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Abstract

This paper provides an exposition of methods by which a trusted
authority can distribute keys and/or broadcast a message over a net-
work, so that each member of a privileged subset of users can compute
a specified key or decrypt the broadcast message. Moreover, this is
done in such a way that no coalition is able to recover any information
on a key or broadcast message they are not supposed to know. The
problems are studied using the tools of information theory, so the se-
curity provided is unconditional (i.e., not based on any computational
assumption).

We begin by surveying some useful schemes schemes for key distri-
bution that have been presented in the literature, giving background
and examples (but not too many proofs). In particular, we look
more closely at the attractive concept of key distribution patterns,
and present a new method for making these schemes more efficient
through the use of resilient functions. Then we present a general ap-
proach to the construction of broadcast schemes that combines key
predistribution schemes with secret sharing schemes. We discuss the
Fiat-Naor Broadcast Scheme, as well as other, new schemes that can
be constructing using this approach.

*the author’s research is supported by NSF grant CCR-9402141



1 Introduction

Key distribution is one of the major problems in communication and net-
work security. From the point of view of security, most networks can be
thought of as broadcast networks, in that anyone connected to the network
will have access to all the information that flows through it. This leads to
many problems related to the confidentiality and authenticity of information
that is transmitted through the network. Encryption is often employed in
a network to protect the confidentiality of information. If a conventional
private-key cryptosystem, such as DES, is used, then it is necessary to dis-
tribute keys to the network users in a secure fashion. Usually, this is done
by an on-line key server. (For an overview of key distribution techniques see
139].)

In this paper, we investigate two related problems: key predistribution
and broadcast encryption. Key predistribution refers to methods whereby a
trusted authority (TA) will distribute secret information in such a way that
specified privileged subsets of participants will be able to compute certain
keys. Broadcast encryption consists of a key predistribution phase, followed
at some later time by a broadcast message which is to be decrypted by a
specified privileged subset of participants. The decrypted message may be
a session (conference) key, for use by the privileged subset, or it may be
intended for some other purpose. Such an approach is desirable because the
broadcast model provides a realistic model from the standpoint of security
since we do not need to assume the existence of secure private channels for
on-line key distribution.

In this paper, we look at protocols that provide unconditional security
(i.e., they are not based on any computational assumption). In such a
scheme, it is desirable to minimize the amount of secret information that
needs to be stored by each user. As well, in the case of a broadcast scheme,
we would like to minimize the size of the broadcast. These aspects of a
scheme are measured by information rates. The investigation comprises two
goals: establish lower bounds on the information rate (by giving explicit con-
structions); and establish upper bounds (usually accomplished by entropy
arguments).

We confine our attention here almost exclusively to constructions. We
begin by surveying some useful schemes schemes for key distribution that
have been presented in the literature. In particular, we look more closely
at the attractive concept of key distribution patterns, and present a new
method for making these schemes more efficient through the use of resilient



functions. Then we present a general approach to the construction of broad-
cast schemes that combines key predistribution schemes with secret sharing
schemes. We discuss the Fiat-Naor Broadcast Scheme, as well as other, new
schemes that can be constructing using this approach.

2 Key Predistribution

2.1 Definitions

Our model for key distribution and broadcast encryption consists of a trusted
authority (TA) and a set of users i = {1,2,...,n}. We assume that the
network is a broadcast channel, i.e., it is insecure, and any information trans-
mitted by the TA will be received by every user.

In a key pre-distribution scheme, the TA generates and distributes secret
information to each user. The information given to user ¢ is denoted by wu;
and must be distributed “off-band” (i.e., not using the network) in a secure
manner. This secret information will enable various privileged subsets to
compute keys.

Let 2 denote the set of all subsets of users. P C 2Y will denote the
collection of all privileged subsets to which the TA is distributing keys.
F C 2¥ will denote the collection of all possible coalitions (called forbidden
subsets) against which each key is to remain secure.

Once the secret information is distributed, each user ¢ in a privileged set
P should be able to compute the key kp associated with P. On the other
hand, no forbidden set F' € F disjoint from P should be able to compute
any information about kp.

For 1 < i < n, let U; denote the set of all possible secret values that
might be distributed to user ¢ by the TA. For any subset of users X C U,
let Ux denote the cartesian product U;; x ...x U;, where X = {iy,...,i;}
and 47 < ... < ¢;. We assume that there is a probability distribution on Uy,
and the TA chooses uy € Uy according to this probability distribution.

We describe the desired properties mathematically using the entropy
function (for an introduction to entropy and its properties, see Welsh [40]).
We say that the scheme is a (P, F)-Key Predistribution Scheme (or
(P, F)-KPS) provided the following conditions are satisfied:

(1) Each user 7 in any privileged set P can compute kp:

H(Kp|U;) =0



forall: €¢ P e P.

(2) No forbidden subset F disjoint from any privileged subset P has any
information on kp:

H(Kp) = H(Kp|Ur)
for all P € P and F € F such that PN F = 0.

Remark: Our model of a KPS is identical to what Blundo and Cresti [12]
call a zero-message broadcast encryption scheme.

We now present some convenient notation. If P consists of all t-subsets
of U, then we will write (¢, F)-KPS. Similarly, if P consists of all subsets of
U of size at most ¢, then we will write (< ¢, F)-KPS. An analogous notation
will be used for F. Thus, for example, a (< n,1)-KPS is a KPS where there
is a key associated with any subset of users (i.e., P = 2¥) and no key Kp
can be computed by any individual user ¢ ¢ P.

Note that in any (P,F)-KPS, if F' € F and I’ C F, then I € F.
Hence, a (P, w)-KPS is the same thing as a (P, < w)-KPS.

We will assume that each kp € K, where K = GF(q) is our key set.
Usually, a key kp is equally likely to be any element of G F(q), in which case
H(Kp) =loggqforall PeP.

We are interested in the efficiency of a KPS, as measured by the amount

of secret information that is distributed to each user. The information rate
of a KPS is thus defined to be

log ¢
H(U;)

p:min{ :1§i§n}.

We might also be interested in the total amount of information distributed

to all the users. Hence, we define the total information rate of a KPS to be

B log ¢
pT = H(Uu)

Remark: The total information rate is the reciprocal of the randomness
coefficient, as defined in [14].

The first paper discussing unconditionally secure KPS of the type we
are studying in this paper is Blom [11]. Other papers on this topic include
[12, 13, 14, 21, 15, 25, 29, 30, 31, 32, 34, 35, 36].



2.2 Constructions

Theorem 2.1 (Trivial Scheme) For any t > 1, there is a (t,< n)-KPS
having information rate

and total information rate

Proof. For every t-subset P C U, the TA chooses a random value kp €
G'F(q) and gives kp to every member of P. 0

Theorem 2.2 (Blom Scheme) [11] For any w > 1, there is a (2, < w)-

KPS having information rate
1

w+1

and total information rate
1

e
(“1%)

Proof. Let ¢ > n be a prime power. The TA chooses n distinct random

numbers s; € GF(q), and gives s; to user ¢ (1 < ¢ < n). These values do

not need to be secret. Then, the TA constructs a random polynomial

Fy) =" aga'y’

1=0 7=0
having coeflicients in G'F'(¢), such that a;; = aj; for all ,j. For 1 < i < n,
the TA computes the polynomial

w

gi(x) = f(x,8) = > bija?,

=0

and gives the w 4 1 values b;; to user : (note: these values comprise the
secret information wu;).
The key associated with the pair of users P = {i,j} is

kp = gi(s;) = g;(si)-



Remark: The original presentation of the Blom scheme was given in the
setting of MDS (maximum distance separable) codes. We have used the
formulation from [13] here.

Here is a small example to illustrate. Suppose we take n = 3, ¢ = 17
and w = 1, and the public values are s; = 12, s3 = 7 and s3 = 1. Now,
suppose that the TA chooses the polynomial

f(z,y) =84 T(x + y) + 22y.

This gives rise to the polynomials

gi(z) = T4 ldz
g2(z) = 644z
g3(z) = 154 9z.

Thus the secret information distributed to the three users is

w(z) = (7,14)
@) = (6,4)
us(xz) = (15,9).

The three keys determined by this information are

k‘{LQ} - 3
kg =
k‘{273} - 10

Theorem 2.3 (Blundo et al Scheme) [13] For any t > 2, w > 1, there
is a (t,< w)-KPS having information rate

1
)
and total information rate .
()
Proof. The scheme is similar to Blom’s scheme, but the TA uses a symmetric
polynomial f(zq,...,2) in ¢ variables. 0



Remark: When we set t = 2 in the Blundo et al scheme, the Blom scheme
is obtained.

Theorem 2.4 (Fiat-Naor Scheme) [22] For any w > 1, there exists a
(< n, < w)-KPS having information rate

1
i (n — 1)
o\ J
and total information rate .

Proof. For every subset I’ C U of cardinality at most w, the TA chooses a
random value sp € GF(q) and gives sp to every member of i\ F'. Then the
key associated with a privileged set P is defined to be

kp = Z SF.
{FeF:FnP=0}
0

Here is a small example to illustrate. Suppose we take n = 3, ¢ = 17
and w = 1, and suppose that the TA chooses the values

sp = 11
S{1}
S{2}
{3y =
The eight keys determined by this information are
kg = 13
kpy = 5
kgy = 10
sy
k12
kps = 14
kg = 2
kposy = 1L



Remark: The information rates of all four of the above schemes are optimal;
see [12] for details, for example.

3 Key Distribution Patterns

The elegant idea of a key distribution pattern is due to Mitchell and Piper
[34]. Many other papers also use this concept (or variations of it); see, for
example, [21, 25, 31, 29, 30, 32]. However, the work of Mitchell and Piper
does not seem to be as well-known as it should be.

We begin with a definition, which is essentially the dual formulation of
the one given in [34]. Let B = {By,..., Bg} be a set of subsets of . We say
that (U, B) is a (P, F)-Key Distribution Pattern (or (P, F)-KDP) if

{B;:PCB;and FNB; =0} #0

for all P € P and F € F such that PN F = (.
Note that a KDP can conveniently be represented by an n X 8 incidence
matriz A = (a; ;) which is defined as follows:

{ 1 ifieB;
,j =

0 otherwise.

The KDP (U, B) (or, equivalently, the incidence matrix A) is public knowl-
edge. A KDP can be used to construct a KPS as described in the following
theorem, where we define

r; = |{B]‘ s B]‘}|
for any user ¢ € U.

Theorem 3.1 Suppose (U, B) is a (P,F)-KDP. Then there exists a (P, F)-
KPS with information rate

and total information rate



Proof. For 1 < j < 8, the TA chooses a random value s; € GF(q) and gives
s; to every user in B;. Thus user ¢ receives r; elements of GF'(¢) as his or
her secret information.

The key kp for a privileged set P is defined to be

kp = Z 55.

{5:PCB;}

Note that each member of P can compute kp. However, if F is a coalition
such that NP = (), then there is at least one block B; such that P C B; and
FnBj=10. F does not know the value of s;, and hence has no information
about kp. 0

Remark: The trivial KPS and the Fiat-Naor KPS are both in fact KDPs.
The trivial KPS is obtained by taking B to be all t-subsets of ¢/, and the
Fiat-Naor KPS is produced by taking B to be all subsets of I/ of cardinality
at least m — w.

We now give a construction for KDPs that uses combinatorial designs
(for results on design theory, see Beth, Jungnickel and Lenz [8]). First, we
require a definition. Let Y be a set of v elements (called points), and let
A={A,..., Ag} be a family of k-subsets of Y (called blocks). We say that
(Y, A) is a t-(v,k, \) design if every subset of ¢ points occurs in exactly A
blocks. It can be shown by elementary counting that a ¢-(v,k, A) design is
also a t'-(v, k, \') design for 1 <t' <, where
A(U_t/)

t—t!
F—th
(i)
The following result was shown in [34], and a similar result was proved
subsequently and independently in [31].

N =

Theorem 3.2 A 3-(n,k,\) design, (U,B), is a (2, < w)-KDP on a set of
n users if

w < n—2
k-2
This KDP has information rate
(k—1)(k-2)
Alv—1)(v—2)



and total information rate

k(k —1)(k—2)
Av(v—1)(v—2)

Proof. Consider two users, ¢ and j. There are exactly

Aln — 2)
k—2
blocks of the design that contain ¢ and j. Now, consider a coalition F’ =
{h1,...,hy} such that Fn{i,j} = @. For 1 <k < w, there are at most A

blocks of the design that contain i, j and hg. Hence, the number of blocks
that contain 7, 7 and at least one member of F’is at most Aw. Since

Aln — 2)

A
w < F_2

the design is a (2, < w)-KDP. 0

Suppose we use inversive planes, as was done in [34]. An inversive plane
isa3-(Q*4+1,Q +1,1) design. Such a design is known to exist whenever Q
is a prime power. Applying Theorem 3.2, the following theorem is obtained.

Theorem 3.3 [34] Suppose Q is a prime power. Then there exists a a
(2, < Q)-KDP with information rate

1
QQ+1)

and total information rate
1

Q(Q*+1)

As an example, if we take ) = 3, then we use a 3-(10,4,1) design.
The resulting KDP is a (2, < 3)-KDP with information rate 1/12 and total
information rate 1/30.

Theorem 3.2 can be generalized in a straightforward manner to construct
(t, < w)-KDPs with ¢t > 3. We state the following theorem without proof.

Theorem 3.4 A (t+1)-(n,k,\) design, (U,B), is a (t, < w)-KDP on a set
of m users if




This KDP has information rate

and total information rate

We give a small example to illustrate. It is known that there exists a
5-(12,6,1) design. Applying Theorem 3.4, we obtain a (4, < 3)-KPS with
information rate 1/66 and total information rate 1/132.

3.1 An Efficiency Improvement using Resilient Functions

The idea of a key distribution pattern is very appealing, and there is no
computation required on the part of the TA. However, most known examples
of KDP have quite low information rates. (The constructions in [21] have
very good information rates. However, these constructions are probabilistic,
and thus it is still of interest to find good explicit constructions.)

In this section, we present a new technique that will lead to an improve-
ment in the information rate of KDP. This method also allows for trading
off the amount of security (i.e., the value of w) against the amount of key
computed by a priviliged set.

Suppose we have a (P, F)-KDP, and the members of a privileged set P
want to compute a key kp. Define

Cp=[{B;: P C B}
and
Dp=max{|{B;: PC Bjand FNB; #0}|: F e F,Fn P =0}.

Each member of P has C'p secret values, of which no forbidden set knows
more than Dp. The definition of KDP assures that Dp < Cp — 1. If it
happens that Dp < Cp — 1, then it may be possible for P to extract more
key from the secret values they hold, by making use of so-called resilient
functions.

An (n,m,t,q)-resilient function is a function

[HGR@Q) = [GF(g)]™

11



which satisfies the property that if the values of ¢ of the n inputs are fixed,
and the remaining n—t inputs are chosen independently at random, then ev-
ery possible output m-tuple is equally likely to occur. Considerable research
has been done on resilient functions (see for example, [20, 6, 24, 9, 10, 27]).
Most work has concentrated on binary resilient functions (i.e., the case
g = 2). Here we will be using resilient functions with large ¢; one paper
dealing with the subject is [27].

We can use a publicly known resilient function to improve the efficiency
of a KDP in a straightforward manner, as follows.

Theorem 3.5 Suppose (U,B) is a (P, F)-KDP and P € P. Let m and q be
integers. Suppose for every P € P that there there exists a (Cp,m, Dp,q)-
resilient function. Then there exists a (P, F)-KPS having information rate
m
max{r; : 1 <i<n}

and total information rate m/[3.

Proof. The proof is similar to that of Theorem 3.1. For 1 < 5 < 3, the TA
chooses a random value s; € GF(q) and gives s; to every user in B;. The
key kp € [GF(q)]™ for a privileged set P is defined to be

kp = f(sj,.. .SJ‘CP),
where
{7:PC B} ={5.....Jce}
and
n<...< jcP.
Each member of P can compute kp since the C'p inputs to the function f are
known. However, if F' is a coalition such that F'N P = (), then there are at

least C'p — Dp inputs to f that are not known to F. Since f is Dp-resilient,
F has no information about kp. 0

Remarks:

1. Theorem 3.1 is in fact a special case of Theorem 3.5. This follows
easily from the observation that the function

[HGFQ" = GF(q),

defined as
fler,..,zp) =21+ ...+ @y,

is an (n,1,n — 1, ¢)-resilient function.

12



2. The information rates in Theorem 3.5 have been increased by a factor
of m over Theorem 3.1.

In an application of Theorem 3.5, we want an (n,m,t, ¢)-resilient func-
tion where m is as large as possible, given n and {. It can be shown
that m < n —t in any resilient function. However, it is easy to construct
(n,n —t,t,q)-resilient functions provided ¢ > n — 1.

We describe a construction from [26, p. 129] that uses doubly extended
Reed-Solomon codes. Let g be a prime power, and let o be a primitive
element in GF(¢). The doubly extended Reed-Solomon code of dimension
k is the code defined over GGF(q) having generating matrix

1 1 1 cee 1 1 0

1 o a? cee ail=? 0 0

1 ao? at s alem2)2 0 0
G=1.

1 af=2 q2(k-2) .. oe=2)(k-2) g

1 af=1 q2k=1) . ge=2)(k-1) g

This code is a [¢ 4 1,k,q— k + 2] g-ary code. The first n < g+ 1 columns
of G form the generating matrix Go of a [n,k,n — k + 1] ¢-ary code. The
function f : [GF(q)]* — [GF(q)]* defined as f(z) = 2(Gp)T is in fact a
(n,k,n — k, q)-resilient function.

Now, let us illustrate this approach by using the inversive plane KDP
described in Theorem 3.3. So we suppose that ¢) is a prime power, and
w < ) is fixed. Then it is easy to calculate Cp = ) + 1 and Dp = w. If we
take ¢ > @, then there exists a (Q + 1,0 + 1 — w, w, ¢)-resilient function by
the discussion above. Applying Theorem 3.5, we have the following result.

Theorem 3.6 Suppose () is a prime power and w < ). Then there exists
a (2,< w)-KPS having information rate

Q+1—w

QA+1)

and total information rate

Q+1—w
QQ* + 1)

Remark: Note that the value of w does not have to be fixed ahead of time.
At the time that a privileged set P actually wants to compute their common

13



key kp, they can decide on the value of w they wish to use. The key kp is
an element of (GF(q))?+17% so they are trading off security (the value of
w) against the amount of the key they produce.

As an example, suppose we apply Theorem 3.6 with ¢) = 3. The following
30 blocks of a 3-(10,4, 1) design comprise the KDP:

B ={1,2,3,4}, By =1{1,5,6,7}, Bs=1{2,5,8,9}
By =1{3,6,8,10}, Bs=1{4,7,9,10}, Bgs=1{6,7,8,9}
B ={3,4,8,9}, Bs ={3,4,6,7}, Bg=1{2,4,5,7}
B =1{2,3,5,6}, B =15,7,810}, B2 ={2,4,8,10}
B13 - {1,4,6, 10}, B14 - {1,4,5,9}, B15 - {1,3,5,8}
B ={5,6,9,10}, Bir =4{2,3,9,10}, Bz ={1,3,7,10}
B19 - {1,2,7,9}, B20 - {1,2,6,8}, B21 - {1,8,9,10}
By ={2,6,7,10}, Bys =43,5,7,9}, B2y ={4,5,6,8}
B25 - {3,4,5, 10}, B26 - {2,4,6,9}, B27 - {2,3, 7,8}
Bos = {1,4,7,8}, By ={1,3,6,9}, Bsp={1,2,5,10}.

Suppose that the scheme is implemented over G'F'(13), so the TA distributes
secret values s1,...,330 € GF(13) according to this set of blocks. Now,
suppose that a privileged set P wishes to compute a key that will be secure
against a coalition of size w = 2. The resulting (2, < 2)-KPS has information
rate 1/6 and total information rate 1/15.

Here is how the key computation could be carried out. Suppose that
P = {4,7}. Users 4 and 7 both know the values ss, sg, 39, s95. These four
values will be the inputs to a (4,2, 2, 13)-resilient function. One such resilient
function f, is defined as follows:

flay,xe,23,24) = (21 + 22 + 23 + 24,01 + 202 + 423+ 824),

where arithmetic is done in G'F(13). (This function is obtained by taking
a = 2 and constructing a [4,2,3] code over GF(13) from a Reed-Solomon
code, as described above.) If it happened that s5 = 10, ss = 4, s9 = 10 and
s98 = 1, then the key kp would be

kp = (1044410 + 1 mod 13,10 + 8 + 40 + 8 mod 13) = (12, 1).

Let’s look at this scheme from the point of view of the coalition {3, 8}.
User 3 knows that sg = 4 and user 8 knows that s;gs = 1. However, neither
of them know the values of s5 or sg, and thus they have no information as
to the value of the key kp.

14



4 One-time Broadcast Encryption

4.1 Definitions

We will use much of the notation from Section 2.1. As before, we have a
trusted authority (TA) and a set of users. We assume that network is a
broadcast channel, i.e., it is insecure, and any information transmitted by
the TA will be received by every user.

In a set-up stage, the TA generates and distributes secret information
u; to each user 7 off-band. At a later time, the TA will want to broadcast a
message to a privileged subset P. The particular privileged subset P is, in
general, not known ahead of time.

For 1 <@ < n,let M; denote the set of possible messages that might be
broadcast to user ¢. In the schemes we discuss, we will assume that all the
sets My, ..., M, are the same, so My =...= M, = M, say, where |M| = q.

P C 2¥ will denote the collection of all privileged subsets to which the
TA might want to broadcast a message. F C 2¥ will denote the collection
of all possible coalitions (forbidden subsets) against which a broadcast is to
remain secure.

Now, suppose that the TA wants to broadcast a message to a given
privileged set P € P at a later time. (The particular privileged set P
is not known when the scheme is set up, except for the restriction that
P € P.) We assume that there is a probability distribution on M, and
the TA chooses a message (i.e., a plaintext) mp € M according to this
probability distribution. Then the broadcast bp (which is an element of a
specified set Bp) is computed as a function of mp and up.

Once bp is broadcast, each user ¢ € P should be able to decrypt bp and
obtain mp. On the other hand, no forbidden set I € F disjoint from P
should be able to compute any information about mp.

We discuss the security in terms of a single broadcast, so we call the
scheme “one-time”. We say that the scheme is a (P, F)-One-Time Broad-
cast Encryption Scheme (or (P, F)-OTBES) provided the following con-
ditions are satisfied:

(0) Without knowing the broadcast, no subset of users has any information
about mp, even given all the secret information Uy:

H(Mp|Uy) = H(Mp)

for all P € P.

15



(1) The message for a privileged user is uniquely determined by the broad-
cast and the user’s secret information:

H(Mp|U;Bp) =20
forall: €¢ P e P.

(2) After receiving the broadcast, no forbidden subset F' disjoint from P
has any information on mp:

H(Mp) = H(Mp|UrBp)
for all P € P and F € F such that PN F = 0.

The paper by Berkovitz [7] might be the first on this topic. Other rele-
vant papers include [12, 15, 16, 22, 28].

Remarks:

1. Blundo and Cresti define a slightly different model for broadcast en-
cryption in [12]. They study schemes in which a sequence of broadcasts
can be performed without a loss of security. In our model, we study
the security with respect to a single broadcast. We observe that, for
the various schemes we study, it is usually straightforward to deter-
mine conditions under which the schemes remain secure for more than
one broadcast. However, we do not pursue this question further in this

paper.

2. One practical concern with broadcasting is how the members of the
privileged set P know that the broadcast is intended for them. Of
course, the broadcast can contain this information explicitly, in unen-
crypted form. However, this might be undesirable in certain applica-
tions since it does not preserve user anonymity. Another question is
whether each privileged user needs to know the identities of the other
privileged users in order to decrypt the broadcast. We will not dwell
on these questions in this paper, but we do note two recent papers
that discuss broadcast schemes which do not require addressing and
which also maintain user anonymity; namely, Just, Kranakis, Krizanc
and van Oorschot [28], and Blundo, Frota Mattos and Stinson [16].

We define the information rate of an OTBES exactly as for a KPS:
1
P:min{Ho(gU(f) 1< < n}

16




It is also interesting to look at the size of the broadcast, as compared to
the plaintext message. Thus we define the broadcast information rate of an

OTBES to be

) log ¢
B mm{H(BP) 1P e 77}.

In general, there is a trade-off between the amount of secret information
held by each user and the size of the broadcast, i.e., to increase pp, p must
be decreased, and vice versa. This trade-off can be analyzed by looking at
the total information rate, which we define to be

log ¢

= i - P .
pT mm{H(Uqu) € 77}

5 Two Simple Constructions

The are many ways to construct OTBES. The simplest method uses a key
kp from a KPS to encrypt a message.

Theorem 5.1 Suppose there is a (P,F)-KPS having information rate o
and total information rate 7. Then there is a (P,F)-OTBES having in-
formation rate o, broadcast information rate 1, and total information rate

T/(T+1).

Proof. Suppose the key set for the (P,F)-KPS is GF(q). Then we also
take M = GF(q). If the TA wishes to send the message mp € M to the
privileged set P € P, then the broadacast is

0

This scheme has a very small broadcast (pg = 1). Other approaches
allow less secret information to be stored by the users, at the expense of a
larger broadcast.

Here is a trivial scheme at the other extreme.

Theorem 5.2 There is an (< n,< n)-OTBES having information rate 1,
broadcast information rate 1/n, and total information rate 1/(n + 1).
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Proof. In the setup phase, the TA chooses a random element u; € GF(q)
and gives it to ¢ (1 < 7 < n). Later, the TA wishes to send the message
mp € GF(q) to the privileged set P € P. Then the broadcast is

6 A Generalization of the Beimel-Chor Scheme

In this section, we review a recent construction due to Blundo, Frota Mattos
and Stinson that is a modification of an interactive key distribution scheme

of Beimel and Chor [3, 5].

Theorem 6.1 [15] Suppose t = 0 mod {, where { > 2 is an integer. Then
there is a (t, < w)-OTBES having information rate

(-1
(e

broadcast information rate {/t, and total information rate
(=)
() + (2D

We give a brief description of the construction in the case £ = 2. Initially,
a (2,t+w—2) Blom scheme in GF(q) is set up. It can be shown (see [13, 3])
that the (}) keys belonging to the (!) pairs within a set P of ¢ users are
uniformly distributed random variables from the point of view of a set F
of w other users. Thus these keys can be thought of as a big one-time pad
which can be used to encrypt a message for broadcast.

Suppose that the privileged set P = {iy,...,4;}. Recall that we are
assuming that ¢ is even. Hence, the complete graph K; on vertex set P and
edge set I, say, can be partitioned into one-factors (i.e., perfect matchings).
(Each one-factor consists of t/2 disjoint edges.) For any edge e = {i,j} € F,
there is a unique one-factor containing it, and a unique key k. determined
by the Blom scheme.
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Suppose that the one-factors are named Fy,...F;_1. The message to be
broadcast will be a (¢ — 1)-tuple mp = (mq,...,my_y) € [GF(q)]'""!. Then
the broadcast is

bpz(mi{—ke:@EFZ',lSiSt—l).

Here is a very small illustrative example. Suppose t = 4, and P =
{i1,...,14}. Then we have the following three one-factors:

Fyo= {{i1,42}, {is, ia}}
Fy = {{i1,43}, {iz, ia}}
By = {{i1, 04}, {iz, i3} }.

In this case, the message mp = (my, mg, ms3) and the broadcast is

bp = (m1 + k{il,iQ}v my + k{ig,i4}v mo + k{il,ig}v
mo + k{bﬂ}, ms + k{ihu}? ms3 + k{iQ,ig})-

For further details, proofs and discussion, see [15].

7 A General Construction using Secret Sharing
Schemes

In the remainder of this paper, we present a general approach which can be
used to construct a broadcast encryption scheme by combining several key
predistribution schemes with an ideal secret sharing scheme. Then we will
give some applications of this approach.

First, we need to give some definitions and results relating to secret
sharing schemes. This is done in the next subsection.

7.1 Secret Sharing Schemes

Let X be aset of n users, and let I' C 2% be a set of subsets called authorized
subsets. In a secret sharing scheme, the TA has one secret value k € GF(q),
called the key. The TA will distribute secret information to each user in X,
in such a way that any authorized subset can compute k& from the shares
they jointly hold, but no unauthorized subset has any information about k.
The secret information given to user ¢ will be denoted u; and will be called
the share of user ¢.
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The two properties of a secret sharing scheme are most easily described
using entropy notation. (In the following, the variables Up and Up represent
the shares held by the sets P and F, respectively, and could be defined
formally as in the case of KPS.)

(1) Any authorized subset P can compute k:
H(K|Up)=0
forall P €T.
(2) No unauthorized subset F' has any information on k:
H(K)=H(K|Ufr)
forall FF ¢ T.

It is clear that a secret sharing scheme can exist only if ' is monotone;
i.e,if A€ T'and A C Ag, then Ag € I'. Since I' is monotone, it is determined
uniquely given the basis, I'g, which consists of the minimal subsets of T'.

If the share given to each user is an element of G F'(¢), then the scheme
is said to be ideal. We will denote an ideal secret sharing scheme for an
access structure ' by the abbreviation I'-ISSS.

There are many classes of access structures I' for which I'-ISSS are known
to exist. Among these are the so-called threshold access structures. An
(m, n)-threshold access structure, I',, ,,, has as its basis all the m-subsets of
an n-set. The well-known Shamir threshold scheme [37] is one way to obtain
a I'y, ,-ISSS. Many other classes of ideal schemes have been constructed; see,
for example, [17, 18, 4].

We give a short description of the Shamir threshold scheme, since we
will be using it later. Let ¢ > n + 1 be a prime power. Initially, the TA
chooses n distinct non-zero random numbers z; € GF(q), and gives z; to
user ¢ (1 < ¢ < n). These values do not need to be secret. Then, the TA the
constructs a random polynomial of degree at most ¢t — 1

t—1 )
flz) =) au’,
1=0

having coefficients in G F(q). The key is the constant term, ag. For 1 <@ <
n, the TA computes the polynomial

yi = fla;)
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and gives y; to user 7 (note: the value y; is the share of user 7).

At a later time, if ¢ users pool their information, then they have t pairs
(zi,y;) on the unknown polynomial f. They can determine f by Lagrange
interpolation, for example, and then extract the constant term, which is the
key. On the other hand, no t — 1 users have any information as to the value
of the key.

Here is a small example to illustrate. Suppose we wish to construct a
I's 5-ISSS in GF(17), and the public values are z; = ¢, 1 < ¢ < 5. Suppose
that the TA chooses the polynomial

f(z) =13 + 10z + 222,

so the key is 13. The shares that are distributed are

po= 8
Y2 = 7
ys = 10
ya = 0
ys = 11.

Any three of the ordered pairs (1,8), (2,7), (3,10), (4,0) and (5,11) can be
used to reconstruct the polynomial f.

For more information on secret sharing schemes, the reader is referred
to [38, 39].

7.2 The KIO Construction

We now describe our general construction, which for lack of a better acronym,
we call the KIO construction, (since it uses KPS together with ISSS to con-
struct OTBES).

Suppose that B = {Bi,..., Bg} is a family of subsets of ¢4. B is public
knowledge, as in the case of a KDP. Let # > 0 be an integer. For each
B;, 1< j < p,suppose a Fiat-Naor (< |B;|, < 0)-KPS is constructed with
respect to user set B;. The secret values associated with the jth scheme will
be denoted s;c, C' C B;, |C| < 6. (The value s;¢ is given to every user in
Bi\C")

Next, suppose that T C 27, and there exists a T-ISSS (defined on B and
having key set GF(q)). Let F C 2%, and suppose that the following two
properties are satisfied:
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(1) {B;jeB:ie B} el foreveryi el
(2) {B;eB:|[FNBj| >0+ 1} &1 for every F' € F.

Then we can construct a (< n, F)-OTBES. Let P C . The TA can
broadcast a message mp € G F(q) to P using the following algorithm:

1. For each B; € B, the TA computes a share y; € GF(q) corresponding
to the secret mp.

2. For each B; € B, the TA computes the key k; corresponding to the
set P N B; in the Fiat-Naor KPS implemented on B;:

k]‘ = Z S;C
{CCB;:CnP=§,C|<6}

3. For each B; € B, the TA computes
bj = yj + kj.

4. The broadcast is
bp = (b]‘ : B]‘ € B)

The basic idea of the KIO construction is very simple. First, consider a
user 1 € P. Define
Aiz{j:iEB]‘}.
User ¢ can compute k; for every j € A;. Then, for each 7 € A;, ¢ can
compute
yj = bj = kj.

Finally, since A; € I', ¢ can compute the message mp from the shares y;
On the other hand, suppose I/ € F, F'N P = (. Define

AFI{j:|FﬂB]‘|20—I—1}.

The coalition F' can compute k;, and hence y;, for every j € Ap. However,
they can obtain no information about the shares y;, 7 € Ap. Since Ap €T,
F has no information about the value of mp.

22



8 An OTBES Using Threshold Access Structures

We illustrate the KIO construction by delevoping a (< n, < w)-OTBES from
a suitable BIBD (balanced incomplete block design) with a threshold access
structure defined on it (recall that any threshold access structure is ideal).
First, we need to give the definition of BIBD: a balanced incomplete block
design is in fact just a 2-(v, k, A) design. A BIBD has five parameters, and it
is written as (v, 3,7, k, A)-BIBD. The parameter 3 denotes the total number
of blocks, and the parameter r denotes the number of blocks containing each
point. These two parameters can be computed from v, k and A by using the
simple equations vr = gk and A(v — 1) = r(k - 1).

Suppose (U, B) is an (n, 3, r,k, A)-BIBD such that » > A(3). We will
apply the KIO construction with 8 = 1.

Every point occurs in r blocks of the design. Further, any set of w
points intersect at most A(%)) blocks in at least two points. Hence the KIO
construction can be applied if we define T to be a (A(}) +1,8) threshold
access structure.

It is not hard to compute the information rates of the resulting OTBES.
We have the following;:

) = Plogg
) = logg
H(U;) = rklogg
) = Bk+1)logq
)

() e
(/\ (;”) + 14+ Bk + 1)) log g.

All of these calculations are straightforward. Note that the value of H(Bp|Uy)
follows easily from the description of Shamir scheme we gave earlier. The
Shamir scheme is implemented by choosing the /\(7“2”) + 1 coefficients of a
polynomial of degree /\(7“2”); this determines the values of all the shares.

We record this application of the KIO construction in the following the-

H(UyBp)

orermn.

Theorem 8.1 Suppose there is an (n, 3,7, k,\)-BIBD such that r > X(3).
Then there exists a (< n,< w)-OTBES having information rate 1/(rk),
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broadcast information rate 1/, and total information rate
1
MG+ 14 Bk + 1)
We will work out a simple example now. We will construct a (< 7, < 2)-
OTBES from a (7,7,3,3,1)-BIBD. The blocks of the BIBD are:
By = {1,2,4}
By, = {2,3,5}
Bs = {3,4,6}
By = {4,5,7}
Bs = {1,5,6}
Bs = {2,6,7}
B = {1,3,7}

A total of nine values from G'F(g¢) will be given to each user, as indicated
below:

1 2 3 4 5 6 7
$1,0 | S1,0 | $2,0 | S1,0 | 52,0 | 53,0 | 54,0
S1,2 | S1,1 | $2,2 | S1,1 | $2,2 | 83,3 | S4,4
S1,4 | S1,4 | S2,5 | S1,2 | 52,3 | S3,4 | S4,5
S50 | 52,0 | S3,0 | 53,0 | 54,0 | S5,0 | 56,0
S5,5 | 2,3 | 53,4 | 53,3 | S4,4 | S5,1 | 56,2
S5.6 | 2,5 | 53,6 | 53,6 | S4,7 | S5,5 | 56,6
S7.0 | 56,0 | S7,0 | 54,0 | 55,0 | Se0, | 57,0
S73 | 56,6 | S7,1 | S4,5 | S5,1 | S6,2 | S7,1
St7 | Se,7 | ST, | S4,7 | S5.6 | S6,7 | 57,3

Now, suppose that the TA wants to broadcast a message to the set
P = {1,2,3}. The following will be the keys used in the seven Fiat-Naor
schemes:

ki = sip+ 814

ky = g5+ 825

k3 = 839+ 834+ 836
ky not used

ks = S50+ 855+ 856
ke = 3¢5+ S6,6+ S6,7
kr = Sz + S77-
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A Shamir (2, 7)-threshold scheme is set up on the seven blocks of the
BIBD. Suppose that the public value associated with block B; is z; = j,
1 <j < 7. Now, suppose that the TA wants to broadcast the message mp.
The TA will construct a linear polynomial

f($) = a9+ a1z,

where ap = mp. Then the TA will compute y; = ag + aqz;, for 1 < 53 < 7.
Finally, b; = k;+y; (1 < j < 7), so the broadcast bp consists of the following
six values (recalling that k4 is not used):

by = S19+ 814+ ao+aizy
by = S9p+ S25+ ap+aixs
by = S3p+ 834+ 836+ ap+ajrs
bs = 59+ 855+ 85,6+ ap + a1xs
bs = sgp+ Seet Se7+ o+ arwe
br = szg+srr+ao+aizr.

8.1 An Improvement in the Case w =2

Using BIBDs does not turn out to be an efficient method in practice. The
well-known Fisher’s Inequality (see, for example, [19, p. 261]) states that
g > nin any (n,3,r,k, A\)-BIBD. Hence, the broadcast rate of the scheme
is at most 1/n, which is no improvement over the trivial scheme.

However, we do not need all the properties of a BIBD in order to carry
out the construction. For example, it is not necessary that every pair of
points occurs in exactly A blocks. The method works just as well provided
that every pair of points occurs in at most A blocks, and every point occurs
in at least r blocks, where 7 > A(%), as before.

We look more closely at the case w = 2, which provides a nice example.
In this case, we want a “design” (U, B) such that, for every two points z,y,
there exists a block B, with 2 € B, and y € B, and a block B, with y € B,
and z € B,.

Consider the so-called dual design (B,V), in which

V={V;:1<i<n},

where

Vi={B,€B:i€ B,},
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1 <7 < n. It is easy to see that there do not exist two distinct blocks
Vi, V; such that V; C V;. In other words, the dual design (B,V) is a Sperner
family.

Now, it is well-known that there exists a Sperner family consisting of n

subsets of a f-set if and only if
s
2

Further, the case of equality can be realized by taking all {g

J—subsets of a

(-set. (See, for example, Cameron [19, p. 101].)
For example, suppose 3 is even, and let § = 2a. Using an obvious
notation, we obtain a design with parameters

2a 20— 1
(( ),204,04,( ),ga—l).
«Q a—1

(Notice that r turns out to be constant; it is only A that varies.) This design
has n exponentially large compared to 3, which represents an enormous
improvement over using a BIBD.

Theorem 8.2 Suppose that o is an integer and n = (25) Then there exists
a (< n,<2)-OTBES having information rate
1
2a—1
a(35)

and broadcast information rate 1/(2a).

From Stirling’s Formula, we see that
1
log,n =~ 2a — 3 logy(Ta).
Hence,

2a = logy n.

In the resulting scheme, the broadcast information rate is about 1/log, n,
as compared to 1/n, which is the best that can be obtained from Theorem
8.1. The information rate is approximately

4

nlogn.
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As a small example, if we take o = 3, then we get a (< 20,< 2)-OTBES
having information rate 1/30 and broadcast information rate 1/6. The set
B consists of the following six blocks:

{1,...,10}
{1,2,3,4,11,12,13,14, 15,16}
{1,5,6,7,11,12,13,17, 18,19}
{2,5,8,9,11,14,15,17, 18,20}
{3,6,8,10,12,14,16,17,19,20}
{4,7,9,10,13,15,16,18,19,20}.

The access structure I' in the KIO construction in this case will be a (3,6)-
threshold access structure.

9 The Fiat-Naor Broadcast Scheme

One of the first constructions of OTBES was due to Fiat and Naor [22]. It
uses perfect hash families, which we now define. A (n,m,w)-perfect hash
family is a set of functions H such that

AL, o onp—={1,...,m}

for each f € H, and for any X C {1,...,n} such that | X| = w, there exists
at least one f € H such that f|x is one-to-one. We will use the notation
PHFE(N; n, m,w) for a (n, m,w)-perfect hash family with |H| = N.

The motivation for the terminology “perfect hash family” is that we have
a family of hash functions with the property that if at most w elements are
to be hashed, then at least one function in the family yields no collisions
when applied to the given w inputs.

We will typically depict a PHF(N;n, m,w)in the form of a N xn array of
m symbols, where each row of the array corresponds to one of the functions
in the family. This array has the property that, for any subset of w columns,
there exists at least one row such that the entries in the w given columns of
that row are distinct.

Perfect hash families have undergone considerable study in the last fif-
teen years. Some results can be found in the following papers (as well as in
many other papers): [1, 2, 23, 33]. We will not discuss perfect hash families
in detail here. However, we note that very efficient (i.e., small) families are
known to exist via probabilistic arguments, but explicit constructions seem
to be more difficult.
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To construct a broadcast scheme, we first reformulate the concept of a
perfect hashing family. A resolvable block design is a pair (X, 1), where the
following properties are satisfied:

1. X is a finite set of elements called points

2. P is a finite set of parallel classes, each of which is a partition of X
(the members of the parallel classes are called blocks)

A w-separating resolvable block design is a resolvable block design in which
the following propertiy is satisfied: For any subset Y of w points, there
exists a parallel class © € II such that the w points in ¥ occur in w different
blocks in 7. (Note the we do not require constant block size.)

We will use the notation w-SRBD(v, 3,7, m) to denote such a design,
where

vo= X,
ro= [,
g = Z|7r|,and
Tell
m = max{|r|: 7 € Il}.

PHF are related to SRBD as follows:

Theorem 9.1 If there exists a PHF(N;n,m,w), then a w-SRBD(n, 3, N, m)
exists for some < Nm. Conversely, if there exists a w-SRBD(v, 3,1, m),
then there exists a PHF(r; v, m,w).

Here now is the Fiat-Naor OTBES.

Theorem 9.2 (Fiat-Naor Scheme) [22] Suppose there is a PHF(N;n,m,w).
Then there is a (< n, < w)-OTBES having information rate at least 1/(nN),
broadcast information rate 1/(mN), and total information rate at least

1
(n+m+1)N’

Proof. From the given PHF, construct a w-SRBD(n, 5, N), (U,11), where
B < Nm. Define B to consist of all the blocks in the SRBD, and define the
access structure I' (on the set B) to have basis

FOIﬂ'lX...Xﬂ'N,

28



where
I =A{m,....,7n}.

It is easy to see that there exists a I'-ISSS: let & € GF(q) be the key, and
let y;,...,yn be chosen in G F(q) so that

Yi+ ...+ ynv = k.

Then the share y; is given to each block in m;, 1 <7< N.
Now, define § = 1 and apply the KIO construction. The information
rates of the resulting scheme can be computed using the following entropies:

H(Bp) < mNloggq

H(Mp) = loggq

H(U;) < nNloggq

H(Uy) < (n4+m)Nlogqg
H(Bp|Uu) = Nloggq
H(UyBp) < (n+m+1)Nlogg.

0

Remark: If we have a resolvable block design and define I' as in the above
proof, we obtain a (< n,< w)-OTBES from the KIO construction if and
only if the design is w-separating.

9.1 The Case w =2

We will illustrate the Fiat-Naor scheme by examining the simple case w = 2.
Suitable perfect hashing families are easy to construct in this case, as follows.

Theorem 9.3 There is a PHF(N;n,m,2) if and only if

ngmN.

Proof. An N X n array of m symbols is a PHF(N;n,m,2)if and only if no
two columns of the array are identical. 0

Thus we have the following corollary of Theorem 9.2.

Theorem 9.4 Suppose m > 2 is an integer and n is an integral power of
m. Then there is an (< n, < 2)-OTBES having information rate at least

log m

nlogn
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and broadcast information rate

logm

mlogn’

Note that the broadcast information rate is maximized by taking m = 3.
As m increases, the information rate increases and the broadcast information
rate decreases.

It is also interesting to compare Theorem 9.4 to Theorem 8.2:

‘ Theorem 8.2 ‘ Theorem 9.4

information rate 4 log m
nlogn ?logn
broadcast information rate i 1 v
ogn mlogn

Hence, Theorem 8.2 always has yields a higher broadcast information rate
than Theorem 9.4. Theorem 9.4 yields a higher information rate than Theo-
rem 8.2 provided that m > 16, but then the information rate becomes quite
small.

Let’s work out a small example to illustrate the construction of an
OTBES with w = 2 by this method. Suppose we take n = 5 and m = 2.
Since 5 is not an integral power of 2, the best we can do is to use a PHF of

size log 5
3] =
log 2

Suppose we begin with the following PHF(3;5,2,2):

1 1 1 2
11 21
1 2 11

N DN DN

The corresponding 2-SRBD(5,6,3,2) is as follows:

{1,2,3} {4,5}
{1,2,4} {3,5}
{1,3,4} {2,5}

We will end up with an OTBES having information rate 1/9 and broadcast
information rate 1/6. The following information (from G'F(q)) will be given
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out in setting up a Fiat-Naor KPS on each block of the above SRBD:

1

2 3 4 5

51,0
51,2
51,3
53,0
53,2
53,4
55,0
55,3
55,4

51,0 | 51,0 | S2,0 | S2,0
S1,1 | S1,1 | $2,5 | 52,4
$1,3 | 51,2
53,0 | S4,0 | S3,0 | 54,0
83,1 | 54,5 | 53,1 | 54,3
53,4 53,2
S6,0 | S5,0 | S5,0 | 56,0
S6,5 | 5,1 | 5,1 | 56,2
S5,4 | 55,3

Now, suppose the privileged set is P = {3,4,5}. The following will be
the keys used in the six Fiat-Naor KPS:

kA
ka
ks
k4
ks
ke

S1,0 +S1,1+ 51,2
52,0

S3.9 + 831 + 832
54,0

S5p+ 5,1

= Sgp + 36,2

Now, suppose that the TA wants to broadcast the message mp. The TA
will choose three values ¥, %2, y3 such that mp = 91 + y2 + y3. Then the
broadcast bp consists of the following six values:

by =

10 Summary

S19Fs11+s12+ 0
S20+ %

S3.9 + 831+ 3.2+ Y2
sS40+ Y2

ssp+ 51+ Y3
Sep+ S6,2 + ys.

We have surveyed some known constructions for key predistribution schemes
and broadcast schemes. We have also introduced some new directions for
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future research. One contribution is the use of resilient functions in making
key distribution patterns more efficient. This allows the construction of key
predistribution schemes that permit a trade-off between security and the
size of the key that is computed. One novel feature is that this trade-off is
accomplished at the time the key is computed.

The second contribution is the general approach to broadcast encryp-
tion using secret sharing schemes and key predistribution schemes. This ap-
proach was illustrated by using balanced incomplete block designs (BIBDs)
together with threshold schemes to construct a new broadcast encryption
scheme. Although the resulting scheme is not efficient, a variation of the
scheme was described when w = 2 that is very efficient. By using a suit-
able generalization of a BIBD, it may be possible to construct new efficient
schemes for larger w.
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