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1 IntroductionKey distribution is one of the major problems in communication and net-work security. From the point of view of security, most networks can bethought of as broadcast networks, in that anyone connected to the networkwill have access to all the information that ows through it. This leads tomany problems related to the con�dentiality and authenticity of informationthat is transmitted through the network. Encryption is often employed ina network to protect the con�dentiality of information. If a conventionalprivate-key cryptosystem, such as DES, is used, then it is necessary to dis-tribute keys to the network users in a secure fashion. Usually, this is doneby an on-line key server. (For an overview of key distribution techniques see[39].)In this paper, we investigate two related problems: key predistributionand broadcast encryption. Key predistribution refers to methods whereby atrusted authority (TA) will distribute secret information in such a way thatspeci�ed privileged subsets of participants will be able to compute certainkeys. Broadcast encryption consists of a key predistribution phase, followedat some later time by a broadcast message which is to be decrypted by aspeci�ed privileged subset of participants. The decrypted message may bea session (conference) key, for use by the privileged subset, or it may beintended for some other purpose. Such an approach is desirable because thebroadcast model provides a realistic model from the standpoint of securitysince we do not need to assume the existence of secure private channels foron-line key distribution.In this paper, we look at protocols that provide unconditional security(i.e., they are not based on any computational assumption). In such ascheme, it is desirable to minimize the amount of secret information thatneeds to be stored by each user. As well, in the case of a broadcast scheme,we would like to minimize the size of the broadcast. These aspects of ascheme are measured by information rates. The investigation comprises twogoals: establish lower bounds on the information rate (by giving explicit con-structions); and establish upper bounds (usually accomplished by entropyarguments).We con�ne our attention here almost exclusively to constructions. Webegin by surveying some useful schemes schemes for key distribution thathave been presented in the literature. In particular, we look more closelyat the attractive concept of key distribution patterns, and present a newmethod for making these schemes more e�cient through the use of resilient2



functions. Then we present a general approach to the construction of broad-cast schemes that combines key predistribution schemes with secret sharingschemes. We discuss the Fiat-Naor Broadcast Scheme, as well as other, newschemes that can be constructing using this approach.2 Key Predistribution2.1 De�nitionsOur model for key distribution and broadcast encryption consists of a trustedauthority (TA) and a set of users U = f1; 2; : : : ; ng. We assume that thenetwork is a broadcast channel, i.e., it is insecure, and any information trans-mitted by the TA will be received by every user.In a key pre-distribution scheme, the TA generates and distributes secretinformation to each user. The information given to user i is denoted by uiand must be distributed \o�-band" (i.e., not using the network) in a securemanner. This secret information will enable various privileged subsets tocompute keys.Let 2U denote the set of all subsets of users. P � 2U will denote thecollection of all privileged subsets to which the TA is distributing keys.F � 2U will denote the collection of all possible coalitions (called forbiddensubsets) against which each key is to remain secure.Once the secret information is distributed, each user i in a privileged setP should be able to compute the key kP associated with P . On the otherhand, no forbidden set F 2 F disjoint from P should be able to computeany information about kP .For 1 � i � n, let Ui denote the set of all possible secret values thatmight be distributed to user i by the TA. For any subset of users X � U ,let UX denote the cartesian product Ui1 � : : :� Uij , where X = fi1; : : : ; ijgand i1 < : : : < ij . We assume that there is a probability distribution on UU ,and the TA chooses uU 2 UU according to this probability distribution.We describe the desired properties mathematically using the entropyfunction (for an introduction to entropy and its properties, see Welsh [40]).We say that the scheme is a (P ;F)-Key Predistribution Scheme (or(P ;F)-KPS) provided the following conditions are satis�ed:(1) Each user i in any privileged set P can compute kP :H(KP jUi) = 03



for all i 2 P 2 P .(2) No forbidden subset F disjoint from any privileged subset P has anyinformation on kP : H(KP ) = H(KP jUF )for all P 2 P and F 2 F such that P \ F = ;.Remark: Our model of a KPS is identical to what Blundo and Cresti [12]call a zero-message broadcast encryption scheme.We now present some convenient notation. If P consists of all t-subsetsof U , then we will write (t;F)-KPS. Similarly, if P consists of all subsets ofU of size at most t, then we will write (� t;F)-KPS. An analogous notationwill be used for F . Thus, for example, a (� n; 1)-KPS is a KPS where thereis a key associated with any subset of users (i.e., P = 2U) and no key KPcan be computed by any individual user i 62 P .Note that in any (P ;F)-KPS, if F 2 F and F 0 � F , then F 0 2 F .Hence, a (P ; w)-KPS is the same thing as a (P ;� w)-KPS.We will assume that each kP 2 K, where K = GF (q) is our key set.Usually, a key kP is equally likely to be any element of GF (q), in which caseH(KP ) = log q for all P 2 P .We are interested in the e�ciency of a KPS, as measured by the amountof secret information that is distributed to each user. The information rateof a KPS is thus de�ned to be� = min� log qH(Ui) : 1 � i � n� :We might also be interested in the total amount of information distributedto all the users. Hence, we de�ne the total information rate of a KPS to be�T = log qH(UU) :Remark: The total information rate is the reciprocal of the randomnesscoe�cient, as de�ned in [14].The �rst paper discussing unconditionally secure KPS of the type weare studying in this paper is Blom [11]. Other papers on this topic include[12, 13, 14, 21, 15, 25, 29, 30, 31, 32, 34, 35, 36].4



2.2 ConstructionsTheorem 2.1 (Trivial Scheme) For any t � 1, there is a (t;� n)-KPShaving information rate 1�n�1t�1�and total information rate 1�nt� :Proof. For every t-subset P � U , the TA chooses a random value kP 2GF (q) and gives kP to every member of P .Theorem 2.2 (Blom Scheme) [11] For any w � 1, there is a (2;� w)-KPS having information rate 1w + 1and total information rate 1�w+22 � :Proof. Let q � n be a prime power. The TA chooses n distinct randomnumbers si 2 GF (q), and gives si to user i (1 � i � n). These values donot need to be secret. Then, the TA constructs a random polynomialf(x; y) = wXi=0 wXj=0 aijxiyjhaving coe�cients in GF (q), such that aij = aji for all i; j. For 1 � i � n,the TA computes the polynomialgi(x) = f(x; si) = wXj=0 bijxj ;and gives the w + 1 values bij to user i (note: these values comprise thesecret information ui).The key associated with the pair of users P = fi; jg iskP = gi(sj) = gj(si):5



Remark: The original presentation of the Blom scheme was given in thesetting of MDS (maximum distance separable) codes. We have used theformulation from [13] here.Here is a small example to illustrate. Suppose we take n = 3, q = 17and w = 1, and the public values are s1 = 12, s2 = 7 and s3 = 1. Now,suppose that the TA chooses the polynomialf(x; y) = 8 + 7(x+ y) + 2xy:This gives rise to the polynomialsg1(x) = 7 + 14xg2(x) = 6 + 4xg3(x) = 15 + 9x:Thus the secret information distributed to the three users isu1(x) = (7; 14)u2(x) = (6; 4)u3(x) = (15; 9):The three keys determined by this information arekf1;2g = 3kf1;3g = 4kf2;3g = 10:Theorem 2.3 (Blundo et al Scheme) [13] For any t � 2, w � 1, thereis a (t;� w)-KPS having information rate1�t+w�1t�1 �and total information rate 1�t+wt � :Proof. The scheme is similar to Blom's scheme, but the TA uses a symmetricpolynomial f(x1; : : : ; xt) in t variables.6



Remark: When we set t = 2 in the Blundo et al scheme, the Blom schemeis obtained.Theorem 2.4 (Fiat-Naor Scheme) [22] For any w � 1, there exists a(� n;� w)-KPS having information rate1wXj=0 n� 1j !and total information rate 1wXj=0 nj! :Proof. For every subset F � U of cardinality at most w, the TA chooses arandom value sF 2 GF (q) and gives sF to every member of UnF . Then thekey associated with a privileged set P is de�ned to bekP = XfF2F:F\P=;g sF :Here is a small example to illustrate. Suppose we take n = 3, q = 17and w = 1, and suppose that the TA chooses the valuess; = 11sf1g = 8sf2g = 3sf3g = 8:The eight keys determined by this information arek; = 13kf1g = 5kf2g = 10kf3g = 5kf1;2g = 2kf1;3g = 14kf2;3g = 2kf1;2;3g = 11:7



Remark: The information rates of all four of the above schemes are optimal;see [12] for details, for example.3 Key Distribution PatternsThe elegant idea of a key distribution pattern is due to Mitchell and Piper[34]. Many other papers also use this concept (or variations of it); see, forexample, [21, 25, 31, 29, 30, 32]. However, the work of Mitchell and Piperdoes not seem to be as well-known as it should be.We begin with a de�nition, which is essentially the dual formulation ofthe one given in [34]. Let B = fB1; : : : ; B�g be a set of subsets of U . We saythat (U ;B) is a (P ;F)-Key Distribution Pattern (or (P ;F)-KDP) iffBj : P � Bj and F \Bj = ;g 6= ;for all P 2 P and F 2 F such that P \ F = ;.Note that a KDP can conveniently be represented by an n�� incidencematrix A = (ai;j) which is de�ned as follows:ai;j = ( 1 if i 2 Bj0 otherwise.The KDP (U ;B) (or, equivalently, the incidence matrix A) is public knowl-edge. A KDP can be used to construct a KPS as described in the followingtheorem, where we de�ne ri = jfBj : i 2 Bjgjfor any user i 2 U .Theorem 3.1 Suppose (U ;B) is a (P ;F)-KDP. Then there exists a (P ;F)-KPS with information rate 1maxfri : 1 � i � ngand total information rate 1� :8



Proof. For 1 � j � �, the TA chooses a random value sj 2 GF (q) and givessj to every user in Bj . Thus user i receives ri elements of GF (q) as his orher secret information.The key kP for a privileged set P is de�ned to bekP = Xfj:P�Bjg sj :Note that each member of P can compute kP . However, if F is a coalitionsuch that F\P = ;, then there is at least one block Bj such that P � Bj andF \Bj = ;. F does not know the value of sj , and hence has no informationabout kP .Remark: The trivial KPS and the Fiat-Naor KPS are both in fact KDPs.The trivial KPS is obtained by taking B to be all t-subsets of U , and theFiat-Naor KPS is produced by taking B to be all subsets of U of cardinalityat least n� w.We now give a construction for KDPs that uses combinatorial designs(for results on design theory, see Beth, Jungnickel and Lenz [8]). First, werequire a de�nition. Let Y be a set of v elements (called points), and letA = fA1; : : : ; A�g be a family of k-subsets of Y (called blocks). We say that(Y;A) is a t-(v; k; �) design if every subset of t points occurs in exactly �blocks. It can be shown by elementary counting that a t-(v; k; �) design isalso a t0-(v; k; �0) design for 1 � t0 � t, where�0 = ��v�t0t�t0��k�t0t�t0 � :The following result was shown in [34], and a similar result was provedsubsequently and independently in [31].Theorem 3.2 A 3-(n; k; �) design, (U ;B), is a (2;� w)-KDP on a set ofn users if w < n � 2k � 2 :This KDP has information rate(k� 1)(k� 2)�(v � 1)(v � 2)9



and total information rate k(k � 1)(k� 2)�v(v� 1)(v � 2) :Proof. Consider two users, i and j. There are exactly�(n� 2)k � 2blocks of the design that contain i and j. Now, consider a coalition F =fh1; : : : ; hwg such that F \ fi; jg = ;. For 1 � k � w, there are at most �blocks of the design that contain i, j and hk . Hence, the number of blocksthat contain i, j and at least one member of F is at most �w. Since�w < �(n� 2)k � 2 ;the design is a (2;� w)-KDP.Suppose we use inversive planes, as was done in [34]. An inversive planeis a 3-(Q2+1; Q+1; 1) design. Such a design is known to exist whenever Qis a prime power. Applying Theorem 3.2, the following theorem is obtained.Theorem 3.3 [34] Suppose Q is a prime power. Then there exists a a(2;� Q)-KDP with information rate 1Q(Q+ 1)and total information rate 1Q(Q2 + 1) :As an example, if we take Q = 3, then we use a 3-(10; 4; 1) design.The resulting KDP is a (2;� 3)-KDP with information rate 1=12 and totalinformation rate 1=30.Theorem 3.2 can be generalized in a straightforwardmanner to construct(t;� w)-KDPs with t � 3. We state the following theorem without proof.Theorem 3.4 A (t+1)-(n; k; �) design, (U ;B), is a (t;� w)-KDP on a setof n users if w < n� tk � t :10



This KDP has information rate �k�1t�1���v�1t�1�and total information rate �kt���vt� :We give a small example to illustrate. It is known that there exists a5-(12; 6; 1) design. Applying Theorem 3.4, we obtain a (4;� 3)-KPS withinformation rate 1=66 and total information rate 1=132.3.1 An E�ciency Improvement using Resilient FunctionsThe idea of a key distribution pattern is very appealing, and there is nocomputation required on the part of the TA. However, most known examplesof KDP have quite low information rates. (The constructions in [21] havevery good information rates. However, these constructions are probabilistic,and thus it is still of interest to �nd good explicit constructions.)In this section, we present a new technique that will lead to an improve-ment in the information rate of KDP. This method also allows for tradingo� the amount of security (i.e., the value of w) against the amount of keycomputed by a priviliged set.Suppose we have a (P ;F)-KDP, and the members of a privileged set Pwant to compute a key kP . De�neCP = jfBj : P � Bjgjand DP = max fjfBj : P � Bj and F \Bj 6= ;gj : F 2 F ; F \ P = ;g :Each member of P has CP secret values, of which no forbidden set knowsmore than DP . The de�nition of KDP assures that DP � CP � 1. If ithappens that DP < CP � 1, then it may be possible for P to extract morekey from the secret values they hold, by making use of so-called resilientfunctions.An (n;m; t; q)-resilient function is a functionf : [GF (q)]n ! [GF (q)]m11



which satis�es the property that if the values of t of the n inputs are �xed,and the remaining n�t inputs are chosen independently at random, then ev-ery possible output m-tuple is equally likely to occur. Considerable researchhas been done on resilient functions (see for example, [20, 6, 24, 9, 10, 27]).Most work has concentrated on binary resilient functions (i.e., the caseq = 2). Here we will be using resilient functions with large q; one paperdealing with the subject is [27].We can use a publicly known resilient function to improve the e�ciencyof a KDP in a straightforward manner, as follows.Theorem 3.5 Suppose (U ;B) is a (P ;F)-KDP and P 2 P. Let m and q beintegers. Suppose for every P 2 P that there there exists a (CP ; m;DP ; q)-resilient function. Then there exists a (P ;F)-KPS having information ratemmaxfri : 1 � i � ngand total information rate m=�.Proof. The proof is similar to that of Theorem 3.1. For 1 � j � �, the TAchooses a random value sj 2 GF (q) and gives sj to every user in Bj . Thekey kP 2 [GF (q)]m for a privileged set P is de�ned to bekP = f(sj1 ; : : :sjCP );where fj : P � Bjg = fj1; : : : ; jCP gand j1 < : : : < jCP :Each member of P can compute kP since the CP inputs to the function f areknown. However, if F is a coalition such that F \ P = ;, then there are atleast CP �DP inputs to f that are not known to F . Since f is DP -resilient,F has no information about kP .Remarks:1. Theorem 3.1 is in fact a special case of Theorem 3.5. This followseasily from the observation that the functionf : [GF (q)]n ! GF (q);de�ned as f(x1; : : : ; xn) = x1 + : : :+ xn;is an (n; 1; n� 1; q)-resilient function.12



2. The information rates in Theorem 3.5 have been increased by a factorof m over Theorem 3.1.In an application of Theorem 3.5, we want an (n;m; t; q)-resilient func-tion where m is as large as possible, given n and t. It can be shownthat m � n � t in any resilient function. However, it is easy to construct(n; n� t; t; q)-resilient functions provided q � n � 1.We describe a construction from [26, p. 129] that uses doubly extendedReed-Solomon codes. Let q be a prime power, and let � be a primitiveelement in GF (q). The doubly extended Reed-Solomon code of dimensionk is the code de�ned over GF (q) having generating matrixG = 0BBBBBBBB@ 1 1 1 � � � 1 1 01 � �2 � � � �q�2 0 01 �2 �4 � � � �(q�2)2 0 0... ... ... ... ... ... ...1 �k�2 �2(k�2) � � � �(q�2)(k�2) 0 01 �k�1 �2(k�1) � � � �(q�2)(k�1) 0 1 1CCCCCCCCAThis code is a [q + 1; k; q � k + 2] q-ary code. The �rst n � q + 1 columnsof G form the generating matrix G0 of a [n; k; n� k + 1] q-ary code. Thefunction f : [GF (q)]n ! [GF (q)]k de�ned as f(x) = x(G0)T is in fact a(n; k; n� k; q)-resilient function.Now, let us illustrate this approach by using the inversive plane KDPdescribed in Theorem 3.3. So we suppose that Q is a prime power, andw � Q is �xed. Then it is easy to calculate CP = Q+ 1 and DP = w. If wetake q � Q, then there exists a (Q+ 1; Q+ 1�w;w; q)-resilient function bythe discussion above. Applying Theorem 3.5, we have the following result.Theorem 3.6 Suppose Q is a prime power and w � Q. Then there existsa (2;� w)-KPS having information rateQ+ 1� wQ(Q+ 1)and total information rate Q+ 1� wQ(Q2 + 1) :Remark: Note that the value of w does not have to be �xed ahead of time.At the time that a privileged set P actually wants to compute their common13



key kP , they can decide on the value of w they wish to use. The key kP isan element of (GF (q))Q+1�w, so they are trading o� security (the value ofw) against the amount of the key they produce.As an example, suppose we apply Theorem 3.6 with Q = 3. The following30 blocks of a 3-(10; 4; 1) design comprise the KDP:B1 = f1; 2; 3; 4g; B2 = f1; 5; 6; 7g; B3 = f2; 5; 8; 9gB4 = f3; 6; 8; 10g; B5 = f4; 7; 9; 10g; B6 = f6; 7; 8; 9gB7 = f3; 4; 8; 9g; B8 = f3; 4; 6; 7g; B9 = f2; 4; 5; 7gB10 = f2; 3; 5; 6g; B11 = f5; 7; 8; 10g; B12 = f2; 4; 8; 10gB13 = f1; 4; 6; 10g; B14 = f1; 4; 5; 9g; B15 = f1; 3; 5; 8gB16 = f5; 6; 9; 10g; B17 = f2; 3; 9; 10g; B18 = f1; 3; 7; 10gB19 = f1; 2; 7; 9g; B20 = f1; 2; 6; 8g; B21 = f1; 8; 9; 10gB22 = f2; 6; 7; 10g; B23 = f3; 5; 7; 9g; B24 = f4; 5; 6; 8gB25 = f3; 4; 5; 10g; B26 = f2; 4; 6; 9g; B27 = f2; 3; 7; 8gB28 = f1; 4; 7; 8g; B29 = f1; 3; 6; 9g; B30 = f1; 2; 5; 10g:Suppose that the scheme is implemented over GF (13), so the TA distributessecret values s1; : : : ; s30 2 GF (13) according to this set of blocks. Now,suppose that a privileged set P wishes to compute a key that will be secureagainst a coalition of size w = 2. The resulting (2;� 2)-KPS has informationrate 1=6 and total information rate 1=15.Here is how the key computation could be carried out. Suppose thatP = f4; 7g. Users 4 and 7 both know the values s5; s8; s9; s28. These fourvalues will be the inputs to a (4; 2; 2; 13)-resilient function. One such resilientfunction f , is de�ned as follows:f(x1; x2; x3; x4) = (x1 + x2 + x3 + x4; x1 + 2x2 + 4x3 + 8x4);where arithmetic is done in GF (13). (This function is obtained by taking� = 2 and constructing a [4; 2; 3] code over GF (13) from a Reed-Solomoncode, as described above.) If it happened that s5 = 10, s8 = 4, s9 = 10 ands28 = 1, then the key kP would bekP = (10 + 4 + 10 + 1 mod 13; 10+ 8 + 40 + 8 mod 13) = (12; 1):Let's look at this scheme from the point of view of the coalition f3; 8g.User 3 knows that s8 = 4 and user 8 knows that s28 = 1. However, neitherof them know the values of s5 or s9, and thus they have no information asto the value of the key kP . 14



4 One-time Broadcast Encryption4.1 De�nitionsWe will use much of the notation from Section 2.1. As before, we have atrusted authority (TA) and a set of users. We assume that network is abroadcast channel, i.e., it is insecure, and any information transmitted bythe TA will be received by every user.In a set-up stage, the TA generates and distributes secret informationui to each user i o�-band. At a later time, the TA will want to broadcast amessage to a privileged subset P . The particular privileged subset P is, ingeneral, not known ahead of time.For 1 � i � n, let Mi denote the set of possible messages that might bebroadcast to user i. In the schemes we discuss, we will assume that all thesets M1; : : : ;Mn are the same, soM1 = : : :=Mn =M , say, where jM j = q.P � 2U will denote the collection of all privileged subsets to which theTA might want to broadcast a message. F � 2U will denote the collectionof all possible coalitions (forbidden subsets) against which a broadcast is toremain secure.Now, suppose that the TA wants to broadcast a message to a givenprivileged set P 2 P at a later time. (The particular privileged set Pis not known when the scheme is set up, except for the restriction thatP 2 P .) We assume that there is a probability distribution on M , andthe TA chooses a message (i.e., a plaintext) mP 2 M according to thisprobability distribution. Then the broadcast bP (which is an element of aspeci�ed set BP ) is computed as a function of mP and uP .Once bP is broadcast, each user i 2 P should be able to decrypt bP andobtain mP . On the other hand, no forbidden set F 2 F disjoint from Pshould be able to compute any information about mP .We discuss the security in terms of a single broadcast, so we call thescheme \one-time". We say that the scheme is a (P ;F)-One-Time Broad-cast Encryption Scheme (or (P ;F)-OTBES) provided the following con-ditions are satis�ed:(0) Without knowing the broadcast, no subset of users has any informationabout mP , even given all the secret information UU :H(MP jUU) = H(MP )for all P 2 P . 15



(1) The message for a privileged user is uniquely determined by the broad-cast and the user's secret information:H(MP jUiBP ) = 0for all i 2 P 2 P .(2) After receiving the broadcast, no forbidden subset F disjoint from Phas any information on mP :H(MP ) = H(MP jUFBP )for all P 2 P and F 2 F such that P \ F = ;.The paper by Berkovitz [7] might be the �rst on this topic. Other rele-vant papers include [12, 15, 16, 22, 28].Remarks:1. Blundo and Cresti de�ne a slightly di�erent model for broadcast en-cryption in [12]. They study schemes in which a sequence of broadcastscan be performed without a loss of security. In our model, we studythe security with respect to a single broadcast. We observe that, forthe various schemes we study, it is usually straightforward to deter-mine conditions under which the schemes remain secure for more thanone broadcast. However, we do not pursue this question further in thispaper.2. One practical concern with broadcasting is how the members of theprivileged set P know that the broadcast is intended for them. Ofcourse, the broadcast can contain this information explicitly, in unen-crypted form. However, this might be undesirable in certain applica-tions since it does not preserve user anonymity. Another question iswhether each privileged user needs to know the identities of the otherprivileged users in order to decrypt the broadcast. We will not dwellon these questions in this paper, but we do note two recent papersthat discuss broadcast schemes which do not require addressing andwhich also maintain user anonymity; namely, Just, Kranakis, Krizancand van Oorschot [28], and Blundo, Frota Mattos and Stinson [16].We de�ne the information rate of an OTBES exactly as for a KPS:� = min� log qH(Ui) : 1 � i � n� :16



It is also interesting to look at the size of the broadcast, as compared tothe plaintext message. Thus we de�ne the broadcast information rate of anOTBES to be �B = min� log qH(BP ) : P 2 P� :In general, there is a trade-o� between the amount of secret informationheld by each user and the size of the broadcast, i.e., to increase �B, � mustbe decreased, and vice versa. This trade-o� can be analyzed by looking atthe total information rate, which we de�ne to be�T = min� log qH(UUBP ) : P 2 P� :5 Two Simple ConstructionsThe are many ways to construct OTBES. The simplest method uses a keykP from a KPS to encrypt a message.Theorem 5.1 Suppose there is a (P ;F)-KPS having information rate �and total information rate � . Then there is a (P ;F)-OTBES having in-formation rate �, broadcast information rate 1, and total information rate�=(� + 1).Proof. Suppose the key set for the (P ;F)-KPS is GF (q). Then we alsotake M = GF (q). If the TA wishes to send the message mP 2 M to theprivileged set P 2 P , then the broadacast isbP = kP +mP :This scheme has a very small broadcast (�B = 1). Other approachesallow less secret information to be stored by the users, at the expense of alarger broadcast.Here is a trivial scheme at the other extreme.Theorem 5.2 There is an (� n;� n)-OTBES having information rate 1,broadcast information rate 1=n, and total information rate 1=(n+ 1).17



Proof. In the setup phase, the TA chooses a random element ui 2 GF (q)and gives it to i (1 � i � n). Later, the TA wishes to send the messagemP 2 GF (q) to the privileged set P 2 P . Then the broadcast isbP = (ui +mP : i 2 P ):6 A Generalization of the Beimel-Chor SchemeIn this section, we review a recent construction due to Blundo, Frota Mattosand Stinson that is a modi�cation of an interactive key distribution schemeof Beimel and Chor [3, 5].Theorem 6.1 [15] Suppose t � 0 mod `, where ` � 2 is an integer. Thenthere is a (t;� w)-OTBES having information rate�t�1`�1��t+w�1`�1 � ;broadcast information rate `=t, and total information rate�t�1`�1��t+w` �+ �t�1`�1� :We give a brief description of the construction in the case ` = 2. Initially,a (2; t+w�2) Blom scheme in GF (q) is set up. It can be shown (see [13, 3])that the �t2� keys belonging to the �t2� pairs within a set P of t users areuniformly distributed random variables from the point of view of a set Fof w other users. Thus these keys can be thought of as a big one-time padwhich can be used to encrypt a message for broadcast.Suppose that the privileged set P = fi1; : : : ; itg. Recall that we areassuming that t is even. Hence, the complete graph Kt on vertex set P andedge set E, say, can be partitioned into one-factors (i.e., perfect matchings).(Each one-factor consists of t=2 disjoint edges.) For any edge e = fi; jg 2 E,there is a unique one-factor containing it, and a unique key ke determinedby the Blom scheme. 18



Suppose that the one-factors are named F1; : : :Ft�1. The message to bebroadcast will be a (t � 1)-tuple mP = (m1; : : : ; mt�1) 2 [GF (q)]t�1. Thenthe broadcast is bP = (mi + ke : e 2 Fi; 1 � i � t � 1):Here is a very small illustrative example. Suppose t = 4, and P =fi1; : : : ; i4g. Then we have the following three one-factors:F1 = ffi1; i2g; fi3; i4ggF2 = ffi1; i3g; fi2; i4ggF3 = ffi1; i4g; fi2; i3gg:In this case, the message mP = (m1; m2; m3) and the broadcast isbP = (m1 + kfi1;i2g; m1 + kfi3;i4g; m2 + kfi1;i3g;m2 + kfi2;i4g; m3+ kfi1;i4g; m3 + kfi2;i3g):For further details, proofs and discussion, see [15].7 A General Construction using Secret SharingSchemesIn the remainder of this paper, we present a general approach which can beused to construct a broadcast encryption scheme by combining several keypredistribution schemes with an ideal secret sharing scheme. Then we willgive some applications of this approach.First, we need to give some de�nitions and results relating to secretsharing schemes. This is done in the next subsection.7.1 Secret Sharing SchemesLet X be a set of n users, and let � � 2X be a set of subsets called authorizedsubsets. In a secret sharing scheme, the TA has one secret value k 2 GF (q),called the key. The TA will distribute secret information to each user in X ,in such a way that any authorized subset can compute k from the sharesthey jointly hold, but no unauthorized subset has any information about k.The secret information given to user i will be denoted ui and will be calledthe share of user i. 19



The two properties of a secret sharing scheme are most easily describedusing entropy notation. (In the following, the variables UP and UF representthe shares held by the sets P and F , respectively, and could be de�nedformally as in the case of KPS.)(1) Any authorized subset P can compute k:H(KjUP ) = 0for all P 2 �.(2) No unauthorized subset F has any information on k:H(K) = H(KjUF )for all F 62 �.It is clear that a secret sharing scheme can exist only if � is monotone;i.e., if A 2 � and A � A0, then A0 2 �. Since � is monotone, it is determineduniquely given the basis, �0, which consists of the minimal subsets of �.If the share given to each user is an element of GF (q), then the schemeis said to be ideal. We will denote an ideal secret sharing scheme for anaccess structure � by the abbreviation �-ISSS.There are many classes of access structures � for which �-ISSS are knownto exist. Among these are the so-called threshold access structures. An(m;n)-threshold access structure, �m;n, has as its basis all the m-subsets ofan n-set. The well-known Shamir threshold scheme [37] is one way to obtaina �m;n-ISSS. Many other classes of ideal schemes have been constructed; see,for example, [17, 18, 4].We give a short description of the Shamir threshold scheme, since wewill be using it later. Let q � n + 1 be a prime power. Initially, the TAchooses n distinct non-zero random numbers xi 2 GF (q), and gives xi touser i (1 � i � n). These values do not need to be secret. Then, the TA theconstructs a random polynomial of degree at most t� 1f(x) = t�1Xi=0 aixi;having coe�cients in GF (q). The key is the constant term, a0. For 1 � i �n, the TA computes the polynomialyi = f(xi)20



and gives yi to user i (note: the value yi is the share of user i).At a later time, if t users pool their information, then they have t pairs(xi; yi) on the unknown polynomial f . They can determine f by Lagrangeinterpolation, for example, and then extract the constant term, which is thekey. On the other hand, no t� 1 users have any information as to the valueof the key.Here is a small example to illustrate. Suppose we wish to construct a�3;5-ISSS in GF (17), and the public values are xi = i, 1 � i � 5. Supposethat the TA chooses the polynomialf(x) = 13 + 10x+ 2x2;so the key is 13. The shares that are distributed arey1 = 8y2 = 7y3 = 10y4 = 0y5 = 11:Any three of the ordered pairs (1; 8), (2; 7), (3; 10), (4; 0) and (5; 11) can beused to reconstruct the polynomial f .For more information on secret sharing schemes, the reader is referredto [38, 39].7.2 The KIO ConstructionWe now describe our general construction, which for lack of a better acronym,we call the KIO construction, (since it uses KPS together with ISSS to con-struct OTBES).Suppose that B = fB1; : : : ; B�g is a family of subsets of U . B is publicknowledge, as in the case of a KDP. Let � � 0 be an integer. For eachBj , 1 � j � �, suppose a Fiat-Naor (� jBj j;� �)-KPS is constructed withrespect to user set Bj . The secret values associated with the jth scheme willbe denoted sjC , C � Bj , jCj � �. (The value sjC is given to every user inBjnC.)Next, suppose that � � 2B, and there exists a �-ISSS (de�ned on B andhaving key set GF (q)). Let F � 2U , and suppose that the following twoproperties are satis�ed: 21



(1) fBj 2 B : i 2 Bjg 2 � for every i 2 U .(2) fBj 2 B : jF \Bj j � � + 1g 62 � for every F 2 F .Then we can construct a (� n;F)-OTBES. Let P � U . The TA canbroadcast a message mP 2 GF (q) to P using the following algorithm:1. For each Bj 2 B, the TA computes a share yj 2 GF (q) correspondingto the secret mP .2. For each Bj 2 B, the TA computes the key kj corresponding to theset P \ Bj in the Fiat-Naor KPS implemented on Bj :kj = XfC�Bj:C\P=;;jCj��g sjC :3. For each Bj 2 B, the TA computesbj = yj + kj :4. The broadcast is bP = (bj : Bj 2 B):The basic idea of the KIO construction is very simple. First, consider auser i 2 P . De�ne Ai = fj : i 2 Bjg:User i can compute kj for every j 2 Ai. Then, for each j 2 Ai, i cancompute yj = bj � kj :Finally, since Ai 2 �, i can compute the message mP from the shares yj(j 2 Ai).On the other hand, suppose F 2 F , F \ P = ;. De�neAF = fj : jF \ Bj j � � + 1g:The coalition F can compute kj , and hence yj , for every j 2 AF . However,they can obtain no information about the shares yj , j 62 AF . Since AF 62 �,F has no information about the value of mP .22



8 An OTBES Using Threshold Access StructuresWe illustrate the KIO construction by delevoping a (� n;� w)-OTBES froma suitable BIBD (balanced incomplete block design) with a threshold accessstructure de�ned on it (recall that any threshold access structure is ideal).First, we need to give the de�nition of BIBD: a balanced incomplete blockdesign is in fact just a 2-(v; k; �) design. A BIBD has �ve parameters, and itis written as (v; �; r; k; �)-BIBD. The parameter � denotes the total numberof blocks, and the parameter r denotes the number of blocks containing eachpoint. These two parameters can be computed from v; k and � by using thesimple equations vr = �k and �(v � 1) = r(k� 1).Suppose (U ;B) is an (n; �; r; k; �)-BIBD such that r > ��w2�. We willapply the KIO construction with � = 1.Every point occurs in r blocks of the design. Further, any set of wpoints intersect at most ��w2� blocks in at least two points. Hence the KIOconstruction can be applied if we de�ne � to be a ���w2�+ 1; �� thresholdaccess structure.It is not hard to compute the information rates of the resulting OTBES.We have the following:H(BP ) = � log qH(MP ) = log qH(Ui) = rk log qH(UU) = �(k + 1) log qH(BP jUU) =  � w2!+ 1! log qH(UUBP ) =  � w2!+ 1 + �(k + 1)! log q:All of these calculations are straightforward. Note that the value ofH(BP jUU)follows easily from the description of Shamir scheme we gave earlier. TheShamir scheme is implemented by choosing the ��w2� + 1 coe�cients of apolynomial of degree ��w2�; this determines the values of all the shares.We record this application of the KIO construction in the following the-orem.Theorem 8.1 Suppose there is an (n; �; r; k; �)-BIBD such that r > ��w2�.Then there exists a (� n;� w)-OTBES having information rate 1=(rk),23



broadcast information rate 1=�, and total information rate1��w2�+ 1+ �(k + 1) :We will work out a simple example now. We will construct a (� 7;� 2)-OTBES from a (7; 7; 3; 3; 1)-BIBD. The blocks of the BIBD are:B1 = f1; 2; 4gB2 = f2; 3; 5gB3 = f3; 4; 6gB4 = f4; 5; 7gB5 = f1; 5; 6gB6 = f2; 6; 7gB7 = f1; 3; 7gA total of nine values from GF (q) will be given to each user, as indicatedbelow: 1 2 3 4 5 6 7s1;; s1;; s2;; s1;; s2;; s3;; s4;;s1;2 s1;1 s2;2 s1;1 s2;2 s3;3 s4;4s1;4 s1;4 s2;5 s1;2 s2;3 s3;4 s4;5s5;; s2;; s3;; s3;; s4;; s5;; s6;;s5;5 s2;3 s3;4 s3;3 s4;4 s5;1 s6;2s5;6 s2;5 s3;6 s3;6 s4;7 s5;5 s6;6s7;; s6;; s7;; s4;; s5;; s6;; s7;;s7;3 s6;6 s7;1 s4;5 s5;1 s6;2 s7;1s7;7 s6;7 s7;7 s4;7 s5;6 s6;7 s7;3Now, suppose that the TA wants to broadcast a message to the setP = f1; 2; 3g. The following will be the keys used in the seven Fiat-Naorschemes: k1 = s1;; + s1;4k2 = s2;; + s2;5k3 = s3;; + s3;4 + s3;6k4 not usedk5 = s5;; + s5;5 + s5;6k6 = s6;; + s6;6 + s6;7k7 = s7;; + s7;7:24



A Shamir (2; 7)-threshold scheme is set up on the seven blocks of theBIBD. Suppose that the public value associated with block Bj is xj = j,1 � j � 7. Now, suppose that the TA wants to broadcast the message mP .The TA will construct a linear polynomialf(x) = a0 + a1x;where a0 = mP . Then the TA will compute yj = a0 + a1xj , for 1 � j � 7.Finally, bj = kj+yj (1 � j � 7), so the broadcast bP consists of the followingsix values (recalling that k4 is not used):b1 = s1;; + s1;4 + a0 + a1x1b2 = s2;; + s2;5 + a0 + a1x2b3 = s3;; + s3;4 + s3;6 + a0 + a1x3b5 = s5;; + s5;5 + s5;6 + a0 + a1x5b6 = s6;; + s6;6 + s6;7 + a0 + a1x6b7 = s7;; + s7;7 + a0 + a1x7:8.1 An Improvement in the Case w = 2Using BIBDs does not turn out to be an e�cient method in practice. Thewell-known Fisher's Inequality (see, for example, [19, p. 261]) states that� � n in any (n; �; r; k; �)-BIBD. Hence, the broadcast rate of the schemeis at most 1=n, which is no improvement over the trivial scheme.However, we do not need all the properties of a BIBD in order to carryout the construction. For example, it is not necessary that every pair ofpoints occurs in exactly � blocks. The method works just as well providedthat every pair of points occurs in at most � blocks, and every point occursin at least r blocks, where r > ��w2�, as before.We look more closely at the case w = 2, which provides a nice example.In this case, we want a \design" (U ;B) such that, for every two points x; y,there exists a block Bx with x 2 Bx and y 62 Bx, and a block By with y 2 Byand x 62 By .Consider the so-called dual design (B;V), in whichV = fVi : 1 � i � ng;where Vi = fBx 2 B : i 2 Bxg;25



1 � i � n. It is easy to see that there do not exist two distinct blocksVi; Vj such that Vi � Vj . In other words, the dual design (B;V) is a Spernerfamily.Now, it is well-known that there exists a Sperner family consisting of nsubsets of a �-set if and only if n �  �j�2 k!:Further, the case of equality can be realized by taking all j�2k-subsets of a�-set. (See, for example, Cameron [19, p. 101].)For example, suppose � is even, and let � = 2�. Using an obviousnotation, we obtain a design with parameters  2�� !; 2�; �; 2�� 1� � 1 !;� � � 1! :(Notice that r turns out to be constant; it is only � that varies.) This designhas n exponentially large compared to �, which represents an enormousimprovement over using a BIBD.Theorem 8.2 Suppose that � is an integer and n = �2�� �. Then there existsa (� n;� 2)-OTBES having information rate1��2��1��1 �and broadcast information rate 1=(2�).From Stirling's Formula, we see thatlog2 n � 2�� 12 log2(��):Hence, 2� � log2 n:In the resulting scheme, the broadcast information rate is about 1= log2 n,as compared to 1=n, which is the best that can be obtained from Theorem8.1. The information rate is approximately4n logn:26



As a small example, if we take � = 3, then we get a (� 20;� 2)-OTBEShaving information rate 1=30 and broadcast information rate 1=6. The setB consists of the following six blocks:f1; : : : ; 10gf1; 2; 3; 4; 11; 12; 13; 14; 15; 16gf1; 5; 6; 7; 11; 12; 13; 17; 18; 19gf2; 5; 8; 9; 11; 14; 15; 17; 18; 20gf3; 6; 8; 10; 12; 14; 16; 17; 19; 20gf4; 7; 9; 10; 13; 15; 16; 18; 19; 20g:The access structure � in the KIO construction in this case will be a (3; 6)-threshold access structure.9 The Fiat-Naor Broadcast SchemeOne of the �rst constructions of OTBES was due to Fiat and Naor [22]. Ituses perfect hash families, which we now de�ne. A (n;m;w)-perfect hashfamily is a set of functions H such thatf : f1; : : : ; ng ! f1; : : : ; mgfor each f 2 H, and for any X � f1; : : : ; ng such that jX j = w, there existsat least one f 2 H such that f jX is one-to-one. We will use the notationPHF(N ;n;m;w) for a (n;m;w)-perfect hash family with jHj = N .The motivation for the terminology \perfect hash family" is that we havea family of hash functions with the property that if at most w elements areto be hashed, then at least one function in the family yields no collisionswhen applied to the given w inputs.We will typically depict a PHF(N ;n;m;w) in the form of aN�n array ofm symbols, where each row of the array corresponds to one of the functionsin the family. This array has the property that, for any subset of w columns,there exists at least one row such that the entries in the w given columns ofthat row are distinct.Perfect hash families have undergone considerable study in the last �f-teen years. Some results can be found in the following papers (as well as inmany other papers): [1, 2, 23, 33]. We will not discuss perfect hash familiesin detail here. However, we note that very e�cient (i.e., small) families areknown to exist via probabilistic arguments, but explicit constructions seemto be more di�cult. 27



To construct a broadcast scheme, we �rst reformulate the concept of aperfect hashing family. A resolvable block design is a pair (X;�), where thefollowing properties are satis�ed:1. X is a �nite set of elements called points2. P is a �nite set of parallel classes, each of which is a partition of X(the members of the parallel classes are called blocks)A w-separating resolvable block design is a resolvable block design in whichthe following propertiy is satis�ed: For any subset Y of w points, thereexists a parallel class � 2 � such that the w points in Y occur in w di�erentblocks in �. (Note the we do not require constant block size.)We will use the notation w-SRBD(v; �; r;m) to denote such a design,where v = jX j;r = j�j;� = X�2� j�j; andm = maxfj�j : � 2 �g:PHF are related to SRBD as follows:Theorem 9.1 If there exists a PHF(N ;n;m;w), then a w-SRBD(n; �;N;m)exists for some � � Nm. Conversely, if there exists a w-SRBD(v; �; r;m),then there exists a PHF(r; v;m;w).Here now is the Fiat-Naor OTBES.Theorem 9.2 (Fiat-Naor Scheme) [22] Suppose there is a PHF(N ;n;m;w).Then there is a (� n;� w)-OTBES having information rate at least 1=(nN),broadcast information rate 1=(mN), and total information rate at least1(n+m+ 1)N :Proof. From the given PHF, construct a w-SRBD(n; �;N), (U ;�), where� � Nm. De�ne B to consist of all the blocks in the SRBD, and de�ne theaccess structure � (on the set B) to have basis�0 = �1 � : : :� �N ;28



where � = f�1; : : : ; �Ng:It is easy to see that there exists a �-ISSS: let k 2 GF (q) be the key, andlet yi; : : : ; yN be chosen in GF (q) so thatyi + : : :+ yN = k:Then the share yi is given to each block in �i, 1 � i � N .Now, de�ne � = 1 and apply the KIO construction. The informationrates of the resulting scheme can be computed using the following entropies:H(BP ) � mN log qH(MP ) = log qH(Ui) � nN log qH(UU) � (n+m)N log qH(BP jUU) = N log qH(UUBP ) � (n+m+ 1)N log q:Remark: If we have a resolvable block design and de�ne � as in the aboveproof, we obtain a (� n;� w)-OTBES from the KIO construction if andonly if the design is w-separating.9.1 The Case w = 2We will illustrate the Fiat-Naor scheme by examining the simple case w = 2.Suitable perfect hashing families are easy to construct in this case, as follows.Theorem 9.3 There is a PHF(N ;n;m; 2) if and only ifn � mN :Proof. An N � n array of m symbols is a PHF(N ;n;m; 2) if and only if notwo columns of the array are identical.Thus we have the following corollary of Theorem 9.2.Theorem 9.4 Suppose m � 2 is an integer and n is an integral power ofm. Then there is an (� n;� 2)-OTBES having information rate at leastlogmn logn29



and broadcast information rate logmm logn :Note that the broadcast information rate is maximized by taking m = 3.Asm increases, the information rate increases and the broadcast informationrate decreases.It is also interesting to compare Theorem 9.4 to Theorem 8.2:Theorem 8.2 Theorem 9.4information rate 4n logn logmn lognbroadcast information rate 1logn logmm logn :Hence, Theorem 8.2 always has yields a higher broadcast information ratethan Theorem 9.4. Theorem 9.4 yields a higher information rate than Theo-rem 8.2 provided that m � 16, but then the information rate becomes quitesmall.Let's work out a small example to illustrate the construction of anOTBES with w = 2 by this method. Suppose we take n = 5 and m = 2.Since 5 is not an integral power of 2, the best we can do is to use a PHF ofsize � log 5log 2� = 3:Suppose we begin with the following PHF(3; 5; 2; 2):1 1 1 2 21 1 2 1 21 2 1 1 2The corresponding 2-SRBD(5; 6; 3; 2) is as follows:f1; 2; 3g f4; 5gf1; 2; 4g f3; 5gf1; 3; 4g f2; 5gWe will end up with an OTBES having information rate 1=9 and broadcastinformation rate 1=6. The following information (from GF (q)) will be given30



out in setting up a Fiat-Naor KPS on each block of the above SRBD:1 2 3 4 5s1;; s1;; s1;; s2;; s2;;s1;2 s1;1 s1;1 s2;5 s2;4s1;3 s1;3 s1;2s3;; s3;; s4;; s3;; s4;;s3;2 s3;1 s4;5 s3;1 s4;3s3;4 s3;4 s3;2s5;; s6;; s5;; s5;; s6;;s5;3 s6;5 s5;1 s5;1 s6;2s5;4 s5;4 s5;3Now, suppose the privileged set is P = f3; 4; 5g. The following will bethe keys used in the six Fiat-Naor KPS:k1 = s1;; + s1;1 + s1;2k2 = s2;;k3 = s3;; + s3;1 + s3;2k4 = s4;;k5 = s5;; + s5;1k6 = s6;; + s6;2:Now, suppose that the TA wants to broadcast the message mP . The TAwill choose three values y1; y2; y3 such that mP = y1 + y2 + y3. Then thebroadcast bP consists of the following six values:b1 = s1;; + s1;1 + s1;2 + y1b2 = s2;; + y1b3 = s3;; + s3;1 + s3;2 + y2b4 = s4;; + y2b5 = s5;; + s5;1 + y3b6 = s6;; + s6;2 + y3:10 SummaryWe have surveyed some known constructions for key predistribution schemesand broadcast schemes. We have also introduced some new directions for31
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