T.

e Given T = 10000,N = 50,&min = 0.7,&max = 1.0, with
the increase of A, collect detected events that are distributed
in different nodes within T.

Table 7 shows the generated datasets. The first column lists the
name of a dataset. The number of nodes in the second column
indicates the scale of a synthetic distributed system. The third
column lists the total number of time slots we need to monitor.
The fourth column lists the number of attributes in a distributed
system. The last column multiplies the number of nodes and the
number of attributes to get the number of distinct items. For
example, dataset N50A10T5k simulates a monitoring task on a
50-node synthetic distributed system, which checks 10 different
performance attributes within 5000 time slots.

Once the event generation is over, the simulator immediately
performs local event filtering on the generated events with given
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Fig. 2. Increasing monitoring time slots.

min_sup_rate. We manually choose min_sup_rate = 0.07. Table 8
describes the filtering result. For each dataset, the second column
lists the total number of events detected. The third column lists
the number of events filtered during the local event filtering phase.
The fourth column lists the percentage of filtered events. The fifth
column lists the number of distinct items filtered. The last column
lists the percentage of filtered items. Clearly, our local filtering
approach effectively prunes some infrequent events and items.
The average percentage of filtered events is 8.03% and the average
percentage of filtered items is 26.41%. In the best case, half of the
total items have been filtered, bringing 16.32% decrease of the
number of events to be passed.

5.2. Relative performance

In this section, we applied two algorithms on the events after
filtering to mine their correlations. Apriori runs on 1 single PC with
a Pentium Dual-Core CPU E5300 at 2.6 GHz and 2 GB of memory.
MapReduce-Apriori runs on a 2-node Hadoop cluster consisting
of two physically different PCs, each with a Pentium (R) Dual-
Core CPU E5300 @ 2.6 GHz and 2 GB of memory. We measured
the execution time of two algorithms under different datasets,
including the frequent itemset mining time and the association
rule generation time.

Figs. 2, 4, 6 and 7 are drawn in order to compare the
performance of two algorithms in various scenarios. In all the
figures, the dash line represents the performance of Apriori,
while the solid line represents the performance of MapReduce-
Apriori. Note that the ideal performance of MapReduce-Apriori
(Ideal MapReduce-Apriori) is represented by the dot line. In our
experiment, the ideal performance of MapReduce-Apriori would
reduce the execution time of Apriori by half, gaining double
speedup.

5.2.1. Varying monitoring time slots

We applied the two algorithms on 6 datasets, N50A10T5k,
N50A10T10k, N50A10T20k, N50A10T40k, N50A10T70k, and
N50A10T100Kk, to study their performance when varying monitor-
ing time slots. With N = 50 and A = 10, Fig. 2 shows how the
execution time of two algorithms reacts to the increasing number
of monitoring time slots. Note that the increase of monitoring time
slots would result in the increase of total number of transactions,
as each TID is associated with a unique time slot number. Hence,
we directly replace monitoring time with the number of transac-
tions in the figure. When the number of transactions is relatively
small, i.e., T = 5k, 10 k, and 20 k, the difference between two al-
gorithms is not very obvious. As the number of transactions grows,
MapReduce-Apriori begins to show its advantage. In addition, the
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Table 8
Local filtering result (min_sup_rate = 0.07).

Dataset # of detected events # of filtered events % of filtered events (%) # of filtered items % of filtered items (%)
N50A10T5k 330,003 38,608 11.70 128 25.6
N50A10T10k 561,391 91,608 16.32 250 50.0
N50A10T20k 1,367,163 102,147 7.47 106 21.2
N50A10T40k 3,045,858 182,591 5.99 100 20.0
N50A10T70k 5,715,207 249,107 4.36 100 20.0
N50A10T100k 8,315,240 276,305 3.32 100 20.0
N100A10T10k 1,262,790 105,981 8.39 400 40.0
N150A10T10k 2,165,142 301,121 1391 600 40.0
N200A10T10k 2,723,228 200,049 7.35 400 20.0
N50A15T10k 1,182,979 20,263 1.71 100 133
N50A20T10k 1,355,369 134,527 9.93 281 28.1
N50A25T10k 2,046,988 121,130 5.92 234 18.7
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Fig. 3. # of frequent itemsets mined by increasing monitoring time slots.

performance of MapReduce-Apriori is very close to that of Ideal
MapReduce-Apriori.

Next, we studied the frequent itemsets mined and found that
for each dataset, only frequent 1-itemsets and frequent 2-itemsets
are mined. As the min_sup_rate is chosen to be 0.07, there are
no ternary event correlations that are supported so many times.
Hence, no frequent 3-itemset is discovered. Fig. 3 depicts the
number of frequent itemsets mined in different datasets. The black
and red column represents the frequent 1-itemsets and frequent
2-itemsets, respectively. From the figure we can see no frequent
2-itemset is mined in dataset N50A10T20k, while over 6000
frequent 2-itemsets are mined in dataset N50A10T100k. This may
possibly explain why the execution time of N50A10T20k grows so
fast in Fig. 2.

5.2.2. Varying the number of nodes in a synthetic system

We applied the two algorithms on 4 datasets, N50A10T10k,
N100A10T10k, N150A10T10k, and N200A10T10Kk, to study their
performance when varying the number of nodes in a synthetic
distributed system. The increase of the number of nodes would
result in the increase of the number of different items to mine. Note
that dataset N50A10T10k has already been experimented with
previously. Therefore we adopt the results directly. Fig. 4 compares
the execution time of two algorithms applied to different datasets.
From the figure we can see that MapReduce-Apriori outperforms
Apriori and achieves nearly ideal speedup. The number of frequent
itemsets mined is shown in Fig. 5. In dataset N50A10T10k and
N100A10T10k, the number of frequent 2-itemsets is larger than
that of frequent 1-itemsets. However, in dataset N150A10T10k,
the number of frequent 2-itemsets is much smaller. Unfortunately,
there is no frequent 2-itemset mined in dataset N200A10T10k

T T T
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Dataset

T
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Fig. 4. Increasing number of nodes in a synthetic system.
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Fig. 5. # of frequent itemsets mined by increasing # of nodes.

while 1600 frequent 1-itemsets are mined. In this case, the
min_sup_rate might be too high to mine binary event correlation.

5.2.3. Varying attributes in the system

We applied the two algorithms on 4 datasets, N50A10T10Kk,
N50A15T10k, N50A20T10k and N50A25T10Kk, to study the relative
performance when varying the number of attributes in synthetic
distributed system. The increase of the number of attributes
would result in the increase of the number of different items
to mine. Note that dataset N5SOA10T10k has been experimented
previously. Fig. 6 compares the execution time of two algorithms.
As Fig. 6 illustrates, the running time of two algorithms both grow
with the increase of attribute numbers. As expected, MapReduce-
Apriori outperforms Apriori, reducing the execution time nearly by
half.
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Table 9
N50A10T10k-new local filtering result.

min_sup_rate # of FE % of FE (%) # of FI % of FI (%)

0.06 6,497 0.76 11 2.2

0.07 30,915 3.62 50 10.0

0.08 48,879 5.72 73 14.6

0.09 71,122 8.33 100 20.0
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Fig. 7. Increasing min_sup_rate.

5.2.4. Varying min_sup_rate in a specific dataset

To evaluate the performance of two algorithms in differ-
ent min_sup_rate, we have generated a brand new dataset,
N50A10T10k-new, and conducted the following experiments.

First we increased min_sup_rate from 0.06 with interval 0.01
and measured the number of events and items our local filtering
algorithm filtered. Next, we applied both MapReduce-Apriori and
Apriori on the filtered events and recorded execution time of them.

Table 9 describes the filtering result. For each distinct
min_sup_rate, the second column lists the number of events
filtered. The third column lists the percentage of events filtered.
The fourth column lists the number of items filtered. The last
column lists the percentage of items filtered. Note that the total
number of events detected is 854,157, and the total number of
items to mine is 500. From Table 9 we can see that filtering
efficiency grows with the increase of min_sup_rate.

Fig. 7 compares the execution time of two algorithms in
different min_sup_rate. As we can see, the execution time decreases
with the increase of min_sup_rate. Besides, MapReduce-Apriori
completely outperforms Apriori and gradually converges to the
ideal case.

6. Related work

Distributed system monitoring.

A large body of research addresses the design of distributed
monitoring systems, and demonstrates that hierarchical aggrega-
tion is an effective approach to achieve good scalability [28,41,14,
10,20,29,21,1,38]. Abadi et al. [ 1] present a system called REED for
robust and efficient event detection in sensor networks. Al-Shaer
et al. [4] propose a monitoring architecture that employs a hierar-
chical event filtering approach to distribute monitoring load and
limit event propagation. Cormode et al. [10] present a distributed-
tracking scheme for maintaining accurate quantile estimates with
provable approximation guarantees. Deligiannakis et al. [14] ex-
tend prior work on in-network data aggregation to support the
approximate evaluation of queries to reduce the number of ex-
changed messages among the nodes.

Khanna et al. [21] propose an autonomous and hierarchi-
cal monitor system, which is used to provide fast detection to
distributed system failures. Madden et al. present the Tiny AG-
gregation (TAG) service for aggregation in low-power, distributed
wireless environments, distributing and executing simple queries
efficiently in networks of low-power wireless sensors [28]. Yala-
gandula and Dahlin proposed a Scalable Distributed Information
Management System (SDIMS) [41]. The SDIMS serves as a basic
building block for large-scale distributed applications, providing
detailed nearby information and summary views of global infor-
mation. In [14], the in-network data aggregation has been ex-
tended by providing the support of the approximate evaluation
of queries to reduce the number of exchanged messages among
the nodes. Algorithmic solutions were provided for the problem of
continuously tracking complex holistic aggregates in a distributed
streaming network [10].

REMO [29] is a resource aware application state monitoring
system that considers multi-task optimization and node level
resource constraints. Silberstein et al. [39] proposed a frame
monitoring problem in a wireless sensor network as one of
monitoring node and edge constraints to detect network failure.
Sharfman et al. proposed a geometric approach by splitting
the global monitoring task into a set of constraints applied
in local nodes [38]. Cuzzocrea [12] used CAMS (Cube-based
Acquisition model for Multidimensional Streams) to tame the
multidimensionality of real-life data streams efficiently through
combining OLAP (OnLine Analytical Processing) flattening and
OLAP aggregation processes.

The nature of our algorithm is a MapReduce based count
distribution parallel Apriori, so it is quite different between our
approach and other Apriori algorithms. In the monitoring phase,
the main difference is that our approach stores events into multiple
nodes rather than a single node. Also, our approach uses a local
filter to reduce the event size being passed.

Temporal data mining. With the rapid development of the
distributed monitoring system, mining temporal event correla-
tions in a distributed environment became realistic. Roddick and
Spiliopoulou [35] survey the issues and solutions in temporal data
mining. Ale and Rossi [3] expand the notion of association rules
incorporating time to the frequent itemset discovered. Chen and
Petrounias [7] identify the valid period and periodicity of patterns
with more specifical association rules. Li et al. [22] extend the Apri-
ori algorithm and develop two optimization techniques to take ad-
vantage of the special properties of the calendar-based patterns.
Romer [36] proposes an in-network data mining technique to dis-
cover frequent patterns of events with certain spatial and temporal
properties.

Distributed and parallel data mining. There is a large amount of
related work addressing the distributed and parallel data mining
problems. The Parallel Data Mining (PDM) for association rules
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implemented the serial Direct Hashing and Pruning (DHP) in a
parallel manner [31]. It is based on the use of a parallel hash
table. The communicating of the counts of each location in the
hash table makes it inefficient. There are a number of other
distributed algorithm such as Parallel Eclat [42], Intelligent Data
Distribution [19], and Hybrid Distribution [19], all of which are
based on the task distribution paradigm, allowing each processor
to handle a subset of the candidate itemset. Park and Kargupta [32]
present a brief overview of the distributed data mining algorithms,
systems, and applications.

Agrawal and Shafer [2] consider the problem of mining associ-
ation rules on a shared-nothing multiprocessor, and present sev-
eral approaches to parallel the association rule mining algorithm.
The Data Distribution algorithm in [2] provided a solution for the
memory problem of the count distribution algorithm, splitting the
generation process among the processors in a round robin manner.
However, our approach has made some improvements. First, we
design the Extended Candidate Generation Algorithm (Algorithm
4) to dramatically reduce the number of candidate in each itera-
tion. Second, we use the MapReduce framework to implement the
algorithm, which is different from [2]. Third, in [2], the count distri-
bution assumes data are centralized into one database. In our ap-
proach, the data are events which are collected into multiple nodes
and there is no centralized database.

Li et al. [23] propose a parallel FP-growth algorithm to mine
frequent items for query recommendation. Chang et al. [6]
summarize several parallel algorithms for mining large-scale rich-
media data. Cheung et al. [8] propose a distributed association
rule mining algorithm to generate a small number of candidate
sets and reduce the number of messages to be passed at mining
association rules. The strength of our approach is that we require
less synchronization than [8], which is very critical in a large
distributed system. the weakness is that our approach will
generate more candidates in each iteration than [8].

Boukerche and Samarah [5] mine sensor behavioral patterns
and sensor association rules to improve the quality of service in
wireless ad-hoc sensor networks. Loo et al. [27] propose lossy
counting based online mining algorithm for discovering inter-
stream associations from large sensor networks. Ren and Guo [34]
present a distributed frequent items mining algorithm to mine
frequent items from sensory data in wireless sensor networks.
Congiusta et al. [9] discuss how grid computing can be used to
support distributed data mining.

MapReduce framework. The low cost, data intensive MapReduce
framework [13] has recently became a popular tool for the
distributed data mining. Cryans et al. adapted the Apriori algorithm
to MapRedcue in the search for relation between entities [11].
Yang et al. presented an improved Apriori algorithm based on
the MapReduce mode to handle massive datasets with a large
number of nodes on Hadoop platform [26]. Hammoud proposed
a MapReduce based association rule miner for extracting strong
rules from large datasets [ 18], which is used to develop a large scale
classifier.

7. Conclusion and future work

In this paper, we proposed an extended model of mining
event association rules in a distributed system, which considered
the temporality of detected events. In addition, we proposed
a MapReduce based algorithm to efficiently filter irrelative
events and discover their temporal correlations. Our experimental
results show that our algorithm outperforms the Apriori-based
centralized mining approach and achieves nearly ideal speedup.

Our work will be extended in two dimensions. First, in order
to improve the throughput of the mining approach, we are
considering extending our framework to enable pipelining of a

frequent itemset mining phase and association rule generation
phase. Second, we plan to deploy our framework in a real
distributed environment to further validate the effectiveness of the
proposed algorithms.
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