Design Methodology for a Modular
Service-Driven Network Processor
Architecture

Maria Gabrani, Gero Dittmann, Andreas Doring,
Andreas Herkersdorf, Patricia Sagmeister, Jan van Lunteren

IBM Zurich Research Laboratory
{mga, ged, ado, anh, psa, jul} @zurich.ibm.com

Abstract

We present a design methodology for a modular network processor architecture that
leads to a balanced, service-defined mix between programmable processor cores,
configurable hardware assists, and specialized coprocessors. Whereas the processor
cores address the flexibility and extendibility needs of the networking market, the
hardware components offload the processors, or even allow them to be bypassed
for certain network processor-typical tasks to optimize chip area, performance, and
power efficiency. We describe the rationale behind the selected functional partitio-
ning in hardware and software components and discuss the challenges of designing
the hardware components, and of organizing and integrating the programmable
cores. We quantify our approach with a performance evaluation of the overall sys-
tem.

Key words: Network processors, modular and scalable architectures, systems on a
chip, open systems, performance evaluation.
PACS: 84.40.U, 85.40, 07.05.B, 07.05.T

1 Introduction

The networking market demands ever-higher data rates and at the same time
support for the continuously changing networking standards and applications.
Networking equipment vendors seek to reduce time-to-market and to decrease
development costs and power consumption. Networking equipment customers
desire increased time-in-market, higher performance and low power consump-
tion. Support of new standards and applications, increased time-in-market
and reduced development costs imply programmable solutions and have led to

Preprint submitted to Elsevier Science 30th October 2002

the introduction of network processor units (NPU). Higher data rates, better
performance and reduced power consumption imply hardware solutions that
correspond to traditional switch and router designs. To satisfy the diverse, and
in some cases conflicting, requirements we pursue a hybrid solution. Whereas
flexibility and programmability needs are met with the use of processor cores,
hereafter called CPUs, performance requirements are fulfilled by incorporating
a number of deterministic performance (e.g. hardware) components. Aiming
for a system-on-a-chip (SoC) modular architecture, the question we address
is how to incorporate the above components in a most efficient and effective
way.

We suggest a design methodology for a NPU architecture that leads to a
modular, balanced, service-driven mix between CPUs and components with
deterministic performance, which satisfy the next two attributes. First, they
should perform certain functions, the results of which can be used by the
CPUs. Second, they should provide the necessary functionality so that certain
types of protocol data units (PDUs, e.g. packets, frames, cells) need not be
processed by the CPUs. The second attribute implies that the components
perform data plane functions. The data plane path formed by a set of de-
terministic performance components that satisfy the above two attributes is
called service-driven data flow (SDF).

Hereafter we discuss the rationale behind the introduction of the SDF con-
cept, as well as the challenges encountered and solutions developed for the
design and integration of certain system components. We start in Section 2
by describing the requirements of an NPU and how they give rise to the
service-driven mapping into the system’s components. In Section 3 we discuss
the requirements and challenges of designing two representative types of SDF
components. The implications in integrating a cluster of CPUs in the proposed
architecture are presented in Section 4. The methodology designed to evaluate
the system’s performance is the focus of Section 5. We conclude the paper in
Section 6 with a summary and directions for further study.

2 Service-driven NPU architecture

Network processors perform central functions in network elements (NEs) such
as traditional TP routers or LAN/WAN switches, as well as in emerging sys-
tems such as firewalls and DSLAMSs (digital subscriber line access multiplex-
ers). Therefore, before designing a specific NPU architecture, it is important
to understand the functional and performance requirements of such systems.

Process

PktID

process()

Monitor Queue

MonitorTable

Forwarding
Table

RuleTable RuleTable RuleTable RuleTable RuleTable

RuleTable

! ! i

R SR

HdrP — CL — MTRPL | LkU — FL — AQM — SCH/TS | HdrA
Port# PktID PktID PktID PktID Class OutPort Changes
DSCP Class SA/DA/IPDA (any field Color OutQueue Location
MPLSExt MPLSLabel within L2-L7) OutPort Class
VLANTag VLANTag OutQueue Priority
parse() setClass() measure() getTablelD() setFlowlID() gerDiscP() queue () alter ()
setPktID() getRule() search() setPriority() decide() setOutTime()
setColor() setOut() setAction()

Figure 1. Example of a DiffServ-compliant data-plane functionality of an enterprise
or edge NE. Access to a rule table is used here to indicate the flexibility of a function
to handle various cases of traffic in a user-defined way.

2.1 Functional requirements

The requirements of an NE —both in functionality and performance— are
dependent on the target market and application area. The basic functionality
of edge and core NEs is Layer 2 switching and IP routing. This basic functio-
nality is extended with quality-of-service (QoS) traffic management in order
to handle delay and jitter-sensitive traffic [6,26,28,29]. Congestion is avoided
with an active queue management (AQM) function [7,14,27]. The functiona-
lity of enterprise NEs may be further enhanced with security, network address
translation (NAT), or other application-specific support.

An example of a differentiated services (DiffServ, [11,28]) compliant functio-
nality of an enterprise, edge or core NE is illustrated with a UML-like graph
in Figure 1. In such an NE, upon receipt of a PDU, the following actions
occur. The header of the PDU is parsed (HdrP) and the type of the PDU
is identified (PktID) to decide which forwarding table to search (e.g. virtual
local area network (VLAN), multiprotocol label switching (MPLS), L2/L3).
The PDU is classified (CL) to establish the flow and class of the PDU and
possibly its priority. Next, the metering (MTR) function checks whether the
PDU’s flow conforms to its agreements. The policing (PL) function “colors”
the PDU according to its flow’s behavior; the color may change the priority
of the PDU ((re)marking, not shown in the figure). The output coordinates of
the PDU are looked up (LkU). A filtering (FL) function determines whether

the PDU requests illegal or unauthorized access. Typically at this point it is
decided whether the PDU is merely forwarded or needs further processing (e.g.
load balancing or TCP splicing). We call this point of the functional pipeline
a turning point. Further processing may alter the result of the first LkU. If
no further treatment is required then the AQM function decides whether to
forward or discard the PDU according to the output queues’ fill levels and
the PDU’s class and/or priority and possibly its color. The scheduler (SCH)
ensures that the PDU’s transmission is prioritized according to its relative
class/priority. The traffic shaper (TS) ensures that the PDU is transmitted
according to its QoS profile and/or agreements. The header of the PDU is
changed (HdrA) appropriately, and the PDU is transmitted. Let us call the
above functions that provide QoS-based forwarding standard functions.

The services of access market NEs can be quite diverse because they are highly
dependent on their application area, such as cable, storage and digital sub-
scriber line (DSL) systems, and radio access networks. For example, in radio
access networks, PDU sizes are usually very small and bandwidth is scarce,
therefore NEs (e.g. base stations) may perform header compression (HC) to
enhance bandwidth efficiency [1]. Hence, when a PDU is identified as header-
compressed, it is first decompressed (HD) and then QoS-based forwarded (Fig-
ure 2). Before retransmission, depending on the output link’s speed, the PDU
header may be compressed. Note that the new service (HC) can be built on
top of the standard functions. This observation indicates that the sequence
of the standard functions is not “frozen” and that both the function modules
and their interfaces have to be well defined. Note also that not all the PDUs
traversing an NE need to be processed by the service specific functions, i.e.
compressed /decompressed in our example. This note indicates a mixed traffic
pattern.

The set of standard functions may vary in order and type from system to
system, depending on the implementation, the NE’s position in the network
and the application area. Nevertheless, in an NE a set of standard functions
comprises the minimum service required (here QoS-based forwarding) and any
additional service can be built on top of this by appropriately locating and
interconnecting the new service-specific functions, typically introducing the
deep-packet processing at the turning point (Figure 3a).

2.2 Performance requirements

The basic performance requirements of NEs are scalability, throughput and
low power consumption. Typically, scalability is ensured via a distributed for-
warding architecture. Such an architecture offloads QoS requirements from

HD Process HC
CID PktID CID
decompress() process() compress()
Monitor :
RuleTable RuleTable Forwarding RuleTable Queue RuleTable RuleTable

Table 11 | MonitorTable

RuleTable

[T = 7 B [|1

HdrP HY CL — MTR/PL — LkU — FL — AQM — SCH/TS [4 HdrA
Port# PktID PktID PktID PktID Class OutPort Changes
DSCP Class SA/DA/IPDA (any field Color OutQueue Location
MPLSExt MPLSLabel within L2-L7) OutPort Class
VLANTag VLANTag OutQueue Priority
parse() setClass() measure() getTablelD() setFlowlD() gerDiscP() queue () alter ()
setPktID() getRule() search() setPriority() decide() setOutTime()
setColor() setOut() setAction()

Figure 2. Example of a data plane functionality of a radio access network NE.

the switch fabric by distributing it to the line cards, to which the NPUs are
targeted. Scalability also calls for modular design.

The throughput of a system, that is the number of PDUs per second that can
be forwarded by the system without loss, can range between multiple 100 K
packets per second (Kpps) and 25 Mpps, depending on the NE application
area. The throughput can be boosted in a work-conservative system by in-
creasing the number of buffers and the buffer bandwidth, and decreasing the
access time to the buffers. The provision of enough buffers allows the PDU to
be stored after it has been policed, filtered and its output determined. It is
preferable to use off-chip memory for the bulk storage requirements (N;x10
MB at N5x10 ns) and on-chip memory for fast-path PDUs (N3x100 KB at
Nyxns), where Ny,..., N are single-digit integers. On-chip memory, more-
over, impacts throughput in the case of bursts of small PDUs and multicast
flows. The required aggregate memory bandwidth, as a general rule, ranges
between 4 to 10 times the aggregate link rate.

PDU latency and jitter can be kept tightly bounded if on-chip memories are
used and functions in the data path are performed with deterministic and
low latencies, e.g. if they are hardware assisted. The utilization of application-
specific integrated circuits (ASICs), moreover, ensures lower power consump-
tion and occupies less area.

The above requirements along with the programmability needs of the network-
ing market constitute the main drivers in any NPU design.

2.8 Current solutions

In the recent history of NPUs, a variety of solutions has been introduced
2,3,13,16,20]. From a system architecture perspective, the commonality among
these solutions is restricted to the use of multiple processor cores for data plane
processing. Beyond that, the approaches show a great degree of architectural
diversity.

Single-chip multiprocessor pipeline architectures with minimal hardware as-
sists (e.g. hash function) [16] provide a high degree of flexibility, but re-
quire that the entire networking function be implemented as pure software
process. Thus, the attainable wire-speed performance of the NPU is tightly
linked to the code path length of the application. Multi-chip solutions with
service-specialized processors enhance performance and reduce power con-
sumption at the expense of flexibility [3,13]. In addition, there are single-chip
hybrid solutions that blend programmable processor resources with function-
ally mapped hardware components to balance performance, flexibility, power
and area [2,20]. In conclusion, it can be stated that no industry standard NPU
architecture has been established yet. This is not surprising considering the
youth of the discipline.

Taking a more abstract view of the current solutions one may surmise that
modularity is achieved only on the chip and the software level. Our aim is
an intra-chip (SoC) modular solution. Looking beyond the processing ele-
ments and multiprocessor clusters, we argue that the value proposition of
next-generation NPUs is not focused solely on the processing engines of an
NPU, but consists equally of the ability to compose an NPU out of modular,
standard and service-specific components that can be mapped on a variety of
implementation alternatives ranging from hardwired and configurable logic,
to ASIP, to software processes running on a CPU.

2.4 Service-driven mapping into system’s components

To derive a modular, hybrid, SoC NPU architecture we started with the end
application in mind, performed a functional decomposition and made the fol-
lowing observations. First, an NPU is targeted for line cards, the functionality
requirements of which include QoS-based forwarding and support of functional
extensions. Among the functions that a PDU traverses in an NE ([9,11], Fi-
gures 1, 2) several are standards-defined, e.g. CL, MTR, PL, SCH, and HC,
which implies that their operation and interaction with other functions are
well defined. These functions span both standard and service-specific func-
tions (Figure 3(a)). Note also that certain well-known cases of traffic can be

Service specific functions

HD Process X
CID ArgX1
ArgX2

decompress() processX()

Process Y

ArgY1
ArgY2

processY()

Process Process Z HC
PktID ArgZ1 CID
ArgZ2
process() processZ() compress()

LkU

FL

AQM HdrA

PktID
DSCP
MPLSExt
VLANTag

PktID
SA/DA/IPDA
MPLSLabel
VLANTag

PktID Class OutPort Changes
(any field Color OutQueue Location
within L2-L7) OutPort Class

OutQueue Priority

parse()
setPktID()

setClass() measure()
getRule()
setColor()

CPU functions

Process x

ArgX1
ArgX2

processX()

HD

CID

decompress()

CL MTR/PL

getTablelD()
search()
setOut()

Process Y

ArgY1
ArgY2

processY()

LkU

setFlowID() gerDiscP() queue () alter ()
setPriority() decide() setOutTime()

setAction()

Process Process Z
PktID ArgZ1
ArgZ2

process() processZ()

FL

HC

CID

compress()

AQM SCH/TS HdrA

PktID PktID
DSCP Class
MPLSEXxt
VLANTag

PktID
SA/DA/IPDA
MPLSLabel
VLANTag

PktID
(any field
within L1-LX)

Class OutPort Changes
Color OutQueue Location
OutPort Class

OutQueue Priority

parse()
setPktD()

setClass() measure()
getRule()
setColor()

getTablelD()
search()
setOut()

setFlowID() gerDiscP() queue () alter ()
setPriority() decide() setOutTime()

setAction()

(b)

Figure 3. Layering of functions in an NE: (a) standard and service-specific func-
tions, (b) further distinguishing the service-specific into CPU and deterministic
performance functions. The functions belonging to the bottom two layers of (b) are
candidates for SDF implementation.

handled fully via standard functions (e.g. switching, QoS based forwarding),
which cover some of the traffic in any NE. Moreover, certain functions may
be used for different purposes in a user-defined way. For example a filter can
be used for security, for selecting different processing paths within the system,
or for applying different rules to other functions, e.g. classification. Finally,
network functions of all OSI layers frequently require common processes, such
as LkU, checksum calculation and HdrA.

From the above observations one might deduce that standard functions could
also be called by the CPU(s). Moreover, standard functions and standards-
defined, service-specific functions are the best candidates for implementation
on deterministic performance (latency, jitter, power) components. Such com-
ponents may be ASICs, specialized coprocessors or ASIPs. The rest of the
functionality is mapped on CPUs. This association further splits the service-
specific functions into CPU and deterministic performance functions (Fig-
ure 3(b)). Finally, the appropriate interconnection and interfacing of deter-
ministic performance components allow them to accommodate fully a sizable
percentage of traffic.

Based on the above resolutions we infer an architecture that is a service-
defined mix between CPUs and deterministic performance components, with
the latter forming a service-driven data flow (SDF). We define as CPU bypass
the sizable amount of traffic that can be fully processed by the SDF, and as
CPU offload the attribute that the results of the SDF components can be used
by the CPU. We call such an NPU architecture a service-driven architecture.

A generic implementation of such an architecture is depicted in the form of
a block diagram in Figure 4. The main parts of the architecture consist of
the SDF, the processor complex, the control point, memory and interconnect.
The SDF supports the minimum service of QoS-based forwarding. If the PDU
requires further processing it is sent to a CPU. The SDF functionality can be
expanded via on- or off-chip coprocessors to accommodate different application
area requirements (service-specific functions). This expansion is accomplished
via the interconnect and an extension interface. Finally, the system provides
a number of both on- and off-chip buffers to increase throughput and reduce
latency. The buffers are managed by the buffer manager (BM). Latency and
jitter are kept bounded for bypass PDUs, and minimal for non-bypass PDUs.

The main contribution of the proposed design methodology is the methodical
and coherent way in which the functional partitioning is carried out, which
defines the rules for the service decomposition and mapping as well as the rela-
tionship between the components. The outcome of this is an NPU architecture
which is a balanced mix between CPUs and deterministic performance compo-
nents. Whereas CPU-offload has been used in [2,20] by functionally mapping

Processor Complex Data/Control Memory

I I

Prog:s-sors CPUs emle)?nd:r(;d SDRAM
vl tv |
Interconnect

Figure 4. Generic block diagram of a service-driven NPU architecture.

certain system components, it is the functionally complete and sequentially
correct PDU traversal that enables CPU bypass.

Such an architecture generates a number of requirements and implications for
the design of the system’s components. SDF components cover basic or compu-
tationally expensive functionality, however their design should allow flexibility
and extendability. In Section 3.1 we present the challenges and requirements
of such a design using the example of the LkU (or search) function.

No matter how configurable or programmable the standard function compo-
nents of the SDF, new functions might be introduced at any time that may
not be fully covered, and are computationally expensive to run in a CPU.
We address future proof by incorporating in the SDF specialized processors
that are optimized to handle certain clusters of functions. We develop a design
methodology for such components and present the challenges and requirements
thereof in Section 3.2. We provide further programmability and extendability
via the CPUs. However, the CPUs must be extended and organized such that
they can make optimal use of the SDF capabilities of the system, as we discuss
in Section 4.

Finally, we strive for a modular, scalable, SoC NPU architecture. In order
to verify the concept and get feedback regarding bottleneck identification, we
developed the design evaluation methodology described in Section 5.

3 SDF components

The aim of this section is to convey the unique features and requirements for
the design of an SDF component. To that end, we discuss two representative
topics: the design of a standard function component, and an ASIP design
methodology.

3.1 Generic search engine

A search engine (or LkU) is one of the standard functions encountered in any
NPU that can also be called by the CPU. Therefore, it must be able to perform
all searches corresponding to the applications that the NPU is intended to
support, and it must do this for a variety of link speeds. These searches can
involve a single field in the packet header (e.g. a routing table lookup), multiple
fields (e.g. firewall and QoS applications), and even the packet payload (e.g.
content-aware applications). Important performance parameters are the search
rate and latency, the storage requirements and the update performance.

The rapid increase of link speeds, which has been much faster than the im-
provement of SDRAM performance and that of other memory technologies
over the past several years, has posed two major challenges to new search
engine designs:

(1) Available memory bandwidth has to be used more efficiently: search and
update operations must perform fewer memory accesses and exploit mem-
ory system characteristics (e.g. burst modes) to improve bandwidth uti-
lization.

(2) Available memory capacity has to be used more efficiently. Only in this
way can faster but more expensive memory technologies such as SRAM
and on-chip DRAM be used to realize cost-efficient search engines that
provide wire-speed performance for higher link speeds such as 10 and 40

Gbps.

The only way to meet these challenges appears to be by means of dedicated
yet generic hardware support; a purely software solution is not able to achieve
the required levels of performance for the higher link speeds. For example,
for a 10 Gbps link a total of approximately 125 M searches per second will
be needed, assuming a minimum packet size of about 40 bytes and a total
of 5 searches per packet. For this reason, there has been an increased focus
in recent years on the development of hardware-oriented search algorithms.
One of these schemes is the BART (balanced routing table) search scheme,
which was created to search large routing tables at a speed of 10 Gbps and
beyond using state-of-the-art CMOS technology, but can also be used for any

10

A Search results

Control LkU
_
eDRAM 1 eDRAM 2
S |» S |
E L2 E L2
A [L3IPv4 A [* L3IPv4
R L3 IPv6 R L3 IPv6
C (o3
H H
Access 'control | Access'control |
A A
Odd Even
bytes HdrP bytes
(L2 Mac, IPv4 DA, IPv6 DA)

TRX Link i/f

Figure 5. BART implementation based on two eDRAM banks.

type of exact- and prefix-match searches [22]. BART meets the performance
requirements by means of a novel compression technique that achieves one of
the most storage-efficient data structures in the industry (e.g. BART fits a 72
K-entry routing table in less than 500 KB) in combination with wire-speed
search performance and high incremental update rates. The P2C (Parallel
Packet Classification) scheme extends BART for efficient multifield searches
[23]. Figure 5 shows an example of a BART implementation based on two
embedded DRAM (eDRAM) banks, which searches MAC addresses, IPv4 and
[Pv6 destination addresses (DAs) using a partitioning of 8-bit segments (see
[22]). The available memory bandwidth is used efficiently by alternatingly
accessing the two eDRAM banks to “process” the even and odd bytes of the
MAC and TP addresses.

3.1.1 Implementation options

Depending on the search and update performance requirements of an applica-
tion, the BART algorithm can be implemented entirely in either software or
hardware. In both cases, specific characteristics of the memory system (e.g.,
cache line sizes, wide data buses available with on-chip memory) are exploited
to improve the performance. A hybrid approach is also feasible in which the
update part of the algorithm is implemented in software and the actual search
function is implemented in hardware.

11

Having both a hardware (SDF) and a software (CPU) implementation of
BART allows the following interesting scenarios:

(1) The hardware handles the more frequent and simple searches (CPU by-
pass), whereas the software handles the less frequent but more complex
searches (CPU path).

(2) The hardware handles the more frequently used part of the rule set, which
is cached on-chip (CPU bypass), whereas the software is only invoked to
handle cache misses (CPU path).

(3) The hardware is used by the software as a coprocessor (CPU offload).

3.2 ASIP design methodology

As Figure 4 shows, the SDF comprises a number of functionally mapped com-
ponents. For some, e.g. the HdrP, the HdrA, or some combination of other
functions in Figure 3b, programmability would be desirable in order to support
post-deployment implementation of future services. Programmability can be
provided by processor cores with a specialized architecture and instruction set,
known as application-specific instruction-set processors (ASIPs). They repre-
sent a tradeoff between the flexibility of a general-purpose processor (GPP)
and the high performance at low area and power cost of hardwired logic.

For the design of ASIPs in our environment, we are working towards an inte-
grated approach for computer-aided derivation of instruction sets and archi-
tecture features, starting from specifications of benchmark applications in a
high-level language, such as C.

3.2.1 Generic ASIP design flow

We have devised an ASIP design flow, shown in Figure 6, that plugs a number
of methods together to proceed from the application code to a new processor
description and custom processor tools. The application code is used as input
to a compiler front-end, which leads to an intermediate representation (IR)
of the application. The IR can usually be visualized as a graph, e.g. a control
data flow graph (CDFG), with nodes of very basic instructions, such as add,
subtract, shift, multiply, divide, etc.

This graph can be optimized with respect to a basic processor-architecture
template using techniques from compilers for GPPs [4] and domain-specific
optimizations. An instruction scheduler assigns time steps to graph nodes,
and a pattern finder searches for recurring combinations of nodes that might
be worth implementing as special instructions [5,18]. It is worth noting that

12

Application
specification €.g.

Compiler
front end

Intermediate
representation

Basic
processor
architecture

e.g.,, CDFG

Optimizer,
scheduler,
pattern finder

Patterns,
statistics

Instruction set
definition

ASIP
P > H/W
description implementation

Tool
generator

Assembler | Compiler

Simulator

Figure 6. ASIP design flow.

optimizer, scheduler, and pattern finder influence each other’s work and may
be called repeatedly and in different orders.

The result of the pattern finding is a library of patterns, annotated with
metrics about the benefit of each pattern. Based on the metrics, a decision
is made regarding which of the patterns to implement as new instructions
and how to modify the processor architecture. This step usually still involves
interaction with the processor designer, because the set of metrics in current
approaches is quite rudimentary and, for example, implementation complexity
must be estimated by the designer.

When a new ASIP has been defined in this way, its description can be fed back
into the process by replacing the basic architecture template. The process can
then be restarted, leading to a further improved architecture. The process is
iterated until the performance requirements for the ASIP have been fulfilled.
At this point, the ASIP description can be implemented in silicon and it can
also be used with a tool generator [12,25] to generate a simulator, an assembler,
and possibly a compiler.

13

3.2.2 Extensions for NPU ASIP design

Most of the ASIP design approaches found in the literature are targeted to-
wards the digital signal processing (DSP) domain. Some of the open questions
in this domain remain relevant when applying the methods to protocol-header
processing, including how to:

e express more of the programmer’s expertise in the application code for bet-
ter optimization,

e find and compute better metrics for the value of a pattern in order to im-
prove automation, and

e find patterns for special addressing and control instructions.

Furthermore, it is desirable to extend the process with additional optimiza-
tions and to adjust it for the particular application domain.

A crucial point for the design methodology is the IR. Restrictions of the IR
inadvertently result in deficiencies of the entire process. An IR for our target
domain must carry the following information:

control flow as well as data flow,

concurrency and sequentiality,

timing constraints, and

as much of the programmer’s expertise as possible.

We use a CDFG-based IR, which fulfills the first two requirements and en-
ables the invocation of standard compiler optimizations as well as the pattern
search algorithm in [5], which works on directed acyclic graphs. The CDFG is
annotated with minimum and maximum time between nodes, as specified by
the application programmer, as well as with the scheduled time step of nodes,
as seen in output transition graphs for controller synthesis [24].

Furthermore, the application programmer can annotate control edges with
minimum and maximum number of visits to support execution-time optimiza-
tion. Guided by this information, operations can be scheduled for non-critical
parts of the program to fulfill timing constraints.

In the instruction-set definition part of the design flow we consider the tradeoff
between operand encoding and instruction flexibility. In embedded systems,
memory size is critical (e.g., for Program Memory 1 and 2 in Figure 7) and
each bit saved in instruction-word length is valuable. Hence, it makes a sig-
nificant difference whether, for example, a register is encoded explicitly in the
instruction word or implicitly with equal source and target registers.

All these methods together yield a consistent flow from the specification of
benchmark applications to the description of a new ASIP. An example of a

14

Initial Initial
Value Value

} 1

\T/ \T/ Data
— e e

- E
- CASE
32 B j>1 H PC + GOTO ‘ N/
conazant 7/ INSTRUCTION
REGISTERS i @

1PV
Hi

NEW PC
CALCULATION

G)

drl
Le:

0
>
6
)
v
y -1

COUNTER

le—o
f——

MUX PROGRAM PROGRAM
CONTROL | MEMORY 1 MEMORY 2

4

]

1

1

T 0 0
1
; '

CENTRAL —» PARALLEL

EXECUTION EXECUTION
UNIT

ID Extracted
Data

DELIMIT RESET

Figure 7. Block diagram of a HdrP.

resulting component would be a HdrP as shown in Figure 4. The design of
such a HdrP has been described in [10]. Starting with pseudo code for IPv4
and IPv6, the special instructions given in Table 1 were derived. The archi-
tecture, depicted in Figure 7, furthermore comprises a specialized register set,
a secondary memory with area-efficient organization for parallel instructions,
and additional parallel branching.

Table 1
Specialized instructions for a HdrP.
Instruction Effect
SEND Extract bit range from header word and send it to next SDF
component.
SEND_REG Send register content to next SDF component.
WRITE_REG Extract bit range from header word and write it to register.
IP6_COUNTER | Load counter register with length of IPv6 extension header.
INIT_CASE Branch depending on which of num_cases values matches a
register.
LD_CONST Load condition registers for INIT_CASE.

15

As a result, this highly specialized processor allows one to completely offload
the task of header parsing, which is costly if implemented in GPP software.
The size of the parser, including a small instruction memory, is of the order
of 0.45 mm? in a 0.18-um process when synthesized for 10 Gbps (311 MHz
system clock at 32 bit data path). This demonstrates the area efficiency of the
ASIP approach.

3.2.8 Iterative SDF enhancement

In the context of a service-driven NPU the designer would start with a number
of services, e.g. HC, NAT, etc., that are to be mapped to the SDF. The
services are specified in a high-level language and partitioned for individual
SDF components. Several services might share components, such as a HdrP,
or one type of service might be mapped to a separate component, e.g. an HC
unit. The software fragments for one SDF component represent the benchmark
applications at the start of the ASIP design flow out of which the component
is generated.

For the next generation of a service-driven NPU, several services will exist
that are running on a CPU and should now be moved to an improved SDF.
Hence, the software is already specified and only needs to be partitioned for
individual SDF components. The basic architecture template in Figure 6 can
be replaced by a description of the component in the current NPU. This data
starts the process that improves the SDF component.

This demonstrates an easy-to-follow way to exploit field experience with an
NPU model to design a next-generation SDF by means of the introduced
design flow.

4 Programmable multiprocessor complex

The term network processor includes the notion of a flexible device that can
be programmed for a wide area of networking applications. This universality
creates momentum for a broad application of the device and support by tools,
companion devices and skills. The components introduced in the previous
sections are dedicated to classes of such problems as LkU or SCH. Although
they boost the performance of functions found in most applications, their
flexibility can be restricted. In addition, high-performance processor resources
have to be provided to implement functions that have to meet stringent latency
constraints.

16

In typical NPU applications a very high degree of thread-level parallelism
is present with low impact on the programming effort. Even if a considerable
amount of traffic bypasses the CPUs, a high number of PDUs can be processed
in parallel. Of course, synchronization is required to handle data dependencies.

4.1 Processor architecture

In the past, GPPs have been improved to provide very high performance for
a single thread. The main methods for this are wider basic word size, RISC
design, pipelining, instruction and data caches, superscalar instruction issue,
branch prediction, register renaming, out-of-order execution, and dedicated
instructions for selected topics (floating point, multimedia etc.). This high
performance has its price in terms of area because most methods provide a
diminished return of performance per invested chip area. Nevertheless, the
mentioned methods are well invested for general-purpose computing applica-
tions.

Although word size and RISC design apply to networking applications as
well, the other methods do so to a lesser degree or not at all. They rely on
such properties of the application as data locality or control predictability.
These properties are not or only weakly present in current NPU applications.
By exploiting the high thread-level parallelism, overall high performance per
invested hardware resources can be achieved by applying a number of proces-
sors with only modest effort to improve the performance of a single thread:
pipelined RISC design, small per-CPU data and instruction caches, low de-
gree of superscalarity restricted to different operations. For a sample set of
applications an optimized architecture with respect to performance per area
is presented in [33].

4.2 NPUs as CMPs

By integrating several CPUs into one device the processor complex of an
NPU represents a chip-level multiprocessor (CMP). An overview of CMP de-
sign issues is given in [19]. It is instructive to compare the architecture of
NPUs with other CMP architectures. For example consider the digital sig-
nal processor (DSP) TMS320C80 from Texas Instruments Incorporated [31]
and the Hydra architecture from the University of Berkeley [17]. Both are
designed to have very high performance. However the applications are quite
different: signal processing and multimedia-rich, general-purpose computing.
Both designs rely on a high thread-level parallelism, created by the program-
mer (TMS320C80) or the compiler (Hydra). The Hydra concept allows a vari-
able number of processors. In one implementation, four cores have been used.

17

Whereas the processors in the Hydra are equivalent to each other, the archi-
tecture of the TMS320C80 is heterogeneous: one floating-point-capable mas-
ter processor controls four integer-only slave processors. As in the proposed
NPU architecture certain critical subtasks such as lookup and scheduling are
mapped to dedicated hardware, the tasks that remain for the CPUs are more
uniform than in NPUs without SDF. Therefore, an implementation with homo-
geneous processors will cover a wide range of applications. An NPU dedicated
to applications with special requirements affecting only a fraction of the PDUs
can also combine different types of processors (e.g. cryptographic) to form a
heterogeneous system.

To allow the processors to work at full clock speed, memory is included on the
chip in the two example CMPs. As on-chip memory is expensive, its utilization
has to be maximized by adapting it to the needs of the intended applications.
Hydra uses caches extended with a mechanism to handle speculative execu-
tion. This includes checking for dependencies on the fly and undoing the result
of thread execution if a violation is detected. Although this method was de-
veloped originally for parallelizing loops it can be used for advanced NPUs
as well when certain applications only occasionally write back to a data ob-
ject (flow context). In contrast the DSP heavily relies on directly addressed
memory (8 KByte per processor) in addition to caches combined with a DMA
engine. Such an arrangement can be used in an NPU as well, especially when
targeting deep packet processing. In this case, the PDU data can be trans-
ferred before and after processing independently on the CPU into/out of the
on-chip memory. The shared memory pool (4 KByte per processor) of the
IBM NP4GS3 implements this approach [20]. Providing further features for
the memory access can be beneficial for NPUs depending on the intended
application spectrum such as scheduling memory write-backs or insert/delete
operations on frames.

The traditional instruction and data cache architecture can be modified to bet-
ter fit the NPU requirements. As typical performance requirements enforce
applications to fit entirely into the instruction cache a dynamic instruction
cache with larger than typical line size combines the advantages of low area
cost and large possible program size while guaranteeing low latency when the
instruction footprint is small. A data cache example of an NPU-specific opti-
mization is the following: Every application needs to access the PDU header.
This can be exploited by triggering the data cache of a standard processor
core to prefetch the beginning of a PDU before starting execution.

18

4.3 Integration with SDF

The current workload, such as incoming PDUs or expired timers, needs to be
distributed in some way. This can either be done in a centralized fashion by
software on a dedicated processor, in a distributed manner by software on all
processors or with hardware support. The latter option has the advantage of
easier use of knowledge that is deep in the SDF, e.g. in the CL, and better
coupling of enqueueing and work delivery to conserve the order of PDUs.

A natural way to adapt a multiprocessor architecture to an application area
is the instruction set. In fact, several NPUs provide special instructions to
accelerate the intended application space and reduce program size. In an NPU
that provides such basic functions as HdrP, LkU and MTR in hardware, there
is a reduced profit for instructions that support the same functions in the
processor. However, functions on a higher level such as encryption can be
provided by coprocessors, which improves the overall performance per area
and power efficiency.

Obviously, the more standard tasks on lower protocol layers can be delegated
to units in the SDF, the higher the fraction of work on higher layers for the
processor. If problems with very short program paths such as IP forwarding
are performed in hardware, the average available program path length per
PDU on the CPU increases. These higher layer tasks are more diverse, more
complex and therefore represent a greater investment in software. Hence, the
way the software is created converges to conventional system software includ-
ing modularization, use of high-level languages including the acceptance of
overhead for maintainability and ease of development. In the course of this
process, standard processors offer significant advantages over specifically de-
signed processors.

5 Performance evaluation

One of the main goals of the proposed approach is to complement and augment
service functions with NPU-specific cores to offload the CPU from instruction-
cycle-intensive operations. To investigate such new NPU structures as well as
to analyze and quantify whether the overall performance requirements for a
specific solution are fulfilled, performance evaluation in an early design stage
is necessary. Moreover we wish to exploit the inherent advantages of a core-
based SoC design approach, which emphasizes the reuse of already existing
components such as bus structures, memory controllers, interface controllers
and processor cores.

19

As design space exploration is an important step in the design of today’s SoCs,
it is essential to integrate this process into the overall design methodology as
well as into the existing design flow tool chain. The challenge for such an en-
vironment is to combine architecture validation with performance evaluation
aspects, disciplines which traditionally have been dealt with separately. More-
over reusability of models, which can be further refined during the design flow,
is a key issue.

5.1 Clurrent approaches

There are currently only a few approaches to design space exploration. All
of these environments attempt to map specific functionality onto predefined
architectural components and to find optimal architectural system scenarios
that fulfill specific performance requirements [8,32].

As mentioned above, most of the existing approaches separate the design phase
from the performance evaluation process of a system. The general system
design flow is based on the reuse of library components on different levels of
abstraction and their successive refinement [15]. In the performance evaluation
process, however, this is not the case. Here there are many different issues
concerning the performance of a system, and a separate abstract model exists
for each one. This results in a large set of models, each of which deals with
a specific analysis, and hence is not reusable for any other performance issue.
Mainly analytical models based on queuing theory or stochastic models are
used here. The result is a large gap between the common design flow and the
performance evaluation process.

5.2 Component-based design space exploration

Integrating performance evaluation into the common SoC design flow while
considering the flexibility of our hybrid SDF concept is the overall goal of the
proposed methodology, called component-based design space exploration. Our
approach is based on a library of models, which combine abstract functional
behavior with performance evaluation aspects. To achieve high reusability,
there is only one model for each component.

In an architecture composition step, see Figure 8, some of these models are
adopted to build a specific architectural scenario. The evaluation is done by
simulation. The performance data collected during the model execution is then
analyzed and the evaluation results constitute the feedback to the architecture
composition phase for architectural improvements.

20

Workload
repository

Model Data
execution analysis

Performance Evaluation
data results

Figure 8. Performance evaluation framework.

Model
library

Architecture
composition

Instead of customizing the performance aspects of a model to one specific
metric, the metric part is extendable. To meet this challenge, every model is
composed of two layers, a functional and a data collection layer. The functional
layer implements the abstract behavior of the component with clearly defined
interfaces. The data collection layer deals exclusively with the performance
metrics. This separation allows for functional refinements without changing
the data collection mechanisms, but also enhances the flexibility of the data
collection.

5.8 Performance evaluation of a service-driven NPU architecture

To evaluate performance, we use a simplification of the service-driven NPU
architecture shown in Figure 4 with only one CPU core. All models are im-
plemented in SystemC [30]. The SDF model consists of two parameterizable
receive and transmit links, a simple LkU, a CL and a BM. The links receive
PDUs at a parameterized input rate, the CL tags the PDU for the CPU bypass
or the CPU. Based on this tag the BM organizes the transfer to a transmit
link or over the bus interconnect to memory. PDU processing is done through
an abstract and flexible model of a CPU core, which mimics the workload
of software-implemented service functions without having to have the code
of specific applications. For example, this model can be customized by a set
of system and application-specific parameters, such as number of instructions
per packet, I-cache/D-cache size, probability of cache misses or number of load
and stores from and to memory.

For our evaluation experiments we assume an aggregate input load of 1 Gbps.
The workload for every scenario consists of same-sized PDUs. The CPU model

21

runs at 200 MHz. In our evaluation we consider two different scenarios, one
with a heavy packet processing effort and another one with simple packet
processing. According to [21] we assume in the first scenario 3000 instructions
per PDU if the processor core is not supported by an SDF, whereas for the
second scenario only 500 instructions per PDU are taken. The effects on the
throughput are illustrated in Figure 9(a) and (b). In both charts the y-axis
represents the number of PDUs in thousands processed in one second and the
r-axis distinguishes between different PDU sizes. As the aggregate input load
is kept constant at 1 Gbps, the number of offered PDUs decreases with PDU
size. So the theoretical bound on both figures resembles the ideal situation,
where all offered PDUs can be processed by the network processor.

Offloading the CPU reduces the number of instructions per PDU. A good
example of this case is the introduction of a CL component as part of the
SDF. Depending on the application considered, the CL function can consume
up to 80% of all necessary CPU cycles [21], which in our first scenario results in
a reduction by 2400 instructions per PDU. When looking at the graph where
no CPU offload and no bypassing of PDUs takes place, the ideal throughput
according to the theoretical bound is not reached for any of the packet sizes. By
CPU offloading the overall performance can be increased, resulting in a 1-Gbps
throughput for large PDU sizes. This effect can be enhanced by adding bypass
capability to our SDF. We assumed a traffic mix, where 40% of all received
PDUs can be handled by the DiffServ IP forwarding SDF components without
having to be passed to the CPU. Consequently the processing headroom for
PDUs traversing through the CPU is almost doubled, which has the effect
that now PDUs with a size of 512 bytes can be processed at wire speed.

The results obtained for our simple packet processing scenario are shown in
Figure 9(b). In this case the maximum throughput of 1 Gbps can be achieved
for large PDU sizes without any SDF support. But even for PDUs with a size
of 512 byte, only a throughput of 554 Mbps is available. When assisting the
CPU with a CL component in the SDF the performance can be increased to
almost line speed. This effect can be achieved also for smaller PDUs, such as
256 byte, by bypassing 40% of the offered traffic mix, which results here in a
throughput of 903 Mbps. Considering the fact that the average PDU size of
an Internet traffic mix is 512 byte, our example NPU with SDF support could
be used for wire-speed processing of 1 Gbps.

5.4 Outlook

The above-described concept of component-based design space exploration
complements traditional design flow with performance evaluation. Its flexibil-
ity and extendability both on the functional and the metric level ensure model

22

500

X —— 80% offload & 40% bypass
» -—=0—-80% offload & 0% bypass
% 400
£ \ |--%x-- 0% offioad & 0% bypass
Na \ | =%~ Theoretical bound
£ 300 \
5
5 200 H_D\K
=3
2 Co=O =
< 100 <

SR/ CE Sy
0
64 128 256 512 1024 1280 1520
Packet size
(a)
500 1

>§ —1+— 80 % offload & 40% bypass
) -—=0—-80% offload & 0% bypass
» 400
2 \ |--%-- 0% offload & 0% bypass
Na \ |~ —Theoretical bound
£ 300
5 Cr=rem 0
-§7 200
S SRR LR
= 100

0

64 128 256 512 1024 1280 1520
Packet size

(b)
Figure 9. Packet processing scenarios with (a) 3000 and (b) 500 instructions per
PDU.

reuse. Even with the currently existing basic library it is possible to evaluate
different design scenarios, such as the SDF concept. Using this evaluation
methodology we are able to verify the soundness of the proposed architecture
and at the same time to identify the different requirements and implications
for each component.

6 Summary and conclusions

Our message is that the value proposition of NPUs must come not only from
the processing elements or multiprocessor clusters, but from a balanced mix
of processor cores and service-mapped components. This is crucial as NPU de-
signers strive for more flexibility and simultaneously enhanced performance.
We propose a design methodology for a modular, hybrid, SoC NPU archi-
tecture. It starts with the end application in mind, and ceases by mapping

23

the service required into the system’s components, which include processor
cores and deterministic performance components, such as configurable logic
and ASIPs. The flexibility requirements are addressed via the processor cores
and the ASIPs. The performance requirements are fulfilled with the service-
mapped deterministic performance components. The latter are placed and
interconnected such that they form a service-driven data flow (SDF). The
SDF provides a minimum service that allows a sizable amount of traffic to
bypass the CPUs.

We describe challenges and methods to design certain SDF components, inte-
grate and organize CPUs, and evaluate the system. The topics covered here
certainly do not exhaust the issues and challenges that this architecture design
methodology poses. Issues for further study include open on-chip interfaces
and data structures. The proposed methodology provides an open framework
for NPU design that can fit into various markets and applications areas. The
SDF addresses the performance requirements of a market, and advanced ser-
vices can be provided both via the CPUs and by incorporating appropriate
coprocessors. Thus, different types of traffic follow along different paths in
the system, allowing the system to cover both the functional and performance
needs of the flows, the network and the user.

7 Acknowledgments

The authors thank Kerry Imming, John Irish and the entire IBM Rochester
development team for their constructive and sagacious technical feedback, and
Lars Annel, Vick Chandra and John Fakiris for their stimulating marketing
insight and valuable customer validation support.

References

[1] 3GPP TS 23.060, General Packet Radio Service (GPRS); Service Description,
v4.2.0, October 2000.

[2] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich and H. Wilkinson, The
Next Generation of Intel IXP Network Processors, Intel Technology Journal,
vol. 06, no. 03, August 15, 2002.

[3] Agere Systems, Inc., The Challenge for Next Generation Network Processors,
White Paper, April 2001.

[4] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Addison-Wesley, 1986.

24

[5] M. Arnold and H. Corporaal, Designing domain-specific processors, in: Proc. of
9th Int. Symposium on Hardware/Software Codesign (CODES’01), April 2001,
pp. 61-66.

[6] AF-TM-0056.000, ATM Traffic Specification Version 4.0, ATM Forum, April
1996.

[7] E. Bowen, C. Jeffries, L. Kencl, A. Kind, and R. Pletka, Bandwidth Allocation for
Non-Responsive Flows with Active Queue Management, in: Proc. of Int. Zurich
Seminar on Broadband Communications, Zurich, 2002.

[8] S. Chakraborty, S. Kiinzli, L. Thiele, A. Herkersdorf, and P. Sagmeister,
Fast and Accurate Performance Evaluation of Network Processor Architectures:
Combining Simulation with Analytical Estimation, submitted to: Computer
Networks, Special Issue on Network Processors.

[9] P. Crowley and J.-L. Baer, A Modeling Framework for Network Processor
Systems, in: Proc. of 8th Int. Symposium on High-Performance Computer
Architectures; Workshop on Network Processors, Cambridge, MA, February 3,
2002.

[10] G. Dittmann, Programmable Finite State Machines for High-speed
Communication Components, Master’s Thesis, Darmstadt University of
Technology, 2000.
http://www.zurich.ibm.com/~ged/HeaderParser_Dittmann.pdf.

[11] draft-ietf-diffserv-model-06.txt, An Informal Management Model for Diffserv
Routers, Y. Bernet, S. Blake, and A. Smith, February, 2001.

[12] F. Engel, J. Nuhrenberg, and G. P. Fettweis, A generic tool set for
application specific processor architectures, in: Proc. of 8th Int. Workshop on
Hardware/Software Codesign (CODES 2000), May 2000, pp. 126-130.

[13] EZchip Technologies Ltd, Network Processor Designs for Next-Generation
Networking Equipment, White Paper, 1999.

[14] S. Floyd and V. Jacobson, Random Early Detection Gateways for Congestion
Avoidance, ACM Transactions on Networking, vol. 1, no. 4, August 1993,
pp. 397-413.

[15] D. D. Gajski, F. Vahid, S. Narayan and J. Gong, Specification and Design of
Embedded Systems, PTR Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[16] P. N. Glaskowsky, Intel Beefs Up Networking Line: New Chips Help IXP Family
Reach New Markets, Microdesign Resources, Cahners Microprocessor Report,
March 18, 2002.

[17] L. Hammond, B. A. Nayfeh and K. Olukotun, A Single-Chip Multiprocessor,
IEEE Computer, vol. 30, no. 9, September 1997,pp. 79-85.

[18] I.-J. Huang and A. M. Despain, Generating instruction sets and
microarchitectures from applications, in: Proc. of Int. Conference on Computer
Aided Design (ICCAD-94), November 1994, pp. 391-396.

25

[19] J. Huh, S. W. Keckler and D. Burger, Exploring the Design Space of Future
CMPs, in: Proc. of Int. Conference on Parallel Architectures and Compilation
Techniques (PACT 2001), pp. 199-210.

[20] IBM Corporation, Network Processor 4GS3 Overview, Application Note,
October 1999.

[21] C. Jenkins, NPU Co-Processors, The Power to Process, Presentation at Network
Processor Conference, August 2000.

[22] J. van Lunteren, Searching very large routing tables in wide embedded memory,
in: Proc. IEEE Globecom, vol. 3, November 2001, pp. 1615-1619.

[23] J. van Lunteren and A. P. J. Engbersen, Dynamic multi-field packet
classification, in: Proc. IEEE Globecom, November 2002.

[24] J. A. Nestor and V. Tamas, Exploiting scheduling freedom in controller
synthesis, in: Proc. of 6th International Workshop on High-Level Synthesis,
November 1992, pp. 74-86.

[25] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, LISA: Machine description
language for cycle-accurate models of programmable dsp architectures, in: Proc.
of 35th Design Automation Conference (DAC’99), June 1999, pp. 933-938.

[26] RFC 1633, Integrated Services in the Internet Architecture: An Overview,
R. Braden, D. Clark and S. Shenker, July 1994.

[27] RFC 2309, Recommendations on Queue Management and Congestion
Avoidance in the Internet, B. Braden, et. al, April 1998.

[28] RFC 2475, An Architecture for Differentiated Services, S. Blake, et. al,
December 1998.

[29] RFC 3031, Multiprotocol Label Switching, E. Rosen, et. al, January 2001.
[30] SystemC, Version 2.0 Beta-1, User’s Guide, 2001.

[31] Texas Instruments Incorporated, TMS320C80 Digital Signal Processor Data
Sheet 2000.

[32] L. Thiele, S. Chakraborty, M. Gries, S. Kiinzli, Design Space Exploration
of Network Processor Architectures, in: Proc. of 8th Int. Symposium on

High-Performance Computer Architecture; Workshop on Network Processors,
Cambridge, MA, February 3, 2002.

[33] T. Wolf and M. A. Franklin, Design Tradeoffs for Embedded Network
Processors, in: ARCS 2002, Karlsruhe, Germany 2002, pp. 149-164.

26

