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Abstract

In this paper we consider the problem of reconstruct-
ing the 3D position and surface normal of points on an un-
known, arbitrarily-shaped refractive surface. We show that
two viewpoints are sufficient to solve this problem in the
general case, even if the refractive index is unknown. The
key requirements are (1) knowledge of a function that maps
each point on the two image planes to a known 3D point that
refracts to it, and (2) light is refracted only once. We apply
this result to the problem of reconstructing the time-varying
surface of a liquid from patterns placed below it. To do this,
we introduce a novel “stereo matching” criterion called re-
fractive disparity, appropriate for refractive scenes, and de-
velop an optimization-based algorithm for individually re-
constructing the position and normal of each point project-
ing to a pixel in the input views. Results on reconstructing a
variety of complex, deforming liquid surfaces suggest that
our technique can yield detailed reconstructions that capture
the dynamic behavior of free-flowing liquids.

1. Introduction

Modeling the time-varying surface of a liquid has at-
tracted the attention of many research fields, from com-
puter graphics [1,2] and fluid mechanics [3] to oceanog-
raphy [4,5]. While great strides have been achieved in the
development of computer simulators that are physically ac-
curate and visually correct [1], capturing the time-varying
behavior of a real liquid remains a challenging problem.

From the point of view of computer vision, analyzing
the behavior of liquids from videos poses several difficulties
compared to traditional “3D photography” applications:

e No prior scene model: Spatio-temporal evolution is
constrained only by the laws of fluid mechanics, mak-
ing it difficult to assume a low-degree-of-freedom
parametric model for such a scene [6].

e Non-linear light path: Liquid surfaces bend the inci-
dent light and, hence, a point below the surface will
project along a non-linear path to a viewpoint above it.

o Shape-dependent appearance modulation: Absorp-
tion, scattering and Fresnel transmission cause the ap-
pearance of points below the surface to depend on the
light’s path and, hence, on the surface shape [7].

o Turbulent behavior: Liquid flow is an inherently vol-
umetric phenomenon whose complete characterization
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Figure 1. Geometry of refraction stereo. The goal is to re-
construct for each pixel g, the 3D position and surface nor-
mal of point p on the refractive surface.

requires capturing both its time-varying surface and a
vector field describing internal motion [8].

e [nstantaneous 3D capture: Since liquids are dynamic
and can flow rapidly, shape recovery must rely on
instantaneously-captured information.

As a first step, in this paper we consider the problem of
reconstructing the time-varying 3D surface of an unknown
liquid by exploiting its refractive properties. To do this, we
place a known, textured pattern below the liquid’s surface
and capture image sequences of the pattern from two known
viewpoints above the liquid (Figure 1). Our focus is on im-
posing as few restrictions as possible on the scene—we as-
sume that the liquid has a constant but unknown index of
refraction and that its instantaneous 3D shape is arbitrary,
as long as light coming from the pattern is refracted at most
once before reaching the input viewpoints.

The reconstruction of refractive surfaces from pho-
tographs has a long history in photogrammetry [9-12].
These techniques assume a low-parameter model for the
surface (e.g., a plane) and solve a generalized structure from
motion problem in which camera parameters, surface pa-
rameters, and 3D coordinates of feature points below the
surface are estimated simultaneously. In computer vision,
the reconstruction of time-varying refractive surfaces was
first studied by Murase [13], whose seminal work focused
on water (whose refraction index is known) and followed a
“shape-from-distortion” approach [4, 14]. In this approach,
instantaneous 3D shape is recovered by analyzing one dis-
torted image of a pattern that is placed underwater. Unfor-
tunately it is impossible, in general, to reconstruct the 3D



shape of a general refractive surface from one image, even
if its refractive index is known. The inherently ill-posed na-
ture of the problem has prompted a variety of assumptions,
including statistical assumptions about the pattern’s appear-
ance over time [13], known average water height [4, 12],
surface integrability [15], and special optics [5, 16]. These
assumptions break down when the refractive index is un-
known or when the liquid undergoes significant deforma-
tions that cause changes in both shape and height (e.g.,
pouring water in an empty tank).

A closely related problem is the reconstruction of highly
specular surfaces, such as mirrors [15, 17-20]. Mirrors in-
teract with light in much the same way that refractive sur-
faces do—light incident at a point is reflected according
to the point’s surface normal, thereby tracing a non-linear
path. Blake [17] proposed using a moving observer to re-
cover the differential properties of a smooth mirror surface
from the observed motion of specularities. Sanderson et
al [21] were the first to analyze the ambiguities in single-
view mirror reconstruction and to propose a stereo camera
configuration for resolving them. Our work, which is based
on a novel analysis of two-view ambiguities for refractive
scenes, exploits some of the same basic insights. Recently,
Bonfort and Sturm [22] used multiple views to build coarse
volumetric models of mirror surfaces. While their work is
promising, the development of algorithms able to recover
detailed models of complex, unknown, mirror surfaces from
multiple views remains open.

Reconstructing transparent liquid surfaces is even more
challenging than mirrors for three reasons. First, the inter-
action between light and a mirror does not depend on the
mirror’s material properties but it does depend on a liquid’s
refractive index. When this index is unknown, it must be es-
timated along with 3D shape. Second, the non-linearity of
light paths cannot be taken for granted in the case of fluc-
tuating liquid surfaces, whose distance from a pattern be-
low the surface may approach zero, diminishing the effect
of refraction. To guarantee stable shape solutions, a recon-
struction algorithm must be immune to such degeneracies.
Third, establishing accurate pixel-wise correspondences be-
tween patterns and their distorted images is much easier in
the case of a mirror. In liquids, the distortions are both geo-
metric and radiometric (due to absorption, Fresnel effect,
etc.) and can vary significantly from one instant to the next.

The starting point for our work is a novel geometrical
result showing that two viewpoints are sufficient to com-
pute both the shape and the refractive index of an unknown,
generic refractive surface. The only requirements are (1)
knowledge of a function that maps each point on the im-
age plane to a known 3D point that refracts to it, and (2)
light is refracted only once. Compared to mirrors, this is
a stronger two-view result because it shows that the refrac-
tive index ambiguity, not present in mirror scenes, can be
resolved without additional views.

On the practical side, our interest is in algorithms that
can capture the detailed dynamic behavior of free-flowing
liquids. To this end, our work has four contributions. First,
we formulate a novel optimization criterion, called refrac-

tive disparity, appropriate for refractive scenes, that is de-
signed to remain stable when refraction diminishes. Sec-
ond, we develop an optimization-based algorithm for in-
dividually reconstructing the position and normal of each
point projecting to the input views. The algorithm is
closer to traditional triangulation [23] and bundle adjust-
ment [24] than to voxel-based stereo [22], and imposes no
constraints on the liquid’s shape or its evolution. Third,
we show that refraction stereo can produce a detailed, full-
resolution depth map and a separate, full-resolution normal
map for the unknown surface. To our knowledge, only one
other shape recovery method, Helmholtz stereopsis [25],
has demonstrated the ability to compute dense normal maps
along with some depth information (although its depth maps
were low resolution and deemed inaccurate). Fourth, we
present experimental results for a variety of complex, de-
forming liquid surfaces. These results suggest that refrac-
tion stereo can yield detailed reconstructions that capture
the complexity and dynamic behavior of liquids.

2. Refraction Stereo Geometry

Consider an unknown, smooth, transparent surface that
is viewed by two calibrated cameras under perspective pro-
jection (Figure 1). We assume that the surface bounds a
homogeneous transparent medium (e.g., water or alcohol)
with an unknown refractive index. Our goal is to com-
pute the refractive index of the medium and the 3D coor-
dinates and surface normal at each point on the unknown
surface. To do this, we place a known reference pattern be-
low the surface and compute a pixel-to-pattern correspon-
dence function, C(q, t), that gives us the 3D coordinates of
the point on the pattern that refracts to pixel q at time ¢. In
the following, we assume that this function is known and
concentrate on the instantaneous reconstruction problem at
time t. We consider the problem of estimating the corre-
spondence function in Section 5. To simplify notation, we
omit the time parameter in the following discussion.

Let q be a pixel in the input views, let C(q) be the point
refracting to q, and suppose that this refraction occurs at
distance d from the image plane, at a point p(d) on the ray
through pixel q (Figure 1). The relation between pixel q
and points C(q) and p(d) is governed by Snell’s law, which
describes how light is redirected at the boundary between
two different media [7]. Snell’s law can be expressed as
two independent geometric constraints:

e a deflection constraint, establishing a sinusoidal rela-
tion between incoming and outgoing light directions:

sinf, = rsin 6; ()

where 6; is the angle between the surface normal and
the ray through C(q) and p(d); 0, is the angle between
the surface normal and the ray through pixel q; and r
is the refractive index;

e and a planarity constraint, forcing the surface normal
at p(d) to lie on the plane defined by point C(q) and
the ray through q; we call this plane the refraction
plane of pixel q.
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Figure 2. Single-viewpoint ambiguities. A view of pixel
q’s refraction plane is shown. Given a refractive index r1,
we can find, for each distance to the surface, a normal that
refracts point C(q) to its corresponding pixel q. Similarly,
given a distance d;, we can find, for each refractive index,
anormal that refracts point C(q) to pixel g.

These two constraints give us a relation between the
pixel, a known 3D point that refracts to it, and the unknown
surface. Unfortunately, they are not sufficient to determine
how far from the image plane the refraction occurs, even
when we do know the refractive index. This is because
for every hypothetical distance there is a 1D set of possible
normals that satisfy the planarity and deflection constraints.
Each of these normals lies on the pixel’s refraction plane
and satisfies Eq. (1) for some value of the refractive index
(Figure 2). Hence, the surface normals that satisfy Snell’s
law for pixel q can be expressed as a two-parameter func-
tion, n(d, r), parameterized by the distance d and the un-
known refractive index, r. A closed-form expression for
this normal can be derived as

i(d) — [i(d) - o] 0 )
li(d) — [i(d) - o] o

+ (r[i(d) o] - 1) o )

where A denotes vector product; o is the direction of the ray
through pixel q; and i(d) is the direction of the ray incident
to the surface point p(d):
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When the refractive index has a known value rg, there
is only one consistent normal, n(d, ry), for each distance
d. Sanderson et al [21] were the first to point out that this
distance-normal ambiguity for a pixel q can be resolved
with the help of a second viewpoint.! Intuitively, a second

ISanderson ef al [21] made this observation in the context of recon-
structing opaque specular, rather than refractive, surfaces. Their analy-
sis, however, applies equally well to the case of refractive surfaces with a
known refractive index.

viewpoint allows us to “verify” whether or not a particu-
lar distance hypothesis d is correct (Figure 1): given such a
hypothesis and given the projection g’ of point p(d) in the
second camera, we simply need to verify that point C(q’)
on the reference pattern refracts to pixel q'.

While this hypothesis-verification procedure leads di-
rectly to an algorithm when the surface has a known re-
fractive index, it leaves open the question of how to re-
construct surfaces whose 3D shape and refractive index are
unknown. In this case, the surface normal lies in the full,
two-parameter family, N = {n(d,r) | d,r € RT}. One
approach would be to use a third viewpoint to verify that a
hypothetical refractive index r and distance d are consistent
with the pixel-pattern correspondences in the three views.

Rather than use a third viewpoint, we prove that two
views are, in fact, sufficient to estimate the 3D shape and re-
fractive index of an unknown, generic surface. Intuitively,
generic surfaces embody the notion of non-degeneracy—
they are smooth surfaces whose differential properties re-
main unchanged if we deform their surface by an infini-
tesimal amount [26]. As such, they are especially suitable
for modeling the complex, unconstrained shape of a liquid.
Theorem 1 tells us if the liquid’s surface is generic, the fam-
ily, V, of ambiguous solutions is discrete:

Theorem 1. N is a zero-dimensional manifold for almost
all pixels in the projection of a generic surface.

Theorem 1 suggests that it might be possible to compute
the refractive index of a surface by choosing a single pixel
q and finding the distance and refractive index that are con-
sistent with C(q) and the pixel-to-pattern correspondences
in the second viewpoint. In practice, image noise and the
possibility of multiple discrete solutions dictate an alter-
native strategy, where measurements from multiple pixels
contribute to the estimation of the refractive index. We con-
sider the algorithmic implications of this result below.

3. Dynamic Refraction Stereo Algorithm

In order to reconstruct a liquid’s surface at a time in-
stant ¢, we need to answer three basic questions: (1) how do
we compute the pixel-to-pattern correspondence function,
C(q,t), (2) how do we compute the refractive index and
(3) how do we assign a distance and a normal to each pixel?

To compute C(q,t) we rely on a procedure that com-
putes the correspondences for time ¢ = 0 and then propa-
gates them through time using optical flow estimation.

Since the refractive index is the same for all pixels, we
seek a value that most closely satisfies the refractive stereo
geometry across all pixels and all frames. To do this, we
perform a discrete 1D search in an interval of plausible re-
fractive indices and, for each hypothetical value, attempt to
reconstruct the scene for all pixels and frames. We then
choose the value that produces the smallest reconstruction
error. This leads to the following general algorithm, whose
steps are discussed in the following sections.



Step 1 Initialise pixel-to-pattern correspondences, C(q, 0).

Step 2 For each frame ¢ > 0, estimate 2D optical flow to compute
C(q,t) from C(q,t — 1).

Step 3 For every refractive index r € {r1,...,7}, every frame
t and every pixel q,

e assuming refractive index r for the liquid, estimate the
3D position p and normal n of the surface point pro-
jecting to pixel q at time ¢

e estimate the reconstruction error (Section 4.2),

e(r, t, q) = RE(p,n) .

Step4 Set r* = argmin, Zt,q e(r, t, q) and return the dis-
tances and normals reconstructed with this index value.

Step 5 For each time ¢, fuse the pixel-wise 3D position and nor-
mal estimates to obtain a 3D surface.

4. Pixel-wise Shape Estimation

The key step in refraction stereo is an optimization pro-
cedure that assigns a 3D point p and a surface normal n to
each pixel. The procedure assumes that the refraction index
has a known value r and computes the p, n that are most
consistent with Snell’s law and the pixel-to-pattern corre-
spondence function for the input views.

For a given pixel q, the optimization works in two stages.
In the first stage, we conduct a 1D optimization along the
ray through pixel q. The goal is to find the distance d
that globally minimizes a novel criterion, called the refrac-
tive disparity (RD). This criterion is specifically designed to
avoid instabilities due to degenerate refraction paths (e.g.,
when the liquid’s surface is close to the reference pattern).

The optimal d-value gives us initial estimates, p(d) and
n(d,r), for the 3D coordinates and surface normal of a
point that projects to pixel q. These estimates are further
refined in a second, bundle adjustment stage in which all
five parameters (two for the normal, three for the position)
are optimized simultaneously.

4.1. Measuring Refractive Disparity

Each value of d defines an implicit correspondence be-
tween four known points (Figure 1): pixel q, the point C(q)
on the reference pattern that refracts to q, the projection, ¢’
of p(d) in the second viewpoint, and point C(q’). This cor-
respondence must be consistent with Snell’s law.

In their work on reconstructing mirror-like surfaces,
Bonfort and Sturm [22] noted that such a correspondence
gives us two “candidate” normals for p(d) which must be
identical when this hypothesis is correct. These normals
are obtained by applying Eq. (2) twice, once for each view-
point. Specifically, the first normal, n; = n(d, r), ensures
that point C(q) on the reference pattern refracts to pixel q
via point p(d). The second normal, ny, enforces a simi-
lar condition for the second viewpoint, i.e., it ensures that
point C(q') refracts to pixel q’ via point p(d). We obtain
n, by applying Eq. (2) to pixel ¢’, using its distance from
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Figure 3. Optimization criteria for refraction stereo. (a)
Measuring refractive disparity. Normals are drawn accord-
ing to the refractions they produce. (b) For small surface-
to-pattern distances, swapping n; and n» does not influence
the distance between C(q) and t significantly. (c) Measur-
ing image re-projection error at one of the viewpoints.

point p(d). Since points on a smooth surface have a unique
normal, a necessary condition for p(d) being on the “true”
surface is that n; = ns.

Unfortunately, even though it is possible, in principle, to
directly measure the alignment of vectors n; and ny, such a
measurement becomes unstable when the distance between
the surface and the reference pattern approaches zero. This
is because refraction diminishes, Eq. (2) becomes singular,
normals cannot be estimated accurately, and the 3D recon-
struction problem degenerates to standard stereo. In prac-
tice, this causes instability for low liquid heights, making
direct comparison of normals uninformative and inappro-
priate for reconstruction.

Instead of measuring the alignment of the two normals
n; and ny directly, we perform an indirect measurement
that is not singular when refraction diminishes. The main
idea is that if n; and ny were truly aligned, “swapping”
them would still force point C(q) to refract to pixel g and
point C(q’) to pixel q’. We therefore define the criterion by
asking two questions (Figure 3a):

e suppose the normal at p(d) is ng; which point on the
reference pattern will refract to pixel q?

e suppose the normal at p(d) is n;; which point on the
reference pattern will refract to pixel q'?

Now suppose that points t,t’ are the points that refract
to pixels q, q’, respectively. The distance between t and
C(q) and, similarly, the distance between t’ and C(q’),
can be thought of as a measure of disparity. Intuitively, this
distance tells us how swapping the normals ny, ny affects
consistency with the available pixel-to-pattern correspon-
dences. To evaluate a hypothesis d we simply sum these
distances:



Refractive Disparity
RD(d) = [t = C(aq)|I* +[It' = C(a@)[I*. @

When the distance between the true surface and the ref-
erence pattern is large, refractive disparity is equivalent
to a direct measurement of the alignment between vectors
ni, no, i.e., it is zero if and only if n; = ny. On the other
hand, as the liquid’s true surface approaches the reference
pattern, refractive disparity diminishes. This is because the
refractive effect of changing a point’s surface orientation di-
minishes as well (Figure 3b). As a result, the minimization
can be applied to any image pixel for which C(q) is known,
regardless of whether or not the ray through the pixel actu-
ally intersects the liquid’s surface.

To compute point t for a given d-value, we trace a
ray from the first viewpoint through pixel q, refract it at
point p(d) according to normal n,, and intersect it with the
(known) surface of the reference pattern. Point t’ is com-
puted in an identical manner. To find the distance d that
globally minimizes refractive disparity along the ray we use
Matlab’s fminbnd () function, which is based on golden
section search [27].

4.2. Computing 3D Position and Orientation

Even though refractive disparity minimization yields
good reconstructions in practice, it has two shortcomings.
First, it treats the cameras asymmetrically, since optimiza-
tion occurs along the ray through one pixel. Second, it only
optimizes the distance along that ray, not the 3D coordinates
and orientation of a surface point. We therefore use an ad-
ditional step that adjusts all shape parameters (p and n) in
order to minimize a Ssymmetric image re-projection error.

To evaluate the consistency of p and n we check whether
the refractions caused by such a point are consistent with
the refractions observed in the input views. In particular,
let q, q’ be the point’s projections in the two cameras and
suppose that t, t’ are the points on the reference pattern that
refract to g, q’, respectively, via point p (Figure 3c). To
compute the re-projection error we measure the distance be-
tween pixels q, q’ and the “true” refracted image of t, t':

RE(p,n) = [q=C~ (t)[*+lla'~C ™" (") |*+8G ([p—poll; o) "

where C~1(.) denotes the inverse of the pixel-to-pattern

correspondence function, G(.; o) is the Gaussian with stan-
dard deviation o, and pg is the starting point of the opti-
mization. The Gaussian term ensures that p is restricted
to within a small neighborhood of the initial position. We
used o = 4 and § = 200 for all our experiments. To mini-
mize the RFE functional with respect to p and n we use the
downhill simplex method [27].

5. Implementation Details

Estimating Pixel-to-Pattern Correspondences Accurate
3D shape recovery requires knowing the pixel-to-pattern
correspondence function C(q, t) with high accuracy. While
color-based techniques have been used to estimate this func-
tion for image-based rendering applications [2], they are not
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Figure 4. (a) Experimental setup. (b) Typical close-up view
of pattern, seen through water surface. (c) Distorted view,
corresponding to tracking failure at the central corners.

appropriate for reconstruction for several reasons. First,
different liquids absorb different wavelengths by differ-
ent amounts, altering a pattern’s appearance in a liquid-
dependent way. Second, since light absorption depends on
distance traveled within the liquid and since this distance
depends on the liquid’s instantaneous shape, the appear-
ance of the same point on a pattern will change through
time. Third, the intensity of light transmitted through the
surface depends on the Fresnel effect [7] and varies with
wavelength and the angle of incidence. This makes it diffi-
cult to use color as a means to localize points on a pattern
with near- or sub-pixel accuracy.

In order to avoid these complications, we use a
monochrome checkered pattern and rely on corners to
establish and maintain pixel-to-pattern correspondences
(Figures 4a,b). We assume that the liquid’s surface is
undisturbed at time ¢ = 0 and use the Harris corner
detector [28] to detect corners at sub-pixel resolution.
This gives us the initial pixel-to-pattern correspondences.
To track the location of individual corners in subsequent
frames while avoiding drift, we estimate flow between the
current frame and the frame at time ¢ = 0, using the flow
estimates from the previous frame as an initial guess. We
compute flow with a translation-only version of the Lucas-
Kanade inverse-compositional algorithm, with Levenberg-
Marquardt minimization to give sub-pixel registration [29].
This algorithm is applied to an 11 x 11 pixel neighborhood
around each corner. We use the registration error returned
by the algorithm as a means to detect failed localization
attempts. In the case of failure, the flow computed for
that corner is not used and the corner’s previously known
location is propagated. This allows our tracker to overcome
temporary obscurations due to blur, splashes or extreme
refractive distortions (Figure 4c). The above procedure
gives values of the correspondence function C(q,¢) for
a subset of the pixels. To evaluate the function for every
pixel, we use bilinear interpolation.

Fusing 3D Positions and Orientations Refraction stereo
yields a separate 3D position and 3D normal for each pixel.
While this is a richer shape descriptor, the problem of re-
constructing a single surface that is consistent with both



types of data is still open. A key difficulty is that point and
normal measurements have different noise properties and,
hence, a surface computed via normal integration and a sur-
face computed by fitting a mesh to the 3D points will not
necessarily agree. As a first step, we used simulations and
ground-truth experiments to estimate the reliability of each
data source as a function of surface height, i.e., distance
from the plane of the reference pattern (Figure 5). Since
reconstructed normals are highly reliable for large heights,
we used this analysis to set a height threshold, below which
normals are deemed less reliable than positions. That por-
tion of the surface is reconstructed from positional data. For
the remaining pixels, we reconstruct the surface via nor-
mal integration, using the Ikeuchi-Horn algorithm [30], and
merge the results. In cases where all reconstructed positions
are above the height threshold, we rely on normal integra-
tion to compute 3D shape and use the average 3D position
to eliminate the integrated surface’s height ambiguity.

6. Experimental Results

Experimental setup Figure 4a shows our setup. The
checkered pattern at the bottom of the tank was in direct
contact with the water to avoid secondary refractions.
During our experiments, the pattern was brightly lit from
below to avoid specular reflections and to enable use of
a small aperture size for the cameras (and, hence, a large
depth of field). Images were acquired at a rate of 60Hz with
a pair of synchronized Sony DXC-9000 progressive-scan
cameras, whose electronic shutter was set to 1/500sec to
avoid motion blur. Both cameras were approximately 1
meter above the tank bottom and were calibrated using the
Matlab Calibration Toolbox [31].

Simulations To evaluate the stability of our algorithms,
we performed simulations that closely matched the ex-
perimental conditions in the lab (e.g., relative position of
cameras, pattern-to-camera distances, feature localization
errors, etc.). We simulated the reconstruction error for
planar water surfaces as a function of the surface-to-pattern
height, and for various levels of error in corner localization
and camera calibration. For each height, we reconstructed
10,000 individual points and measured their deviation from
the ground-truth plane (Figure 5). These simulations con-
firm that the accuracy of reconstructed normals degrades
quickly for water heights less than 4mm. Importantly,
the accuracy of distance computations is not sensitive to
variations in water height, confirming the stability of our
optimization-based framework for refractive stereo.

Accuracy experiments Since ground truth was not avail-
able, we assessed our algorithm’s accuracy by applying it
to the reconstruction of flat water surfaces whose height
from the tank bottom ranged from 4 to 15mm. For each
water height, we reconstructed a point p and a normal n
independently for each of 1,836 pixels in the two image
planes, giving rise to as many 3D points and normals. No
smoothing or post-processing was performed. To assess the
accuracy of the reconstructed points, we fit a plane using
least squares and measured the points’ RMS distance from

this plane. To assess accuracy in the reconstructed normals,
we computed the average normal and measured the mean
distance of each reconstructed normal from the average
normal. These results, also shown in Figure 5, closely
match the behavior predicted by our simulations. They
also suggest that reconstructions are highly precise, with
distance variations around 0.25mm, (i.e., within 99.97% of
the surface-to-camera distance) and normal variations on
the order of 2 degrees for water heights above 8mm.

Experiments with dynamic surfaces Figure 6 and sup-
plementary videos in [32,33] show reconstructions of sev-
eral dynamic water surfaces. The experiments test our al-
gorithm’s capabilities under a variety of conditions, from
rapidly-fluctuating water that is high above the tank bottom,
to water that is being poured in an empty tank, where the
water height is very small and refraction is degenerate or
near-degenerate for many pixels. Figure 5(right) shows the
total reconstruction error corresponding to specific values of
the refractive index, for the “waves” dataset [32, 33]. While
the curve does not exhibit a very steep minimum, the min-
imum is obtained at the correct value for water, 1.33, con-
firming the predictions of Theorem 1. Several observations
can be made from these experiments. First, our tracking-
based framework allows us to maintain accurate pixel-to-
pattern correspondences for 100s of frames, enabling dy-
namic reconstructions that last several seconds. Second,
the reconstructed distances remain stable despite large vari-
ations in water height, and are accurate enough to show fine
surface effects even in cases where the total water height
never exceeds 6mm (e.g., the “pour” sequence). Third, the
reconstructed normal maps, as predicted, show fine surface
fluctuations at larger heights but degrade to noise levels for
water heights near zero. Qualitatively, when there is suf-
ficient water in the tank, they appear to contain less noise
than depth maps. Fourth, the normal integration algorithm
that we are currently using seems to over-smooth fine sur-
face details that are clearly present in the depth and normal
maps. Hence, the question of how to best extract surfaces
from the raw data provided by refraction stereo is still open.
Fifth, our search-based framework for refractive index esti-
mation produces stable, unambiguous results because it en-
forces a very strong global constraint: a single refractive
index value must account for the refractions caused by the
entire sequence of 3D surfaces of the deforming liquid, not
just the 3D surface at a single instant.

7. Concluding Remarks

Liquids can generate extremely complex surface phe-
nomena, including breaking waves, bubbles, and extreme
surface distortions. While our refraction stereo results
are promising, they are just an initial attempt to model
liquid flow in relatively simple cases. Our ongoing work
includes (1) reconstructing surfaces that produce multiple
refractions [34], (2) reconstructing liquids by exploiting
their refractive and reflective properties (e.g., by also
treating them as mirrors), and (3) “reusing” captured 3D
data to create new, realistic fluid simulations.
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Proof sketch of Theorem 1 The proof uses two basic intu-
itions. First, given an arbitrary value for the refractive index, each
viewpoint can be thought of as defining a 3D constraint curve,
representing all assignments of distances and normals to a pixel q
that are compatible with Snell’s law. Hence, an assignment that
is consistent with both viewpoints corresponds to the intersection
of two such constraint curves. Second, and most important, for
an arbitrarily-shaped surface, these 3D curves will be in general
position with respect to each other and, therefore, will not have
a common intersection. From these two facts we conclude that
when the refractive index has an arbitrary value, there will be no
distance and normal assignment that is consistent with both view-
points. Hence, such consistency can only be achieved for isolated
refractive index values. We formalize these intuitions below.

Let r* be the true refractive index of the surface and let r # r*
be an arbitrary value of this index. Without loss of generality, we
assume that the function C(q) is known for all pixels g.

Let q be an arbitrary pixel in the first viewpoint and let d* be
its true distance to the surface. Given value 7 for the refractive in-
dex, every distance d defines a unique normal, n(d, r'), compatible
with Snell’s law (Figure 2 and Eq. (2)). Now suppose we repre-
sent unit vectors with two angles: an angle 6, corresponding to the
angle between the vector and the ray through q; and an angle ¢,
corresponding to the angle between the vector and the normal of
q’s refraction plane. In this representation, the distance and nor-
mal assignments to q that are compatible with Snell’s law define a
curve v in (d, 0, ¢)-space. This curve will always lie on the plane
¢ = 0 since, by definition, the normal n(d, r) always lies on the
refraction plane of pixel q.

Now let ' (d) be the projection of p(d) in the second view-
point (Figure 1). Since C(q’(d)) is known, there is only one nor-
mal, n’ (d, r), that can be assigned to p(d) and is compatible with
Snell’s law in the second viewpoint. This normal will lie on the
refraction plane of pixel q’. Generically, the refraction planes of
pixels q and q' are distinct. Hence, the normal n’(d, r) may not
lie on the refraction plane of pixel q and, as d varies, n’ (d, ) will
trace a general curve ' in (d, 6, ¢)-space, i.e., a curve that is not
restricted to the plane ¢ = 0.

We now show that  and 4" do not intersect. First note that the
two curves cannot intersect in the neighborhood of the “true” dis-
tance d* because n’(d*,r) # n(d*,r).> Now consider distances
away from d*. We show that 4’ and v generically will not inter-
sect there either. In particular, the normal n’(d, ) is completely
determined by point C(q'(d)) which, in turn, is determined by the
normal of the true surface point projecting to pixel q'(d). Since
q'(d) lies on the epipolar line of q for all values of d, it follows
that curve ' is completely determined by the surface normal of
points at the intersection, C, of this epipolar plane with the true
surface. For o and ~ to intersect there must be a point on C' out-
side the neighborhood of p(d*) whose surface normal is identical
to p(d™). This condition, however, cannot be satisfied for an open
2D set of points on a generic surface. It follows that 4" and  are

2Observe that n’(d*,r*) = n(d*,r*) since Snell’s law is satisfied
for both viewpoints in the true scene. Now, since there is a 1-1 correspon-
dence between refractive indices and normals when d* is fixed, and since
the refraction planes of q and q’(d) have only one normal in common, it
follows that n’ (d*, r) # n(d*,r).

non-intersecting for almost all points on the surface and, hence,
for almost all pixels in the surface’s projection.
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Figure 5. Left & middle: Reconstruction accuracy as a function of water height, for real (solid line) and simulated (dotted line) flat
water surfaces. Bars indicate standard deviation. Simulations are for a 0.08-pixel localization error; in real flat water experiments,
corner localization precision was measured to be 0.1 pixels. Right: Total reconstruction error as a function of refractive index.
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Figure 6. 3D reconstruction results. All maps correspond to a top view of the tank and show raw, per-pixel data. Height grayscale
values are mapped to [21mm, 33mm] for the “ripple” sequence (left) and to [0mm, 6mm] for the “pour” sequence. Normal maps
represent the slant and tilt angle of each reconstructed normal and range from —90° (black) to 0 (gray) to +90° (white). See the
supplementary videos in [32, 33] for more information on these sequences and for more examples.
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